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Abstract
We show that an n-uniformmaximal intersecting family has size at most e−n0.5+o(1)nn. This improves a recent
bound by Frankl ((2019) Comb. Probab. Comput. 28(5) 733–739.). The Spread Lemma of Alweiss et al.
((2020) Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing.) plays an
important role in the proof.
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1. Introduction
A familyF of finite sets is called intersecting if any two sets fromF have a non-empty intersection.
A family F is called n-uniform if every member of F has cardinality n. Suppose that F is an n-
uniform intersecting family which is maximal, i.e. for any n-element set F �∈F the family F ∪
{F} is not intersecting. Note that the ground set of F is not fixed here, so we allow F to have
some elements which do not belong to the support of F . In 1973, Erdős and Lovász [4] asked
how large such a family F can be. Another way to phrase this question is to ask for the largest
size of an n-uniform intersecting family F such that τ (F)= n. Here, τ (F) denotes the covering
number of the family F , that is, the minimum size of a set T which intersects any member of
F . It is easy to see that any such family F is contained in a maximal intersecting family and any
maximal intersecting family F satisfies τ (F)= n. A related question about theminimal size of an
n-uniform intersecting family F with τ (F)= n was famously solved by Kahn [10].

In [4], Erdős and Lovász proved the first non-trivial upper bound nn on the size of a maxi-
mal n-uniform intersecting family, and they also constructed such a family of size [(e− 1)n!] and
conjectured this to be best possible (see also Section 4 for the construction). However, 20 years
later, Frankl et al. [7] gave a new construction of size roughly (n/2)n. The upper bound nn was
improved to (1− 1/e+ o(1))nn in 1994 by Tuza [14]. In 2011, Cherkashin [3] obtained a bound
|F | =O(nn−1/2) and then in 2017 Arman and Retter [2] improved this further to (1+ o(1))nn−1.
The best currently known upper bound was obtained in 2019 by Frankl [6]:

|F |� e−cn1/4nn. (1)

Frankl [6] also stated that it is possible to modify the argument and improve the exponent in (1)
from 1/4 to 1/3. In this paper, we provide an even stronger improvement of (1):

Theorem 1.1. Let F be an n-uniform maximal intersecting family. Then

|F |� e−n1/2+o(1)
nn. (2)
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Frankl et al. conjecture in [7] that |F |� (αn)n should hold for any maximal intersecting family
and some absolute constant α < 1. The methods of the present paper do not seem to be sufficient
to prove this conjecture.

To prove Theorem 1.1, we consider a more general problem of estimating the number of min-
imal coverings of an arbitrary intersecting family. Given a family F , a set T is called a minimal
covering of F if T ∩ F �= ∅ holds for any F ∈F (T covers F) but this condition does not hold for
any proper subset T′ ⊂ T (T is minimal). The minimum size of a covering ofF is called the cover-
ing number and denoted τ (F). Let T (F) denote the family of all minimal coverings T of a family
F . For technical reasons, it is convenient to restrict attention to the subfamily T�n(F)⊂ T (F) of
all minimal coverings of F of size at most n (where n will be taken equal to the uniformity of F).
For a not necessarily uniform family G and λ > 0 we define its weight wλ(G) as follows:

wλ(G)=
∑
G∈G

λ−|G|.

If F is an n-uniform maximal intersecting family, then τ (F)= n and so any element F ∈F is
a minimal covering of F . That is, F ⊂ T (F) and so

wλ(T (F))� λ−n|F | (3)

holds for any λ > 0. On the other hand, the classical encoding procedure of Erdős and Lovász [4]
actually shows that any n-uniform family F satisfies

wn(T (F))� 1. (4)

By putting (3) and (4) together, we recover the upper bound |F |� nn. Note that the inequality (4)
is actually tight for arbitrary n-uniform families:

Example 1.2. LetF = {F1, . . . , Fk} be a collection of k pairwise disjoint n-element sets F1, . . . , Fk;
then clearly

T (F)= {T = {x1, . . . , xk}: xi ∈ Fi, i= 1, . . . , k}
and so wn(T (F))= |T (F)|n−k = 1.

However, the family F in this example is very far from being intersecting. This suggests that
perhaps one can improve (4) provided thatF is an intersecting family. Another obstruction comes
from the case when F has small covering number:

Example 1.3. Let K1, . . . ,Kk be pairwise disjoint (n− k+ 1)-element sets and let F be the fam-
ily of sets of the form F =Ki ∪ T where |T ∩Kj| = 1 for all j= 1, . . . , k. Then F is intersecting,

τ (F)=min{k, n− k+ 1} and wn(T (F))� (n−k+1)k
nk � e− k2

n .

So the bound in (4) is essentially tight for n-uniform intersecting families F with covering
number τ (F)� n1/2. Our main result states that if F is intersecting and the covering number
τ (F) is large enough, then we indeed can win over (4) by a significant amount:

Theorem 1.4. For all ε > 0 and sufficiently large n> n0(ε) we have the following. Let A be an
intersecting n-uniform family. Then

cn(A)� e1−
τ (A)1.5−ε

n . (5)

Note that this gives a substantial improvement over (4) provided that τ (A)> n2/3+ε . By
applying Theorem 1.4 to a maximal intersecting family F and using (3), Theorem 1.1 follows.
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We now turn to explain the main ideas of the proof of Theorem 1.4. In what follows, we use
the notation cλ(A)=wλ(T�n(A)) for an n-uniform familyA and λ > 0.

Fix ε > 0. Using induction, we are going to show that for any n> n0(ε) and any n-uniform
intersecting familyA we have

cn(A)� λτ (A)−n/2, (6)

where λ = e−
1

n0.5+ε . This is much weaker than what is claimed in (5) for n2/3 � τ (A)� n/2 but
gives the same result when τ (A) is close to n. By writing down the inductive statement (6) more
carefully, one can recover (5) in the full range of parameters, see Section 3 for details.

If τ (A)� n/2 then (6) follows from (4) (which we will prove later) so we may assume that
τ (A)� n/2. For the purpose of induction, we may assume that (6) holds for all n-uniform inter-
secting families of size strictly smaller than A. The following proposition is at the core of our
inductive approach:

Proposition 1.5. Let λ = e−
1

n0.5+ε . If there exists a subfamily G ⊂A such that cλn(G)� 1 then
cn(A)� λτ (A)−n/2.

Roughly speaking, Proposition 1.5 tells us that if we can find a subfamily G ⊂A which is ‘diffi-
cult’ to cover then we can use it for the induction step and get a bound on cn(A) in terms of cn(A′)
for some proper subfamilies A′ ⊂A. The idea of finding a special subfamilies in A to bound the
number of minimal covers also appears in a somewhat different form in [6].

Proposition 1.5 puts rather strict limitations on how a potential minimal family A contradict-
ing (6) might look like. The first key observation (also originating from [6]) is that all pairwise
intersections of sets inA are either very small or very large.

Indeed, let A1,A2 ∈A be a pair of sets such that |A1 ∩A2| = k for some k. Observe that

cλn({A1,A2})= k
λn

+ (n− k)2

λ2n2
,

and so we have cλn({A1,A2})� 1 for any k ∈ [
√
n, n− √

n]. So by Proposition 1.5, unless A
satisfies (6), for any pair A1,A2 ∈A we either have |A1 ∩A2|�√

n or |A1 ∩A2|� n− √
n.

Let k= √
n. The above property allows us to writeA as a union

A=K1 ∪ . . . ∪KN , (7)

where for any i, j= 1, . . . ,N and Ki ∈Ki and Kj ∈Kj we have |Ki ∩Kj|� n− k if i= j and |Ki ∩
Kj|� k otherwise. This decomposition step is actually quite robust and works for any k< n/3; so
if one were to prove (6) with λ < 1− c for a small constant c, then one may still assume that, say,
|A1 ∩A2| �∈ [0.1n, 0.9n] holds for all A1,A2 ∈A, and so we have (7) with k= 0.1n.

The decomposition (7) has the following properties:
Each family Ki has a core of size n− 5k. That is, there exists a set Ki of size n− 5k such that

Ki ⊂A for anyA ∈Ki. Note that we only know that |A1 ∩A2|� n− k for anyA1,A2 ∈Ki and so a
priori the sets inKi do not have to have a large common intersection. However, if | ⋂Ki|� n− 5k
then we can take G =Ki in Proposition 1.5:

Lemma 1.6. Let k� n/10. Let K be an n-uniform family. Suppose that there is an (n− k)-element
set K such that we have |F ∩K|� n− 2k for every F ∈K. Then we either have cn−k(K)� 1 or
| ⋂K|� n− 5k.

The idea is use the Lubell–Yamamoto–Meshalkin inequality to control possible intersections of
a minimal cover of K with the set K above. This step is also quite flexible and can be employed if
one were to prove (6) with λ = 1− c (and k≈ cn).
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Each family Ki is small. Namely, we have |Ki|�
(

τ (A)+ 2k
2k

)
for all i. We say that a family

F is τ -critical if removing any set from F reduces τ (F). The family A in question is τ -critical: if
not, then for some proper A′ ⊂A we have τ (A′)= τ (A). But then by the induction assumption
we get

cn(A)� cn(A′)� λτ (A′)−n/2 = λτ (A)−n/2.

Here we also use a simple monotonicity property cn(A)� cn(A′) which we prove in the next
section.

So we can apply the following simple lemma:

Lemma 1.7. Let A be a τ -critical n-uniform family (that is, removing any element from A
reduces τ (A)) and let K ⊂A be a subfamily such that | ⋂K|� n− k for some k� 0. Then

|K|�
(

τ (A)+ k
k

)
.

Proof. Denote K = ⋂
K. By τ -criticality ofA, for any set A ∈K there is a covering TA ofA \ {A}

of size less than τ (A) which does not intersect A. Note that TA does not intersect K and so it is a
covering of the family (K \ {A}) \K. Thus, the system of pairs of sets (A \K, TA)A∈K satisfies the

Bollobás’s Two Families theorem [9, p. 113, Theorem 8.8] and so |K|�
(

τ (A)+ k
k

)
.

�
The number of families N is small. Namely, we may assume that N � nC holds for some

constant C. This is the part of the proof where we rely on the Spread Lemma of Alweiss–Lovett–
Wu–Zhang [1]. Namely, we have the following:

Lemma 1.8. Let A be an n-uniform family where n is sufficiently large. Let B ⊂A be a subfam-
ily such that |B1 ∩ B2|� k for all distinct B1, B2 ∈ B. If k� n

104 log n then one of the following 2
possibilities holds:

1. We have |B|� nC for some absolute constant C.
2. There is a proper subfamilyA′ ⊂A such that

2τ (A)cn(A)� 2τ (A′)cn(A′).

Note that this lemma has amild restriction k� n
log n . This means that the best possible bound in

(6) using Lemma 1.8 has λ = 1− c
log n (corresponding to a bound of the form |F |� e−

cn
log n nn for

maximal intersecting families). So even though this is not enough to prove an exponential bound
in the Erdős–Lovász problem, this is by far not the main bottleneck of the argument.

The proof of Lemma 1.8 is based on the following idea. Let p= C log n
n and consider a random

set U where each element of the ground set is included in U independently with probability p. If
the family T�n(A) is not n

2 -spread the one can check that the second option of the lemma holds.
Otherwise, by the Spread Lemma (see Lemma 2.8 below), with probability at least 0.9 there exists
an element T ∈ T�n(A) such that T ⊂U. On the other hand, a routine second moment compu-
tation shows that if N is large enough and sets B1, . . . , BN have small pairwise intersections, then
with probability at least 0.9 there exists i ∈ [N] so that Bi is disjoint from U. So with probability at
least 0.8 there is a covering T ⊂U ofA and a set Bi ∈A disjoint from U. In particular, T ∩ Bi = ∅
with positive probability which contradicts the definition of a covering.
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Conclusion:A is small. We conclude from the above observations that the familyA itself must
be small:

|A|� |K1| + . . . + |KN |�N
(

τ (A)+ 5k
5k

)
� n6k. (8)

Once we know that the familyA is small, we can start exploiting the fact that τ (A) is large. In fact,
we show thatA cannot be too ‘clustered’ around a few elements of the ground set since otherwise
we can find a covering of A of size less than τ (A) by sampling a random set according to the
degree distribution ofA. A careful execution of this idea results in the following lemma:

Lemma 1.9. Let n� 1 and m, t� 1. Let A be an n-uniform family of size at most em and τ (A)�
t. Then, for every l� 1, there is a subfamily A′ ⊂A such that τ (A \A′)� t/2 and for every i=
1, . . . , l we have

EA1,...,Ai∈A′ |A1 ∩ . . . ∩Ai|� Cl
(m
t

)i−1
n, (9)

where Cl � 2l2 depends only on l and the average is taken over all A1, . . . ,Al ∈A chosen uniformly
and independently.

That is, we can remove a few sets fromA and obtain the property that the l-wise intersections of
sets in A are very small on average. Note that in our case m∼ k log n∼ √

n log n and t = τ (A)�
n/2, so that

Cl
(m
t

)l−1
n� n2−l/2,

that is, almost all l-wise intersections of sets fromA are empty for constant l. Let r = n0.5−ε/2 and
l= 10ε−1 and sample a uniformly random subfamily B = {B1, . . . , Br} ⊂A′, whereA′ is given by
Lemma 1.9. Then by (9) and the union bound, with positive probability all l-wise intersections
of sets in B are empty. We remark that the family B is a natural generalization of ‘brooms’ used
by Frankl in [6]; the advantage of our approach is that we can find (generalized) brooms of size
∼ n1/2 whereas Frankl could only construct brooms of size ∼ n1/4.

The final step of the proof is to show that one can take G = B in Proposition 1.5:

Lemma 1.10. Let n� 1 and r� 2l be such that r2 � l3n. Let B be an n-uniform intersecting fam-
ily of size r such that every l distinct sets from B have an empty intersection. Then for k� r

20l3
we have

cn−k(B)� 1.

The proof of this lemma crucially uses the intersecting property of the family B. In fact, this is
the only place in the argument where we really use the fact that the initial family is intersecting.
The construction of a large bounded degree family B and Lemma 1.10 appear to be the main
bottlenecks of the argument and are the reason for the resulting bound of e−n0.5+εnn for maximal
intersecting families.

The proof of Lemma 1.10 is based on a more careful analysis of the classical Erdős–Lovász
encoding procedure: the intersecting property and bounded degree of B ensure that there is
enough ‘overlap’ between sets Bi which makes the encoding more efficient. This completes the
proof of Theorem 1.4. The next section contains all the proofs of the lemmas which appeared
in this outline and in Section 3 we formally deduce Theorem 1.4. Section 4 contains some final
remarks and questions.
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2. Proving auxiliary results
2.1 Minimal covers
Fix n ∈N and let A be a finite family of sets of size at most n. For λ > 0, we define the weight
wλ(A) ofA by the following expression:

wλ(A)=
∑
A∈A

λ−|A|.

The parameter λ will be usually taken to be λ = n or λ = n− k for a relatively small number k.
The following characteristic of a family will be crucial for our arguments. Recall that a covering of
A is a set T intersecting all members ofA and a covering T is minimal if any proper subset T′ ⊂ T
does not cover A. We denote τ (A) the minimum size of a covering of A. We denote T�n(A) the
family of all minimal covers ofA of size at most n. For λ > 0, put

cλ(A)=wλ(T�n(A))=
∑

T∈T�n(A)
λ−|T|.

We remark that the family T�n(F) was also introduced in [14] to prove the bound |F |� (1−
e−1 + o(1))nn. We have the following basic monotonicity result:

Observation 2.1. For any family F and all λ�μ we have

cμ(F)�
(

λ

μ

)τ (F )
cλ(F).

Proof. Indeed, since every minimal covering T of F has size at least τ (F) we have

μ−|T| �
(

λ

μ

)τ (F )
λ−|T|.

Summing over all T ∈ T�n(F) gives the desired inequality. �
Let X be the ground set of A. For S⊂ X we denote by A(S̄) the set of elements of A which do

not intersect S. The following lemma lies at the foundation of our arguments.

Lemma 2.2. For any subfamilyA′ ⊂A of any familyA and for any λ > 1 we have

cλ(A)�
∑

T′∈T�n(A′)
λ−|T′|cλ(A(T̄′)), (10)

In particular, we have

cλ(A)� cλ(A′) max
T′∈T�n(A′)

cλ(A(T̄′)).

Proof. Each minimal covering T ∈ T�n(A) contains a minimal covering T′ ⊂ T ofA′. Moreover,
by the minimality of T, the set T \ T′ is a minimal covering of the familyA(T̄′). So each term λ−|T|
on the left-hand side of (10) corresponds to at least one term λ−|T′|λ−|T\T′| on the right-hand side
of (10) (there could be more than one way to choose T′). This proves (10). �

In particular, we have:

Corollary 2.3 (Tuza, [14]). For any n-uniform family F we have cn(F)� 1.

This bound was also proved in [14], similar ideas appear in [8].

Proof. Note that if |F |� 1 then the proposition holds. If |F |� 2 then choose a proper non-
empty subfamily F ′ ⊂F and apply the second part of Lemma 2.2. The statement now follows
by induction. �
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The basic idea behind the proof of Theorem 1.1 is to use apply Lemma 2.2 to various subfamilies
F ′ with small cn(F ′) and use induction to estimate the terms cn(F(T̄′)). More precisely, we will
use the following consequence of Lemma 2.2.

Lemma 2.4. Let f :R→R be a differentiable convex function. Let F be an n-uniform family such
that for any proper subfamilyA⊂F we have cn(A)� e−f (τ (A)). Let λ = e−f ′(τ (F )) and suppose that
there exists a non-empty family F ′ ⊂F such that cλn(F ′)� 1. Then cn(F)� e−f (τ (F )).

Proof. By Lemma 2.2 applied to F ′ ⊂F we have

cn(F)�
∑

T∈T�n(F ′)
n−|T|c(F(T̄))�

∑
T∈T�n(F ′)

n−|T|e−f (τ (F (T̄))).

We have τ (F(T̄))� τ (F)− |T| and so by convexity f (τ (F(T̄)))� f (τ (F))− |T|f ′(τ (F)), which
leads to

cn(F)�
∑

T∈T�n(F ′)
n−|T|ef ′(τ (F ))|T|−f (τ (F )) = cλn(F ′)e−f (τ (F )) � e−f (τ (F )),

completing the proof. �
Note that Proposition 1.5 from the proof outline above follows from this lemma with f (t)=

−(t − n/2) log λ.

2.2 Large intersections
In this section we study families K in which every pair of sets has ‘large’ intersection.

Lemma 2.5. Let k� n/10. Let K be an n-uniform family. Suppose that there is an (n− k)-element
set K such that we have |F ∩K|� n− 2k for every F ∈K. Then we either have cn−k(K)� 1 or
| ⋂K|� n− 5k.

Proof. Let K ′ = ⋂
K and R=K \K ′ and let u= |K ′ \K|. Note that u ∈ [0, k] since |F \K|� k

for all F ∈K. Denote by A the family of all sets F \K ′ for F ∈K. By the definition of A we have
τ (A)� 2. Note also that for any A ∈A we have |A \ R|� k− u (since A has size at most k and
contains the u-element set K ′ \K).

Note that a minimal covering T of the family K is either contained in K′ and |T| = 1 or T ∩
K ′ = ∅. In the latter case T is obviously a minimal covering ofA. Thus, we have

cλ(K)= |K ′|
λ

+ cλ(A). (11)

Let T1 ⊂ T�n(A) be the family of minimal coverings T of A which are subsets of R. Let T2 =
T�n(A) \ T1. We will estimate weights of T1 and T2 separately.

Note that T1 ⊂ 2R and observe that T′ �⊂ T for any distinct T, T′ ∈ T1 (i.e. T1 is an antichain
in 2R). �
Proposition 2.6. Suppose that T ⊂ 2R is an antichain such that every element of T has size at least
t. If λ� |R| then ∑

T∈T
λ−|T| � λ−t

( |R|
t

)
.

This statement also appears in [5].
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Proof. Note that for any s� t we have
( |R|

s

)
�

( |R|
t

)
λs−t and so by the Lubell–Yamamoto–

Meshalkin inequality [9, p. 112, Theorem 8.6]:

∑
T∈T

λ−|T| �
∑
T∈T

λ−t
( |R|

t

)
/

( |R|
|T|

)
= λ−t

( |R|
t

) ∑
T∈T

1( |R|
|T|

) � λ−t
( |R|

t

)
.

By Lemma 2.6 for every λ� |R| the λ-weight of T1 is at most

wλ(T1)� λ−τ (A)
( |R|

τ (A)

)
� (|R|/λ)τ (A)

τ (A)! . (12)

Now we estimate the weight of T2. Let S ⊂ 2R be the family of all sets S⊂ R such that S does not
coverA. Then the weight of T2 is bounded by the following expression:

wλ(T2)�
∑
S∈S

λ−|S|cλ(A(S̄) \ R). (13)

Indeed, the contribution of an element T ∈ T2 on the left-hand side is accounted by the term
corresponding to S= T ∩ R ∈ S on the right-hand side (since T \ R is a minimal covering of the
family A(S̄) \ R). Here the family A(S̄) \ R consists of all sets of the form A \ R where A ∈A does
not intersect S. Every element inA(S̄) \ R has cardinality at most k− u and so by Observation 2.1
and Corollary 2.3 applied toA(S̄) \ R for every λ� k− u we have

cλ(A(S̄) \ R)�
(
k− u

λ

)τ (A(S̄)\R)
ck−u(A(S̄) \ R)�

(
k− u

λ

)τ (A(S̄)\R)
. (14)

Let S ∈ S . Note that we have the following lower bound on τ (A(S̄) \ R):
τ (A(S̄) \ R)�max{1, τ (A)− |S|}.

Using this lower bound, (13) and (14) we obtain an upper bound on the weight of T2 for λ� k:

wλ(T2)�
τ (A)−1∑
s=0

λ−s
( |R|

s

) (
k− u

λ

)τ (A)−s
+

|R|∑
s=τ (A)

λ−s
( |R|

s

) (
k− u

λ

)
. (15)

Now we combine all obtained inequalities to prove Lemma 1.6. Suppose that |K ′| = | ⋂K| <
n− 5k, we need to show that cn−k(K)� 1 holds. We have

|K ∪K ′| = |K ′| + |K \K ′| = |K| + |K ′ \K|,
so that |K ′| = n− k+ u− r holds. In particular, by the assumption |K ′| < n− 5k we have n− k�
r > u+ 4k.

Denote t = τ (A)� 2, r = |R|, ρ = r
n−k and δ = k−u

n−k . We can use (12) and (15) with λ = n− k
and get:

wn−k(T1)�
ρt

t! ,

wn−k(T2)�
t−1∑
s=0

ρsδt−s

s! +
r∑

s=t

ρsδ

s! .
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By (11), formula |K ′| = n− k+ u− r and decomposition T�n(K)= T1 ∪ T2:

cn−k(K)� n− k+ u− r
n− k

+wn−k(T1)+wn−k(T2)≤

� n− k+ u− r
n− k

+ ρt

t! +
t−1∑
s=0

ρsδt−s

s! +
r∑

s=t

ρsδ

s! .

Both ρ and δ are between 0 and 1 so it is easy to see that the second line is the largest when t = 2,
i.e.

cn−k(K)� n− k+ u− r
n− k

+ ρ2

2
+ δ2 + δρ

2
+

r∑
s=2

ρsδ

s! � n− k+ u− r
n− k

+ ρ

2
+ 2δ,

where in the last transition we used 0� δ, ρ � 1 to group the last 3 terms together and replace ρ2

by ρ. Recalling ρ = r
n−k and δ = k−u

n−k we get

cn−k(K)� n+ k− u− r/2
n− k

� n+ k− r/2
n− k

� 1,

since r� 4k and u� 0. �

2.3 Small intersections
In this section, we show that in some cases it is possible to estimate the size of a subfamily B ⊂A
provided that elements of B have very small pairwise intersections.

Lemma 2.7. Let A be an n-uniform family where n is sufficiently large. Let B ⊂A be a subfam-
ily such that |B1 ∩ B2|� k for all distinct B1, B2 ∈ B. If k� n

104 ln n then one of the following 2
possibilities holds:

1. We have |B|� nC for some absolute constant C.
2. There is a proper subfamilyA′ ⊂A such that

2τ (A)cn(A)� 2τ (A′)cn(A′).

To prove this lemma we will need a result on R-spread families which was recently used to
substantially improve the upper bound in the Erdős-Rado Sunflower problem [1,12]. We will use
a variant of this result proved in [13, Corollary 7]. Let C be a random set, that is a probability
distribution on 2X for some finite ground set X. For R� 1 we say that C is an R-spread random set
if for every set S⊂ X the probability that C contains S is at most R−|S|.
Lemma 2.8 ([13]). Let R> 1, δ ∈ (0, 1) and m� 1. Let C be an R-spread random subset of a finite
set X. LetW⊂ X be a random set independent from C and such that each x ∈ X belongs toW with
independent probability 1− (1− δ)m. Then there exists a random set C′ with the same distribution
as C and such that

E|C′ ∩W|�
(

5
log2 Rδ

)m
E|C|.
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We will in fact only need the following corollary of this result.

Corollary 2.9. In the notations of Lemma 2.8, let C ⊂ 2X be the support of the random set C. Then
the probability that a random setW of density 1− (1− δ)m contains an element of C is at least

P(∃C ∈ C : C ⊂W)� 1−
(

5
log2 Rδ

)m
E|C|.

Proof of Lemma 1.8. Denote by X the ground set of A. Put C = 2048, R= n
2 and m= �log2 n+

10�. Let δ = C
n and letU⊂ X be a subset of X of density (1− δ)m. Let T ∈ T�n(A) be a random set

with distribution

P(T= T)= n−|T|

cn(A)
, (16)

where T ∈ T�n(A) and such that T is independent from U.
Let us suppose that the random set T is not R-spread. By definition, this means that there is a

non-empty set S⊂ X such that

P(S⊂ T)� R−|S| =
(
2
n

)|S|
.

LetA′ =A(S̄) be the family of A ∈A such that A∩ S= ∅. Note that τ (A′)� τ (A)− |S|. Note that
if a covering T ∈ T�n(A) satisfies S⊂ T then T \ S is a minimal covering of the familyA′. Thus,∑

T∈T�n(A) : S⊂T
n−|T| = n−|S| ∑

T∈T�n(A) : S⊂T
n−|T\S| � n−|S|cn(A′).

By (16), the left-hand side of this inequality equals to cn(A)P(S⊂ T). We conclude

cn(A′)n−|S| � cn(A)P(S⊂ T)� cn(A)2|S|n−|S|,
cn(A′)� cn(A)2|S| � cn(A)2τ (A)−τ (A′).

This implies the second alternative of Lemma 2.7. So we may assume that T is R-spread.
By Corollary 2.9 (applied toW= X \U), we have the following estimate on the probability that

there is a covering T ∈ T�n(A) which does not intersect U:

P(∃T ∈ T�n(A) : T ∩U= ∅)� 1−
(

5
log Rδ

)m
E|T|� 1− 2−mn> 0.9,

here we used the fact that Rδ = 1024,m> log2 n+ 9 and that every element of T�n(A) has size at
most n.1 We conclude that if we take a random set U of density (1− δ)m then with probability at
least 0.9 there is a T ∈ T�n(A) which does not intersect U. Let us now show that with probability
at least 0.5 the setU contains an element of B, provided that B is large enough. Since by definition
of T�n(A) every T ∈ T�n(A) intersects every set from B, this will lead to a contradiction if |B| is
large enough.

Note that an element A of B is contained in U with probability

(1− δ)mn = en log2 n(−
C
n +O(n−2)) = n−C/ ln 2+o(1), (17)

provided that n is sufficiently large. Denote ρ = (1− δ)nm. For A ∈ B denote by ξA the indicator
of the event that A⊂U and by ξ the sum of ξA over B. Hence, we have EξA = ρ for every A ∈ B
and

Eξ = |B|ρ.
1In fact, this is the only place in the argument where we need this restriction on the sizes of the coverings.
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By Chebyshev’s inequality (see, for instance, [9, p. 303, (21.2)]), it is enough to show that
Var ξ < (Eξ )2/2, where Var ξ denotes the variance of the random variable ξ . Let us estimate the
correlations (EξAξA′ − ρ2) for A �=A′. It is clear that

EξAξA′ = (1− δ)m|A∪A′| � (1− δ)2mn−m n
104 ln n = ρ

2− 1
104 ln n .

By (17), we have

ρ
− 1

104 ln n =
(
n

C+o(1)
ln 2

)− 1
104 ln n = 2

C
104

+o(1)
< 1.4

provided that n is large enough. We conclude that the variance of ξ is at most

0.4ρ2|B|2 + ρ|B|
which is less than (Eξ )2/2 if |B| > 10/ρ. Therefore, provided, that |B|� n3000 > 10/ρ, with prob-
ability at least 0.5 the random set U contains an element of B and with probability at least 0.9
it does not intersect an element of T�n(A). But these two events cannot happen simultaneously.
This is a contradiction and Lemma 2.7 is proved. �

2.4 Moments of the degree function
In this section, we show that if we have an n-uniform family A such that τ (A) is ‘large’ but |A| is
‘small’ then the l-wise intersections of sets from A are very small on average. More precisely, we
will prove the following:

Lemma 2.10. Let n� 1 and m, t� 1. Let A be an n-uniform family of size at most em and τ (A)�
t. Then, for every l� 1, there is a subfamily A′ ⊂A such that τ (A \A′)� t/2 and for every i=
1, . . . , l we have

EA1,...,Ai∈A′ |A1 ∩ . . . ∩Ai|� Cl
(m
t

)i−1
n,

where Cl � 2l2 depends only on l and the average is taken over all A1, . . . ,Al ∈A chosen uniformly
and independently.

Let X denote the ground set of an n-uniform family F . For a function f : X →R+ and S⊂ X
we denote by f (S) the sum

∑
x∈S f (x).

Observation 2.11. For any non-zero function f : X →R+ and any family F on X we have
∑
F∈F

(
1− f (F)

f (X)

)τ (F )−1
� 1. (18)

In particular, for any f : X →R+ there always exists F ∈F such that

f (F)� f (X)
(
1− |F |−1/(τ (F )−1)

)
.

Proof. Put t = τ (F)− 1 and let x1, . . . , xt ∈ X be a sequence of random independent elements of
X sampled according to distribution f . Then the left-hand side of (18) is the expectation of the
number of sets F ∈F which are not covered by the set {x1, . . . , xt}. Since τ (F)> t, this number
is always positive and (18) follows. �

The following variant of this observation will be slightly more convenient to use.

Corollary 2.12. Let f1, . . . , fl : X →R+ be arbitrary non-zero functions and F be an arbitrary
family on X. Then there exists F ∈F such that fi(F)� fi(X)l(1− |F |−1/(τ (F )−1)) for any i=
1, . . . , l.

https://doi.org/10.1017/S0963548323000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000287


Combinatorics, Probability and Computing 43

Proof. Apply Observation 2.11 to f (x)= ∑l
i=1

fi(x)
fi(X) . �

For a family F on the ground set X let dF : X →R+ be the degree function of the family F ,
that is, if x ∈ X then dF (x) equals to the number of sets F ∈F which contain x. Let dlF : X →R+
denote the lth power of dF , i.e. dlF (x)= (dF (x))l. By abusing notation, we also denote by dlF the
number dlF (X).

Observation 2.13. For any family F and any l� 1 we have the following identity

dlF |F |−l =EF1,...,Fl∈F |F1 ∩ . . . ∩ Fl|,
where F1, . . . , Fl are taken from F uniformly and independently.

Applying Corollary 2.12 to functions d1F , . . . , d
l
F we obtain the following result.

Lemma 2.14. Let l, t� 1, let F ⊂A be a subfamily of a familyA such that τ (A \F)� t + 1. Then
there exists A ∈A \F such that the following holds. Denote F ′ =F ∪ {A}, then for any i= 1, . . . , l
we have:

diF ′ � diF +
(
l log |A|

t

)
2idi−1

F + n. (19)

Proof. For i= 1, . . . , l let

fi(x)=
i−1∑
j=1

(
i
j

)
djF (x). (20)

Apply Corollary 2.12 to functions f1, . . . , fl and the family A \F . Then there exists A ∈A \F
such that for every i= 1, . . . , l we have

fi(A)� fi(X)l
(
1− |A \F |−1/τ (A\F )−1

)
� fi(X)l

(
1− |A|−1/t)� fi(X)

l log |A|
t

, (21)

by the standard inequality 1− e−x � x. But note that for F ′ =F ∪ {A} by (20) we have
diF ′ − diF =

∑
x∈X

diF ′(x)− diF (x)=
∑
x∈A

(dF (x)+ 1)i − diF (x)= fi(A)+ n. (22)

Note that diF is monotone increasing in i and so

fi(X)=
i−1∑
j=1

(
i
j

)
djF � 2idi−1

F .

The bound (19) now follows from (21) and (22). �
Now we are ready to prove Lemma 2.10.

Proof of Lemma 2.10. Let X denote the ground set ofA and put γ = 2lm/t.
Let F ⊂A be a maximal subfamily inA such that for every i= 1, . . . , l we have

diF � 2i
2
γ i−1n|F |i + 2i

2
n|F |. (23)

Note that if |F | = 1 then (23) clearly holds and so F is well-defined. To prove Lemma 1.9 it is
clearly enough to show that any such F satisfies τ (A \F)� t/2. Indeed, in this case we have
τ (F)� t/2 and, in particular, |F |� t/2. Then γ |F |�m� 1 and, therefore, the first term in (23)
dominates the second one.

Now we show that it is impossible to have τ (A \F)� t/2+ 1. Indeed, in this case we can
apply Lemma 2.14 to the pairF ⊂A and obtain a familyF ′ =F ∪ {A} such that (19) holds for i=
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1, . . . , l and with t/2 instead of t. Note that l log |A|/(t/2)� γ . On the other hand, the maximality
of F implies that there is some i ∈ {2, . . . , l} (i �= 1 because otherwise (23) holds automatically)
such that
diF ′ > 2i

2
γ i−1n(|F | + 1)i + 2i

2
n(|F | + 1)� 2i

2
γ i−1n|F |i + 2i

2
γ i−1n|F |i−1 + 2i

2
n|F | + 2i

2
n.

On the other hand, from (19) we get

diF ′ � diF + γ 2idi−1
F + n� (2i

2
γ i−1n|F |i + 2i

2
n|F |)+ γ 2i(2(i−1)2γ i−2n|F |i−1 + 2(i−1)2n|F |)+ n.

Combining these two inequalities and cancelling same terms we get

(2i
2 − 2i

2−i+1)γ i−1n|F |i−1 − γ 2i
2−i+1n|F | + (2i

2 − 1)n< 0.

So if we let x= γ |F | then, after dividing by 2i2n, we obtain
2−i+1x> (1− 2−i+1)xi−1 + 1

2
. (24)

Recall that i� 2. So if x� 1 then the first term on the right-hand side (24) is greater than 2−i+1x.
If x< 1 then the second term is greater than 2−i+1x. In both cases, we arrive at a contradiction.
Lemma 1.9 is proved. �

2.5 Bounded degree families
In this section, we consider intersecting families of bounded degree. In fact, this is essentially the
only place in the paper where we use the fact that the family is intersecting. The idea to consider
low-degree families in the Erdős–Lovász problem also appears in [6, Section 2].

Lemma 2.15. Let n� 1 and r� 2l be such that r2 � l3n. Let B be an n-uniform intersecting family
of size r such that every l distinct sets from B have an empty intersection. Then

cn(B)� e−
r2

10l3n . (25)

Proof of Lemma 2.15. In order to prove this lemma, we need to recall the classical Erős–Lovász
encoding procedure which they used to obtain the bound |F |� nn for the size of an n-uniform
maximal intersecting family. Denote B = {F1, . . . , Fr}.

Procedure.
Let T ∈ T�n(B) and S⊂ T be a proper subset. From the pair (T, S) we construct a new pair

(T, S′) as follows. Let i ∈ [r] be the minimum number so that Fi ∩ S= ∅. Pick arbitrary x ∈ Fi ∩ T
and let S′ = S∪ {x}.

So if we apply this procedure to any T ∈ T�n(B) and S= ∅, then we will obtain a sequence of
sets of the form:

∅ = S0 ⊂ S1 ⊂ . . . ⊂ S|T| = T. (26)
Note that the sequence (S0, . . . , S|T|) is not determined uniquely by T since there may be an

ambiguity in the choice of x ∈ Fi ∩ T during the procedure. Let T1 ⊂ T�n(B) the the family of sets
T such that the sequence (S0, . . . , S|T|) is determined uniquely by T. In other words, at each step
we have an equality |Fi ∩ T| = 1. Let T2 = T�n(B) \ T1.

Now we denote by J the set of all sequences (S0, S1, . . . , Sk) which may occur during the
procedure starting from some T ∈ T�n(B) and S= ∅. Let J =J1 ∪J2 be the decomposition aris-
ing from the decomposition T�n(B)= T1 ∪ T2. The weight w(S̄) of a sequence S̄= (S0, . . . , Sk) is
defined to be n−|Sk|. The standard Erdős–Lovász [4] argument shows that the weight w(J ) of the
family J is always at most 1. We omit the proof since it is very similar in spirit to the proof of
Lemma 2.2 and Corollary 2.3.
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On the other hand, we can bound weights of families T1 and T2 in terms of weights of J1 and
J2 as follows:

cn(B)=wn(T�n(B))=wn(T1)+wn(T2)�w(J1)+ 1
2
w(J2)�

w(J1)+ 1
2

. (27)

So it is enough to obtain a good upper bound on w(J1). For T ∈ T1 we denote by Si(T) the i-th
element of the sequence of T in the process (which is defined uniquely for elements of T1). We
denote by Ai(T) ∈ B the element of B which was picked at step i− 1 of the process. In particu-
lar, Si−1(T)∩Ai(T)= ∅ and |Si(T)∩Ai(T)| = 1. We denote by xi(T) the unique element in the
intersection Si(T)∩Ai(T).

The uniqueness of the sequence S̄(T) implies that for any j< i we have

xi(T) �∈Aj(T).

Indeed, otherwise at step j we may have picked the element xi(T) instead of xj(T) and thus form a
different sequence (S′

0, . . . , S
′
|T|) which corresponds to the covering T. We conclude that

xi(T) ∈Ai(T) \
⋃
j<i

Aj(T) =: Yi(T).

Since the family B is intersecting and does not contain l-wise intersections we have the following
upper bound on the size of Yi(T):

|Yi(T)|� n− i− 1
l

.

For q� 0 and a given sequence S̄= (S0 ⊂ S1 ⊂ . . . ⊂ Sq) we denote by J1(S̄) the family of
sequences from J1 which start from S̄.

Observation 2.16. For any sequence S̄= (S0, S1, . . . , Si−1) which is a part of the sequence of some
T ∈ T1 such that |T| > i we have

w(J1(S̄))�
1
n

∑
x∈Yi(T)

w(J1(S̄, Si−1 ∪ {x})).

Proof. Indeed, the observation says that a sequence S̄ can be extended only by the elements
of the set Yi(T) and, therefore, its weight is bounded by the sum of the weights of all possible
extensions. �

For q� 0 let

f (q)= max
S̄=(S0,S1,...,Sq)

w(J1(S̄)). (28)

The following proposition will finish the proof. Note that τ (B)� r/l because any element x ∈ X
covers at most l sets from B.
Proposition 2.17. For any q ∈ [0, r/l] we have

f (q)�
[r/l]−1∏
i=q

(
1− i− 1

nl

)
.

Proof. The proof is by induction. The base case q= [r/l] states that f ([r/l])� 1 which we already
know by the Erdős–Lovász argument.
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For the induction step, let T ∈ T1 be a covering on which the maximum in (28) is attained. Now
apply Observation 2.16 and the induction hypothesis to conclude that

f (q)� 1
n
|Yi(T)|f (q+ 1)�

(
1− i− 1

nl

)
f (q+ 1),

where T corresponds to a maximizer of the supremum on the left-hand side. �
Substituting q= 0 in Proposition 2.17 we get

w(J1)= f (0)�
[r/l]−1∏
i=1

(
1− i− 1

nl

)
�

(
1− r

2nl2
)r/2l

� e−
r2
4l3n .

Let y= r2
l3n . By assumption we have y� 1 and so we have the following elementary inequality:

e−y/4 + 1� 2e−y/10. By (27), the desired inequality (25) follows. �
The following simple corollary will be more convenient to combine with Lemma 2.4 in the

proof of Theorem 1.1.

Corollary 2.18. Let n� 1 and r� 2l be such that r2 � l3n. Let B be an n-uniform intersecting fam-
ily of size r such that every l distinct sets from B have an empty intersection. Then for k� r

20l3
we have

cn−k(B)� 1.

Proof. Note that any minimal covering of B has size at most |B| = r. So for any λ� 1 we have
cλn(B)� λ−rcn(B).

By Lemma 2.15, if we let λ = e−
r

10l3n then cλn(B)� 1. Now if k� r
20l3 then

n− k
n

� 1− r
20l3n

� e−
r

10l3n ,

which implies that cn−k(B)� 1. �

3. Proof of Theorem 1.4
In this section, we put all developed machinery together to prove Theorem 1.4. We restate the
theorem below for convenience.

Theorem 3.1. For all ε > 0 and sufficiently large n> n0(ε), we have the following. Let A be an
intersecting n-uniform family. Then

cn(A)� e1−
τ (A)1.5−ε

n . (29)

Now we begin the proof of Theorem 1.4. Fix n> n0(ε) and suppose that there exists an
intersecting family A which violates (5). Let A be any such family of minimal possible size. In
particular, A is a τ -critical family and τ (A)> n2/3 because otherwise the right-hand side of (29)
is greater than 1 and so we done by Corollary 2.3.

By the minimality ofA, for any proper subfamilyA′ ⊂A we have

cn(A′)� e1−
τ (A′)1.5−ε

n . (30)
We are going to apply Lemma 2.4 to various subfamilies of A and f (t)= t1.5−ε − 1. Let λ =
e−f ′(τ (A)) = e−(1.5−ε) τ (A)0.5−ε

n and k= √
τ (A).

Proposition 3.2. For any A1,A2 ∈A we have
|A1 ∩A2| �∈ [k, n− k]. (31)
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Proof. Suppose that there are some A1,A2 ∈A such that |A1 ∩A2| = x ∈ [k, n− k]. DenoteA′ =
{A1,A2} and note that

cn−k/3(A′)= x
n− k/3

+ (n− x)2

(n− k/3)2
� 1, (32)

where the latter inequality holds for every x ∈ [k, n− k] and any k� 0.1n.
Since n−k/3

n � λ for sufficiently large n, by Lemma 2.4 applied to A′ we deduce that (30) holds
for A as well. This is, however, a contradiction to our initial assumption that A does not satisfy
(29). �

Now we define a relation ∼ on A as follows: two sets A1, A2 ∈A are equivalent if |A1 ∩A2|�
n/2. Then Proposition 3.2 implies that ∼ is an equivalence relation onA. Let

A=K1 ∪ . . . ∪KN (33)

be the equivalence class decomposition on A corresponding to ∼. This means that for every
i= 1, . . . ,N and any F1, F2 ∈Ki we have |F1 ∩ F2|� n− k and for any i �= j and F1 ∈Ki and
F2 ∈Kj we have |F1 ∩ F2|� k.

Proposition 3.3. For every i= 1, . . . ,N we have | ⋂Ki|� n− 5k.

Proof. Suppose that | ⋂Ki| < n− 5k for some i. Let F ∈Ki be an arbitrary set from Ki and let
K ⊂ F be any subset of size (n− k). Lemma 2.5 applied to the family Ki and the set K implies that
cn−k(Ki)� 1. So Lemma 2.4 applied to Ki implies thatA satisfies (30), a contradiction. �
Proposition 3.4. We have |A|� n6k.

Proof. Indeed, by Lemma 1.7, Proposition 3.3 and τ -criticality ofAwe have |Ki|�
(

τ (A)+ 5k
5k

)
for any i= 1, . . . ,N.

Now let Ai ∈Ki be arbitrary representatives. Note that |Ai ∩Aj|� k for any i �= j. Obviously
k� n

log n , so by Lemma 2.7 we either have N � nC′ or there is a proper subfamily A′ ⊂A such
that

2τ (A)cn(A)� 2τ (A′)cn(A′)� 2τ (A′)Cλτ (A′),

which immediately implies (5). This implies that we in fact have N � nC′ and so

|A|� nC
′
(

τ (A)+ 5k
5k

)
� n6k,

provided that n is large enough. �
Denote m= log n6k = 6k log n and let l= 10ε−1. By Lemma 2.10, there is a subfamily A′ ⊂A

such that τ (A \A′)� τ (A)/2 such that for every i= 2, . . . , l we have

EA1,...,Ai∈A′ |A1 ∩ . . . ∩Ai|� Cl

(
m

τ (A)

)i−1
n, (34)

for some new constant Cl � 2l2 . Let r = n−ε τ (A)
m (note that r � 1 since τ (A)� n2/3 by

assumption).
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Sample uniformly and independently sets B1, . . . , Br ∈A′ and form a random family B =
{B1, . . . , Br}. Applying (34) to all l-element intersections in B, we get

E

∑
S∈

(
[r]
l

)
∣∣∣∣∣
⋂
i∈S

Bi

∣∣∣∣∣� Cl

(
r
l

) (
m

τ (A)

)l−1
n� Cln1−εl τ (A)

m
� n2−εl < 1

for sufficiently large n.
So there exists an r-element family B ⊂A′ such that all l-wise intersections of sets from B are

empty. By Corollary 2.18, for h= r
20l3 , we have cn−h(B)� 1. But

n− h
n

� 1− τ (A)
20l3mn1+ε

� 1− τ (A)
kn

� λ,

by the choice of k= √
τ (A) and λ = e−(1.5−ε) τ (A)0.5−ε

n and sufficiently large n. So by Lemma 2.4
applied to F ′ = B we have (29). Theorem 1.4 is proved.

4. Remarks
Let us describe a construction of a maximal intersecting family which generalizes examples from
[4] and [7]. Let G be a tournament on the vertex set {1, . . . ,m} and let K1, . . . ,Km be a sequence
of disjoint non-empty sets. Let Ki be the family of all sets F such that Ki ⊂ F and for i �= j:

|F ∩Kj| =
{
1, if (i, j) ∈G,

0, if (i, j) �∈G.

It is clear from this definition that the family F =K1 ∪ . . . ∪Km is intersecting. Let di be the
outdegree of the vertex i and let n>max di. If we let |Ki| = n− di, then the family F is n-uniform
and intersecting.

It is not difficult to characterize all minimal coverings ofF . First, observe that if T is a minimal
covering of F then |T ∩Ki| ∈ {0, 1, |Ki|}. Then for every minimal covering T, we can define two
sets A, B⊂ [m], namely, A is the set of all i such that |C ∩Ki| = 1 and B is the set of all i such that
Ki ⊂ T. Now the fact that T is a covering is equivalent to the assertion that A∪ B∪Nin(B)= [m],
where Nin(B) denotes the set of all vertices of G from which there is an edge to B.

Example 1. If we let G to be the linearly ordered complete directed graph, then F coincides with
the family constructed by Erdős–Lovász [4]. In this case, τ (F)= n and |F | is approximately n!.
Example 2. Let G be graph on the vertex set Z2t−1 ∪ {v}, where the vertices i, j ∈Z2t−1 from the
cyclic group are connected if j− i ∈ [1, t − 1] and the vertex v has outdegree 2t − 1. In this case,
we have n= 2t, τ (F)= n and |F | is approximately

(n
2
)n. Note that the main contribution to the

size of F comes from the family Kv corresponding to the vertex v.2
It is not hard to see that the construction in the second example gives the maximum size of F

among all constructions of this type.
The construction above and the decomposition (33) which we used in the proof of Theorem 1.1

suggest to consider the following special class of families. Let K1, . . . ,Kn be disjoint sets such that
|Ki| = n− ai. Let Ki be an n-uniform family of sets containing Ki. Let F =K1 ∪ . . . ∪Kn and
suppose that τ (F)= n and F is intersecting.

2The construction of a maximal intersecting family of size (n/2)n for odd n is a bit more delicate, see [7].
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Conjecture 1 ([11]). In the situation described above we have
∑n

i=1 ai �
(
n
2

)
. Moreover, the

condition that |Ki| = n− ai can be replaced by the condition that Ki is (|Ki| + ai)-uniform.

Note that, if true, Conjecture 1 is best possible: we can take G to be a graph whose outdegrees
are precisely a1, . . . , an and then use the construction of an n-uniform family F described above.
One can easily produce sequences of degrees a1, . . . , an such that the corresponding graph exists
and τ (F)= n.

Note that if there is a counterexample to Conjecture 1 such that, say, ai ∼ n1−ε for some ε > 0
and every i= 1, . . . , n, then one can construct a very large maximal intersecting family as follows.

Let F0 =K1 ∪ . . . ∪Kn be an n-uniform family such that τ (F0)= n. Then any set F such that
|F ∩Ki| = 1, for every i, is a minimal covering of F0. Denote the family of all such sets by F ′

1. We
have

cn(F0)� n−n|F ′
1| = n−n

n∏
i=1

(n− ai)∼ (1− n−ε)n ∼ e−n1−ε

.

Moreover, if we letF1 be an (n+ 1)-uniform family of sets F ∪ {x0}, where F ∈F ′
1 and x0 is a ‘new’

element of the ground set, then F =F0 ∪F1 is an intersecting family of n and n+ 1 element sets
such that τ (F)= n and each member of F is a minimal covering of F . The family F has size at
least e−n1−εnn and so it essentially contradicts the conjecture of Frankl–Ota–Tokushige [7].

In the setting of Conjecture 1, we were only able to prove the lower bound
∑n

i=1 ai � n3/2 but
any improvement seems to require new ideas.
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