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Evidence suggests that at a population level, childhood and adolescent obesity increase the
long-term risk of chronic diseases such as type 2 diabetes and CVD. At an individual level,
however, the metabolic consequences of obesity in youth vary immensely. Despite compar-
able BMI, some adolescents develop impaired glucose tolerance while others maintain
normal glucose homeostasis. It has been proposed that the variation in the capacity to
store lipid in the subcutaneous adipose tissue (SAT) may partially discriminate metabolically
healthy from unhealthy obesity. In positive energy balance, a decreased capacity to expand
SAT may drive lipid accumulation to visceral adipose tissue, liver and skeletal muscle. This
state of lipotoxicity is associated with chronic low-grade inflammation, insulin resistance and
dyslipidaemia. The present review examines the differential adipose tissue development and
function in children and adolescents who exhibit metabolic dysregulation compared with
those who are protected. Additionally, the role of manipulating dietary fat quality to poten-
tially prevent and treat metabolic dysfunction in obesity will be discussed. The findings of
the present review highlight the need for further randomised controlled trials to establish
the effect of dietary n-3 PUFA on the metabolic phenotype of obese children and adoles-
cents. Furthermore, using a personalised nutrition approach to target interventions to
those at risk of, or those with established metabolic dysregulation may optimise the efficacy
of modifying dietary fat quality.

Childhood obesity: Adipose tissue: Adipogenesis: Metabolic health: Fatty acids

Childhood and adolescence rePresent dynamic periods of
rapid growth and weight gain'”). Chronic intake of excess
energy and sedentary behaviours however promote a
state of positive energy balance and expansion of adipose

suggest that excess weight gain during these developing
years is directly associated with adverse future health
outcomes, including incidence of tyge 2 diabetes
(TZD)(4 5] CVD®? and some cancers®”, others dis-

tissue (AT) mass beyond that which is expected during
normal maturation®?®. The short- and long-term health
consequences of elevated BMI in childhood and ado-
lescence remain unclear. While some prospective studies

agree!* 12) Studies that fail to show a relationship be-
tween chlldhood weight and disease outcome in
adulthood have suggested that significant relation-
ships dissipate when adjusted for adult BMI!?.
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Furthermore, healthy weight adults who were obese dur-
ing childhood have similar risk for T2D and heart disease
as individuals who have maintained a healthy weight
throughout life'>. These data suggest that direct associa-
tions between childhood BMI and later metabolic disease
risk may reflect tracking of weight status and persistent
obesity rather than an independent effect. The more im-
mediate metabolic consequences of overweight and obes-
ity in children and adolescents are considerably variable.
Despite marked obesity, up to 95 % of children and adoles-
cents maintain normal glucose tolerance (NGT)!*!%.
Although it is established that adiposity significantly cor-
relates with insulin resistance (IR) in obese children and
adolescents' ¥, the relativel¥ moderate nature of this as-
sociation (R* 0-05-0-40)'°'® strongly suggests a more
complex relationship which is likely to involve an interplay
between genetic and environmental factors.

Despite varying inter-individual obese phenotypes,
successful weight management interventions consistently
demonstrate improvements in LDL cholesterol, TAG
and fasting insulin in this cohort!"”. However, achieving
a significant reduction in BMI is difficult for this
age-group®?. Also, long-term studies have shown that
weight regain frequently occurs®'*?. Therefore there is
growing interest in the investigation of dietary
approaches that may improve metabolic outcome in the
absence of weight loss. In this regard, cross-sectional
and observational studies have suggested a relationship
between dietary fat quality and metabolic phenotype,
wherein SFA are inversely associated with insulin sensi-
tivity, whereas MUFA and PUFA are positively asso-
ciated with a favourable metabolic phenotype®>".
Additionally, animal studies have demonstrated that
the replacement of SFA with MUFA or PUFA attenu-
ates IR and dyslipidaemia, despite positive energy bal-
ance®®™ However, results from randomised
controlled trials (RCT) are less consistent***®, suggest-
ing that energy balance may be the most critical factor
regulating metabolic risk. However, there is increasing
evidence that responsiveness to dietary interventions
may vary depending on the phenotypic characteristics*”;
thus personalised nutrition approaches may optimise
efficacy of future dietary interventions within a back-
ground of weight stability. In order to design effective
personalised interventions, it is important to firstly eluci-
date the determinants and consequences of distinct phe-
notypes within childhood and adolescent obesity.

Adipose tissue expandability: a determinant of the
metabolic phenotype in paediatric obesity?

Intrauterine exposures, postnatal growth and family his-
tory of T2D may all play a role in discriminating meta-
bolically healthy (MHO) from unhealthy (MUO) obese
phenotypes in childhood, perhaps by modulating
expandability of subcutaneous adipose tissue (SAT)C?.
In a state of positive energy balance, expansion of AT
mass results from an increase in adipocyte cell size (hy-
pertrophy), cell number (hyperplasia) or both®?. Cell
number is now considered a key regulator of metabolic
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function®?. Hypertrophy is associated with a low gener-
ation rate of new adipocytes, whereas the more benign
hyperplasia is associated with high adipocyte generation
rates from adipogenic precursor cells (adipo§enesis) and
is linked to a more favourable phenotype®>. The SAT
expandability hypothesis, as presented in Fig. 1, proposes
that SAT has a defined restricted capacity to increase its
mass safely for any given individual®®. With persistent
energy overload, reduced SAT expansion capacity pro-
motes lipotoxicity>®. This is characterised by lipid depo-
sition in visceral adipose tissue (VAT), myocytes,
hepatocytes and pancreatic B-cells, accompanied by
impaired insulin sensitivity, elevated NEFA and TAG and
a pro-inflammatory profile; important drivers of
MUO®*3559) Thys, metabolic dysregulation within the
context of obesity may occur upon exhaustion of an indi-
vidual’s SAT expansion capacity rather than at an absol-
ute AT mass®”. Consistent with this hypothesis, obese
adolescents with impaired glucose tolerance (IGT) were
shown to have decreased SAT, increased VAT, raised
intramyocellular lipid content and impaired non-
oxidative glucose disposal compared with NGT controls,
despite similar weight, BMI and body fat percentage®®.
Likewise, when obese adolescents were stratified by pro-
portion of VAT (VAT (cm?)/VAT+SAT (cm?)), those in
the highest tertile had significantly increased 2-h glucose,
insulin, c-peptide and TAG concentrations®. Most
interestingly, these high-risk subjects had a lower BMI
and total body fat percentage than their metabolically
healthier counterparts®”. A recent study of adult weight-
discordant monozygotic twins demonstrated SAT hy-
pertrophy, low adipocyte number and down-regulation
of the adipocyte differentiation pathway in co-twins
with MUO®®. Interestingly, MUO but not MHO was
accompanied by low mitochondrial and high inflamma-
tory transcript activity®®. Down-regulation of mito-
chondrial metabolism reduces the availability of
acetyl-CoA and ATP, key substrates necessary to support
de novo lipogenesis in adipocytes. Consistently, gene
expression analysis in SAT of adolescents with MUO
demonstrated down-regulation of key components of
the lipogenesis pathway, including sterol regulatory
element-binding protein-1 (SREBP-1), acetyl-CoA car-
boxylase alpha, fatty acid synthase, lipoprotein lipase
and PPARY®?. Moreover, results from a second study
by the same group revealed that in contrast to SAT,
there was increased expression of lipogenic genes such
as carbohydrate-responsive element-binding protein,
SREBP-1c, patatin-like = phospholipase = domain-
containing protein 3, fatty acid synthase and acetyl-
CoA carboxylase in the liver of obese adolescents with
IGT/T2D compared with equally obese NGT con-
trols®®). These results highlight the tissue-specific differ-
ential implications of lipogenesis and adipogenesis on
metabolic health.

Adipose tissue expandability: mechanisms of action

AT expansion is dependent upon two mechanisms: adi-
pogenesis and lipogenesis. Adipogenesis is the process
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Fig. 1. (colour online) The subcutaneous adipose tissue
expandability hypothesis®®. The hypothesis proposes that in
positive energy balance, subcutaneous adipose tissue (SAT) has a
limited capacity to increase its mass. Exceeding this threshold
promotes lipotoxicity. Excess lipid accumulates within visceral
adipose tissue, liver and skeletal muscle rendering these tissues
insulin resistant. In an effort to compensate for reduced insulin
sensitivity, hyperinsulinaemia ensues eventually leading to
pancreatic B-cell failure and type 2 diabetes (metabolically
unhealthy obesity). However, increased capacity to expand SAT
protects against lipotoxicity and maintains metabolic homeostasis
despite obesity (metabolically healthy obesity). Adapted from
Després and Lemieux®?,

Normal beta cell function
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wherein new mature adipocytes are generated from adi-
pogenic precursor cells termed preadipocytes®”. This
process involves two major phases; firstly preadipocytes
are recruited and proliferated (phase one) after which
these precursor cells are differentiated into mature fat
cells (phase two)®?. The differentiation step ultimately
increases the lipogenic potential of adipocytes, or in
other words the capacity of the adipocyte to store lipid
as TAG. Adipogenesis involves a cascade of events
involving two transcription factor families; PPARy
and CCAAT/enhancer-binding proteins o, B and J.
Lipid accumulation within mature adipocytes is deter-
mined by the balance between lipogenesis and lipolysis.
Lipogenesis encompasses the synthesis of fatty acids
and subsequently TAG from acetyl-CoA, an intermedi-
ate of glucose metabolism. Lipogenesis is largely under
the control of the insulin-sensitive transcription factor
SREBP-1 and Insigl, an endoplasmic reticulum mem-
brane protein®. Lipolysis involves the release of NEFA
from AT TAG®®. TNFa, a pro-inflammatory cytokine
that is often elevated in MUO is an inducer of lipoly-
sis®®”. Furthermore, lipolysis is increased in T2D, as in-
sulin fails to appropriately suppress lipolysis promoting
ectopic lipid accumulation in peripheral tissues such as
liver and skeletal muscle®?.

Adipogenesis

Animal studies that utilised a high-fat diet (HFD) to
mimic an obesogenic environment have confirmed the
importance of adipogenesis in the determination of the
metabolic phenotype. It has been demonstrated that
knockdown of a key adipogenic gene, PPARy-2 in the
oblob mouse model promoted decreased fat mass ac-
companied by severe IR, B-cell failure and dyslipidaemia
compared with control mice®®. Consistently, ob/ob mice
overexpressing adiponectin, i.e. adiponectin transgenic
mice, were shown to have a near limitless capacity to ex-
pand SAT and importantly did not develop components
of the metabolic syndrome; demonstrating normal glu-
cose and insulin levels compared with controls®”.
Additionally, macrophage infiltration into AT was
reduced and PPARYy targets were increased in these adi-
ponectin transgenic mice compared with control oblob
mice®. Adiponectin was proposed to signal storage of
TAG specifically in AT, while reducing TAG levels in
liver and muscle, where ectopic lipid accumulation can
impair insulin signalling®”. A dominant negative mu-
tation in PPARy in human subjects results in lipodystro-
phy, characterised by significant loss of SAT from the
extremities, and severe IR?. Interestingly, in an animal
model, the same phenotype was only observed when
these mice were challenged with excess energy avail-
ability (oblob background)’". The presence of this
PPARy mutation prevented adipocyte recruitment as
well as adipocyte hypertrophy®”. Importantly the pres-
ent study showed that when AT expandability was lim-
ited there was a worsened IR state compared with
control oblob mice®”. In addition, components of the
TNFa and IL-1-B-signalling pathways prevent PPARYy
binding to DNA by associating with NF-kB?. This
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suppresses PPARy function, which is important for
determining stem cells to the adipocyte lineage and there-
fore prevents hypertrophy’?.

Extracellular matrix flexibility

Another important aspect for AT expandability is main-
tenance of flexibility within the extracellular matrix
(ECM). This allows the AT to expand in a healthy man-
ner without any adverse effects. However, with
increased obesity, interstitial fibrosis in white adipose
tissue (WAT) may decrease ECM ﬂexibilit?/, which
eventually leads to adipocyte dysfunction’®. The
ECM and its primary protein collagens are vital for
maintaining the structural integrity of adipocytes and
are important regulators of adipogenesis and AT forma-
tion”®). During adipocyte differentiation, ECM compo-
nents are present at variable time-points where initially
fibronectin is increased, followed by collagens III, V,
VI and 1747 Several studies have highlighted signifi-
cant correlations between collagen VIa3 and chronic
immune cell infiltration, based on increased M1 macro-
phages’®. Collagen VI is primarily involved in main-
taining ECM structure and is com}aosed of three
subunits in its mature form: ol; a2; a3 7D All three of
these isoforms are responsible for formation of a stable
protein structure’”. Mice lacking collagen VI chal-
lenged with either HFD or genetically induced obesity
demonstrated increased ECM flexibility and decreased
AT fibrosis®. There was evidence of unlimited adipo-
cyte expansion and, as a result, there were whole body
improvements in energy homeostasis'’®. During normal
development of the AT, the ECM is highly dynamic!’®.
However, ECM processes become dysregulated in obes-
ity and coupled with immune cell accumulation in the
AT, impair metabolic function and suppress capacity
for AT expansion®”. Abnormal collagen deposition
has been shown to be a hallmark of fibrosis development
in AT and is tightly associated with tissue inflammation
characterised by the influx of macrophages’?. In con-
trast, a study that examined ECM remodelling in de-
veloping AT in healthy weight and obese children
illustrated characteristics of collagen deposition that dif-
fered in normal weight and obese subjects’”). Moreover,
these features observed in AT of children were distinct
from adults with established obesity or animal models
of diet-induced obesity such as immune cell infiltration
and fibrosis””. Findings from the present study showed
that in normal-weight children there was greater col-
lagen deposition in AT, which may restrict growth”*.
Conversely lower collagen in AT of overweight children
was observed, but increased with age and fat cell size
allowinf__; for the expansion of fat cell size and thus tissue
growth””. These findings may reflect an overall situ-
ation of dynamic tissue remodelling reflecting normal
physiological growth processes involving increases in
fat cell size””. It would be expected that normal growth
and expansion of fat cell size would have no adverse ef-
fects if ECM remains flexible and there are proportional
increases in blood flow and oxygenation””). However, if
collagen deposition occurs along with recruitment of
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M2 macr(;ghages in children, this may inhibit AT
expansion‘”.

Matrix metalloproteinases

Collagenases are involved in the breakdown of excessive
accumulation of ECM. A family of endopeptidases,
matrix metalloproteinases (MMP), are involved in cleav-
ing collagenous proteins enabling the remodelling of
the ECM"?. The use of a broad MMP inhibitor in a
mouse model demonstrated the important role MMP plays
in remodelling during obesity®". Administration of this
MMP inhibitor reduced collagen degradation, which
resulted in the formation of a collagen-rich matrix that
impeded AT growth®". Other MMP, such as 2 and 9,
are elevated in obesity and increased during adipocyte dif-
ferentiation®. One particular MMP, MT1-MMP plays a
role in AT ECM remodelling and is required for the modu-
lation of tight pericellular collagens to allow preadipocytes
to grow out of the stroma®®. In mice, the absence of
MT1-MMP impedes AT development, causing a lipody-
strophic phenotype in these mice®?.

Hypoxia

Rapid expansion of AT results in a hypoxic state as the
adipocytes reach their diffusion of oxygen limit quickly
due to the lack of neovasculature establishment for the
expanding AT"®. Therefore this hypoxic state is one of
the early determinants of AT dysfunction®®. Hypoxia
inducible factor-1, which is a transcription factor induced
by a hypoxic state can initiate in turn a profibrotic tran-
scriptional programme”. With persistent positive en-
ergy balance, a point will eventually be reached at
which SAT can no longer store excess lipid. When subcu-
taneous adipocytes overfill, hypoxia inducible factor-la
suppresses B-oxidation via transcriptional repression of
sirtuin-1, which deacetylases and thus activates PPARy
coactivatorla®?. A lipotoxic state emerges, with net
lipid flux to non-adipose organs and ectopic lipid depo-
sition®. HFD induces doubling of the fat cell area
and can create a local hypoxia state resulting in increased
hypoxia inducible factor-1a’®. Hypoxia inducible
factor-la is not proangiogenic in AT, but it induces syn-
thesis of ECM components leading eventually to the de-
velopment of AT fibrosis"*.

Characteristics of metabolically unhealthy obesity in
children and adolescents

Altered lipid partitioning as commonly exhibited by
MUO youths may increase risk of IR through a number
of potential mechanisms.

Adipose tissue dysfunction

Firstly, VAT to a greater extent than SAT secretes
several pro-inflammatory insulin-desensitising cytokines, in-
cluding TNFa and IL-6®%9. As a result, macrophages,
T-cells and dendritic cells are recruited to VAT via
various signals, including chemokines synthesised by
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adipocytes®”®). This favours a pro-inflammatory insulin-
desensitising milieu, contributing to local and systemic
IR, Importantly, many of these pro-inflammatory
mediators initially identified in adults have also been
confirmed in the circulation of obese children, including
elevated leptin, IL-6, C-reactive protein, TNFa, fibrinogen
and vascular adhesion molecules®'™¥. Furthermore, in
children and adolescents the anti-inflammatory adipocyto-
kine adiponectin has been shown to correlate negatively
with BMI and well as plasma levels of TAG and NEFA,
and positively with peripheral insulin sensitivity. These
findings confirm that obesity dysregulates inflammation,
even in childhood.

Pro-inflammatory cytokines mediate their insulin desen-
sitising effect via serine phosphorylation of insulin receptor
substrates (IRS). In insulin sensitivity, a number of complex
signalling cascades are induced when insulin binds to its re-
ceptor®”. Tyrosine phosphorylation of IRS-1 leads to acti-
vation of (1) the phosphatidylinositol 3-kinase—protein
kinase B pathway, which is responsible for insulin induced
glucose uptake and gluconeogenesis suppression; (2) the
mitogen-activated 5g)rotein kinase pathway, which regulates
gene expression. In the hypertrophic obesity state,
pro-inflammatory cytokines activate several serine kinases,
including IxB kinase, cJun NH,-terminal kinase, mam-
malian target of rapamycin and protein kinase C-6°°.
These kinases inhibit insulin action by causing phosphory-
lation of serine residues on IRS-1. Serine phosphorylation
of IRS-1 disrupts insulin-receptor signalling thereby
impairing downstream propagation of insulin signal-
ling®®. Serine kinases also exert powerful effects on
gene expression, including promoting further inflamma-
tory gene expression through activation of activator
protein-1 and NF-kB®®.

Hepatic lipid deposition

Lipid deposition in the liver has been proposed as the most
critical marker of IR and glucose dysregulation in obese
youth; prevalence in this cohort can range from 10 to 77

%®79%) Hepatic steatosis in obese children and adoles-
cents is accompanied by inflammation and dyslipidaemia;
specifically high levels of large VLDL and small dense
LDL as well as decreased large HDL and low adiponectin
concentrations®”. The amount of lipid in hepatocytes is
determined by a combination of events: (1) hepatic fatty
acid uptake derived from AT lipolysis and hydrolysis of
circulating TAG; (2) de novo fatty acid synthesis; (3)
fatty acid oxidation; (4) fatty acid export from VLDL par-
ticles"°”. Evidence indicates that insulin is fundamental to
the regulation of transcription factors such as SREBP-1c,
which are abundantly expressed in the liver. SREBP-1cis a
key regulator of hepatic lipogenesis and is increased in re-
sponse to hyperinsulinaemia in the liver of 0b/ob mice'*".
Additionally, inflammatory cytokines released by VAT or
by the hepatic Kupffer cells may contribute to altered hep-
atic lipid metabolism; inflammation and increased oxidat-
ive stress factors are implicated in the pathogenesis of
hepatic steatosis'°?. Although it is well established that
IR and hepatic steatosis are closely associated, it is not
known whether hepatic steatosis is a consequence or a
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cause of impaired insulin sensitivity'’®. Nevertheless,
the presence of steatosis is an important marker of multi-
organ IR, glucose intolerance and dyslipidaemia in
obese children and adolescents"'*?.

Raised intramyocellular lipid content in skeletal muscle

Obese insulin resistant children have also been shown to
have higher levels of intramyocellular lipid when com-
pared with obese insulin sensitive children'%.
Furthermore, intramyocellular lipid content in these
youths is inversely correlated with non-oxidative glucose
disposal'®”. The effects of intramyocellular lipid
deposition on insulin sensitivity are induced by fatty
acid derivatives such as diacylglycerol and ceramides,
which have also been demonstrated to alter the insulin
signalling transduction pathway, leading to reduced glu-
cose uptake and subsequent glycogen synthesis!'®”.

Pancreatic B-cell dysfunction

Pancreatic B-cell dysfunction has been proposed as the ul-
timate determinant of IGT/T2D onset in obese youth,
and is the result of either a progressive decline in p-cell
mass, or a functional defect of the B-cell that inhibits suffi-
cient insulin secretion to offset systemic glucose load!%®.
Obese adolescents with IGT and T2D have demonstrated
significant decreases in first phase insulin secretion, that is
the initial brief spike in insulin, when compared with
NGT adolescents with a similar BMI"%?. In contrast,
second-phase insulin secretion was preserved in NGT
and IGT but not in T2D youths'%”. It has been suggested
that increased B-cell apoptosis leads to the progressive
loss of B-cells"!?. Apoptosis is likely to be induced by a
number of local factors, including 1L.-1B production, re-
active oxygen species, endoplasmic reticulum stress and
glucose toxicity within p-cells"'*'!2),

Critical periods of adipose tissue development: potential
dietary approaches to improve metabolic outcome

Maintenance of a healthy weight through balanced en-
ergy intake and expenditure is considered the first-line
strategy for the prevention and treatment of metabolic
complications in childhood and adolescent obesity'.
However, it is clear from the aforementioned evidence
that BMI is not the sole predictor of metabolic status in
young people. Additionally, a meta-analysis of lifestyle
interventions highlighted that weight loss is difficult to
achieve in this age group®”. To this end, manipulation
of dietary fat quality in the absence of energy restriction
is a tempting alternative approach. Evidence indicates
that the effect of fatty acids on AT function varies accord-
ing to the degree of fatty acid saturation'¥. While SFA
has been identified as a potent stimulator of AT macro-
phage infiltration as well as pro-inflammatory, insulin
de-sensitising cascades'''”, PUFA has demonstrated the
potential to partially attenuate the metabolic stress con-
ferred by chronic nutrient overload'®.

Perreault et al. illustrated a more favourable plasma
fatty acid profile in individuals with MHO, compared
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with MUO controls®®. Specifically, phospholipid (PL)
and TAG fatty acid composition comprised lower SFA
and higher PUFA in MHO subjects. In fact, fatty acid
composition of the plasma PL and TAG fractions
explained 58 % of the variability in metabolic status
across groups®?. It has been proposed that the protective
effect of PUFA may be partially mediated via lipidome
remodelling in the PL membrane of AT, given that
increased PL PUFA incorporation is known to improve
membrane fluidity®. Indeed, the examination of SAT
PL membranes in monozygotic weight-discordant twins
revealed that adipocyte expansion in the obese co-twins
was accompanied by a proportional increase in
PUFA-containing ether lipids and a concurrent re-
duction in saturated and shorter-chain ester-bound
lipids®?. Moreover, there is evidence to suggest that
n-3 and n-6 PUFA differentially modulate AT function
upon incorporation into the PL membrane. In vitro and
animal studies suggest that n-6 PUFA promotes hy-
pertrophy, while n-3 PUFA is associated with the more
benign hyperplastic obesity®*!''”). Interestingly, inhi-
bition of lipogenesis by n-3 PUFA appears to be site-
specific, at least in animal models. Studies that utilised
rat WAT have demonstrated that »n-3 PUFA limits hy-
pertrophy in the intra-abdominal depots only®?-3*!!®
and this translates to an improved phenotype®®.
Okuno et al. reported that reduced VAT hypertrophy
was accompanied by suppression of key regulators of
late phase adipocyte differentiation; CCAAT/enhancer-
binding protein a, adipsin, adipocyte protein 2 and
PPARa in response to n-3 PUFA feeding®?.
Additionally, 3 weeks long-chain (LC) n-3 PUFA
DHA administration in mice up-regulated PPARy in
SAT but concurrently down-regulated PPARY expression
in liver®®. Site-specific effects suggest that the promoter
regions of adipogenic and lipogenic genes may differ be-
tween tissues'''?). In contrast to n-3 PUFA., in vifro and
animal studies have demonstrated that an HFD rich in
n-6 PUFA  promotes activation of  cyclic
AMP-dependent signalling pathways in preadipocytes,
a process which is known to favour adipocyte hypertro-
phy©®”. Conversely, mice fed a mixture of n-3 and n-6
fats, thus lowering the n-6:n-3 ratio may favour hyper-
plasia to accommodate excess energy®”. It has been pro-
posed that the shorter chain #-3 PUFA a-linolenic acid
and its metabolites suppress A6 desaturase activity, thus
reducing generation of the n-6 PUFA arachidonic acid
and subsequent cyclic AMP production'??.

There is growing evidence that gestation, infancy, age of
adiposity rebound (AR) and adolescence represent critical
periods in the course of AT development during which nu-
tritional and environmental exposures determine future
metabolic risk"'?". Thus, manipulation of (i) energy bal-
ance or (ii) dietary fat quality intake during these unique
windows of opportunity may improve metabolic outcome.

Gestation

In the growing fetus, AT formation occurs between 5 and
29 weeks gestation!'*?. Early in this process, mesenchymal
precursor cells differentiate into preadipocytes''? after
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which intense preadipocyte proliferation continues until
approximately 23 weeks gestation!”?. By week 28,
WAT is (;l)resent in the principal fat depots throughout
the body"*¥, while brown adipose tissue (BAT) can be
identified earlier in development'*¥. At full term, AT
accounts for approximately 20 % of body mass in infants
born an appropriate weight for gestational age (AGA);
80-90 % of which is stored subcutaneously!*>'®.

Energy balance. Expansion of fetal AT is largely
determined by maternal substrate availability"*”. Not
surprisingly, maternal obesity as well as under- and
overnutrition in utero have shown potential to instil
long-lasting metabolic consequences, possibly via

epigenetic  modifications"**"*Y. AT  growth s
signiﬁcantl?f impaired during fetal growth
restriction’ ?*!3? The relatively high-energy cost of AT

accretion means that during periods of suboptimal fetal
energy supply, AT expansion is sacrificed in favour of
other essential organs''*®. This raises the possibility of
reduced capacity to expand SAT in the postnatal
environment owing to reduced preadipocyte
- (134-136) .

generation . In parallel, it has been proposed
that in utero overnutrition may increase the
subcutaneous adipogenic and lipogenic capacity*®. In
keeping with this hypothesis Bouhours-Nouet et al
showed that despite similar percentages of body fat
mass, obese children and adolescents born after
accelerated fetal growth, but in the absence of
gestational diabetes, exhibited lower central and higher
peripheral fat distribution than those born with an
AGA"3". Whole-body and hepatic insulin sensitivities
as well as adiponectin concentrations were significantly
higher in high birth-weight subjects'*”. However, not
all studies have associated MHO with prenatal
overnutrition. In fact, several’*® although not all!*
observational studies have suggested an association
between high birth-weight and T2D risk in adulthood,
highlighting that the possible protection associated with
accelerated early growth may be somewhat transient.
Even within the context of higher adipogenic and
lipogenic potential in SAT, buffering capacity can be
exceeded by chronic overnutrition, resulting in MUO
development 4%,

Intervention studies that have attempted to optimise
the in utero nutritional environment and subsequent off-
spring outcome have shown mixed success. Examination
of cardiometabolic risk factors in 2-24-year-old offspring
who were conceived after maternal gastrointestinal
bypass surgery compared with their siblings born prior
to surgery showed that improved maternal pre-pregnancy
BMI reduced offspring waist circumference'*"'*?, body
fat percentage"*", fasting insulin'*"'*?, homeostasis
model assessment (HOMA)-IR!*!1%2 " blood press-
ure"" and LDL-cholesterol'*?. Guénard et al pro-
posed that these improvements were somewhat
mediated via epigenetic mechanisms, demonstrating
almost 6000 differentially methylated genes between sib-
lings; significantly affected genes primarily related to glu-
cose homeostasis, inflammation and vascular disease'™".
Conversely, a meta-analysis of 537 mother—neonate pairs
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revealed that although dietary interventions successfully
reduced gestational weight gain by 6-5kg in obese
pregnant women, newborn birth-weight was unaffec-
ted*?. These results indicate that maternal obesity, ir-
respective  of  gestational weight gain confers
independent risk on fetal growth. The long-term effects
of reduced gestational weight gain on metabolic outcome
in the offspring of obese mothers have not yet been
described in human studies. However, in animals it has
been demonstrated that when HFD-induced obese mice
were switched to a low-fat diet during pregnancy their fe-
male offspring maintained normal insulin sensitivity even
when challenged with an HFD for 20 weeks" .

Dietary fat manipulation. Epidemiological
examination of the relationship between maternal fatty
acid profile in pregnancy and offspring AT function
yields mixed results. A recent systematic review revealed
that equal numbers of studies have illustrated direct,
inverse and no associations between maternal n-3 PUFA
intake during pregnancy and offspring adiposity'*.
Equally, little is currently known about the long-term
metabolic implications of fatty acid intake or status
during pregnancy. Somewhat counterintuitively given
the in vitro and animal data discussed previously, a study
of over 250 children revealed an inverse relationship
between the umbilical cord concentration of n-6 PUFA
y-linolenic acid and insulin, leptin and HOMA-IR at age
7 years but no associations were detected with umbilical
cord n-3 PUFA®?. Likewise, a second study examined
the association between n-3 PUFA intake during the
second trimester of pregnancy and cardiometabolic risk
in 20-year-old offspring, and found no significant
relationships™".

RCT of dietary fat manipulation in pregnancy are
sparse and those conducted to date do not provide evi-
dence of long-term benefits to AT or metabolic function
in 1-year® or 19-year-old“***:'47 offspring (Table 1).
However, in the shorter term, a meta-analysis of 921
women illustrated that risk of pre-term birth, a known
risk factor for future visceral adiposity and metabolic
dysfunction, was successfully reduced by n-3 PUFA sup-
plementation*®, although the mechanisms are not yet
established. Data emerging from RCT are somewhat in
conflict with animal studies. In pregnant rats, consump-
tion of a diet rich in #-3 PUFA results in reduced AT
mass®®, smaller adipocyte size®®, lower serum leptin
levels®®, improved glucose homeostasis®” and increased
pancreatic islet numbers®” in offspring. Inconsistency in
results may be due to lower fatty acid dose in human stu-
dies, genetic background, duration of intervention"*”, as
well as the stage of %estation during which the inter-
vention commences>”. Additionally, it should be
noted that the effect of dietary fat manipulation within
the context of maternal obesity or in utero overnutrition
is yet to be described in human studies. The lipid content
of AT in large for gestational age (LGA) infants weighs
250-500 g more than AGA infants">". Importantly,
increased maternal-to-fetal transport of LC PUFA is
required to facilitate cell membrane demand during
SAT hypertrophy and hyperplasia*°".
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Postnatal and infant (<2 years) growth

With the exception of the first 5-12 d after birth, the
rate of AT expansion rises rapidly in response to
increased nutrient availability in the postnatal environ-
ment"*?. During this period, precursor cells undergo
morphological and functional transformation into ma-
ture lipid-laden adipocytes'’®?. Adipocyte numbers
continue to rise throughout infancy and childhood,
eventually reaching a maximum in late ado-
lescence!>*15Y  After this time, adipocyte number re-
mains relatively constant®® and is therefore
determined from early life!'>%.

Energy balance. Using data from over 8000 subjects,
Druet et al. demonstrated that each +1 unit increase in
weight sp score between 0 and 1 year doubles risk of
childhood obesity (OR =1-97), and increases risk of
adult obesity by 23 % (OR =1-23)%9. Furthermore,
cardiometabolic risk at age 17 was predicted by weight
gain from 0 to 6 months"°®. However, birth-weight
amongst other factors, may modulate the metabolic
response to early weight gain. Intrauterine growth
restriction predisposes individuals to visceral adiposity
and IR in later life"*”. In a rodent model of
intrauterine growth restriction, nutritionally induced
catch-up growth led to AT hypertrophy as well as
significant reductions in AT protein expression of
IRS-1, phosphatidylinositol 3-kinase, protein kinase
B-2 and phosphorylated protein kinase B"*®. Of note,
many of the signalling impairments were apparent at 3
weeks in the absence of altered glucose and insulin
concentrations, indicating that metabolic adaptations
may occur early in the postnatal period'*®. Human
studies indicate that in infants born small for
gestational age, early infant weight gain (0-3 months)
is  positively correlated with fasting insulin
concentration, HOMA-IR, lipid Proﬁle and
systolic blood pressure in adolescence"”. Conversely,
no adverse relationships were detected between early
weight gain and later metabolic risk in AGA
infants">”). Similarly, accelerated postnatal growth may
not be detrimental to LGA infants, at least in the short
term"*”. As discussed previously, LGA infants who
later become obese demonstrated protection against
metabolic d?/sfunction compared with their AGA
counterparts' >, When postnatal growth velocity was
examined within this obese cohort, higher gains in BMI
up to age 2 years conferred additional protection?”.
Thus, the children who were born LGA and
demonstrated the greatest weight gain up to 2 years,
were the most insulin sensitive at 10 years!?”.
Interestingly, in a study of lean men and women, those
who developed metabolic syndrome as adults despite
healthy weight, exhibited slower gains in BMI during
the first 2 years of life"”. Together, these findings
highlight a specific window encompassing early
postnatal life during which fat accumulation may
programme AT function and insulin homeostasis in
later life. Additionally, accelerated early weight gain
may have  opposing effects on  short-term
cardiometabolic risk depending on birth-weight.

as
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Table 1. Randomised
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controlled trials which investigated the effect of dietary fat manipulation on adipose tissue distribution and metabolic

phenotype during critical periods of adipose tissue development

Dietary intervention

Population (n)

Effect of intervention on
body composition and
fat distribution

Effect of intervention on metabolic phenotype

Gestation
LC n-3 PUFAX1-43

Postnatal

DHA-enriched preterm
formula®?

n-3 and n-6
PUFA-enriched
preterm formula®®

Adolescence

LC n-3 PUFAR249)

LC n-3 PUFA“®

LC n-3 PUFA“D

LC n-3 PUFAR®

Mediterranean Style
Diet“®

Off-spring of supplemented mothers,
19 years, male and female; n 243

24-month-old infants born preterm,
birth-weight <1500 g or gestational
age <32 weeks, male and
female; n 182

9-11-year-old children, born preterm,
birth-weight <1500 g and
gestational age <35 weeks, male
and female; n 107

Overweight, healthy, 14-17 years,
male and female; n 25

Overweight with fasting insulin >15
puU/ml, 9-18 years, male and female;
n76

Overweight, healthy, 13-15 years,
male only; n 78

Overweight with non-alcoholic fatty
liver disease, mean age = 12 years,
male and female; n 60

Obese with at least 1 MetS
component according to modified
IDF criteria, mean age = 11 years,
male and female; n 49

BMI «; WC <

Total fat mass |; trunk
fat |

BMI «<; WC «; fat
mass <«>; fat free mass
<>

BMI «; WC «

BMI «; total fat mass
<>

BMI <; WC <; body
fat % <; total fat
mass <>; trunk fat <

BMI <

BMI |; fat mass |; lean
mass %

Insulin <>; glucose <, HbA1c <»; HOMA-IR «;
leptin <>; adiponectin «<»; IGF-1 <>; hs-CRP «

Insulin |,

SBP «; DBP «

Fasting: Glucose<; insulin<>; NEFA|; TNFal;
IL-1B8}; IL-6]; hs-CRP < IVGTT: Glucose| girls
only; insulin|, girls only;
Euglycaemic-hyperinsulinaemic clamp: IS4 girls
only; glucose disposal rate<>

Glucosel; insuliny; HOMA-IR |; TNFal; IL-6 <;
leptiny ; adiponectin 4

Leptin <; adiponectin <
Severe liver steatosis odds ratio |; HOMA-IR |; TAG
| in 250 mg/d DHA and 500 mg/d DHA

Glucose |; TAG |; total cholesterol |;
HDL-cholesterol 4; LDL-cholesterol |

<, no effect; |, decrease; 7, increase; LC n-3 PUFA, long chain n-3 PUFA; WC, waist circumference; HbA1c, glycated haemoglobin; HOMA-IR, homeostasis model
assessment-insulin resistance; MetS, metabolic syndrome; IDF, International Diabetes Foundation; IGF-1, insulin-like growth factor 1; hs-CRP, high-sensitivity C-

reactive protein; IVGTT, intravenous glucose tolerance test; ISI, insulin sensitivity index; SBP, systolic blood pressure; DBP, diastolic blood pressure.

Data from the EU childhood obesity programme
revealed that an increased weight gain velocity during
the first months of life is induced by high protein in-
take'?. In a controlled trial of small for gestational
age infants, de Zegher er al demonstrated that feeding
practices differentially affected weight partitioning and
metabolism during the first year of life'®"'%?. For a
minimum of 5 months, small for gestational age infants
were fed exclusively on either breast milk or an iso-
energetic, higher protein infant formula. By 12 months,
breast milk infants had normalised lean mass and bone
mass but low fat mass persisted'®""'?. This hypo-
adipose state was associated with increased insulin sensi-
tivity as well as normal insulin-like growth factor-1 and
high-molecular-weight adiponectin concentra-
tions" 192 n contrast, iso-energetic, higher protein in-
fant formula infants managed to normalise fat mass by
12 months, but interestingly this was associated with
high insulin-like growth factor-1 and low hi%h-molecu-
lar-weight adiponectin  concentrations'®'?_ The
authors concluded that in fact neither of the nutrition
options was able to normalise both body composition
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and metabolic status, possibly due to an irreversible re-
duction in prenatal adipogenesis'®!'*?. This further sug-
gests that children and adolescents born small for
gestational age may experience metabolic dysfunction
at a lower BMI and fat mass compared with their
AGA and LGA peers.

Dietary fat manipulation. Animal studies have
demonstrated that postnatal fatty acid exposure
influences later body composition and metabolic

regulation. Oosting et al. illustrated that mice fed a diet
rich in n-3 PUFA from postnatal day 2 who were later
challenged with high SFA/Western Style diet were
protected against metabolic aberrations®”. Results
showed that mice fed a diet rich in n-3 PUFA exhibited
30% less AT gain and maintained better glucose
homeostasis ~ compared ~ with  control  mice®”.
Additionally, examination of AT cellularity revealed
significantly less AT hypertrophy and a larger number of
small adipocytes in the mice fed the n-3 PUFA-enriched
diet®”. Monounsaturated fat has also shown potential to
modulate postnatal growth®”. Offspring of rats
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supplemented with MUFA-rich olive oil from gestational
day 14 and throughout lactation showed lower postnatal
body weight gain®". Additionally, these rats expressed
higher levels of uncoupling protein 1 (UCP-1) in BAT,
demonstrating increased thermogenic capacity induced
by maternal MUFA-rich diet®".

From a translational perspective, feeding an LC n-3
PUFA enriched formula to preterm infants until 1 year
gestation-corrected age resulted in lower trunk fat and
reduced fasting insulin concentrations compared with
those fed a matching unsupplemented formula™?, as
detailed in Table 1. Despite the favourable impact of
n-3 PUFA supplementation in the relatively short term,
when Kennedy et al examined 10-year-old children
who had received LC PUFA supplemented formula
after pre-term birth, they found no long-lasting effect
on body composition or blood pressure*”. However,
no circulating markers of metabolic health were assessed.
There is a clear need for further RCT to determine the
long-term implications of these findings at birth. It is
also interesting to note that in a rodent model, Gorski
et al. demonstrated that postnatal nutrition can override
prenatal programming of offspring obesity and IR®?.

Adiposity rebound

BMI reflects both body mass and length/height!'®?.
During the first year of life, BMI rises razg)idly reaching
a peak at approximately age 1 year'”". After this
time, BMI undergoes a gradual decline until it reaches
a nadir at about age 6 years'®®. AR is defined as the
second rise in BMI that usually occurs between age 5
and 7 years!'®. Using dual-X-ray absorptiometry,
Taylor et al confirmed that the increase in BMI
during the AR period is driven specifically by changes
in fat mass rather than in fat-free mass"'®”.

Energy balance. Longitudinal  studies  have
demonstrated that timing of AR has the potential to
modulate future metabolic risk!**'*”. Findings from the
Helsinki Birth Cohort Study suggest that earlier AR (<5
years) was associated with a pronounced increased risk of
T2D in later life'®. Although some argue that age of AR
bears no functional role and simply highlights children
who are upward BMI centile crossing/gaining weight
rapidly"’?, others disagree”"’". Furthermore, it has been
suggested that early AR-induced metabolic aberrations
may manifest rather quickly; early AR was related to
higher waist circumference, glucose, HOMA-IR, TAG,
apol B, blood pressure and lower HDL-C levels in 7—
12-year-old children''’*'7®. These results suggest that AR
timing may modulate AT growth and function. However,
up to now no dietary intervention studies to examine the
impact of energy/protein manipulation on timing of AR
have been conducted.

Dietary fat manipulation. A prospective study of 222
children demonstrated that the n-3 PUFA DHA content
of breast milk was positively associated with age of AR
in girls"’%. Importantly, these results have been
replicated in an RCT. Bergmann et al. studied the effect
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of 200 mg/d DHA supplementation from mid-pregnancy
until 3 months postpartum and illustrated that age of
AR was delayed in offspring of DHA supplemented
mothers"!”®. Further long-term follow-up studies are
required in order to confirm the long-term metabolic
implications of DHA-induced AR delay.

Adolescence

Adolescence is characterised by a multitude of body
composition changes, including increases in annual
height velocity, body weight, lean body mass and bone
mineral content!’®. Girls undergo a significant fat
mass gain, while adolescent boys decrease body fat and
experience increased height velocity!'’®. Interestingly, re-
cent evidence points to a higher prevalence of metabolically
active BAT in adolescent boys and girls. While 1 in 5 posi-
tron emission tomography—computerised tomography

examinations in pre-pubertal children display meta-
bolically active BAT, greater than 75 % of scans in }?ub—
ertal teenagers confirm the presence of this tissue!'””. It
has been proposed that BAT activity may be stimulated
by sex steroids and growth hormone!’® 80,

Energy balance. For overweight individuals, the
adolescent years represent a high-risk period for the
development of IR and T2D"®V. Pubertal increases in
growth hormone, sex steroids and insulin-like growth
factor-1 in boys and girls as well as increased fat mass
in girls leads to a natural reduction in insulin
sensitivity'®". Puberty-related IR manifests early in
adolescence, peaking mid-puberty, and is %enerally
compensated by increased insulin secretion'®?. In
healthy weight adolescents, this transient state of IR
commonly resolves by the end of pubertal growth!'®".
However, resolution does not always occur in obese
adolescents indicating possible p-cell deterioration
during this critical period of development"®¥. These
findings suggest that the metabolic risk of overweight
adolescents is further exacerbated by a ‘pubertal
trigger'®?. Despite convincing evidence that factors
other than absolute AT excess determine metabolic
phenotype in obese adolescents®®>”, successful weight
management is accompanied by improved phenotype in
this cohort. The most recent meta-analysis of lifestyle
interventions (RCT) in paediatric obesity demonstrated
reductions in fasting insulin and lipid profile in
response to improved BMI in over 300 subjects’”.
This suggests that weight management in this
age-group may optimise metabolic control, even within
the context of a metabolically health(y Phenotype, as
has been demonstrated in MHO adults" 818>,

Dietary fat manipulation. Cross-sectional studies in
overweight adolescents have shown that plasma SFA
concentrations correlate positively with IL-6* and C-
reactive protein®®. Although no intervention studies
have chronically increased SFA intake in overweight
adolescents, healthy men showed higher concentrations
of C-reactive protein, fibrinogen and IL-6 after 5 weeks
consuming a diet enriched with the SFA stearic acid or


https://doi.org/10.1017/S002966511400158X

76 A. M. McMorrow et al.

a mix of SFA lauric, myristic and palmitic acid, when
com(Pared with a MUFA-rich high oleic acid control
diet"®®.  Additionally, much like in adults®?,
overweight adolescents with the metabolic syndrome
had a lower plasma PUFA:SFA ratio than overweight
adolescents without metabolic syndrome®. The
pro-inflammatory effects of SFA are thought to be
largely mediated by their ability to serve as ligands for
toll-like receptor-2 and 4. Binding of SFA to toll-like
receptor-2 and/or toll-like receptor-4 in macrophages
and adipocytes leads to activation of NF-kB, cJun
NH,-terminal kinase, and p38 mitogen-activated
protein kinase inflammatory signalling cascades!'>!87).

The effects of dietary fat manipulation on the meta-
bolic phenotype of overweight adolescents show incon-
sistent results when examined by RCT, as presented in
Table 1. Although some studies demonstrated improve-
ments®®4*4®) others show no effect on fasting markers
of metabolic function®*”. Remarkably, Dangardt
et al. did not detect an intervention effect in the fasted
state®?; however, when subjects underwent a metabolic
challenge significant improvements in glucose and insulin
homeostasis were revealed“”, highlighting the potential
limitations of assessing metabolic plasticity during
fasting. It is also worth noting the differences between
RCT with respect to the baseline phenotype of partici-
pants. Interestingly, the studies in which subjects
were recruited based on a phenotype more indicative
of MUO detected significant metabolic improvements
post-intervention®®***®)  whereas in the absence of
marked metabolic dysfunction no significant changes oc-
curred in fasting biomarkers®>*”. This observation sug-
gests that baseline phenotype may partially determine
responsiveness to dietary fat manipulation.

Renewed interest in BAT as a possible therapeutic tar-
get in obesity has arisen from recent identification of this
thermogenic tissue beyond infancy'*%'%9 Interestingly,
puberty has emerged as a potentially critical period
with respect to BAT development''””, which raises the
possibility of its involvement in the MHO phenotype.
In contrast to lipid-rich white AT, BAT stores little fat
and its primary function is to induce non-shivering ther-
mogenesis; dissipating energy via the uncoupling of oxi-
dative respiration from ATP  production**!!.
This process is regulated by UCP-1, a protein located
in the inner mitochondrial membrane of BAT!?%-1%D)
Lack of BAT or UCP-1 in mice induces obesity, IR
and dyslipidaemia”"**'®. Interestingly, evidence from
human studies indicates that the molecular pathways of
BAT development are amenable to reactivation; preadi-
pocytes isolated from supraclavicular fat in adults differ-
entiated into brown adipocytes in vitro'*®. Importantly,
there were no morphological differences in fully differen-
tiated cells from subjects with or without metabolically
active BAT""Y. Furthermore, exposure of WAT to
chronic cold or PPARY agonists can induce a distinct
form of BAT termed ‘brown-in-white’ AT, which also
expresses UCP-1""®_ In this regard, rodent studies
have illustrated the potential for dietary fat manipulation
to modulate BAT activity. n-3 PUFA"?Y, MUFA-rich
extra virgin olive 0il"’® and oleuropein, a phenolic
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compound in olive oil""” have all demonstrated

increased UCP-1 content and/or activity in rodent
BAT. However, it should be acknowledged that the
role of BAT in murine models differs very much to
man. Furthermore, the potential of unsaturated fats to
up-regulate UCP-1 mediated thermogenesis in man has
yet to be investigated.

Personalised nutrition: potential to optimise efficacy of
dietary fat manipulation?

It is clear that the effects of dietary fat manipulation on
AT function and metabolic phenotype are heterogeneous
and inconsistent. So too are the phenotypes associated
with obesity in childhood and adolescence. Using perso-
nalised nutrition approaches to target interventions towards
specific populations sharing a common set of characteristics
may ultimately improve efficacy!”®. Therefore, categori-
sation of obese youth based on their metabolic phenotype
may be important in determining their level of respon-
siveness, a concept that was elegantly demonstrated
by Gilardini er al.". The present study examined the
impact of a 3-month lifestyle intervention on insulin sensi-
tivity in 202 obese children!*”. At the end of the inter-
vention, two very distinct groups emerged from the data;
responders  (55%) and non-responders (45 %)%
Interestingly, the two groups were comparable in BMI,
waist circumference and body composition; however,
responders were characterised by higher fasting insulin,
HOMA-IR, fasting %lucose and 2 h glucose and had a
lower matsuda index'””. Remarkably, while responders
exhibited improvements in glucose and TAG post-
intervention,  paradoxically  insulin-sensitive  non-
responders demonstrated increases in insulin, leucocytes
and TAG concentrations'"””. Furthermore, a second
study of overweight and obese adolescents identified and
validated significantly differentially methylated genes re-
lated to lipid metabolism and inflammation between
individuals who had a high and low response to a multidis-
ciplinary lifestyle intervention®”. This further suggests
that intervention responsiveness tends to vary according
to baseline participant characteristics. Importantly, child-
hood and adolescence may present as a unique window dur-
ing which MUO individuals exhibit a heightened level of
responsiveness. A recent study of more than 2000 subjects
indicated that MUO adults are no longer dietary respon-
sive®®D. The authors suggested that the metabolic burden
caused by the simultaneous dysfunction of the pathways
involved in insulin signalling, inflammation, and glucose
and lipid metabolism render MUO but not MHO unre-
sponsive to intervention®". Although there is a vital
need to replicate these findings in further RCT, emerging
data thus far suggest that large inter-individual responses
to dietary interventions may be somewhat accounted for
by baseline phenotype. It is important to note that the
human evidence in relation to dietary fat manipulation dur-
ing critical periods of AT development has largely emerged
from studies within the context of a healthy phenotype.
For example, in the two large follow-up studies of LC

PUFA supplementation during pregnancy®” and in the
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postnatal period®”, offspring exhibited a mean follow-up
BMI within the healthy range. Given that healthy subjects
have an extraordinary capacity to maintain homeosta-
sis®*?, it is worth considering that the metabolic benefits
of supplementation may go undetected without the chal-
lenge of chronic nutrient overload and subsequent obesity.
Future studies should focus on targeted interventions to
characterise the effect of dietary fat manipulation on the
phenotype of children and adolescents with MUO or at
risk of MUO later in youth.

Conclusion

Overall, data suggest that the short- and long-term meta-
bolic consequences of obesity in childhood and ado-
lescence are varied and may be modulated by a number
of factors, including the in utero environment, postnatal
growth and inherited risk. Although the majority of
obese youth demonstrate maintenance of metabolic
homeostasis, those individuals with established meta-
bolic dysfunction may be characterised by increased cen-
tral and decreased peripheral adiposity, perhaps triggered
by decreased SAT expansion capacity. There is convinc-
ing evidence from in vitro and animal studies that AT
function and subsequent metabolic outcome can be
manipulated by dietary fat quality during critical periods
of AT growth. However, translation of these results in
human studies has shown mixed success in the short-term
and little success in the long-term. Given the wide inter-
individual variability that accompanies obesity in chil-
dren and adolescents, it is not surprising that the varying
characteristics may modulate responsiveness to dietary
intervention. A limited number of studies have suggested
that MUO youth may respond more favourably to inter-
vention than their MHO counterparts. Thus, targeting
dietary interventions towards established MUO or indi-
viduals at risk of MUO may optimise efficacy of dietary
fat manipulation. Particularly high-risk populations may
include obese pregnant women, offspring exposed to in
utero under- or overnutrition, infants demonstrating
slow or accelerated postnatal weight gain, children with
early AR and adolescents with established metabolic dys-
function. Future long-term, well-designed RCT are
required to determine whether dietary fat manipulation
may be therapeutically beneficial for the treatment and
prevention of MUO in children and adolescents.
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