
6

Causal structure

By postulate (a) of § 3.2, a signal can be sent between two points of Jt
only if they can be joined by a non-spacelike curve. In this chapter we
shall investigate further the properties of such causal relationships,
establishing a number of results which will be used in chapter 8 to
prove the existence of singularities.

By § 3.2, the study of causal relationships is equivalent to that of the
conformal geometry of .#, i.e. of the set of all metrics g conformal to
the physical metric g (g = £i2g, where £i is a non-zero, Cr function).
Under such a conformal transformation of the metric a geodesic curve
will not, in general, remain a geodesic curve unless it is null, and even
in this case an affine parameter along the curve will not remain an
affine parameter. Thus in most cases geodesic completeness (i.e.
whether all geodesies can be extended to arbitrary values of their
affine parameters) will depend on the particular conformal factor and
so will not (except in certain special cases described in §6.4) be a
property of the conformal geometry. In fact Clarke (1971) and Siefert
(1968) have shown that, provided a physically reasonable causality
condition holds, any Lorentz metric is conformal to one in which all
null geodesies and all future-directed timelike geodesies are complete.
Geodesic completeness will be discussed further in chapter 8 where it
forms the basis of a definition of a singularity.

§6.1 deals with the question of the orientability of timelike and
spacelike bases. In §6.2 basic causal relations are defined and the
definition of a non-spacelike curve is extended from piecewise dif-
ferentiable to continuous. The properties of the boundary of the future
of a set are derived in §6.3. In §6.4a number of conditions which rule
out violations or near violations of causality are discussed. The closely
related concepts of Cauchy developments and global hyperbolicity
are introduced in §6.5 and §6.6, and are used in §6.7 to prove the
existence of non-spacelike geodesies of maximum length between
certain pairs of points.

In §6.8 we describe the construction of Geroch, Kronheimer and
[180]
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6] CAUSAL STRUCTURE 181

Penrose for attaching a causal boundary to space-time. A particular
example of such a boundary is provided by a class of asymptotically
flat space-times which are studied in § 6.9.

6.1 Orientability

In our neighbourhood of space-time there is a well-defined arrow of
time given by the direction of increase of entropy in quasi-isolated
thermodynamic systems. It is not quite clear what the relationship
is between this arrow and the other arrows defined by the expansion
of the universe and by the direction of electrodynamic radiation; the
reader who is interested will find further discussion in Gold (1967),
Hogarth (1962), Hoyle and Narlikar (1963) and Ellis and Sciama
(1972). Physically it would seem reasonable to suppose that there is
a local thermodynamic arrow of time defined continuously at every
point of space-time, but we shall only require that it should be possible
to define continuously a division of non-spacelike vectors into two
classes, which we arbitrarily label future- and past-directed. If this is
the case, we shall say that space-time is time-orientable. In some
space-times it is not possible to define such a time-orientation. An
example is the space-time obtained from de Sitter space (§5.2) in
which points are identified by reflection through the origin of the five-
dimensional imbedding space. In this space there are closed curves,
non-homotopic to zero, on going round which the orientation of time
is reversed. However this difficulty could clearly be resolved by simply
unidentifying the points again, and in fact this is always the case: if
a space-time (JK, g) is not time-orientable, then it has a double
covering space (./#, g) which is. *Jt may be defined as the set of all
pairs (p, a) where pe^df and cc is one of the two orientations of time
at p. Then with the natural structure and the projection n: (p, a) -+p,
Jt is a double covering of Jt. If Ji consists of two disconnected com-
ponents then (^#, g) is time-orientable. If ^ i s connected, then {JK, g)
is not time-orientable but {j$> g) is. In the following sections we shall
assume that either («^, g) is time-orientable or we are dealing with the
time-orientable covering space. If one can prove the existence of
singularities in this space-time then there must also be singularities
in {Jt, g).

One may also ask whether space-time is space-orientable, that is
whether it is possible to divide bases of three spacelike axes into right
handed and left handed bases in a continuous manner. Geroch (1967a)
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182 CAUSAL STRUCTURE [6.1

has pointed out that there is an interesting connection between this
and time-orientability which follows because some experiments
on elementary particles are not invariant under charge or parity
reversals, either singly or together. On the other hand there are theo-
retical reasons for believing that all interactions are invariant under
the combination of charge, parity and time reversals (CPT theorem;
see Streater and Wightman (1964)). If one believes that the non-
invariance of weak interactions under charge and parity reversals is
not merely a local effect but exists at all points of space-time, then it
follows that going round any closed curve either the sign of a charge,
the orientation of a basis of spacelike axes, and the orientation of time
must all reverse, or none of them does. (The ordinary Maxwell theory,
in which the electromagnetic field has a definite sign at every point,
does not allow the sign of a charge to change on going around a closed
curve non-homotopic to zero unless the orientation of time changes.
However one could have a theory in which the field was double-valued
and changed sign on going round such a curve. This theory would agree
with all existing experimental evidence.) In particular if one assumes
that space-time is time-orientable then it must also be space-
orientable. (This in fact follows on using the experimental evidence
alone without appealing to the CPT theorem.)

Geroch (1968c) has also shown that if it is possible to define two-
component spinor fields at every point then space-time must be
parallelizable, that is it must be possible to introduce a continuous
system of bases of the tangent space at every point. (Further conse-
quences of the existence of spinor structures are obtained in Geroch
(1970a).)

6.2 Causal curves

Taking space-time to be time-orientable as explained in the previous
section, one can divide the non-spacelike vectors at each point into
future- and past-directed. For sets £f and °U, the chronological future
/ + ( ^ , °tt) of £f relative, to °ll can then be defined as the set of all points
in °ll which can be reached from Sf by a future-directed timelike curve
in °tt'. (By a curve we mean always one of non-zero extent, not just a
single point. Thus I+(^, <%) may not contain &.) I+(&\Jt) will be
denoted by I+(£f), and is an open set, since if p G /̂f can be reached by
a future-directed timelike curve from S? then there is a small neigh-
bourhood of p which can be so reached.
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6.2] CAUSAL CURVES 183

This definition has a dual in which 'future5 is replaced by 'past',
and the + by a — ; to avoid repetition, we shall regard dual definitions
and results as self-evident.

The causal future of Sf relative to °tt is denoted by J+(^9 °ll); it is
defined as the union of Sf n ̂  with the set of all points in °U which can
be reached from Sf by a future-directed non-spacelike curve in °tt. We
saw in § 4.5 that a non-spacelike curve between two points which was
not a null geodesic curve could be deformed into a timelike curve
between the two points. Thus if °U is an open set and p, qy r e °U, then

either q e J+(p, <%),re I+(q, <%)\
| implyor qel+(p,<%), reJ+iq,®))

From this it follows that !+{$,<%) = J~(p, <tt) and /+(p, <&) = J+(p, <%)
where for any set Jf, Jf denotes the closure of Jf and

denotes the boundary of Jf\

Chronological
future I+(S?) / ^ ^ N u l l geodesic in J+(Sf)

which doe6 not intersect
J+(y) and has no past
endpoint in uf

Point removed
from ^

Null geodesies;
through y generating
past of J+(y)

FIGURE 34. When a point has been removed from Minkowski space, the causal
future J+(6^) of a closed set S? is not necessarily closed. Further parts of the
boundary of the future of £f may be generated by null geodesic segments
which have no past endpoints in *Jt.

As before, J+(<Sf, JK) will be written simply as J+(£f). It is the region
of space-time which can be causally affected by events in S?. It is not
necessarily a closed set even when £P is a single point, as figure 34
shows. This example, incidentally, illustrates a useful technique for
constructing space-times with given causal properties: one starts
with some simple space-time (unless otherwise indicated this will be
Minkowski space), cuts out any closed set and, if desired, pastes it
together in an appropriate way (i.e. one makes identifications of points
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of Jt). The result is still a manifold with a Lorentz metric and there-
fore still a space-time even though it may look rather incomplete
where points have been cut out. As mentioned above, however, this
incompleteness can be cured by an appropriate conformal trans-
formation which sends the cut out points to infinity.

The future horismos of Sf relative to 91, denoted by E+(Sft <%), is
defined as J + ( ^ , * ) - / + ( ^ , « r ) ; we write E+(S?) for tf+(y,uT). (In
some papers the relations # e/+(g), peJ+(q) a,ndp e E+(q) are denoted
by q < p, q < p and q^-p respectively.) If °li is an open set, points of
E+(Sff&) must lie on future-directed null geodesies from Sf by
proposition 4.5.10, and if ^ is a convex normal neighbourhood aboutp
then it follows from proposition 4.5.1 that E+(p,<%) consists of the
future-directed null geodesies in °ll from p, and forms the boundary in
91 of both J+(p, <&) and J+(p, <&). Thus in Minkowski space, the null
cone of p forms the boundary of the causal and chronological futures
of p. However in more complicated space-times this is not necessarily
the case (e.g. see figure 34).

For the purposes of what follows it will be convenient to extend the
definition of timelike and non-spacelike curves from piecewise dif-
ferentiable to continuous curves. Although such a curve may not have
a tangent vector we can still say that it is non-spacelike if locally
every two points of the curve can be joined by a piecewise differenti-
able non-spacelike curve. More precisely, we shall say that a con-
tinuous curve y: F->*Jf, where F is a connected interval of R1, is
future-directed and non-spacelike if for every teF there is a neighbour-
hood G of t in F and a convex normal neighbourhood <% of y(t) in .Jf
such that for any txeG9 y{h)eJ-{y{t),^)-y{t) if tx < t, and
y(f1)eJ+(y(0,^)-7(0 if* < tv We shall say that y is future-directed
and timelike if the same conditions hold with J replaced by / . Unless
otherwise specified, we will in future mean by a timelike or non-
spacelike curve such a continuous curve, and shall regard two curves
as equivalent if one is a reparametrization of the other. With this
generalization we can establish a result that will be used repeatedly
in the rest of this chapter. We first give a few more definitions.

A point p will be said to be a future endpoint of a future-directed
non-spacelike curve y\F~>*Jt if for every neighbourhood V ofp there
is a t G F such that y(^) e i^ for every txeF with tx ^ t. A non-spacelike
curve is future-inextendible (respectively,future-inextendible in a set 6^)
if it has no future endpoint (respectively, no future endpoint in SP).
A point p will be said to be a limit point of an infinite sequence of non-
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6.2] CAUSAL CURVES 185

spacelike curves An if every neighbourhood of p intersects an infinite
number of the An. A non-spacelike curve A will be said to be a limit
curve of the sequence An if there is a subsequence A'n of the An such that
for every p e A, A'n converges to p.

Lemma 6.2.1
Let £? be an open set and let An be an infinite sequence of non-spacelike
curves in Sf which are future-inextendible i n ^ . If p e£f is a limit point
of An, then through p there is a non-spacelike curve A which is future-
inextendible in £f and which is a limit curve of the An.

It is sufficient to consider the case Sf = Jl since SP can be regarded as
a manifold with a Lorentz metric. Let °llx be a convex normal co-
ordinate neighbourhood about p and let 3${q, a) be the open ball of
coordinate radius a about q. Let b > 0 be such that &(p, b) is defined
and let A(l,0)n be a subsequence of An n ^ which converges to p.
Since 3S(p,b) is compact it will contain limit points of the A(l,0)n.
Any such limit point y must lie either in J~(p, °U^ or J+(p, °tt^) since
otherwise there would be neighbourhoods is\ of y and ^ of p between
which there would be no non-spacelike curve in %x. Choose

to be one of these limit points (figure 35), and choose A(l, l)n to be
a subsequence of A(l, 0)n which converges to xlv The point xn will be
a point of our limit curve A. Continue inductively, defining

as a limit point of the subsequence A(i — 1, i — l)n for j = 0, A(i, j — l)n

for i ^ j ^ 1, and defining h(i,j)n as a subsequence of the above
subsequence which converges to xijt In other words we are dividing
the interval [0,6] into smaller and smaller sections and getting points
on our limit curve on the corresponding spheres about p. As any two
of the x{j will have non-spacelike separation, the closure of the union
of all the xtj (j ^ i) will give a non-spacelike curve A from p = xi0 to
#n = xu- I t n o w remains to construct a subsequence A'n of the An such
that for each q e A, A'n converges to q. We do this by choosing A'm to be
a member of the subsequence A(mfm)n which intersects each of the
balls 38{xmP mrV}) for 0 ^ j ^ m. Thus A will be a limit curve of the
An from p to xlv Now let ^ 2 ^

e a convex normal neighbourhood about
xn and repeat the construction using this time the sequence A'n.
Continuing in this fashion, one can extend A indefinitely. •
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Null geodesies
through p~

FIGURE 35. The non-spacelike limit curve A through p of a family of non-
spacelike curves An for which p is a limit point.

6.3 Achronal boundaries

From proposition 4.5.1 it follows that in a convex normal neighbour-
hood ^ , the boundary of I+(p, °ll) or J+(p, °U) is formed by the future-
directed null geodesies from^. To derive the properties of more general
boundaries we introduce the concepts of achronal and future sets.

A set £f is said to be achronal (sometimes referred to as 'semi-
spacelike' in the literature) if I+(Sf) n SP is empty, in other words if
there are no two points of SP with timelike separation. Sf is said to be
& future set \i£f => I+{Sf). Note that if SP is a future set, Jl—Sf is a past
set. Examples of future sets include I+(^) and J+{Jf), where Jf is
any set. Examples of achronal sets are given by the following
fundamental result.
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6.3] ACHRONAL BOUNDARIES 187

Proposition 6.3.1
If Sf is a future set then <Ŝ , the boundary of < ,̂ is a closed, imbedded,
achronal three-dimensional Cx~ submanifold.

, any neighbourhood of q intersectsSf and JK—Sf. Ifpel+(q),
then there is a neighbourhood of q in I~(p). Thus I+(q) c SP. Similarly
I~(q) c (J( -£P). If rE/+(<?), there is a neighbourhood ^ of r such
that V c /+(g) c «$?. Thus r cannot belong to &\ One can introduce
normal coordinates (x1, x2, xz, x*) in a neighbourhood ^ a about q with
S/cte4 timelike and such that the curves {xi = constant (i = 1,2,3)}
intersect both I+(q, ^a) and I~(q9 Wa). Then each of these curves must
contain precisely one point of S?. The ^-coordinate of these points
must be a Lipschitz function of the xi (i = 1,2,3) since no two points
of & have timelike separation. Therefore the one-one map
<j>a: Se n ^a->i?3 denned by <f>a(p) = x\p) (i = 1,2, 3) for pe^o^a

is a homeomorphism. Thus (# n Wa9 <f>a) is a C1- atlas for ^ . D

We shall call a set with the properties of & listed in proposition 6.3.1,
an achronal boundary. Such a set can be divided into four disjoint
subsets 5^, &*+9 &!_, ,91 as follows: for a point qe<Sf there may or
may not exist points p,re6^ with peE~(q) — q, rsE^{q) — q. The
different possibilities define the subsets of S? according to the scheme:

If qe£fNi then reE+(p) since reJ+(^) and by proposition 6.3.1,
r §§ /+(^). This means that there is a null geodesic segment in & through
q. It qe<Sf+ (respectively &_) then q is the future (respectively, past)
endpoint of a null geodesic in &. The subset ^ is spacelike (more
strictly, acausal). These divisions are illustrated in figure 36.

A useful condition for a point to lie in S?N, £?+ or &_ is given in the
following lemma due to Penrose (Penrose (1968)):

Lemma 6.3.2
Let iV* be a neighbourhood oiqeS? where SP is a future set. Then

(i) J+(g) <= / + ( ^ - 7T) implies ^

(ii) /-(g) c= I-{Jt-9>-itr) implies
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188 CAUSAL STRUCTURE [6.3

FIGURE 36. An achronal boundary S? can be divided into four sets: 5?0 is space-
like, 6^N is null, and &+ (respectively, S?_) is the future (respectively, past)
endpoint of a null geodesic in SP.

It is sufficient to prove (i) since & can also be regarded as the boundary
of the past set (^—Sf). Let {xn} be an infinite sequence of points in
I+(q) (1 if which converge on q. If I+(q) c: !+(<? —it"), there will be
a past-directed timelike curve An to £f — iV from each xn. By lemma

6.2.1 there will be a past-directed limit curve A from q to (SP — iT). As
I~(q) is open and contained in uf—£?, I~(q) 0 9* is empty. Thus A must
be a null geodesic and must lie in «$*\ D

As an example of the above results, consider J+(Jf) = l+(JfT), the
boundary of the future of a closed set Jf\ By proposition 6.3.1 it is an
achronal manifold and by the above lemma, every point of J(J^) — CtC
belongs to [J+{Jf)]N or [J+(JO]+. This means that J{X)-X is
generated by null geodesic segments which may have future end-
points in «/+( Jf) — Jf* but which, if they do have past endpoints, can
have them only on Jf* itself. As figure 34 shows, there may be null
geodesic generating segments which do not have past endpoints at all
but which go out to infinity. This example is admittedly rather
artificial but Penrose (1965 a) has shown that similar behaviour
occurs in something as simple as the plane wave solutions; the anti-
de Sitter (§5.2) and Reissner-Nordstrom (§5.5) solutions provide
other examples. We shall see in § 6.6 that this behaviour is connected
with the absence of a Cauchy surface for these solutions.

We shall say that an open set °U is causally simple if for every
compact s e t « / c ^

e/+(jr) n # = E+(JT) n # and j-(jf) n °u = E-(JT) n #.

This is equivalent to saying that J+(Jf) and J~(Jt) are closed in %.
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6.4] CAUSALITY CONDITIONS 189

6.4 Causality conditions
Postulate (a) of § 3.2 required only that causality should hold locally;
the global question was left open. Thus we did not rule out the possi-
bility that on a large scale there might be closed timelike curves (i.e.
timelike Svs). However the existence of such curves would seem to
lead to the possibility of logical paradoxes: for, one could imagine
that with a suitable rocketship one could travel round such a curve
and, arriving back before one's departure, one could prevent oneself
from setting out in the first place. Of course there is a contradiction
only if one assumes a simple notion of free will; but this is not some-
thing which can be dropped lightly since the whole of our philosophy
of science is based on the assumption that one is free to perform any
experiment. It might be possible to form a theory in which there were
closed timelike curves and in which the concept of free will was modi-
fied (see, for example, Schmidt (1966)) but one would be much more
ready to believe that space-time satisfies what we shall call the
chronology condition: namely, that there are no closed timelike curves.
One must however bear in mind the possibility that there might be
points (maybe where the density or curvature was very high) of
space-time at which this condition does not hold. The set of all such
points will be called the chronology violating set of *J£ and has the
following character:

Proposition 6.4.1 (Carter)
The chronology violating set of JK is the disjoint union of sets of the
form J+(g)n/-(?), geuT.

If q is in the chronology violating set of Jt, there must be a future-
directed timelike curve A with past and future endpoints at q. If
r e I~(q) fl I+(q), there will be past- and future-directed timelike curves
/it and ju,2 from q to r. Then (z^)"1 oXo/i2 will be a future-directed time-
like curve with past and future endpoints at r. Moreover if

re[I-(q)f)I+(q)]n[I-(p)nIHp)]
then pel-{q) n /+(?) = l~ip) fl /+(p).
To complete the proof, note that every point r at which chronology is
violated is in the set I~(r) fl I+{r)> D

Proposition 6.4.2
If Jl is compact, the chronology violating set of Jl is non-empty.
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<Jl can be covered by open sets of the form I+(q), qeJK. If the chrono-
logy condition holds at q, then q$I+(q). Thus if the chronology
condition held at every point, *J( could not be covered by a finite
number of sets of the form I+(q). •

From this result it would seem reasonable to assume that space-time
is non-compact. Another argument against compactness is that any
compact, four-dimensional manifold on which there is a Lorentz
metric cannot be simply connected. (The existence of a Lorentz metric
implies that the Euler number #(uf) *s z e r o (Steenrod (1951), p. 207).

Now x = S ( - l)nBn where Bn ^ 0 is the rath Betti number of J(. By
n=0

duality (Spanier (1966), p. 297) Bn = 54_n. Since Bo = B4 = 1, this
implies that B± 4= 0 which in turn implies n-^JK) =# 0 (Spanier (1966),
p. 398).) Thus a compact space-time is really a non-compact manifold
in which points have been identified. It would seem physically reason-
able not to identify points but to regard the covering manifold as
representing space-time.

We shall say that the causality condition holds if there are no closed
non-spacelike curves. Similar to proposition 6.4.1, one has:

Proposition 6.4.3
The set of points at which the causality condition does not hold is the
disjoint union of sets of the form J~(q) 0 J+{q), q^,J(. •

In particular, if the causality condition is violated at qeJK but the
chronology condition holds, there must be a closed null geodesic
curve y through q. Let v be an affine parameter on y (regarded as a map
of an open interval of R1 to *J() and let..., v_v v0, vv v2,... be successive
values of v at q. Then we may compare at q the tangent vector d/dv\v=v

and the tangent vector d/dv\v=Vi, obtained by parallelly transporting
d/dv\V:=Vo round y. Since they both point in the same direction, they
must \be proportional: d/c)v\v=Vi = ad/dv\v=Vo. The factor a has the
following significance: the affine distance covered in the Tith circuit of
y, (vn+1 — vn), is equal to a~n(v1 — v0). Thus if a > l,v never attains the
value (v1 — t;0)(l — a"1)"1 and so y is geodesically incomplete in the
future direction even though one can go round an infinite number of
times. Similarly if a < 1, y is incomplete in the past direction, while if
a = 1, it is complete in both directions. In the two-dimensional model
of Taub-NUT space described in § 5.7, there is a closed null geodesic
which is an example with a > 1. Since the factor a is a conformal in-
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variant, this incompleteness is independent of the conformal factor.
This kind of behaviour, however, can happen only if there is a violation
of causality in some sense; if the strong causality condition (see below)
holds, a suitable conformal transformation of the metric will make all
null geodesies complete (Clarke (1971)).

The factor a has a further significance from the following result.

Proposition 6.4.4
If y is a closed null geodesic curve which is incomplete in the future
direction then there is a variation of y which moves each point of y
towards the future and which yields a closed timelike curve.

By §2.6, one can find on J( a timelike line-element field (V, -V)
normalized so that g(V, V) = — 1. As we are assuming that Jt is time-
orientable, one can consistently choose one direction of (V, —V) and
so obtain a future-directed timelike unit vector field V. One can then
define a positive definite metric g' by

g'(X, Y) = g(X, Y) + 2g(X, V) g(Y, V).

Let t be a (non-affine) parameter on y which is zero at some point
qey and which is such that g(V, d/dt) = — 2~i. Then t measures proper
distance along y in the metric g' and has the range — oo < t < oo. Con-
sider a variation of y with variation vector d/du equal to xY, where x is
a function x(t). By §4.5,

d d\ d ld d\ (d D d

where fd/dt = (Djdt)(dldt). Now suppose v were an aifine parameter
on y. Then djdv would be proportional to djdt: djdv = hd/dt, where
h~l dh/dt = —f. On going round one circuit of y, djdv increases by
a factor a > 1. Thur

j 0.
Therefore if we take x(t) to be

exp ( I f(t') dt' + b~H log a],
\Jo /

where b = j> dt, this will give a variation of y to the future and gives
a closed timelike curve. D
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Proposition 6.4.5
If (a) RahK

aKb > 0 for every null vector K;
(b) the generic condition holds, i.e. every null geodesic contains a

point at which K[aRb]cd[eKf]KcKd is non-zero, where K is the tangent
vector;

(c) the chronology condition holds on uf,
then the causality condition holds on Ji'.

If there were closed null geodesic curves which were incomplete, then
by the previous result they could be varied to give closed timelike
curves. If they were complete, then by proposition 4.4.5 they would
contain conjugate points and so by proposition 4.5.12 they could
again be varied to give closed timelike curves. •

This shows that in physically realistic solutions, the causality and
chronology conditions are equivalent.

As well as ruling out closed non-spacelike curves, it would seem
reasonable to exclude situations in which there were non-spacelike
curves which returned arbitrarily close to their point of origin or
which passed arbitrarily close to other non-spacelike curves which then
passed arbitrarily close to the origin of the first curve-and so on. In
fact Carter (1971a) has pointed out that there is a more than countably
infinite hierarchy of such higher degree causality conditions depending
on the number and order of the limiting processes involved. We shall
describe the first three of these conditions and shall then give the
ultimate in causality conditions.

The future (respectively, past) distinguishing condition (Kronheimer
and Penrose (1967)) is said to hold at p e Jl if every neighbourhood of p
contains a neighbourhood of p which no future (respectively, past)
directed non-spacelike curve from p intersects more than once. An
equivalent statement is that I+(q) = I+(p) (respectively, I~(q) =I~(p))
implies that q = p. Figure 37 shows an example in which the causality
and past distinguishing conditions hold everywhere but the future
distinguishing condition does not hold a,tp.

The strong causality condition is said to hold at̂ > if every neighbour-
hood of p contains a neighbourhood of p which no non-spacelike curve
intersects more than once. Figure 38 shows an example of violation of
this condition.
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Null geodesic

Remove strip

FIGURE 37. A space in which the causality and past distinguishing conditions
hold everywhere, but the future distinguishing condition does not hold at p or q
(in fact, I+(p) = I+(q)). The light cones on the cylinder tip over until one null
direction is horizontal, and then tip back up; a strip has been removed, thus
breaking the closed null geodesic that would otherwise occur.

s- Remove

Identify

Null geodesic

Remove '

FIGURE 38. A space-time satisfying the causality, future and past distinguish-
ing conditions, but not satisfying the strong causality condition at p. Two
strips have been removed from a cylinder; light cones are at ± 45°.
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Proposition 6.4.6
If conditions (a) to (c) of proposition 6.4.5 hold and if in addition,
(d) Jl is null geodesically complete, then the strong causality condi-
tion holds on Jt.

Suppose the strong causality condition did not hold at pe*J(. Let tft
be a convex normal neighbourhood of p and let Vn c % be an infinite
sequence of neighbourhoods of p such that any neighbourhood of p
contains all the Vn for n large enough. For each Vn there would be a
future-directed non-spacelike curve Xn which left tfl and then returned
to Vn. By lemma 6.2.1, there would be an inextendible non-spacelike
curve A through^ which was a limit curve of the Aw. No two points of A
could have timelike separation as otherwise one could join up some An

to give a closed non-spacelike curve. Thus A must be a null geodesic.
But by (a), (b) and (d) A would contain conjugate points and therefore
points with timelike separation. D

Corollary

The past and future distinguishing conditions would also hold on ^
since they are implied by strong causality.

Closely related to these three higher degree causality conditions is
the phenomenon of imprisonment.

A non-spacelike curve y that is future-inextendible can do one of
three things as one follows it to the future: it can

(i) enter and remain within a compact set ^
(ii) not remain within any compact set but continually re-enter

a compact set ^ ,
(iii) not remain within any compact set &* and not re-enter any

such set more than a finite number of times.
In the third case y can be thought of as going off to the edge of

space-time, that is either to infinity or a singularity. In the first and
second cases we shall say that y is totally and partially future imprisoned
in SP, respectively. One might think that imprisonment could occur
only if the causality condition was violated, but the example due to
Carter which is illustrated in figure 39 shows that this is not the case.
Nevertheless one does have the following result:
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Identify after
shifting an
irrational amount

(i) (ii)

FIGURE 39. A space with imprisoned non-spacelike lines but no closed non-
spacelike curves. The manifold is E1 x S1 x S1 described by coordinates (t, y, z)
where (t, y, z) and (t, y,z+l) are identified, and (t, y, z) and (y, y+ 1, z + a) are
identified, where a is an irrational number. The Lorentz metric is given by

ds2 = (cosh*-l)2(d*2-di/2) + d*d2/-dz2.

(i) A section {z = constant} showing the orientation of the null cones,
(ii) The section t = 0 showing part of a null geodesic.

Proposition 6.4.7
If the strong causality condition holds on a compact set £?, there can
be no future-inextendible non-spacelike curve totally or partially
future imprisoned in &\

£f can be covered by a finite number of convex normal coordinate
neighbourhoods (^ii with compact closure, such that no non-spacelike
curve intersects any cili more than once. (We shall call such neighbour-
hoods, local causality neighbourhoods.) Any future-inextendible non-
spacelike curve which intersects one of these neighbourhoods must
leave it again and not re-enter it. •

Proposition 6.4.8
If the future or past distinguishing condition holds on a compact
set SP, there can be no future-inextendible non-spacelike curve
totally future imprisoned in £f. (This result is included for its interest
but is not needed for what follows.)

Let {^}, (a = 1,2,3,...), be a countable basis of open sets for J(
(i.e. any open set in Jl can be represented as a union of the ya). As
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196 CAUSAL STRUCTURE [6.4

the future or past distinguishing condition holds on SP, any point
peSP will have a convex normal coordinate neighbourhood % such
that no future (respectively, past) directed non-spacelike curve from p
intersects °il more than once. We define f(p) to be equal to the least
value of a such that fa contains p and is contained in some such
neighbourhood °U.

Suppose there were a future-inextendible non-spacelike curve A
which was totally future imprisoned in £P. Let qeX be such that
A' = A n J+{q) is contained in SP. Define s/Q to be the closed, non-
empty set consisting of all points of SP which are limit points of A. Let
poe£/o be such that f(p0) is equal to the smallest value of f(p) on J / 0 .
Through p0 there would be an inextendible non-spacelike curve y0

every point of which was a limit point of A'. No two points of y0 could
have timelike separation since otherwise some segment of A' could be
deformed to give a closed non-spacelike curve. Thus y0 would be an
inextendible null geodesic which was totally imprisoned in SP in both
the past and future directions. Let s/x be the closed set consisting of
all limit points of y0 n J+(Po) (or, in the case that the past distinguishing
condition holds on SP, y0 n J~(pQ)). As every such point would also be
a limit point of A', s/x <= j / 0 . Since y^(p > could contain no limit point
of y0 n J+(p0) (respectively, y0 n ^"(^o))* ^i would be strictly smaller
than J / 0 . We would thus obtain an infinite sequence of closed sets
j / 0 3 six ID j / 2 =5 ... => s/fi 3 .... Each ja^ would be non-empty,
being the set of all limit points of the totally future (respectively, past)
imprisoned null geodesic y^_! (\J+{p^x) (respectively, y^_1 n J~(P/s-i))-
Let Jf* = H £?£- As SP is compact, Jf* would be non-empty since the

intersection of any finite number of the J ^ would be non-empty
(Hocking and Young (1961), p. 19). Suppose reJf. Then f(r) =f(pfi)
for some /?. But 1^$ 0 <s&p+\ would be empty so r could not be in
s#p+1 and so could not be in JT. This shows that there can be no future-
inextendible non-spacelike curve totally future imprisoned in SP. D

The causal relations on (JK, g) may be used to put a topology on Jl
called the Alexandrov topology This is the topology in which a set is
defined to be open if and only if it is the union of one or more sets of the
form I+(p) fl /"(?), p, qeJK. As I+(p) 0 I~{q) is open in the manifold
topology, any set which is open in the Alexandrov topology will be
open in the manifold topology, though the converse is not necessarily
true.

Suppose however that the strong causality condition holds on JK.
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6.4] CAUSALITY CONDITIONS 197

Then about any point reJ( one can find a local causality neighbour-
hood °U. The Alexandrov topology of (^,g|^) regarded as a space-
time in its own right, is clearly the same as the manifold topology of ^ .
Thus the Alexandrov topology of *JC is the same as the manifold
topology since Ji can be covered by local causality neighbourhoods.
This means that if the strong causality condition holds, one can
determine the topological structure of space-time by observation of
causal relationships.

Cut out

Cut out

Null geodesies

Cut out

Identify

FIGURE 40. A space satisfying the strong causality condition, but in which
the slightest variation of the metric would permit there to be closed timelike
lines through p. Three strips have been removed from a cylinder; light cones
are at ±45°.

Even imposition of the strong casuality condition does not rule out
all causal pathologies, as figure 40 shows one can still have a space-
time which is on the verge of violating the chronology condition in that
the slightest variation of the metric can lead to closed timelike curves.
Such a situation would not seem to be physically realistic since
General Relativity is presumably the classical limit of some, as yet
unknown, quantum theory of space-time and in such a theory the
Uncertainty Principle would prevent the metric from having an exact
value at every point. Thus in order to be physically significant, a
property of space-time ought to have some form of stability, that is
to say, it should also be a property of 'nearby' space-times. In order
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to give a precise meaning to ' nearby' one has to define a topology on the
set of all space-times, that is, all non-compact four-dimensional mani-
folds and all Lorentz metrics on them. We shall leave the problem of
uniting in one connected topological space manifolds of different
topologies (this can be done); and shall just consider putting a topology
on the set of all Cr Lorentz metrics (r ̂  1) on a given manifold. There
are various ways in which this can be done, depending on whether one
requires a 'nearby' metric to be nearby in just its values (0° topology)
or also in its derivatives up to the Jcth order (Ck topology) and whether
one requires it to be nearby everywhere (open topology) or only on
compact sets (compact open topology).

For our purposes here, we shall be interested in the C° open topology.
This may be defined as follows: the symmetric tensor spaces Ts%{p) of
type (0, 2) at every point peJt form a manifold (with the natural
structure) Ts\(Jt), the bundle of symmetric tensors of type (0,2) over
Jt'. A Lorentz metric g on Jt is an assignment of an element of Ts\{Jt)
at each point peJt and so can be regarded as a map or cross-section
(j.Jt-> Ts%(Jt) such that nof} = 1 where/ris the projection Ts%(Jt)-> Jt
which sends xeTs%(p) to p. Let °U be an open set in Ts%{Jt) and let
0{°tt) be the set of all C° Lorentz metrics g such that Q(Jt) is contained
in °ll (figure 41). Then the open sets in the C° open topology of the Cr

Lorentz metrics on Jt are defined to be the union of one or more sets
of the form O(°U).

We say that the stable causality condition holds on Jt if the space-
time metric g has an open neighbourhood in the C° open topology
such that there are no closed timelike curves in any metric belonging
to the neighbourhood. (It would not make any difference if one used
the Ck topology here, but one could not use a compact open topology
since in that topology each neighbourhood of any metric contains
closed timelike curves.) In other words, what this condition means is
that one can expand the light cones slightly at every point without
introducing closed timelike curves.

Proposition 6.4.9
The stable causality condition holds everywhere on Jt if and only if
there is a function/on Jl whose gradient is everywhere timelike.

Remark. The function/can be thought of as a sort of cosmic time in
the sense that it increases along every future-directed non-spacelike
curve.
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6.4] CAUSALITY CONDITIONS 199

Proof, The existence of a function / with an everywhere timelike
gradient implies the stable causality condition since there can be no
closed timelike curves in any metric h which is sufficiently close to g
that for every pointy e~#, the null cone of p in the metric h intersects
the surface {/ = constant} through p only at p. To show that the con-
verse is true we introduce a volume measure /i (unrelated to the volume
measure defined by the metric g) on Jl such that the total volume of

Tsilp)

TT

FIGURE 41. An open set °ll in the C° open topology on the space T^Jt) of
symmetric tensors of type (0,2) on ^ .

J( is one. One way of doing this is as follows: choose a countable atlas
{°Ua, (j)a) for „# such that <pa(Wa) is compact in J?4. Let/J0 be the natural
Euclidean measure on i?4 and let/a be a partition of unity for the atlas
(*a, <l>a). Then /i may be denned as 2 / a 2-«[/*0(^a)]-

10a V o .
a

Now if the stable causality condition holds one can find a family of
Cr Lorentz metrics h(a), ae [0, 3], such that:

(1) h(0) is the space-time metric g;
(2) there are no closed timelike curves in the metric h(a) for each

ae[0,3];
(3) if av a2 e [0, 3] with ax < a2, then every non-spacelike vector in

the metric h{ax) is timelike in the metric h(a2).
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For p eJK, let d(p, a) be the volume oil~(pi JK, h(a)) in the measure
JLC where we use I~(Sf, °U, h) to denote the past of SP relative to °U in
the metric h. For a given value of ae(0,3), 6(p,a) will be a bounded
function which increases along every non-spacelike curve. It may not,
however, be continuous: as figure 42 shows, it may be possible that
a slight alteration of position may allow one to see past an obstruction
and so greatly increase the volume of the past. One thus needs some
way of smearing out 6(p, a) so as to obtain a continuous function which

FIGURE 42. A small displacement of a point from p to q results in a large change
in the volume of the past of the point. Light cones are at ± 45° and a strip has
been removed as shown.

increases along every curve which is future-directed and non-spacelike
in the metric h(0). One can do this by averaging over a range of a: let

6(p) = Vd(p,a)da.

We shall show that 6{p) is continuous on *Jl'.
Firyt to show that it is upper semi-continuous: given e > 0, let 8$ be

a ball about p such that the volume of 3S in the measure fi is less than
\e. By property (3), for al9 a2e[0, 3] with ax < a2 one can find a
neighbourhood ^(av a2) ofpin^ such that

[I~(^(av a2), J , h(ax)) 0 « ] c [/-(p, J , h(a2)) n &\.

Let n be a positive integer greater than 2e-x. Then we define the set ^
to be 9 = n ^ ( 1 + iin~\ 1 + \(i + ljn"1), % = 0, 1, ..., 2n. 9 will be

i
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a neighbourhood of p and will be contained in « "̂(a, a + n~x) for any
a e [1,2]. Therefore I~(q, Jt, h(a)) - 8t will be contained in

))-^ for qe& and a 6 [1,2].

Thus % , a) ^ d(p, a + Je) + £e

and so d(q) ̂  5(p) + e, showing that 0 is upper semi-continuous. The
proof that it is lower semi-continuous is similar. To obtain a differenti-
able function one can average 6 over a neighbourhood of each point
with a suitable smoothing function. By taking the neighbourhood
small enough one can obtain a function/which has everywhere a time-
like gradient in the metric g. Details of this smoothing procedure are
given in Seifert (1968). •

The spacelike surfaces {/ = constant} may be thought of as surfaces
of simultaneity in space-time, though of course they are not unique.
If they are all compact they are all diffeomorphic to each other, but
this is not necessarily true if some of them are non-compact.

6.5 Cauchy developments

In Newtonian theory there is instantaneous action-at-a-distance and
so in order to predict events at future points in space-time one has to
know the state of the entire universe at the present time and also to
assume some boundary conditions at infinity, such as that the
potential goes to zero. In relativity theory, on the other hand, it
follows from postulate (a) of §3.2 that events at different points of
space-time can be causally related only if they can be joined by a
non-spacelike curve. Thus a knowledge of the appropriate data on
a closed set Sf (if one knew data on an open set, that on its closure
would follow by continuity) would determine events in a region D+(S?)
to the future of Sf called the future Cauchy development or domain of
dependence of ^ , and defined as the set of all points peJt such that
every past-inextendible non-spacelike curve through p intersects Sf
(N.B. D+(S?) => &).

Penrose (1966, 1968) defines the Cauchy development of $P slightly
differently, as the set of all points peJi such that every past-
inextendible timelike curve through p intersects «$̂ . We shall denote
this set by B+(S?). One has the following result:
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Proposition 6.5.1

Clearly D+(Sf) => D+(Sf). \iqeJ(- T>+(SP) there is a neighbourhood W
of q which does not intersect £P. From q there is a past-inextendible
curve A which does not intersect SP. If re A n /""(?, ̂ 0 then /+(/*, ^ ) is
an open neighbourhood of q in Jt — B+(£f). Thus «^ — D+(£P) is open
and the set B+(Sf) is closed. Suppose there were a point 2>ei)+(^)
which had a neighbourhood ^ which did not intersect D+(SP). Choose
a point xel~(p, ir). From x there would be a past-inextendible non-
spacelike curve y which did not intersect SP. Let yn be a sequence of
points on y which did not converge to any point and which were such
that yn+1 was to the past of yn. Let i^n be convex normal neighbour-
hoods of the corresponding points yn such that ^ + 1 did not intersect
# n . Let zn be a sequence of points such that

2n+ie/+(yn +i^n+i) n l~(zn,J(-SP).

There would be an inextendible timelike curve from p which passed
through each point zn and which did not intersect S?. This would con-
tradict p e D+(S?). Thus D+(^) is contained in the closure of D+(£f),
and so D+(Sf) = D+{^). D

The future boundary of D+(^), that is Z)+(^) -/-(2)+(^)), marks the
limit of the region that can be predicted from knowledge of data on<$*\
We call this closed achronal set the future Cauchy horizon of S? and
denote it by H+(^). As figure 43 shows, it will intersect Sf \i£f is null
or if SP has an 'edge'. To make this precise we define edge(S?) for an
achronal set Sf as the set of all points qeSP such that in every neigh-
bourhood °U of q there are points pel~{q,°ll) and rel+(q,°ll) which
can be joined by a timelike curve in ^ which does not intersect SP. By
an argument similar to that in proposition 6.3.1 it follows that if
edge (£?) is empty for a non-empty achronal set Sf, then SP is a three-
dimensional imbedded Cx~ submanifold.

Proposition 6.5.2
For a closed achronal set SP,

Let °lln be a sequence of neighbourhoods of a point geedge (H+(S?))
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such that any neighbourhood of q encloses all the °lln for n sufficiently
large. In each °Un there will be points ^nG/~(g,^n) and r n e / + (g ,^ n )
which can be joined by a timelike curve An which does not intersect
H+(Sf). This means that An cannot intersect D+(Sf). By proposition
6.5.1, qeB+(<Sf) and so I~(q) <= I-(D+(ST)) c !-(&>) u D+(^). Thus 2>n

must lie in I~~(Sf). Also every timelike curve from # which is inextend-
ible in the past direction must intersect Sf. Therefore for each n, there

Remove

Edge (Sf) and
edge H+(ST)

Edge (y) and
edge (H+(y))

FIGURE 43. The future Cauchy development D+(£f) and future Cauchy horizon
of a closed set S? which is partly null and partly spacelike. Note that
is not necessarily connected. Null lines are'at ± 45° and a strip has been

removed.

must be a point of £? on every timelike curve in °ttn between q and pn

and so q must lie in S?. As the curves An do not intersect S?9 q lies in
edge (S?). The proof the other way round is similar. •

Proposition 6.5.3
Let y be a closed achronal set. Then H+(Sf) is generated by null
geodesic segments which either have no past endpoints or have past
endpoints at edge(^).

The set & = D+(ST) U I-(S?) is a past set. Thus by proposition 6.3.1
J^ is an achronal C1" manifold. H+(£f) is a closed subset of S?. Let q be
a point of H+(£f)-edge(S?). If q is not in &> then qeI+(S?) since
qeB+{£f). As SP is achronal one can find a convex normal neighbour-
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hood if of q which does not intersect I~{SP). Alternatively if q is in SPy

let *W be a convex normal neighbourhood of q such that no point of
/+(#, iT) can be joined to any point in I~(q, W) by a timelike curve
in iT which does not intersect SP.
In either case, if p is any point in
I+(q) there must be a past-directed time-
like curve from p to some point of
Jl—IF — W since otherwise p would be
in D+(S?). Therefore by condition (i) of
lemma 6.3.2, applied to the future set

K- •
Corollary

If edge (SP) vanishes, then H+(S?), if non-
empty, is an achronal three-dimensional
imbedded O1" manifold which is gener-
ated by null geodesic segments which
have no past endpoint.

We shall call an acausal set S? with no
edge, a partial Cauchy surface. That is, a
partial Cauchy surface is a spacelike
hypersurface which no non-spacelike
curve intersects more than once. Suppose
there were a connected spacelike hyper-
surface SP (with no edge) which some non-
spacelike curve A intersected at points px

and p2. Then one could join px and p2 by
a curve ju, in S? and ju, u A would be a closed ~
curve which crossed SP once only. This FlGURE 44- &is a connected
curve couldnot be continuously deformed S J ^ S ^ f f l T i r ! ^ ^ ^
to zero since such a deformation could Cauchy surface; however each
change the number of times it crossed SP image n-^SP) ofSfin the uni-
by an even number only. Thus JK could v e r s a l covering manifold^of
not be simply connected. This means we ^ a P^ial Cauchy surface
could ' unwrap' *J( by going to the simply
connected universal covering manifold Jl in which each connected
component of the image of SP is a spacelike hypersurface (with no
edge) and is therefore a partial Cauchy surface in Ji (figure 44). How-
ever going to the universal covering manifold may unwrap Jt more
than is required to obtain a partial Cauchy surface and may result in
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the partial Cauchy surface being non-compact even though SP was
compact. For the purposes of the following chapters we would like
a covering manifold which unwrapped *Jl sufficiently so that each con-
nected component of the image of SP was a partial Cauchy surface but
so that each such component remained homeomorphic to SP. Such a
covering manifold may be obtained in at least two different ways.

Recall that the universal covering manifold may be defined as the
set of all pairs of the form (p, [A]) where peJK and where [A] is an
equivalence class of curves in J( from some fixed point qeJK to p,
which are homotopic modulo q and p. The covering manifold J(H is
defined as the set of all pairs (p, [A]) where now [A] is an equivalence
class of curves from SP to p homotopic modulo SP and p (i.e. the end-
points on SP can be slid around). J(K may be characterized as the
largest covering manifold such that each connected component of the
image of SP is homeomorphic to SP. The covering manifold JiG

(Geroch (19676)) is defined as the set of all pairs (p, [A]) where this
time [A] is an equivalence class of curves from a fixed point q to p
which cross SP the same number of times, crossings in the future direc-
tion being counted positive and those in the past direction, negative.
*J(Q may be characterized as the smallest covering manifold in which
each connected component of the image of SP divides the manifold into
two parts. In each case the topological and differential structure of the
covering manifold is fixed by requiring that the projection which maps
(p, [A]) to p is locally a diffeomorphism.

Define B[SP) = D+(SP) U D~(SP). A partial Cauchy surface SP is said
to be a global Cauchy surface (or simply, a Cauchy surface) if D(SP)
equals J(. That is, a Cauchy surface is a spacelike hypersurface which
every non-spacelike curve intersects exactly once. The surfaces
{#4 = constant} are examples of Cauchy surfaces in Minkowski space,
but the hyperboloids

- (a;3)2- (a;2)2- (a;1)2 = constant}

are only partial Cauchy surfaces since the past or future null cones of
the origin are Cauchy horizons for these surfaces (see §5.1 and
figure 13). Being a Cauchy surface is a property not only of the surface
itself but also of the whole space-time in which it is imbedded. For
example, if one cuts a single point out of Minkowski space, the
resultant space-time admits no Cauchy surface at all.

If there were a Cauchy surface for Jt, one could predict the state of
the universe at any time in the past or future if one knew the relevant
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data on the surface. However one could not know the data unless one
was to the future of every point in the surface, which would be impos-
sible in most cases. There does not seem to be any physically com-
pelling reason for believing that the universe admits a Cauchy surface;
in fact there are a number of known exact solutions of the Einstein
field equations which do not, among them the anti-de Sitter space,
plane waves, Taub-NUT space and Reissner-Nordstrom solution, all
described in chapter 5. The Reissner-Nordstrom solution (figure 25)
is a specially interesting case: the surface Sf shown is adequate for
predicting events in the exterior regions I where r > r+ and in the
neighbouring region II where r_ < r < r+, but then there is a Cauchy
horizon at r = r__. Points in the neighbouring region III are not in
D+(Sf) since there are non-spacelike curves which are inextendible in
the past direction and which do not cross r = r_ but approach the
points i+ (which may be considered to be at infinity) or the singularity
at r = 0 (which cannot be considered to be in the space-time; see §8.1).
There could be extra information coming in from infinity or from the
singularity which would upset any predictions made simply on the
basis of data on £P. Thus in General Relativity one's ability to predict
the future is limited both by the difficulty of knowing data on the
whole of a spacelike surface and by the possibility that even if one did
it would still be insufficient. Nevertheless despite these limitations
one can still predict the occurrence of singularities under certain
conditions.

6.6 Global hyperbolicity

Closely related to Cauchy developments is the property of global
hyperbolicity (Leray (1952)). A set *#*is said to be globally hyperbolic
if the strong causality assumption holds on JT and if for any two points
p, qeJV*, J+(p) fl J~(q) is compact and contained in Jf. In a sense this
can be thought of as saying that J+(p) f! J~(q) does not contain any
points on the edge of space-time, i.e. at infinity or at a singularity.
The reason for the name 'global hyperbolicity' is that on JV, the wave
equation for a ^-function source at p EJV has a unique solution which
vanishes outside Jf— J+(p,^V) (see chapter 7).

Recall that Jf is said to be causally simple if for every compact set
X contained in ^T, J+(Jf) n ^T and J-(JfT) 0 Jf are closed i
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Proposition 6.6.1
An open globally hyperbolic set oV is causally simple.

Let p be any point of Jf. Suppose there were a point

As Jf is open, there would be a point re(I+(q)(]^V%). But then
q G J+(p) n J~(r), which is impossible as J+(p) f! J~{r) would be compact
and therefore closed. Thus J+(p) ft ̂  and J~(p) D Jf are closecLtfT^.

Now suppose there exists a point qe (J+(Jf) - J+pT)) n Jf. Let qn

be an infinite sequence of points in I+(q) 0 *W converging to q, with
Qn+iGI~((In)' For e a c ^ n> J~(<ln) H & would be a compact non-empty
set. Therefore f| {̂ ~(<Zn) H ^ } would be a non-empty set. Let p be a

point of this set. Then J+(p) would contain qn for all n. But J+(p) is
closed. Therefore J+(p) contains q. •

^ and J^ are compact sets in i/T, «/+pQ fl J"(Jfi) is compact.

One can find a finite number of points pi EJV such that

Similarly, there will be a finite number of points q^ with J^ contained in

i

Then J+(J^) n J~(^2)
 w i l 1 b e contained in

{

and will be closed. •

Leray (1952) did not, in fact, give the above definition of global
hyperbolicity but an equivalent one which we shall present: for points
p,qeJ( such that strong causality holds on J+(p) 0 J~(q), we define
C(p, q) to be the space of all (continuous) non-space-like curves from
p to q, regarding two curves y(t) and A(w) as representing the same
point of C(p, q) if one is a reparametrization of the other, i.e. if there is
a continuous monotonic function f(u) such that y(f(u)) = A(u).
(C(p, q) can be defined even when the strong causality condition does
not hold on J+(p) 0 J~(q), but we shall only be interested in the case in
which its does hold.) The topology of C(p, q) is defined by saying that
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a neighbourhood of y in C(p, q) consists of all the curves in C(p, q)
whose points in JK lie in a neighbourhood if of the points of y in Jl
(figure 45). Leray's definition is that an open set Jf is globally hyper-
bolic if C(p,q) is compact for all p,qe^. These definitions are equi-
valent, as is shown by the following result.

FIGURE 45. A neighbourhood iV of the points of y in Jt. A neighbourhood of y
in C(p, q) consists of all non-spacelike curves from ptoq whose points lie in W'.

Proposition 6.6.2 (Seifert (1967), Geroch (19706)).
Let strong causality hold on an open set JT such that

Then JV is globally hyperbolic if and only if C(p, q) is compact for all
p, qeJf.

Suppose first that C(p, q) is compact. Let rn be an infinite sequence of
points in J+(p) 0 J~(q) and let An be a sequence of non-spacelike curves
from ptoq through the corresponding rn. As C(p, q) is compact, there
will be a curve A to which some subsequence A'n converges in the
topology on C(p, q). Let °tt be a neighbourhood of A i n ^ such that % is
compact. Then °ll will contain all A'w and hence all r'n for n sufficiently
large, and so there will be a point re°ll which is a limit point of the r'n.
Clearly r lies on A. Thus every infinite sequence in J+(p) n J~(q) has a
limit point in J+(p) 0 J~{q)> Hence J+(p) f! J~(q) is compact.

Conversely, suppose J+{p) 0 J~(q) is compact. Let An be an infinite
sequence of non-spacelike curves from p tog. By lemma 6.2.1 applied
to the open set ^ — q, there will be a future-directed non-spacelike
curve A from p which is inextendible in ̂  — q, and is such that there is
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a subsequence A'n which converges to r for every r e A. The curve A
must have a future endpoint at q since by proposition 6.4.7 it cannot be
totally future imprisoned in the compact set J+(p)f) J~(q), and it
cannot leave the set except at q.

Let <% be any neighbourhood of A in ^ and let ri (1 < i ^ k) be a
finite set of points on A such that rx = p, rk = q and each ri has a
neighbourhood ^ with J+CJQ n ^"(^+i) contained in ^ . Then for
sufficiently large n, A'n will be contained in °U. Thus A'n converge to A
in the topology on C(p, q) and so C(p, q) is compact. •

The relation between global hyperbolicity and Cauchy developments
is given by the following results.

Proposition 6.6.3
If Sf is a closed achronal set, then int (D(&)) = D{^)-D{^), if non-
empty, is globally hyperbolic.

We first establish a number of lemmas.

Lemma 6.6.4
If peD+(<Sf)-H+(Sf), then every past-inextendible non-spacelike
curve through p intersects I~(S^).

Let p be in D+(Sf) — H+(£f) and let y be a past-inextendible non-
spacelike curve through£). Then one can find a point q e D+(Sf) n /+(#)
and a past-inextendible non-spacelike curve A through q such that for
each point x e A there is a point y e y with i/ e /"(#). As A will intersect
<5̂  at some point xx there will be a ^ e y n I~(S^). •

CoroKari/
If p eint (D(5f)) then every inextendible non-spacelike curve through
p intersects / - ( ^ ) and /+(^) .

If peI+{&) or / - ( ^ ) the
result follows immediately. If p e D+i^) - I+(S?) then peS? a D~{^)
and the result again follows. •

Lemma 6.6.5
The strong causality condition holds on int D(Sf).

Suppose there were a closed non-spacelike curve A through
peint(D(Sf)). By the previous result there would be points
qeXf] I~(Sf) and r e An / + ( ^ ) . As reJ~(q), it would also be in
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which would contradict the fact that Sf is achronal. Thus the causality
condition holds on int (D(Sf)). Now suppose that the strong causality-
condition did not hold at p. Then as in lemma 6.4.6 there would be an
infinite sequence of future-directed non-spacelike curves An which
converged to an inextendible null geodesic y through p. There would
be points qeyO I~(Sf) and reyft I+(^) and so there would be some
An which intersected / + ( ^ ) and then I~(£f), which would contradict
the fact that £P was achronal. D

Proof of proposition 6.6.3. We wish to show that C(p,q) is compact
for p,qeint (D(£f)). Consider first the case that p,qeI~(Sf) and sup-
pose peJ~(q). Let An be an infinite sequence of non-spacelike curves
from q to p. By lemma 6.2.1 there will be a future-directed non-
spacelike limit curve from p which is inextendible in Jl — q. This must
have a future endpoint at q since otherwise it would intersect £f which
would be impossible as qe!~(Sf). Consider now the case that
p e J~{Sf), q e J+{Sf) fl J+(p). If the limit curve A has an endpoint at q,
it is the desired limit point in C(p, q). If it does not have an endpoint
at q, it would contain a point yeI+(S?) since it is inextendible in
*Jt — q. Let A'n be a subsequence which converges to r for every point r
on A between p and y. Let A be a past-directed limit curve from q of
the A'n. If A has a past endpoint at_p, it would be the desired limit point
in C(p, q). If A passed through y} it could be joined up with A to provide
a non-spacelike curve from p to q which would be the desired limit
point in C(p, q). Suppose A does not have endpoint at p and does not
pass through y. Then it would contain some point zEl~(Sf). Let X"n be
a subsequence of the A'n which converges to r for every point r on A
between q and z. Let if be an open neighbourhood of A which does not
contain y. Then for sufficiently large n, all A"n n J+(^) would be con-
tained in if. This would be impossible as y is a limit point of the A"w.
Thus there will be a non-spacelike curve from p to q which is a limit
point of the Xn in C(p, q).

The cases p9qeI-(S?) and peJ-{S?)9 qeJ+(S?) together with their
duals cover all possible combinations. Thus in all cases we get a non-
spacelike curve from p to q which is a limit point of the An in the
topology on C(p, q). •

By a similar procedure one can prove:

Proposition 6.6.6
If q eint {D(S?))9 then J+{S?) n J~(q) is compact or empty. •
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To show that the whole oiD{6P) and not merely its interior is globally
hyperbolic, one has to impose some extra conditions.

Proposition 6.6.7
If SP is a closed achronal set such that J+(Sf) 0 J~{SP) is both strongly
causal and either

(1) acausal (this is the case if and only if SP is acausal), or
(2) compact,

then B{SP) is globally hyperbolic.

Suppose that strong causality did not hold at some point qeD{SP).
Then by an argument similar to lemma 6.6.5, there would be an
inextendible null geodesic through q at each point of which strong
causality did not hold. This is impossible, since it would intersect SP.
Therefore strong causality holds on D{SP).

Ifp,qeI~(Sf), the argument of proposition 6.6.3 holds. Ifp e J~{SP),
qeJ+{SP) one can as in proposition 6.6.3 construct a future-directed
limit curve A from p and a past-directed limit curved from q, and
choose a subsequence X"n which converges to r for every point r on
A or X. In case (1), A would intersect SP in a single point x. Any neigh-
bourhood of x would contain points of A"n for n sufficiently large, and
so would contain x"ni defined as A"n 0 &*, since SP is achronal. Therefore
x"n would converge to x. Similarly x"n would converge to x = X 0 SP.
Thus $ = x and so one could join A and X to give a non-spacelike limit
curve in C(p,q).

In case (2), suppose that A did not have a future endpoint at q.
Then A would leave J~{SP) since it would intersect SP and by proposi-
tion 6.4.7 it would have to leave the compact set J+{SP) H J~{SP). Thus
one could find a point a; on A which was not in J~{SP). For each ny

choose a point x"ne£f {\ A"n. Since SP is compact, there will be some
point y eSP and a subsequence X"n such that the corresponding points
x'"n converge to y. Suppose that y does not lie on A. Then for suffi-
ciently large n each x'"n would lie to the future of any neighbourhood
°ti oix. This would imply xeJ~{SP). This is impossible as x is in J+{Sf)
but is not in the compact set J+(SP) n J~{SP). Therefore A would pass
through y. Similarly X would pass through y. One could then join them
to obtain a limit curve. •

Proposition 6.6.3 shows that the existence of a Cauchy surface for an
open set N implies global hyperbolicity of Jf. The following result
shows that the converse is also true:
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Proposition 6.6.8 (Geroch (19706))

If an open set^T is globally hyperbolic, then ,Ar, regarded as a mani-
fold, is homeomorphic to R1x£f where £? is a three-dimensional
manifold, and for each a e R1, {a} x Sf is a Cauchy surface for Jf.

As in proposition 6.4.9, put a measure fi on JV* such that the total
volume of Jf in this measure is one. For p GJ^ define f+(p) to be the
volume of J+(p,*Ar) in the measure fi. Clearly f+(p) is a bounded
function on JT which decreases along every future-directed non-
spacelike curve. We shall show that global hyperbolicity implies that
f+(p) is continuous on JT SO that we do not need to 'average' the
volume of the future as in proposition 6.4.9. To do this it will be suffi-
cient to show that/+(p) is continuous on any non-spacelike curve A.

Let r e A and let xn be an infinite sequence of points on A strictly to
the past of r. Let !F be f| J+{%n^)' Suppose that/+(p) was not upper

semi-continuous on A at r. There would be a point qe^r —
Then r$J~(q,*V); but each xneJ~(q,j\r) and so reJ~(q,Jr), which
is impossible as J~(q, Jf) is closed in JV by proposition 6.6.1. The
proof that it is lower semi-continuous is similar

As p is moved to the future along an inextendible non-spacelike
curve A in N the value of f+(p) must tend to zero. For suppose there
were some point q which lay to the future of every point of A. Then the
future-directed curve A would enter and remain within the compact
set J+(r) n J~(q) for any r e A which would be impossible by proposition
6.4.7 as the strong causality condition holds on Jf.

Now consider the function/(p) defined on JV byf(p) = f~(p)/f+(p)>
Any surface of constant / will be an acausal set and, by proposition
6.3.1, will be a three-dimensional C1" manifold imbedded in JV. It will
also be a Cauchy surface for JV since along any non-spacelike curve,
/ - will tend to zero in the past and / + will tend to zero in the future.
One can put a timelike vector field V o n , / and define a continuous
map /? which takes points of JV along the integral curves of V to where
they intersect the surface SP (f = 1). Then (logf(p),fi(p)) is a homeo-
morphism of *W onto RxSP. If one smoothed/as in proposition 6.4.9,
one could improve this to a diffeomorphism. •

Thus if the whole of space-time were globally hyperbolic, i.e. if there
were a global Cauchy surface, its topology would be very dull.
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6.7 The existence of geodesies
The importance of global hyperbolicity for chapter 8 lies in the
following result:

Proposition 6.7.1
Let p and q lie in a globally hyperbolic set J^ with q e J+(p). Then there
is a non-spacelike geodesic from p to q whose length is greater than or
equal to that of any other non-spacelike curve from p to q.

Almost broken almost null
curve from p to q in <%

FIGURE 46. °ll is an open neighbourhood of the timelike curve A from p to q.
There exist in ^ timelike curves from p to q which approximate broken null
curves and are of arbitrarily small length.

We shall present two proofs of this result: the first, due to Avez (1963)
and Seifert (1967), is an argument from the compactness of C(p, q), and
the second (applicable only when Jf is open) is a procedure whereby
the actual geodesic is constructed.

The space C(p, q) contains a dense subset C'(p, q) consisting of all
the timelike C1 curves from p to q. The length of one of these curves A is
defined (cf. §4.5) as

= (Q(-
JP

where t is a C1 parameter on A. The function L is not continuous on
C'(p,q) since any neighbourhood of A contains a zig-zag piecewise
almost null curve of arbitrarily small length (figure 46). This lack of
continuity arises because we have used the C° topology which says that
two curves are close if their points in Jl, but not necessarily their
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tangent vectors, are close. We could put a C1 topology on C'(p, q) and
so make L continuous but we do not do this because C'(p, q) is not
compact; one gets a compact space only when one includes all the
continuous non-spacelike curves. Instead, we use the C° topology and
extend the definition of L to C(p, q).

Because of the signature of the metric, putting wiggles in a timelike
curve reduces its length. Thus L is not lower semi-continuous. However
one has:

Lemma 6.7.2
L is upper semi-continuous in the C° topology on C'(p> q).

Consider a C1 timelike curve X(t) from p to q, where the parameter t is
chosen to be the arc-length from p. In a sufficiently small neighbour-
hood °tt of A, one can find a function / which is equal to t on A and is
such that the surfaces {/ = constant} are spacelike and orthogonal to
d/dt (i.e. gabf.h\x = (#/^)a)- One way to define such an/would be to
construct the spacelike geodesies orthogonal to A. For a sufficiently
small neighbourhood °U of A, they will give a unique mapping of °U to A,
and the value of/ at a point in °ll can be defined as the value of t at the
point on A into which it is mapped. Any curve fi in °ll can be para-
metrized by / . The tangent vector (d/df)^ to ju, can be expressed as

where k is a spacelike vector lying in the surface {/ = constant}, i.e.
kaf;a = 0. Then

However on A, gabf;af;b
 = ~ *• Thus given any e > 0, one can choose

W c fy sufficiently small that on * ' , gabf;af;b > - 1 + e. Therefore for
any curve/i in V , £[>] < (l + e ) * ^ ] ! •

We now define the length of a continuous non-spacelike curve A from
p to q as follows: let °tt be a neighbourhood of A in ^ and let l(°tt) be
the least upper bound of the lengths of timelike curves in °tt from p
to q. Then we define L[A] as the greatest lower bound of l(%) for all
neighbourhoods °ti of A in Jt'. This definition of length will work for all
curves A from ptoq which have a C1 timelike curve in every neighbour-
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hood, i.e. it will work for all points in C(p, q) which lie in the closure of
C'(p,q). By §4.5, a non-spacelike curve from p to q which is not an
unbroken null geodesic curve can be varied to give a piecewise C1

timelike curve from p to q, and the corners of this curve can be
rounded off to give a C1 timelike curve from p to q. Thus points in

P> $) — C(P> $) a r e unbroken null geodesies (containing no conjugate
points), and we define their length to be zero.

This definition of L makes it an upper semi-continuous function on
the compact space C'(p,q). (Actually, as a continuous non-spacelike
curve satisfies a local Lipschitz condition, it is differentiate almost
everywhere. Thus the length could still be defined as

j(-g(dldt,dldt))*dt9

and this would agree with the definition above.) If C'(p,q) is empty
but C(p,q) is non-empty, p and q are joined by an unbroken null
geodesic and there are no non-spacelike curves from p to q which are
not unbroken null geodesies. If C'(p, q) is non-empty, it will contain
some point at which L attains its maximum value, i.e. there will be
a non-spacelike curve y from p to q whose length is greater than or
equal to that of any other such curve. By proposition 4.5.3, y must be
a geodesic curve as otherwise one could find points x,yey which lay
in a convex normal coordinate neighbourhood and which could be
joined by a geodesic segment of greater length than the portion of 7
between x and y. D

For the other, constructive, proof, we first define d(p,q) for p,qeJ(
to be zero if q<£J+(p) and otherwise to be the least upper bound of the
lengths of future-directed piecewise non-spacelike curves from p to q.
(Note that d(p,q) may be infinite.) For sets £P and °ll, we define
d(£f, °ll) to be the least upper bound of d(p,q), peSf, q etft.

Suppose qel+(p) and that d(p,q) is finite. Then for any S > 0 one
can find a timelike curve A of length d(p, q) — \8 from p to q and a
neighbourhood °ti of q such that A can be deformed to give a timelike
curve of length d(p, q) — S from p to any point rety. Thus d(p, q), where
finite, is lower semi-continuous. In general d(p, q) is not upper semi-
continuous but:

Lemma 6.7.3
d(p, q) is finite and continuous in p and q when p and q are contained
in a globally hyperbolic set JV* .
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We shall first prove d(p, q) is finite. Since strong causality holds on the
compact set J+(p) 0 J~(q), one can cover it with a finite number of
local causality sets such that each set contains no non-spacelike curve
longer than some bound e. Since any non-spacelike curve from p to q
can enter each neighbourhood at most once, it must have finite length.

Now suppose that for p^qe^, there is a 8 > 0 such that every
neighbourhood of q contains a point TEJV such that

d(p,r) >d(p,q) + 8.

Let xn be an infinite sequence of points in JV converging to q such that
d(p, xn) > d(p, q) + 8. Then from each xn one can find a non-spacelike
curve An to p of length > d(p,q) + 8. By lemma 6.2.1 there will be
a past-directed non-spacelike curve A through q which is a limit curve
of the An. Let °U be a local causality neighbourhood of q. Then A cannot
intersect I~(q) 0 °U since if it did one of the An could be deformed to
give a non-spacelike curve from p to q of length > d(p, q). Thus A n °H
must be a null geodesic from q and at each point x of A n °U, d(p, x) will
have a discontinuity greater than 8. This argument can be repeated
to show that A is a null geodesic and at each point xeA, d(p,x) has
a discontinuity greater than 8. This shows that A cannot have an end-
point at p, since by proposition 4.5.3, d(p,x) is continuous on a local
causality neighbourhood of p. On the other hand, A would be inextend-
ible in Jt—p and so if it did not have an endpoint at p, it would have
to leave the compact set J+(p) 0 J~(q) by proposition 6.4.7. This shows
that d(p, q) is upper semi-continuous on JV. •

In the case that oW is open, one can easily construct the geodesic of
maximum length from p to q by using the distance function. Let
qi cz Jf be a local causality neighbourhood of p which does not contain
q and let xeJ+(p) f] J~(q) be such that d(p, r) + d(r, q), re$,m maxi-
mized for r = x. Construct the future-directed geodesic y from p
through x. The relation d(p, r) + d(r, q) = d(p, q) will hold for all points
r on y between p and x. Suppose there were a point y e J~(q) — q which
was the last point on y at which this relation held. Let i^ c: ̂  be
a local causality neighbourhood of y which does not contain q and
let zeJ+(y) n J~(q) D i^ be such that d(y, r) + d(r, q), rei?\ attains its
maximum value d{y, q) for r = z. If z did not lie on y, then

d(p, z) > d(p, y) + d(y, z) and d(p, z) + d(z, q) > d(p, q)

which is impossible. This shows that the relation

d(p,r) + d{r9q) = d(p,q)
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must hold for all reyft J~(q)- As J+(p)(] J~(q) is compact, y must
leave J~(q) at some point y. Suppose y + q; then y would lie on a
past-directed null geodesic A from q. Joining y to A would give a non-
spacelike curve from p to q which could be varied to give a curve
longer than d(p,q), which is impossible. Thus y is a geodesic curve
from p to q of length d(p, q). •

Corollary

If SP is a C2 partial Cauchy surface, then to each point qeD+(Sf)
there is a future-directed timelike geodesic curve orthogonal to SP of
length d(y,q), which does not contain any point conjugate to SP
between SP and q.

By proposition 6.5.2, H+(SP) and H~(6P) do not intersect SP and so are
not in D[SP). Thus D(SP) = int Z)(^) is globally hyperbolic by proposi-
tion 6.6.3. By proposition 6.6.6, SP [\ J~(q) is compact and so d(p,q),
peSP, will attain its maximum value oid(SP,q) at some point reSP.
There will be a geodesic curve y from r to q of length d(SP, q) which by
lemma 4.5.5 and proposition 4.5.9 must be orthogonal to SP and not
contain a point conjugate to SP between SP and q. •

6.8 The causal boundary of space-time

In this section we shall give a brief outline of the method of Geroch,
Kronheimer and Penrose (1972) for attaching a boundary to space-
time. The construction depends only on the causal structure of (<JK, g).
This means that it does not distinguish between boundary points at a
finite distance (singular points) and boundary points at infinity. In
§ 8.3 we shall describe a different construction which attaches a bound-
ary which represents only singular points. Unfortunately there does
not seem to be any obvious relation between the two constructions.

We shall assume that (JK, g) satisfies the strong causality condition.
Then any pointy in (JK, g) is uniquely determined by its chronological
past I~(p) or its future /+(p), i.e.

I-(p) = I-(q)oI+(p) = I+(q)op = q.

The chronological past iT = I~(p) of any point peJK has the
properties:

(1) if is open;
(2) Hr is a past set, i.e. / - ( T T ) C TT;
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(3) iV cannot be expressed as the union of two proper subsets
which have properties (1) and (2).

We shall call a set with properties (1), (2) and (3) an indecomposable
past set, abbreviated as IP. (The definition given by Geroch, Kron-
heimer and Penrose does not include property (1). However it is
equivalent to the definition given here, since by ' a past set' they mean
a set which equals its chronological past, rather than merely con-
taining it.) One can define an IF, or indecomposable future set, similarly.

One can divide IPs into two classes: proper IPs (PIPs) which are
the pasts of points in dt, and terminal IPs (TIPs) which are not the
past of any point in <Jt\ The idea is to regard these TIPs and the
similarly defined TIFs as representing points of the causal boundary
(c-bounda^y) of (JK, g). For instance, in Minkowski space one would
regard the shaded region in figure 47 (i) as representing the point p
on J+. Note that in this example, the whole of JK is itself a TIP and
also a TIF. These can be thought of as representing the points i+ and i~
respectively. In fact all the points of the conformal boundary of
Minkowski space, except i°, can be represented as TIPs or TIFs. In
some cases, such as anti-de Sitter space, where the conformal boundary
is timelike, points of the boundary will be represented by both a TIP
and a TIF (see figure 47 (ii)).

One can also characterize TIPs as the pasts of future-inextendible
timelike curves. This means that one can regard the past I~(y) of
a future-inextendible curve y as representing the future endpoint of y
on the c-boundary. Another curve y' has the same endpoint if and
only ifJ-(y) = / " ( / ) .

Proposition 6.8.1 (Geroch, Kronheimer and Penrose)
A set #^ is a TIP if and only if there is a future-inextendible timelike
curve y such that I~(y) = if.

Suppose first that there is a curve y such that I~(y) = W\ Let
iff* = <% u y where °U and i^ are open past sets. One wants to show
that either °ll is contained in V, or "V contained in °ll. Suppose that,
on the contrary, °tt is not contained in "T and y not contained in %.
Then one could find a point q in °li — Y* and a point r in Y — °U. Now
q,rel~(y), so there would be points q',rr ey such that qel~(q') and
rel~(r'). But whichever of °U or *¥* contained the futuremost of qr, r'
would also contain both q and r, which contradicts the original defini-
tions of q and r.
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r = 0

TIP representing point p

TIF representing
point p

TIP representing
point p

FIGURE 47. Penrose diagrams of Minkowski space and anti-de Sitter space (cf.
figures 15 and 20), showing (i) the TIP representing a point p on *f+ in Minkowski
space, and (ii) the TIP and the TIF representing a point p on J in anti-de Sitter
space.

Conversely, suppose iff is a TIP. Then one must construct a time-
like curve y such that iff = /~(y). Now if p is any point of iff, then
iff = I-(iT() I+(p)) U /-(#"-J+(p)). However iff is indecomposable,
so either iff = / - ( T T n /+(#)) or iff = / - ( # " - J+(p)). The point ^ is
not contained in / - (# " - /+(#)), so the second possibility is eliminated.
The conclusion may be restated in the following form: given any pair
of points otiT, then Of contains a point to the future of both of them.
Now choose a countable dense family pn of points ofiT. Choose a point
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q0 in W to the future of p0. Since q0 and px are in iT9 one can choose
a point qx in if to the future of both of them. Since qx and ̂ p2 are in if,
one can choose q2 in if to the future of both of them, and so on. Since
each point qn obtained in this way lies in the past of its successor, one
can find a timelike curve y in if through all the points of the sequence.
Now for each point peif, the set ifn I+(p) is open and non-empty,
and so it must contain at least one of the pn, since these are dense.
But for each k, pk lies in the past of qk, whence p itself lies in the past
of y. This shows that every point of if lies to the past of y, and so
since y is contained in the open past set if, one must have
if = I-(y). D

We shall denote by J( the set of all IPs of the space {Jl, g). Then Jt
represents the points of ̂  plus a future c-boundary; similarly, u^, the
set of all IFs of (JK, g), represents Ji plus a past c-boundary. One can
extend the causal relations / , J and E to J( and Jt in the following
way. For each ^ f , f c j , w e shall say

if #ciT,

<% E I~{rf, Jt) if % c I~(q) for some point q e f,

if qieJ-(f,j%) but not

With these relations, the IP-space J( is a causal space (Kronheimer
and Penrose (1967)). There is a natural injective map 7~: Jt'-> Jl
which sends the point pe*JK into l~(p)eJi'. This map is an iso-
morphism of the causality relation J~ as peJ~(q) if and only if
I~(p)eJ~(I~(q), J(). The causality relation is preserved by I~ but not
by its inverse, i.e. pel~(q)=> I~(p)eI~(I~(q),^). One can define
causal relations on Jt similarly.

The idea now is to write Jl and Jl in some way to form a space «^*
which has the form *Jt U A where A will be called the c-boundary of
(^> 6)- To do so, one needs a method of identifying appropriate IPs
and IFs. One starts by forming the space «^# which is the union of
^# and Jt, with each PIF identified with the corresponding PIP. In
other words, J(# corresponds to the points of *J( together with the
TIPs and TIFs. However as the example of anti-de Sitter space shows,
one also wants to identify some TIPs with some TIFs. One way of
doing this is to define a topology on J(#, and then to identify some
points of Jl# to make this topology Hausdorff.

As was mentioned in § 6.4, a basis for the topology of the topological
space Jl is provided by sets of the form I+(p) ft I~(q)> Unfortunately
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one cannot use a similar method to define a basis for the topology of
*Jt# as there may be some points of «^# which are not in the chrono-
logical past of any points of *Jt#. However one can also obtain a
topology of Ji from a sub-basis consisting of sets of the form I+(p),
I~(p), JK — I+(p) and JK — I~{p). Following this analogy, Geroch,
Kromheimer and Penrose have shown how one can define a topology
on J?#. For an IF sieJt, one defines the sets

/# 0},

and ^ e x t = {T: ir eJ and iT = I-(iT) => I+(iT) 4= si).
For an I P J G ^ , the sets &f™ and «^ext are defined similarly. The
open sets of Jt# are then defined to be the unions and finite inter-
sections of sets of the form si™9 j / e x t , dg™ and ^ x t . The sets si™ and
^8int are the analogues in Jt# of the sets I+(p) and /~(g). If in particular
si = I+(p) and *T = I~(q) then ^ e si™ if and only if ge I+(p).
However the definitions enable one also to incorporate TIPS into
si™. The sets j / e x t and ^ x t are the analogues of uf-J+(p) and

Finally one obtains *^* by identifying the smallest number of points
in the space J(# necessary to make it a Hausdorff space. More precisely
Jl* is the quotient space JK#IRh where Bh is the intersection of all
equivalence relations R <= Jl# x Jl# for which Jl#\R is HausdoriF.
The space J(* has a topology induced from J(# which agrees with the
topology of Jt on the subset *J( oi*JK*. In general one cannot extend
the differentiate structure of Jl to A, though one can on part of A in
a special case which will be described in the next section.

6.9 Asymptotically simple spaces
In order to study bounded physical systems such as stars, one wants
to investigate spaces which are asymptotically flat, i.e. whose metrics
approach that of Minkowski space at large distances from the system.
The Schwarzschild, Reissner-Nordstrom and Kerr solutions are
examples of spaces which have asymptotically flat regions. As we saw
in chapter 5, the conformal structure of null infinity in these spaces is
similar to that of Minkowski space. This led Penrose (1964, 19656,
1968) to adopt this as a definition of a kind of asymptotic flatness. We
shall only consider strongly causal spaces. Penrose does not make the
requirement of strong causality. However it simplifies matters and im-
plies no loss of generality in the kind of situation we wish to consider.
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A time- and space-orientable space {<Jt', g) is said to be asymptotically
simple if there exists a strongly causal space {d(\ g) and an imbedding
6: ,^f->«/# which imbeds Jl as a manifold with smooth boundary d*JC
uie#, such that:

(1) there is a smooth (say C3 at least) function Q on Jf such that on
d(JK), Q. is positive and £}2g = #*(§) (i.e. g is conformal to g on 6{Ji))\

(2) on 0uf, Q = 0 and d£i * 0;
(3) every null geodesic in Jt has two endpoints on dJ(.
We shall write Jl U dJK = JR.
In fact this definition is rather more general than one wants since

it includes cosmological models, such as de Sitter space. In order to
restrict it to spaces which are asymptotically flat spaces, we will say
that a space (JH, g) is asymptotically empty and simple if it satisfies
conditions (1), (2), and (3), and

(4) R^ = 0 on an open neighbourhood of dJi in Jt. (This condition
can be modified to allow the existence of electromagnetic radiation
near dJK).

The boundary dJl can be thought of as being at infinity, in the
sense that any affine parameter in the metric g on a null geodesic in Jl
attains unboundedly large values near dJt. This is because an affine
parameter v in the metric g is related to an affine parameter v in the
metric g by dv/d# = £i~2. Since fi = 0 at dJK9 jdv diverges.

From conditions (2) and (4) it follows that the boundary dJt is a
null hypersurface. This is because the Ricci tensor Rah of the metric
gab is related to the Ricci tensor i?a& of gab by

RJ> = Q-*i? o 6-2Q-i(0) l a e ^+{-Q-iQ w + 3Q-«Qle0ld}^o»

where | denotes covariant differentiation with respect to g^. Thus

Since the metric gab is C3, R is C1 at d*Jl where Q, = 0. This implies
that QlcQldg

cd = 0. However by condition (2), Q|c * 0. Thus Qlcg^ is
a null vector, and the surface dJi (Q, = 0) is a null hypersurface.

In the case of Minkowski space, dJt consists of the two null surfaces
,/+ and./", each of which has the topology R1 x S2. (Note that it does
not include the points i°, i+ and i~ since the conformal boundary is not
a smooth manifold at these points.) We shall show that in fact dJt has
this structure for any asymptotically simple and empty space.

Since dJt is a null surface, Jt lies locally to the past or future of it.
This shows that dJl must consist of two disconnected components:
«/+ on which null geodesies in Jt have their future endpoints, and J~
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on which they have their past endpoints. There cannot be more than
two components of dJt, since there would then be some point p eJt
for which some future-directed null geodesies would go to one com-
ponent and others to another component. The set of null directions
at p going to each component would be open, which is impossible,
since the set of future null directions &tp is connected.

We next establish an important property.

Lemma 6.9.1
An asymptotically simple and empty space (^, g) is causally simple.

Let #" be a compact set of Jt'. One wants to show that every null
geodesic generator of J+(W) has past endpoint at iT. Suppose there
were a generator that did not have endpoint there. Then it could not
have any endpoint in ~#, so it would intersect S~, which is im-
possible. •

Proposition 6.9.2
An asymptotically simple and empty space (JK, g) is globally
hvperbolic.

The proof is similar to that of proposition 6.6.7. One puts a volume
element on JK such that the total volume of JK in this measure is unity.
Since {JK, g) is causally simple, the functions f+(p), f~(p) which are
the volumes of I+(p), I~(p) are continuous on Jt'. Since strong causality
holds on JK, f+(p) will decrease along every future-directed non-
spacelike curve. Let A be a future-inextendible timelike curve. Sup-
pose that^" = p| I+(p) was non-empty. Then fF would be a future set

peA.

and the null generators of the boundary of IF in JK would have no past
endpoint in JK. Thus they would intersect </-, which again leads to
a contradiction. This shows that/+(#) goes to zero as p tends to the
future on A. From this it follows that every inextendible non-spacelike
curve intersects the surface 3C = {p'f+(p) = f~(p)}, which is therefore
a Cauchy surface for JK. •

Lemma 6.9.3
Let iV be a compact set of an asymptotically empty and simple space
{JK, g). Then every null geodesic generator of f+ intersects J+(iT, Jt)
once, where ' indicates the boundary in Jl.

Let p e A, where A is a null geodesic generator of */+. Then the past set
(in J() J~(p, Jt) D J( must be closed in ^ , since every null geodesic
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generator of its boundary must have future endpoint on «/+ at p.
Since strong causality holds on Ji, Ji — J~(p, Ji) will be non-empty.
Now suppose that A were contained in J+(W, Ji). Then the past set
H (J~(P> Jf) H JI) would be non-empty. This would be impossible,

since the null generators of the boundary of the set would intersect «/+.
Suppose on the other hand that A did not intersect J+(iT, Ji). Then
Jt — U (J~(P> Jt) n Ji) would be non-empty. This would again lead

to a contradiction, as the generators of the boundary of the past set
U (J~(p, Ji) fl Jt) would intersect J+. D

pe\

Corollary

J+ is topologically R1 x (J+{HT9 Jf) 0 dJK).

We shall now show that«/+ (and </~) and Ji are the same topologically
as they are for Minkowski space.

Proposition 6.9.4 (Geroch (1971))

In an asymptotically simple and empty space (Ji, g), •/+ and J~ are
topologically R1 x S2, and Ji is i?4.

Consider the set N of all null geodesies in Ji'. Since these all intersect
the Cauchy surface Jf7, one can define local coordinates on N by the
local coordinates and directions of their intersections with &\ This
makes N into a fibre bundle of directions over Jff with fibre 82. How-
ever every null geodesic also intersects •/+. Thus N is also a fibre
bundle over </+. In this case, the fibre is S2 minus one point which
corresponds to the null geodesic generator of./4" which does not enter
Jt'. In other words, the fibre is R2. Therefore N is topologically
Jf+xR2. However f+ is R1x(J+{iT,Ji)(\ dJt). This is consistent
With N « ^ X £2 o n l y i f tf ~ £3 a n d J+ K Rl x £2 Q

Penrose (19656) has shown that this result implies that the Weyl
tensor of the metric g vanishes on«/+ and«/~. This can be interpreted
as saying that the various components of the Weyl tensor of the
metric g 'peel off', that is, they go as different powers of the affine
parameter on a null geodesic near«/+ or J~. Further Penrose (1963),
Newman and Penrose (1968) have given conservation laws for the
energy-momentum as measured from e/+, in terms of integrals on«/+.

The null surfaces «/+ and J~ form nearly all the c-boundary A of
{Ji, g) defined in the previous section. To see this, note first that any
point peJ+ defines a TIP I-(p,Jf)f] Ji. Suppose A is a future-
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inextendible curve in *Jl'. If A has a future endpoint a t^ e</^, then the
TIP /~(A) is the same as the TIP defined by p. If A does not have a
future endpoint on */+, then Jt — /~(A) must be empty, since if it were
not, the null geodesic generators of /~(A) would intersect «/+ which is
impossible as A does not intersect */+. The TIPs therefore consist of
one for each point of«/+, and one extra TIP, denoted by i+, which is
Jt itself. Similarly, the TIFs consist of one for each point of */~, and
one, denoted by i~9 which again is Jt itself.

One now wants to verify that one does not have to identify any
TIPs or TIFs, i.e. that Jtft is Hausdorff. It is clear that no two TIPs
or TIFs corresponding to */+ or J~ are non-Hausdorff separated. If
peJ+ then one can find qeJt such that p^I+(qiJt). Then
(I+(q, M))** is a neighbourhood in uf # of the TIP I~(p, Jt) n Jt, and
(J+(g, Jt)f^ is a disjoint neighbourhood of the TIP i+. Thus t+ is
Hausdorff separated from every point of •/+. Similarly it is Hausdorff
separated from every point of *f~~. Thus the c-boundary of any
asymptotically simple and empty space {Jt', g) is the same as that of
Minkowski space-time, consisting of </+, J>~ and the two points i+, i~.

Asymptotically simple and empty spaces include Minkowski space
and the asymptotically flat spaces containing bounded objects such as
stars which do not undergo gravitational collapse. However they do
not include the Schwarzschild, Reissner-Nordstrom or Kerr solutions,
because in these spaces there are null geodesies which do not have
endpoints on </+ or J~. Nevertheless these spaces do have asympto-
tically flat regions which are similar to those of asymptotically empty
and simple spaces. This suggests that one should define a space {Jt, g)
to be weakly asymptotically simple and empty if there is an asymp-
totically simple and empty space {Jt', g') and a neighbourhood °tt' of
dJt' in Jt' such that °ll' n J(' is isometric to an open set °U oiJK. This
definition covers all the spaces mentioned above. In the Reissner-
Nordstrom and Kerr solutions there is an infinite sequence of asymp-
totically flat regions °U which are isometric to neighbourhoods °tt' of
asymptotically simple spaces. There is thus an infinite sequence of
null infinities J+ and J~. However we shall consider only one asymp-
totically flat region in these spaces. One can then regard (JK, g) as
being conformally imbedded in a space (Jl\ g) such that a neighbour-
hood °tt of dJi in Jt is isometric to °U'. The boundary dJ( consists of
a single pair of null surfaces «/+ and J~.

We shall discuss weakly asymptotically simple and empty spaces
in §9.2 and §9.3.
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