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Abstract

Manufacturing industries are looking for efficient assembly planners that can swiftly develop a
practically feasible assembly sequence while keeping costs and time to a minimum. Most
assembly sequence planners rely on part relations in the virtual environment. Nowadays,
tools and robotic grippers perform most of the assembly tasks. Ignoring the critical aspect
renders solutions practically infeasible. Additionally, it is vital to test the feasibility of position-
ing and assembling components while employing robotic grippers and tools prior to their
implementation. This paper presents a novel concept named by considering both part and
tool geometry to propose “tool integrated assembly interference matrices” (TIAIMs) and a
“tool integrated axis-aligned bounding box” (TIAABB) to generate practically feasible assem-
bly sequence plans. Furthermore, the part-concatenation technique is used to determine the
best assembly sequence plans for an actual mechanical component. The results show that the
proposed approach effectively and efficiently deals with real-life industrial problems.

Introduction

Industry 4.0 propels the manufacturing industries away from mass production and toward
mass customization to meet customers’ needs with multiple product variants (Daneshmand
et al., 2022; Dolgui et al., 2022). Human–robot collaboration can merge the flexibility of
humans and the repetitiveness of robots to enhance the overall system capabilities (Inkulu
et al., 2022). This revolutionary paradigm lets engineers work in real time with the latest digi-
talized technologies like IoT, cloud, AI, and cyber-physical systems (Ghosh et al., 2019;
Stojadinovic et al., 2021).

Smart manufacturing cannot be accomplished without the use of flexible robotic assembly
(Ying et al., 2021). An effective automated assembly plan can assist manufacturers under
colossal pressure to produce and market products faster to meet the demands (Rashid
et al., 2012). Assembly design is said to be complete when product information and an assem-
bly design co-exist (Hui et al., 2007). Developing an optimal feasible assembly sequence plan
(OFASP) for a new product variant in low volume is challenging because of the high cost
involved in the designing phase. The assembly planning phase accounts for the majority of
the cost and time (20%–40%) of overall production estimates; an OFASP can significantly
reduce assembling cost and time (Whitney, 2004; Bahubalendruni and Biswal, 2016). When
the number of predicates (liaison predicate, assembly interference predicate, stability predicate,
and mechanical feasibility predicate) increases, the solution becomes more acceptable
(Bahubalendruni and Biswal, 2018). For any product with an “n” number of parts, there
can be “n!” possible linear assembly sequences (Ghandi and Masehian, 2015b). The assembly
planners should establish the assembly relations and attributes before extracting the assembly
predicates (Tseng et al., 2004). The application of the assembly predicates drastically lowers the
number of feasible assembly sequences (De Fazio and Whitney, 1987; De Mello and
Sanderson, 1989). The ASP’s effectiveness can also be increased by employing a stable subset
identification technique (Murali et al., 2019). Several researchers have worked on extracting
assembly constraints and relations from virtual CAD models; these constraints and assembly
relations are used to validate assembly sequences’ feasibility (Pan et al., 2006; Ben Hadj et al.,
2015). Literature (Kumar et al., 2022) has suggested an automated way to get the geometric
feasibility through a path with no collisions at an angle. A rule-based geometry-enhanced
ontology modeling and reasoning framework are suggested to deal with the customized and
digitalized manufacturing environment (Qiao et al., 2018).

Researchers used artificial intelligence (AI) techniques for their simplicity to generate opti-
mal assembly sequences for various objective functions with a high convergence rate (Deepak
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et al., 2019; Su et al., 2021). AI methods like breakout local search
(Ghandi and Masehian, 2015a), firefly algorithm (Zhang et al.,
2016), advanced immune system (Bahubalendruni et al., 2016),
machine learning (Cao et al., 2018), particle swarm optimization
(Wang and Liu, 2010; Ab Rashid et al., 2019), ant colony optimi-
zation (Han et al., 2021), genetic algorithm (Wu et al., 2022; Lu
et al., 2006), rule-based reasoning (Kroll et al., 1989; Lin et al.,
2007), neural network (Chen et al., 2010), simulated annealing
(Murali et al., 2017), and psychoclonal algorithm (Tiwari et al.,
2005). Sometimes, combining different methods like the advanced
immune system and GA (Gunji et al., 2017) and neuro-fuzzy by
Zha (2001) also provides the optimal solutions faster. Reinforced
learning can search for assembly sequences from many solutions
and regression, and neural networks can improve the solution
faster (Watanabe and Inada, 2020).

Aside from the AI technique, a few researchers developed
heuristic-based mathematical models (Givehchi et al., 2011;
Gulivindala et al., 2020). Due to the limited information available
about the tool and robotic gripper in assembly relation data (liai-
son and assembly interference data) in the previous work. The
solutions derived by utilizing these optimization algorithms are
often not optimal and are practically not feasible. Moreover, AI
techniques must search the entire solution space to arrive at the
optimal solution.

The cost function can be reduced by implementing robotic
assembly to minimize the orientation, the number of tool
changes, and the length of paths (Rodríguez et al., 2019). Many
researchers focus on tool selection or assignments by incorporat-
ing expertise-based or knowledge-based approaches (Yin et al.,
2003; Wu et al., 2011). Wilson et al. explain the tool representa-
tion that includes the tool use volume and the minimum free
space in an assembly to apply the tool (Wilson, 1998). The author
also categorized the tools based on their application (before, after,
and during assembling).

Table 1 delineates a comparative analysis of cited articles and
the proposed method. It can be observed from Table 1 that most
of the existing literature considered only part attributes and
ignored the tools. Due to this, the solution may not be practically
feasible. In the current research, tool geometry is also considered
for assembling a component to ensure practical feasibility. A novel
concept named the tool integrated assembly interference matrix
(TIAIM) is proposed.

OFASP without considering tooling

A list of preconditions (given below) has been adopted to simplify
complex assembly planning-related problems.

1. The parts and tools used for the assembly operations are rigid;
no change in size and shape is permitted during the assembly
operation.

2. All the parts of the product are considered for the assembly
operation.

3. The stability of the components within the assembly is not
evaluated.

4. The parts have been assembled linearly.
5. The assembly operation is considered the reverse of disassem-

bly sequence planning to ease assembly interference testing.
6. While generating the TIAIM, the moveable parts are replaced

by a combined geometry of the tool and the part.
7. This article considered the number of direction changes as the

optimal criteria.

The proposed method that generates the OFASP without con-
sidering tooling is presented in Figure 1, which first processes the
assembly relations data and generates the assembly sequence plan
for a specific objective function. The conditions through which
the input data is processed noted as Q1, Q2, Q3, and Q4 are
depicted in Table 2. The assembly relation data can produce a
stable and feasible solution. In many cases, the assembly jigs/fix-
tures may be used to obtain the stability of any component.

The establishment of the mathematical relationship is the fun-
damental step. Boolean representations (0, 1) are being used to
determine whether there is contact or geometrical interference.
The assembly relations used for OFASP are given in Table 3
with the retrieval process. The current research uses CATIA
API (application program interface) to interface with CAD mod-
els to extract the assembly attribute data stated in Table 3.

Moreover, the clash test was performed in the CATIA environ-
ment to acquire the assembly relations, that is, liaison and assem-
bly interference relations. There are three ways the outputs
display, namely contact (=0), clearance (<0), and clash (>0)
while performing the clash test. So, the contact analysis process
records the conflict elements having a value equal to zero.
However, the retrieval system called snap class analysis, as

Table 1. Comparative analysis of the cited literature

Sl. No Reference

Assembly part relation

Assembly tool relationLiaison Assembly interference Stability

1 Bahubalendruni and Biswal (2018) C C C NC

2 Cao et al. (2018) C NC NC NC

3 Ying et al. (2021) C C C NC

4 Gunji et al. (2017) C C C NC

5 Gulivindala et al. (2020) C C C NC

6 Han et al. (2021) C C NC NC

7 Kumar et al. (2022) C C C NC

8 Qiao et al. (2018) C C NC NC

9 The proposed work C C NC C

NC, not considered; C, considered.
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shown in Table 3, reads the conflict elements having values other
than zero and tests for assembly interference along the cartesian
directions through iteration. Equations (1)–(3) validate the
OFASP using the above-mentioned assembly relations.

AS[2] = Pi + Pj ∀ i = j,

If LM(Pi, Pj) = 1,
(1)

where i, j∈ (1, 2, 3,…n)

AS[k] = AS [k− 1]+ Pj,

If LM(Pi, Pj) = 1; Pi [ AS [k− 1] ∀ i [ k− 1,

If
∑k−1

i=1

AIM(dir, Pj, Pi) = i− 1,

(2)

where dir [ (1, 2, . . . 6)

∑n

i=1

(DCi)min, (3)

where n is the number of parts of a product and DCi is the
number of direction changes.

Implementation

An optimal solution is needed to find out without considering the
tooling to acknowledge the influence of tooling in generating
OFASP. Different assembly relations needed to be extracted, such
as a liaison matrix, an axis-aligned bounding box with part geom-
etry data, and assembly interference matrices. Figure 2 depicts a 3D
CAD (CATIA platform) model named bench vice consisting of
seven components. The necessary assembly relations, such as the
liaison matrix (contact information about the parts of a product)
and assembly interference matrix along six cartesian directions,
are extracted through the CATIA environment with the help of
programmed macros. Furthermore, the proposed algorithms for
generating optimal assembly sequence planning are also tested
using the same environment.

Fig. 1. Structural outline of the proposed method.

Table 2. Description of the conditions used in this method

Q1 Assembly attribute for a 2-level subset (Yes: Liaison predicate –
True, Else No)

Q2 Assembly attribute for a higher-level subset (Yes: Liaison
predicate, Geometric feasibility predicate – True, Else No)

Q3 To identify similar subsets with the most negligible fitness value
(Yes – The fitness value is minimum; Else, Delete the redundant
subset and go for the following subset generation)

Q4 All parts in the product are finished (Yes – Record the OFASP; Else,
Generate the following higher-order subset)

Table 3. Representation and retrieval of assembly relations

Assembly relation Representation Retrieval

Liaison matrix
(LM)

LM (Pi, Pj) = 1, If part “i” and
part “j” are in contact = 0,
otherwise

Contact
analysis

Assembly
interference
matrix (AIM)

AIM (dir, Pi, Pj) = 1, If in the
presence of Pi, Pj can be
disassembled along a specific
direction, “dir.” = 0, otherwise

Snap clash
analysis

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 3

https://doi.org/10.1017/S0890060422000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060422000282


The liaison matrix (LM) is extracted by following the neces-
sary conditions given in Eq. (1). Table 4 represents the result LM
for the above CAD model. The DMU (Digital Mock-Up)
optimizer provided the bounding box values. Table 5 shows
the AABB for the 7-part bench vice, including the minimum
and maximum coordinates along the three dimensions (X, Y,
and Z ).

Table 6 presents the geometric feasibility (GF) through inter-
ference matrices along with ±X, ±Y, and ±Z directions. After
extracting all the essential data, the OFASP, as shown in
Table 7, is generated by employing the optimality criteria.

Practical infeasibility of solution

The generated optimal assembly sequence plan is going to verify its
feasibility by considering tooling. Figure 3 tests whether the
generated OFASP is feasible or not by considering assembly tools
(screwdrivers) and robotic grippers (grippers). Additionally, the
construction of the generation of feasible and infeasible subsets is
broken down into individual steps and depicted in Figure 3.

Figure 3a indicates that the gripper attached to part 3 can be
assembled to part 1 (base part) along the (−Z ) direction.
Similarly, a screwdriver affixed with part 2 can be appended to
the (1-3) subset along a collision-free path, as shown in
Figure 3b. Part 4 can be assembled to form a (1-3-2) subset along
the (−Z ) direction (see Fig. 3c). However, the subset (1-3-2-4-5)
becomes infeasible as a collision occurs while positioning part 5 to
part 4, as displayed in Figure 3d.

Figure 4 provides more clarity regarding the occurrence of
interference between the appended parts 4 and 5. Figure 4a
shows that part 5 can be assembled to its appropriate location
when the presence of the gripper is ignored. However, part 5 can-
not be appended to the (1-3-2-4) subset as the gripper is interfer-
ing with part 4, as indicated by Figures 3d, 4b. The interference
(with a clash value of −0.48) during assembling is observed
between the tool holding the appended part (part 5) and the
pre-existing part (part 4). Thus, the subset (1-3-2-4-5) becomes
infeasible as a collision occurs while positioning part 5 to its
final position.

Although the OFASP generated by the traditional approach is
theoretically valid, it cannot be applied to real assembly-based
industrial applications due to the non-consideration of the tool
predicate.

Generation of TIAABB and TIAIMs

It is evident that improved assembly sequence planning should be
designed for the actual case situations. The proposed method con-
sidered a novel assembly attribute by considering tool geometry.
The soundness of the proposed approach is validated using a
13-part 3D CAD model. Figure 5 shows the assembled and
exploded view of a 13-part CAD product.

The LM, as shown in Table 8, describes the contact information
of the parts of a product. The bounded box that is used for

Fig. 2. 7-part bench vice assembly.

Table 4. Liaison matrix for the bench vice

0 1 1 1 0 0 1

1 0 1 0 0 0 0

1 1 0 0 0 1 1

1 0 0 0 1 1 0

0 0 0 1 0 1 0

0 0 1 1 1 0 0

1 0 1 0 0 0 0

Table 5. Axis-aligned bounding box (AABB) of part geometry

Part no

Minimum coordinate
values (mm)

Maximum coordinate
values (mm)

X1 Y1 Z1 X2 Y2 Z2

1 −25 −0.5 0 25 150 50

2 14 134 10 17 138 20

3 −25 130 15 25 150 50

4 −25 92 15 25 102 50

5 −25 84 33 25 92 50

6 −21 89 40 21 199 41

7 −17 134 10 −14 138 20
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generating OFASP in the previous method is not competent
enough to deliver a solution related to real-life assembly sequence
planning problems. Therefore, the typical bounding box of the
part needs to be upgraded to a tool or gripper-integrated
axis-aligned bounding box. We can observe that the parts which
are needed to be appended require to design along with the

Table 6. Assembly interference matrices

(+X ) direction (−X ) direction (+Y ) direction

0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1

1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0

1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 0 0 0 1 0 0

1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1

1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1

0 0 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0

(−Y ) direction (+Z ) direction (−Z ) direction

0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1

0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1

0 1 1 0 0 1 1 1 1 1 0 1 0 1 0 1 1 0 1 0 1

0 1 1 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 1

0 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 1

0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 0

Table 7. Optimal feasible assembly sequence plan (OFASP)

Sl. No OFASP Direction matrix
Number
of DC

1 1-3-2-4-5-7-6 −Z, −Z, −Z, −Z, −Z, −Z, −Y 1

Fig. 3. Practical infeasibility of the generated OFASP.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 5
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assembly tool or robotic gripper that is associated with it. Similar to
the typical approach, the current TIAABB needed to be formulated
as follows.

Bounding Box (BB) [P(i)] = (XLiYLiZLi , XHiYHiZHi ), (4)

(P(i) is a stationary part and without tools/gripper)

BB[P(j)] = {min (XLj , Xjt ), min (YLj , Y jt ), min (ZLj , Z jt )},

{ max (XHj , Xjt ), max (YHj , Y jt ), max (ZHj , Z jt )},

(5)

(P( j) is a moving part with tools/grippers)
Figure 6a–6c shows a few examples of the preceding descrip-

tion of bounding boxes for a set of primary components, with
and without consideration of tooling (robotic gripper or assembly

tool). The parts (part 8 and part 9) shown below are taken from
Figure 6 for better visual analysis. Figure 6a represents the bound-
ing boxes of parts 8 and 9 without tools, Figure 6b represents the
bounding boxes of part 9 with tools and part 8 without tools, and
Figure 6c represents the bounding boxes of part 8 with tools and
part 9 without tools.

The TIAABB proposed is comparatively less computational.
The TIAABB is employed to compute the distance between two
parts where one part is at its result position and another need
to be moved iteratively by a small unit distance to test for
collision.

Table 5 shows the bounding box coordinates to determine the
AIM of the part in the presence of other parts without consider-
ing tooling. Table 5 is extracted based on the part data only,
whereas Table 9 is prepared considering tools or grippers along
with the affix parts. The procedure to calculate the bounding
box is the same, but the conditions are different. However, two

Fig. 4. Clash test results between parts 4 and 5.
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scenarios of the TIAABB are scanned when considering tooling to
ensure assembly interference for the current case. First, as shown
in Figure 6b, the condition for the interference of P(i) (part 8)
(appended part) is required to be checked in the presence of P
( j) (part 9), where the coordinate values of P( j) are without con-
sidering tooling and the coordinate values of P(i) is with consid-
ering tooling. Second, the GF of P( j) (appended part) needed to
be checked in the presence of P(i), where P(i) data is without con-
sidering tooling and P( j) data is with considering tooling, as
shown in Figure 6c. The TIAABB includes tooling-related and
non-tooling-related coordinate values shown in Table 9.
TIAABB is calculated using Eqs (4) and (5). These conditions
can be altered and vice versa to attain symmetric elements.

Similarly, a set of matrices known as TIAIM depicted in
Table 10 needs to be extracted along all the principal axes. The
extraction of TIAIM is vital and includes information about the
feasible direction of the appended part (the part with an assembly
tool or robotic gripper) in the presence of other parts.

Practically feasible solution

The extracted TIAABB and TIAIM can now be used to determine
assembly sequence-related issues. The base part must be
assembled first, followed by the other. As a result, the base part
must be determined. The number of assembly sequences obtained
is less and practically feasible compared with the typical method
where the effect of tool and gripper is not considered. Table 11
shows the generated OFASP.

The solution obtained in this approach is practically feasible.
The above OFASP can be verified for a practical feasibility test.

Figure 7 represents the OFASP considering tooling in a
visual format. The presentation of each feasible subset follows
the previous one. It shows the feasible directions in which the
tools (gripper or screwdriver) can move to position the
appended part correctly. The tools are represented as yellow
color. The number of directional changes in the proposed
approach is used as the optimality criteria. Hence at every

Fig. 5. 13-part CAD model.

Table 8. Liaison matrix (LM)

0 1 1 1 1 0 0 0 0 0 0 0 0

1 0 0 0 1 1 1 0 0 0 1 0 0

1 0 0 1 0 1 1 0 0 1 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 0 1 0 1 1 0 0

0 0 0 0 0 1 1 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1 1

0 0 1 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 7
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subset generation phase, a similar assembly subset with a
higher fitness value will be eliminated and finally yields single
or multiple optimal solutions with the number of directional
changes as the objective function. For the case study, a
13-part product, only one solution is obtained with two
directional changes.

Conclusion and future scope

In this research, an OFASP by considering tool geometry (assem-
bly tools and robotic grippers) is proposed to implement the
scheme at the physical assembly level. The proposed technique
can find a solution that generates a logical solution to a new
product/existent product with the tool consideration. The ineffi-
ciency of the conventional approaches is demonstrated with the
help of a 7-part mechanical bench vice. The issue was well

addressed by proposing a novel TIAIM approach. The proposed
approach is validated for its completeness by considering a
13-part assembled model. The crucial observations from the
proposed research are as follows.

1. The proposed method considers the tool geometry and tool
feasibility to perform the assembly operation.

2. Unlike the cited literature, the current method generates the
most feasible solution that can be practically implemented
on any physical product.

Furthermore, the proposed method can be expanded to gener-
ate robotic assembly sequence plans for the product with soft/
flexible components. In addition, the proposed method can be
integrated with an augmented reality platform for assembly
instruction generation.

Fig. 6. Representation of bounding box.

Table 9. Tool integrated axis-aligned bounding box (TIAABB)

Parts no X₁ Y₁ Z₁ X₂ Y₂ Z₂ X₁¹ Y₁¹ Z₁¹ X₂² Y₂² Z₂²

1 −50 −20 −2 50 20 17 −50 −20 −7 61 20 17

2 −29 −5 0 −19 5 111 −36 −8 0 −19 8 111

3 19 −5 0 29 5 111 18 −5 0 30 12 111

4 20 −22 2 29 20 11 20 −57 2 29 20 11

5 −30 −20 5 −19 22 8 −30 −20 5 −19 57 8

6 −30 −20 52 30 20 74 −30 −20 52 30 20 81

7 −30 −20 86 30 20 106 −30 −21 86 30 20 113

8 −4 −4 59 4 4 134 −6 −4 59 6 14 134

9 −3 −28 128 3 28 132 −9 −28 128 7 25 143

10 23 −4 106 26 4 111 22 −7 106 26 4 114

11 −26 −4 106 −23 4 111 −27 −7 106 −20 4 114

12 −3 −31 128 3 −25 133 −4 −36 126 6 −25 135

13 −4 25 130 4 31 131 −8 25 131 5 33 132
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Table 10. Tool integrated assembly interference matrices (TIAIMs)

(+X ) direction (−X ) direction

0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1 1 0 1 1

0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 1

0 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

1 0 0 1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1

1 0 0 1 1 1 0 0 1 0 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1

1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1 0 1 1

1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0

1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1

1 0 0 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0

(+Y ) direction (−Y ) direction

0 0 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1

0 1 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 1 0 0 1 1 0 1 1 1

0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

1 0 0 1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1

1 0 0 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1

1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1

1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1

1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1

1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 0

(Continued )
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(+Z ) direction (−Z ) direction

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1

1 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1

0 1 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1

0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 1 1 1 1 1

1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0

1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 1 0 0 1 1 0 1 1 1

1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 0 1 1 1 0 1 1

1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0

Table 10. (Continued.)
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