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We present Vlasov–Poisson three-dimensional linear stability analysis of an initially
planar electron hole structure, solving for the distribution function by integration along
unperturbed orbits. The non-sinusoidal potential perturbation shape (parallel to B) is
expanded in eigenfunctions of the adiabatic Poisson operator, generalizing the prior
assumption of a rigid shift of the equilibrium. We show that the shiftmode is then modified
by a second discrete mode plus an integral over a continuum of wave-like modes. A
rigorous treatment shows that the continuum can be approximated effectively by a single
mode that satisfies the external wave dispersion relation, thus making the perturbation a
weighted sum of three modes. We find numerically the solution for the complex instability
frequency, and the corresponding three mode amplitudes determining the perturbation
eigenmode. This multimode analysis refines the accuracy of the prior single-mode results,
giving slightly higher growth rates at most parameters, as expected from the extra
mode shape freedom. Oscillating modes near stability boundaries have larger mode
distortions which help explain particle-in-cell simulations that observe instability up to
∼20 % beyond the prior shiftmode thresholds, and narrowing of the perturbation. At high
magnetic field, the multimode analysis predicts a reduction of the already small growth
rate.
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1. Introduction

Electron holes are nonlinear solitary BGK (Bernstein, Greene & Kruskal 1957)
electrostatic structures sustained by electron trapping (Hutchinson 2017), which occur
widely in space plasmas. For a recent summary of observations, see e.g. Lotekar et al.
(2020) and references therein. The theoretical stability of electron holes to motions
with sinusoidal variation transverse to a magnetic field has recently been extensively
analysed assuming that the relevant unstable perturbation is a parallel, kink-like, uniform
shift of the hole position (Hutchinson 2018a,b, 2019a,b). In that work the dispersion
relation’s complex frequency ω was found using a ‘Rayleigh quotient’ (Parlett 1974) which
provides an approximation accurate to second order in any deviations from the exact
unstable mode structure, and is equivalent to solving the hole’s overall momentum balance
(Hutchinson & Zhou 2016). The results are in reasonable agreement with particle-in-cell
(PIC) simulations, but some discrepancies have been noted. The purpose of the present
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2 X. Chen and I.H. Hutchinson

work is to discover whether more accurate mode parallel shape determination, including
deviations from the shiftmode, can explain those discrepancies, and to quantify by analysis
how important the deviations are.

Two main phenomena have been observed in transverse instability PIC simulations
that are not well represented by the shiftmode analysis. They are (1) narrowing of the
unstable mode structure relative to the shiftmode when near marginal oscillatory stability
(Hutchinson 2019b) and (2) generation of long parallel length external ‘streaks’ or waves
on the whistler branch during oscillatory instability at high magnetic field (Hutchinson
2019a).

Our approach to managing a generalization of the unstable mode of a Vlasov–Poisson
problem, following long-standing mathematical analysis (Lewis & Symon 1979; Symon,
Seyler & Lewis 1982), is to represent the perturbation of potential in terms of the
orthogonal eigenmodes of a judiciously chosen differential operator. In the present
context, the operator generally used (Lewis & Seyler 1982) represents the Poisson
equation for steady (or very slowly varying) potential (∇2φ − n = 0 in appropriately
normalized units). The charged particle density difference n0(z) associated with the
potential equilibrium φ0(z) can be determined from this equation. Then for infinitesimally
slow linearized potential perturbations φ1 about this equilibrium, the perturbed density
is n1 = φ1 dn0/dφ0, and the resulting Poisson equation can be written using the operator
Va ≡ (∇2 − dn0/dφ0) acting on φ1 as Vaφ1 = 0. This Va is called the ‘adiabatic’ operator,
and the associated density perturbation n1 the adiabatic density (perturbation). For low
frequencies, expansion of the potential perturbation is most naturally in terms of the
eigenmodes of Va. For purely growing instabilities ω = 0 + iωi, at the threshold ωi ∼
0, evidently the adiabatic response is nearly equal to the total because changes are
infinitesimally slow; so the non-adiabatic part Ṽ of the operator is small compared with Va
in the perturbed Poisson equation. Consequently to lowest order the perturbation-unstable
mode is equal to the eigenmode of Va with zero eigenvalue. For a solitary potential
structure in a uniform background, such a zero eigenvalue always exists, and its eigenmode
has the form of a uniform shift of the equilibrium.

By the preceding argument, determining where ωi = 0, i.e. the stability threshold,
can be accomplished exactly using just the shiftmode, provided that the real part ωr
of the mode frequency is zero. However, some hole instabilities are oscillatory, ωr �= 0,
ωi > 0, and even if they are not we may wish to find a finite ωi value. Then the unstable
mode is not purely the shiftmode, and the extent to which it includes contributions
from other eigenmodes of Va becomes an important question. It can be explored by
carrying the perturbation analysis to first order in the other eigenmodes, in much the
way that time-independent perturbation theory is used in quantum mechanics. This
approach was successfully pursued in an early study of the one-dimensional instability
of a train of electron holes that leads eventually to hole merger (Schwarzmeier et al.
1979). However, the few subsequent efforts to apply it (Schamel 1982, 1987; Collantes
& Turikov 1988) have been of limited utility either because of expanding about the
wrong eigenmode (symmetric and not having zero eigenvalue) or, more fundamentally,
because of adopting inappropriate approximations to the solution of the Vlasov equation
(Jovanović & Schamel 2002), which constitutes the complementary (and more difficult)
part of the Poisson–Vlasov system: the non-adiabatic perturbation. A more recent
one-dimensional analysis (Dokgo et al. 2016) of sech2(z/�) shaped holes considered their
sole antisymmetric discrete adiabatic eigenmode, which is simply the shiftmode.

A separate thread of this question is the coupling, observed in simulations (Oppenheim,
Newman & Goldman 1999; Oppenheim et al. 2001; Lu et al. 2008), of hole instabilities
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at high magnetic field to long-wavelength external perturbation ‘streaks’ identified as
belonging to the cold plasma whistler branch. Previous analyses (Newman et al. 2001;
Vetoulis & Oppenheim 2001; Berthomier et al. 2002) theorized that coupling to these
waves was the primary cause of instability at high field, but adopted unjustified ad hoc
expressions for the coupling. Recently it was shown that the high-field instability is not
explicitly caused by the coupling (Hutchinson 2019a), but since simulations show that
external coupling can affect the instability, an interesting question remains as to how to
calculate it self-consistently.

The present approach solves the Vlasov problem without expansion, by integration over
the prior orbit, numerically in the hole region. In the process the solution for wave coupling
emerges rigorously from the mathematical analysis. Moreover we avoid any perturbative
approximation for the relative amplitudes of the different modes. Instead we show how,
in addition to a single extra discrete eigenmode contribution, the eigenmode continuum
contribution can be approximately represented through a single amplitude corresponding
to the external wave dispersion relation. Section 2 explains the eigenmodes and the
expansion. Section 3 shows for the Vlasov operator form how the continuum modes
can be included and reduced to effectively a single contribution. Section 4 discusses the
numerical and analytic evaluations needed. Section 5 presents results.

Prior analysis has been, like the present work, of linearized stability. The nonlinear
consequences, observed in simulations, are generally that the holes break up, becoming of
limited transverse extent and of reduced amplitude. The resulting three-dimensional holes
can, it seems, become stable because the unstable wavenumber modes do not fit within
their transverse extent. However, nonlinear hole breakup is beyond the present scope.

2. Eigenmode expansion

Let us adopt a minimalist bra–ket notation for the adiabatic eigenmodes in which
we expand |e〉, where the label e being either real p, q, . . . or integer j, l, . . . will
denote respectively continuum or discrete eigenmodes. The inner product of any two
Hilbert-space vectors (complex potential functions of z) denotes an overlap integral
over (parallel) spatial coordinate 〈u|s〉 ≡ ∫

u∗(z)s(z) dz. Insofar as the eigenmodes are
orthonormal, we write 〈u|s〉 = δus, where for continuum modes such that u and s are
real parameters this is (approximately) a Dirac delta function, δus = δ(u − s), whereas
for discrete modes δjl is the Kronecker delta.

2.1. Adiabatic response eigenmodes
In units scaled to Debye length, electron background density and electron thermal
energy, the one-dimensional Poisson equation, assuming immobile uniform ion density, is
d2φ/dz2 = n − 1. The equilibrium analysed is chosen to be of the form φ0 = ψ sech4(z/4).
Writing for brevity S = sech(z/4) and T = tanh(z/4) and denoting the z derivative by
prime, the linearized equilibrium (‘adiabatic’) Poisson operator for this hole potential can
then be written

Va =
[

d2

dz2
− dn

dφ0

]
=
[

d2

dz2
− φ

′′′
0

φ′
0

]
=
[

d2

dz2
+ 30

16
S2 − 1

]
. (2.1)

Notation V reminds us that this is partly the Vlasov operator, transforming a potential into
a density, and the subscript a denotes adiabatic (meaning steady). The eigenmodes of this
operator, satisfying Va|u〉 = λ|u〉, can be found (see Appendix A) by applying the raising
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Mode Eigenvalue Normalized form

|1〉 −15/16 S(21S4 − 28S2 + 8)
√

30/32

|2〉 −12/16 TS2(3S2 − 2)
√

105/8

|3〉 −7/16 −S3(9S2 − 8)
√

105/32

|4〉 0 −3TS4
√

70/16

|5〉 9/16 3S5
√

35/32

TABLE 1. Discrete eigenmodes.

operator 4(d/dz)− lT for l = 1, 2, 3, 4, 5 to the function euz/4 yielding

|u〉(z) = exp(uz/4){[−15u4 + (420S2 − 225)u2 − 945S4 + 840S2 − 120]T

+ u[u4 + (−105S2 + 85)u2 + (945S4 − 1155S2 + 274)]}. (2.2)

For real u, as uz → +∞ the mode is bounded (and tends to zero) only if u is one of the
discrete roots of the polynomial in the braces obtained by letting S → 0 and T → sign(u).
These are u = j = 1, 2, 3, 4, 5. The odd-numbered discrete modes are symmetric in z, and
the even-numbered are antisymmetric. In contrast, imaginary u values u = ip give rise to
the continuum modes which are formally finite at infinity. Their overlap integral over a
finite domain exists; and, as the domain tends to infinity, it tends to a delta function. The
continuum eigenmodes have definite parity only if u reverses sign with z; so we write
u = iσzp, where σz = sign(z) and positive p represents antisymmetric outwardly
propagating waves.

The corresponding eigenvalues are

λu = u2/16 − 1 = −p2/16 − 1. (2.3)

Normalized so that 〈j|l〉 = δjl, they are given in table 1.
In particular λ4 = 0 for the shiftmode |4〉 ∝ dφ0/dz, and it is the predominant

perturbation in essentially all linear electron hole instabilities. Moreover, it couples only to
antisymmetric modes; so |2〉 is the only other discrete mode that needs to be considered.

It can be shown that the the continuum modes are ‘normalized’, in the sense that then
〈p|q〉 = δpq = δ( p − q), by dividing (2.2) by the factor

[8π( p2 + 12)( p2 + 22)( p2 + 32)( p2 + 42)( p2 + 52)]1/2. (2.4)

Far from the hole (|z| � 1) the normalized oscillatory continuum modes are sinusoidal
with amplitude 1/

√
8π = 0.19947 and parallel wavenumber |k‖| = p/4. The eigenmodes

are plotted in figure 1.

2.2. Including non-adiabatic response
We now must consider the full linearized Poisson equation including the non-adiabatic
response arising from the solution to the time-dependent Vlasov equation, Ṽ , as well as
the adiabatic response Va. The form of the non-adiabatic Vlasov operator Ṽ is discussed
later. For a perturbation φ1( y, z, t) = φ̂(z) exp(i(k⊥y − ωt)) with transverse wavenumber
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FIGURE 1. Eigenmodes of the adiabatic response operator.

k⊥ and frequency ω, Poisson’s equation becomes

(−k2
⊥ + Va + Ṽ)|φ̂〉 = 0, (2.5)

in which it is convenient to regard k2
⊥ ≡ λ⊥ as the full eigenvalue. We suppose the solution

for potential can be expanded as a sum of scalar amplitudes au times the eigenmodes |u〉
of Va:

|φ̂〉 =
∑

u

au|u〉, (2.6)

where the summation notation also includes an integral over the continuum modes.
Then we can invoke the orthogonal properties of the adiabatic eigenmodes and form the

inner product:

〈s|(Va + Ṽ)|φ̂〉 = λs〈s|s〉as +
∑

u

〈s|Ṽ|u〉au, (2.7)

which must be equal to λ⊥〈s|s〉as to satisfy (2.5). In particular, choosing the predominant
mode 〈4| for 〈s|, for which λ4 = 0, we get an eigenvalue equation 0 = (λ4 − λ⊥)〈4|4〉a4 +∑

u〈4|Ṽ|u〉au.
If all the amplitudes au for u �= 4 are negligible, then Ṽ contributes a correction (λ(1)4 ) to

the eigenvalue:

λ(1)4 = 〈4|Ṽ|4〉
〈4|4〉 = λ⊥−λ4. (2.8)

The expression 〈4|Ṽ|4〉/〈4|4〉 is the ‘Rayleigh quotient’ approximation for the eigenvalue
of Va + Ṽ (because λ4 = 0). It is physically the (normalized) jetting force on particles
because of the unperturbed electric field −dφ0/dz ∝ 〈4|, acting on the non-adiabatic
density perturbation ñ = Ṽ|4〉, integrated over the entire hole. It balances the (normalized)
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6 X. Chen and I.H. Hutchinson

Maxwell shear stress from the transverse kinking of the hole (k2
⊥) to make the total force

zero.
Actually Ṽ is a complicated nonlinear function of the complex frequency ω of the mode;

and for specified k⊥ the dispersion relation between ω and k⊥ must be solved by some kind
of iterative procedure searching for an ω that satisfies (2.8). The imaginary part of ω
thus found determines the stability of the hole. This approximation has yielded stability
results (Hutchinson 2018b, 2019a,b) that are in reasonable (but not perfect) agreement
with simulation. The question at hand is whether analysis can determine approximately
the magnitude of the other coefficients au for u �= 4, and therefore give a more accurate
perturbation structure |φ̂〉 and ω.

If instead of the approximation (2.8) we are able to evaluate all the matrix coefficients
〈s|Ṽ|u〉, then in principle we can regard (2.7) instead of (2.8) as a matrix eigensystem we
must solve to find the ω that permits a non-zero solution for the vector au. The off-diagonal
matrix entries s �= u are the coupling of the potential modes by the non-adiabatic Vlasov
operator Ṽ . The condition for the existence of a solution is that the determinant of the
matrix [(−λ⊥ + λs)〈s|s〉δsu + 〈s|Ṽ|u〉] should be zero.

Such a programme faces formidable practical challenges, however, because each
evaluation of Ṽ|u〉 requires a computation involving multiple-dimension integrations over
space and velocity distribution – repeated for each mode |u〉 and each adjustment of ω.
Moreover, in principle, the continuum contains infinitely many modes, and the matrix
contains the square of the number of modes. Obviously we require this number to be
reduced. We can immediately restrict our attention just to antisymmetric modes, since
by assumed symmetry no coupling to symmetric modes occurs. We later show how the
entire continuum contribution can be reduced to a single amplitude. Continuum modes |p〉
extend to |z| = ∞, an integration range that for computation needs to be reduced, and have
formally divergent inner products. We show how these difficulties are negotiated.

Formally, any mode for which Ṽ|u〉au is not negligible must be retained in the sum of
〈s|Ṽ|u〉 in (2.7), giving for the dominant mode

0 = (λ4 − λ⊥)〈4|4〉a4 + 〈4|Ṽ|4〉a4 +
∑
u�=4

〈4|Ṽ|u〉au, (2.9)

but also for s �= 4

0 = (λs − λ⊥)〈s|s〉as + 〈s|Ṽ|4〉a4 +
∑
u�=4

〈s|Ṽ|u〉as. (2.10)

The well-known approach of time-independent perturbation theory in elementary
quantum mechanics (see e.g. Dirac 1958, § 43) regards Ṽ as systematically small, and
takes as for s �= 4 also to be first-order small relative to a4. The first-order approximation
of (2.10) then drops the final sum term, giving

as � 〈s|Ṽ|4〉a4

(λ⊥−λs)〈s|s〉 . (2.11)

Substituting back (with s → u) into (2.9), the eigenvalue to second order is

λ⊥ � λ4 + λ(1)4 + λ(2)4 = λ4 + 〈4|Ṽ|4〉
〈4|4〉 +

∑
u�=4

〈4|Ṽ|u〉〈u|Ṽ|4〉
(λ⊥−λu)〈4|4〉〈u|u〉 . (2.12)
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Normally the substitution λ⊥ � λ4 is made in the final sum; but we do not need to do that
since we consider λ⊥ to be given and ω to be changed to achieve equality in this equation.

These perturbation equations (2.11) and (2.12) are appropriate for coupled discrete
modes |j〉 when the amplitudes au〈u|u〉 for u �= 4 are small compared with a4〈4|4〉. Those
equations give the first-order mode amplitude and second-order eigenvalue correction
from them. However, in our case, for the continuum modes, Ṽ is not systematically small
everywhere, and an altered approach appropriate to the actual form of Ṽ must be adopted.
We shall see that in order to obtain converged integrals for the relevant continuum inner
products it is necessary to use the difference between Ṽ|q〉 and a pure wave operator
expression Ṽw|q〉.
3. The eigenmode coefficients

3.1. The non-adiabatic linearized Vlasov operator

The operator Ṽ transforms a potential perturbation |u〉 into a non-adiabatic density
perturbation ñ, both of which are complex functions of z. It does so by solving the
linearized time-dependent Vlasov equation for the non-adiabatic distribution function
perturbation f̃ (z, v) and integrating it: ñ = ∫

f̃ dv. The solution can be found in terms
of an integral over past time along the linearized Vlasov equation’s ‘characteristic’, that
is, the unperturbed orbit x(t), giving an integral expression

Φ(x, v, t) ≡
∫ t

−∞
φ1(x(τ ), t − τ) dτ, (3.1)

where φ1(x, t) is the potential perturbation and x(τ ) is the past position of the unperturbed
orbit that has velocity v at (x, t). The units of time adopted are 1/ωpe: the inverse of the
electron plasma frequency. When a uniform magnetic field in the z direction is present with
electron cyclotron frequency Ω and the background perpendicular velocity distribution is
Maxwellian, then the transverse perpendicular velocity dependence can be expressed as a
sum over cyclotron harmonics (Hutchinson 2018b). The non-adiabatic parallel distribution
function perturbation is then

f̃ (z, y, v, t) = exp(i(k⊥y − ωt))
∞∑

m=−∞
f̃m(z, v) = exp(i(k⊥y − ωt))

∞∑
m=−∞

bmΦm, (3.2)

with

bm = i
[
ωm
∂f‖0

∂W‖
+ mΩ

f‖0

T⊥

]
qee−ζ 2

t Im(ζ
2
t ), Φm =

∫ t

−∞
φ̂(z(τ ))e−iωm(τ−t) dτ. (3.3a,b)

Here ζ 2
t = k2T⊥/Ω2me, where T⊥ is the perpendicular temperature, Im is the modified

Bessel function and ωm = mΩ + ω. The unperturbed equilibrium parallel distribution
function depends only on parallel energy W‖ (not z directly) and is written f‖0, but for
the perturbed parallel distributions we omit the ‖ subscript for brevity, and from now on
omit the y, t dependencies as implicitly exp(i(k⊥y − ωt)) (so in Φm, the upper limit is
t = 0). The prior integralΦm is a function of parallel position z and velocity v. The weight
bm is independent of z but depends on W‖ through the f‖0 distribution. We can regard each
harmonic m as giving a perturbed density contribution ñm(z) = ∫

f̃m dv. When φ̂ is a sum

https://doi.org/10.1017/S0022377822001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822001143


8 X. Chen and I.H. Hutchinson

over modes |u〉,

ñm = Ṽm|φ̂〉 = Ṽm

∑
u

au|u〉 =
∫ ∑

u

auf̃um dv =
∑

u

auñum, (3.4)

where f̃um denotes f̃m with |φ̂〉 = |u〉 substituted in (3.2), and similarly ñum = ∫
f̃um dv. Then

Ṽ|φ̂〉 = ∑
m Ṽm|φ̂〉 = ∑

u,m auñum.
Solving analytically for Φm and nm in the non-uniform equilibrium of an electron

hole seems too difficult. The approach taken here is to perform the required integrations
numerically. Evaluation of ñum is performed using the same code for each m, but using the
different ωm in (3.3a,b). The inner products we need are 〈s|Ṽ|u〉 = ∫∞

−∞ s∗(z)ñu(z) dz.

3.2. The external continuum wave contribution
In the region far outside the hole, |z/4| � 1 where T = tanh(z/4) → ±1 and
S = sech(z/4) → 0 in (2.2), the normalized continuum modes (taking them to be
antisymmetrically outward-propagating) are

|p〉 = Aeiσzpz/4 = σz
(−15p4 + 225p2 − 120)+ ip( p4 − 85p2 + 274)

[8π( p2 + 12)( p2 + 22)( p2 + 32)( p2 + 42)( p2 + 52)]1/2
eiσzpz/4,

(3.5)

where σz = sign(z). Thus they are purely sinusoidal waves. For large enough |z| the
influence of the local hole potential becomes negligible, and such waves should there
be identified with the normal modes of the uniform background plasma. The applicable
normal mode for the present electrostatic approximation, in the (usually well-justified)
cold electrostatic limit, ignoring ion response, has dispersion relation (including the upper
hybrid waves)

k2
‖/k

2
⊥ = ω2(Ω2 + ω2

pe − ω2)

(Ω2 − ω2)(ω2
pe − ω2)

. (3.6)

(In our normalized units ωpe = 1.) Assuming that ω and k⊥ are prescribed, there is only
one |k‖| that satisfies this dispersion relation; and corresponding to it, the continuum
eigenmode of Va has k‖ = σzp/4. The mode number p is taken positive, but k‖ is signed. In
this subsection we analyse just this single mode. The approach is mathematically justified
in the following subsection.

For a single continuum mode, one can immediately calculate the value of Φm(z) for
external positions and inward orbit velocity (e.g. negative v on the positive-z side) using
z′ = z(τ ) and τ = −(z − z′)/v, as

Φwave
m (z) =

∫ z

σz∞
A exp(i[σzpz′/4 + ωm(z − z′)/v]) dz′/v = Aeiσzpz/4

i(σzpv/4 − ωm)
= Aeik‖z

i(k‖v − ωm)
,

(3.7)

where dropping the infinity limit is justified by positive imaginary part of ω. This Φwave
m

for the external region applies for all z down to where the eigenmode begins to deviate
significantly, because of non-zero hole potential, from the external wave; obviously that z
is of the order of a few times 4.

The non-adiabatic distribution perturbation for outward (positive v at positive z) orbit
velocity, by contrast, is strongly affected by the rapid variation of potential across the
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Multimode theory of electron hole transverse instability 9

hole at z ∼ 0 whose effect is carried into the external region by the particle orbits.
However, for large enough |z| the effects of the hole and earlier parts of the orbit
become negligible because of dephasing between oscillatory contributions from different
velocities. The dephasing effect attenuates the influence on density in a distance of several
times zl ∼ 1/ωm, which is finite but (for m = 0 at least) typically exceeds the hole extent
itself (∼4) because ω is small. Thus the very distant (|z| � zl) ñ perturbations for inward-
and outward-going velocities are given approximately by integrating dv the same Φwave

m
expression for z � zl, but with v of opposite sign.

The total wave density perturbation can then be considered to be a constant Ṽwave
m times

|p〉, where

Ṽwave
m =

∫ ∞

−∞

bm(v)

i(k‖v − ωm)
dv. (3.8)

If f‖0 is an unshifted Maxwellian, and only m = 0 is included, the total wave operator Ṽw ≡∑
m Ṽwave

m is proportional to the plasma dispersion function Z, and in the small k‖/ω limit
becomes Ṽw = 1 + (k‖/ω)2. However, that approximation effectively implements the limit
Ω � ωpe, and gives a dispersion relation k2

‖/k
2
⊥ = ω2/(ω2

pe − ω2), rather than the full cold
plasma expression for finiteΩ/ω: (3.6). The full expression arises when the |m| = 1 terms
in the harmonic sum for the kinetic electrostatic dispersion relation (see e.g. Swanson
1989, § 4.4) are also included, to lowest order in ζ 2

t . The resulting analytic form is

Ṽw = 1 +
(

k‖
ω

)2

+ k2
⊥

T⊥/T‖
ω2 −Ω2

. (3.9)

The crucial point is that (Ṽ − Ṽw)|q〉 is localized, tending to zero in the region beyond
zl, which means that overlap integrals of the form 〈p|Ṽ − Ṽw|q〉 exist finite over an infinite
domain. An important secondary feature is that, for external positions |z| ≥ zd (where the
effective hole edge zd is great enough that φ0(zd) = 0), the inward velocity part of Ṽwave

m ,
consisting of

Ṽ in
m =

∫ ∞

0

bm(−σx|v|)
i(−|k‖v| − ωm)

σx d|v|, (3.10)

is exactly equal to the actual non-adiabatic density perturbation that accounts for the hole’s
presence and the full eigenmode structure. So the cancellation of the part of Ṽ − Ṽw

for inward orbits only is exact (Ṽ in − Ṽ in
m )|q〉 = 0. Therefore the non-zero contribution

to external region z integrals of (Ṽ − Ṽw)|q〉 arises only from outward orbits (Ṽout −
Ṽout

m )|q〉 �= 0. The necessary integral of outward orbits, however, must be carried out to
an upper limit for which |z| � zl � zd. We consider explicitly only parallel distributions
f‖0 that are symmetric in v. In that case bm is symmetric, and the overlap integrals can be
calculated for a single sign of v and then doubled to give the total.

3.3. Reducing the continuum to give the dispersion matrix
Now we discuss mathematically how the previous considerations allow us to reduce the
continuum contribution to effectively a single mode. Using s, u → q, p etc. to observe
our notation for continuum modes, and supposing them to be normalized (〈q|p〉 = δqp),
we write the continuum part of (2.10) explicitly as an integral a( p) dp over an amplitude
distribution function a( p) rather than a sum. Proceeding with no assumption about the
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size of cross-coupling of secondary modes, the eigenmode equation inner product with
mode 〈s| gives the re-expressed (2.10) as

0 = (λs − λ⊥)〈s|s〉as +
∑

j

〈s|Ṽ|j〉aj +
∫

〈s|Ṽ|p〉a( p) dp. (3.11)

We apply this equation for the three modes s = 4, 2, q. First for the continuum mode (〈s| =
〈q|) with the adiabatic terms moved to the left-hand side:

(−λ(q)+ λ⊥)a(q) =
∑

j

〈q|Ṽ|j〉aj +
∫

〈q|Ṽ|p〉a( p) dp. (3.12)

We write the continuum integral using 〈q|Ṽw|p〉 = Ṽwδqp as

∫
〈q|Ṽ|p〉a( p) dp =

∫
〈q|Ṽw + (Ṽ − Ṽw)|p〉a( p) dp = Ṽwa(q)+

∫
〈q|(Ṽ − Ṽw)|p〉a( p) dp.

(3.13)

The final term can be approximated by observing that, by construction, Ṽ − Ṽw is
significant only in the inner z region. As can be seen in figure 1, the form of the continuum
modes in the inner region is almost independent of p. (Actually for small p, which is
our interest here, the differences are even smaller than that figure shows.) Therefore,
to that degree of approximation, we can replace |p〉 with |q〉 in the final term, giving∫ 〈q|(Ṽ − Ṽw)|p〉a( p) dp � 〈q|Ṽ − Ṽw|q〉 ∫ a( p) dp, and obtain the equation

(−λ(q)+ λ⊥−Ṽw)a(q) =
∑

j

〈q|Ṽ|j〉aj + 〈q|Ṽ − Ṽw|q〉
∫

a( p) dp. (3.14)

Since (by the approximate invariance of the continuum modes in the inner region) the
right-hand side is a weak function of q, this equation implies that a(q) is a resonant
function of q centred on the q value for which its coefficient on the left-hand side is
approximately zero. We can write the coefficient of a(q) using (2.3) −λ(q) = k2

‖ + 1 and
(3.9) as

k2
‖ + k2

⊥ + 1 − Ṽw � k2
⊥

(
1 − T⊥/T‖

ω2 −Ω2

)
+ k2

‖

(
1 − 1

ω2

)
= 1

42

(
1
ω2

− 1
)
(q2

0 − q2),

(3.15)

where

q0 = 4k⊥

√
1 + T⊥/T‖

Ω2 − ω2

/√
1
ω2

− 1. (3.16)

The coefficient (−λ(q)+ λ⊥ − Vw) is zero when q2 = q2
0, which is the dispersion relation

of the wave in a uniform plasma. It is equal to the cold plasma expression (3.6) when
T⊥/T‖ = 1.
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We integrate (3.14) dq/(λ⊥ − λ(q)− Vw), recognizing again the approximate
independence of q of the right-hand side to find

∫
a(q) dq =

∫
dq

λ⊥−λ(q)− Vw

(∑
j

〈q|Ṽ|j〉aj + 〈q|Ṽ − Ṽw|q〉
∫

a( p) dp

)
. (3.17)

In view of the resonant form of the expression for a(q), we can regard the integral
over this resonance

∫
a(q) dq as quantifying the total continuum perturbation. The integral

encounters the two poles of the integrand at q = ±q0. Near them the real part of (λ⊥ −
λ(q)− Vw) becomes small. Its imaginary part comes from the small, necessarily positive,
imaginary part of ω = ωr + iωi. It can then quickly be shown that q0 has a small positive
imaginary part: q0 = q0r + iε.

The infinite integral along the real q axis can be closed by returning in the upper
part of the complex plane (Im(q) positive) where the eigenmode tends to zero. The
resonant integral is then just 2πi times the residue at the positive q0 pole, which is the
mathematical justification for our physical assumption of outwardly propagating waves.
Writing it

∫
(dq/λ⊥ − λ(q)− Vw) = 1/K, we find

K � (1/ω2 − 1)q0

16πi
= k⊥

4πi

√
1
ω2

− 1

√
1 + T⊥/T‖

�2 − ω2
. (3.18)

Substituting elsewhere the value q = q0 at the integrand’s pole, and introducing the
shorthand notation

∫
a( p) dp = aq (omitting the subscript 0 on q), (3.17) becomes

(K − 〈q0|Ṽ − Ṽw|q0〉)aq =
∑

j

〈q0|Ṽ|j〉aj. (3.19)

Treatment of the discrete modes uses again the approximation that over the resonance
〈j|Ṽ|p〉 can be regarded as independent of p; then for l = 4, 2:

(λ⊥−λl)al =
∑

j

〈l|Ṽ|j〉aj +
∫

〈l|Ṽ|p〉a( p) dp =
∑

j

〈l|Ṽ|j〉aj + 〈l|Ṽ|q0〉
∫

a( p) dp.

(3.20)

We regard the amplitudes of the three modes 4, 2, q0 as composing a column 3-vector
whose transpose is

aT = (a4, a2, aq) = (a4, a2,

∫
a( p) dp). (3.21)

The three relations in (3.19) and (3.20) can be considered a matrix equation Ma = 0, where

M =
⎡
⎣λ4 − λ⊥+〈4|Ṽ|4〉 〈4|Ṽ|2〉 〈4|Ṽ|q0〉

〈2|Ṽ|4〉 λ2 − λ⊥+〈2|Ṽ|2〉 〈2|Ṽ|q0〉
〈q0|Ṽ|4〉 〈q0|Ṽ|2〉 −K + 〈q0|Ṽ − Ṽw|q0〉

⎤
⎦ . (3.22)

The complex determinant of M must be zero for a non-trivial solution. To connect more
directly with the shiftmode calculation, which simply zeroes the top-left coefficient M11,
and to avoid large values arising from M33, the scaled quantity (denoted D) we actually
zero is the determinant of M divided by the co-factor of M11. If ω is iterated until D = 0,
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12 X. Chen and I.H. Hutchinson

the ω value found will be the corresponding mode frequency, and the mode structure will
be given by the solution of Ma = 0.

Our reduction of the resonant continuum mode uses just the m = 0,±1 cyclotron
harmonics to determine q0. That is justified by supposing that the finite Larmor radius
parameter ζt = k⊥

√
T⊥/me/Ω is small, and recognizing Im(ζ

2
t ) ∝ ζ 2m

t . If instead ζt is not
small (because Ω �� k⊥vt⊥), the dependence e−ζ 2

t predominates in (3.2), and harmonics
up to |m| ∼ 3ζt approximate a continuous integral over the perpendicular Maxwellian,
with the relevant range of ωm approximately ω ± 3k⊥vt⊥. The resultant frequency spread
exceeds ∼ω for the whistler mode (for which ω < Ω) implying that high-harmonic
(i.e. perpendicular Landau) damping is strong. The continuum mode contribution itself is
then suppressed, and it is reasonable to ignore coupling to the continuum modes, reducing
M to its upper-left 2 × 2 submatrix.

4. Evaluation of matrix elements
4.1. Internal numerical evaluation of inner products

The evaluation of the overlap integrals (forces) that appear in M for the inner hole region
is carried out numerically using methods that have been documented in detail previously
(Hutchinson 2018b) for mode |4〉. In summary the process consists, for each relevant orbit
energy W, of numerically integrating to obtain the relationship between z and the prior
time τ for the unperturbed orbit, and simultaneously accumulating the integral Φm(z) for
each mode, using a discrete (but non-uniform) z mesh. Trapped orbits W < 0 require a
sum over all prior bounces in the potential well, which is represented by a multiplying
bounce-resonant factor. Passing orbits use a single transit across the domain −zd < z < zd,
and for the discrete modes there is no external contribution. The continuum mode at the
incoming boundary (zin = −(v/|v|)zd), unlike the discrete modes, has a non-zero value,
which is provided by the wave expression Φm(zin) = Φwave

m , (3.7). Inside the prior time
integration loop, the overlap integrals

∫
s∗(z)f̃m(z) dz are simultaneously accumulated.

Afterwards they are integrated dv over the relevant range of parallel energy W, and
summed over relevant harmonics m to give the hole-region contributions to 〈s|Ṽ|u〉. Except
when s is the continuum mode (the bottom row of M), these internal values provide the
full evaluation of the overlap integrals. For s = q0, however, extra contributions arise from
the external region, which we now describe.

4.2. External analytic integration

In the external region |z| > zd, the prior integral Φ giving f̃ for discrete modes |j〉
is non-zero only for outward-moving orbits. We focus for definiteness on z > zd and
positive v. For inward-moving orbits, by contrast, f̃ is zero externally for the operations
Ṽ|j〉 and (Ṽ − Ṽw)|q0〉. Consequently, the external contribution to the forces 〈q0|Ṽ|j〉 and
〈q0|Ṽ − Ṽm|q0〉 arises from the external integration

∫∞
zd

q∗
0(z)ñ dz only for outward orbits,

indicated by superscript ‘out’ on Ṽ .
To assist with understanding, figure 2 shows a case illustrating the relevant density

perturbations ñq = Ṽout|q〉, ñw = Ṽout
w |q〉 and ñ4 = Ṽ|4〉 arising from positive velocity

orbits. The upper panel shows the relevant curves for the continuum mode in the inner
and outer regions. The densities ñq and ñw are very different in the inner region |z| � zd
and well outside it but they converge to each other in the wave region |z| � zl (zl ∼ 20 for
this relatively high-frequency illustration). Also shown is the curve of Ṽw|q〉/2 which is the
average of the inward and outward densities. It has a shape similar to ñw but is somewhat
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FIGURE 2. Illustrating the process of calculating the inner products involving |q0〉 and |4〉.
Passing density contributions from positive, outward, velocity orbits integrated over all relevant
energies. The square symbol locates the edge of the inner hole region, chosen here as zd = 15.
The scaled Φ shown is for the last included energy W = 6.

smaller because Ṽ in < Ṽout. The relevant contribution comes from the difference between
ñq and ñw.

The lower panel shows ñ4 which is substantial in the inner region and converges to zero
for |z| � zl, and one can see residual oscillations caused by discrete contributions at low
velocity approximating the dv integral, which die out at large z. In the upper panel there are
also some oscillations but they are barely visible. The ‘Φ (scaled)’ curve illustrates (only)
the shape of the final contribution to the velocity integral from high velocity, showing how
long the wavelength of oscillations becomes there; its contribution to ñ is small because
f‖0 is negligible at high v.

Now we explain how the external integrations are performed mostly analytically. In the
external region, the velocity is constant; so for |j〉, which has zero perturbed potential
there, Φ is a simple time delay factor multiplied by its value at the join between internal
and external regions Φ(zd):

Φ|j〉(z) = exp(iωm(z − zd)/v)Φ|j〉(zd). (4.1)

The corresponding expression for the continuum mode, which has non-zero external
potential, may be found by substituting the wave expression (3.7) for |q0〉 which can be
integrated analytically to give an extra term, arriving at

Φ|q0〉(z) = exp(iωm(z − zd)/v)Φ|q0〉(zd)+ A exp(ik‖zd)

i(k‖v − ωm)
[exp(ik‖(z − zd))− exp(iωm(z − zd)/v)].

(4.2)

Recalling that the wave operator is simply constant, its external contribution to Φ|w〉 for
a particular positive velocity is Aeik‖z/i(k‖v − ωm), which exactly cancels the first term in
the square bracket of Φ|q0〉(z). Such cancellation is essential to produce a finite value for
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〈q0|Ṽ − Ṽw|q0〉. Hence, when forming (Ṽ − Ṽw)|q0〉, the required external prior integral is

Φ|q0−w〉(z) ≡ Φ|q0〉(z)−Φ|w〉 = exp(iωm(z − zd)/v)Φ|q0〉(zd)− A exp(ik‖zd)

i(k‖v − ωm)
exp(iωm(z − zd)/v).

(4.3)

To obtain the total external force we can carry out the inner product z-integration
analytically as ∫ ∞

zd

q∗
0(z)Φu(z) dz = A∗Φu(zd)ve−ik‖zd

i(k‖v − ωm)
+ δq0u|A|2v
(k‖v − ωm)2

, (4.4)

where Φu refers to the ‘ket’ mode (j or q0 − w) and the |A|2 term is present only if we are
constructing 〈q0|Ṽ − Ṽw)|q0〉, as indicated by δq0u. This force quantity is multiplied by the
weighting factor bm (3.3a,b) and integrated (numerically) over parallel velocity so as to
produce the total inner product. For asymmetric f‖0 the process would need to be carried
out also for negative velocity and z, but since we take f‖0 to be symmetric the integration is
carried out only for positive v and z; the result is then doubled to account for force exerted
at negative z. The sum over relevant cyclotron harmonics m is performed last.

In verification of the fairly complex coding we have compared results for mode |4〉 with
prior calculations, confirmed certain analytic self-adjoint properties of the different modes
and debugged the m = 0 results by benchmark comparisons between two independent
implementations of the calculation (in Fortran and Python).

5. Results

Figure 3 gives a comprehensive overview of the the existence of instability as a function
of magnetic field strength, in appropriately scaled units; frequencies (figure 3a) are
generally proportional to

√
ψ (except at high magnetic field beyond the plotted range),

and the scaled figure changes only a little for different values of ψ . There are broadly three
field-strength regimes, as has been documented in prior publications. At low magnetic field
Ω/

√
ψ � 0.35, a purely growing instability exists: ωr = 0, ωi > 0. At intermediate field

0.35 � Ω/
√
ψ � 0.65, an oscillating instability ωr > 0 exists with growth rate only of the

order of a factor of two smaller than the low-field regime. At higher field 0.65 � Ω/
√
ψ ,

growth rates ωi are either zero, indicating no instability was found, or extremely small
but positive, which occurs increasingly at higher Ω/

√
ψ (and lower k⊥); the unstable

high-field cases have real oscillation frequencies comparable to those in the intermediate
regime. We plot also, in the lower panel of figure 3(a), the difference δω between the
frequencies found by the multimode and shiftmode calculations. These differences are
generally small and the different ω scale should be noted. Their imaginary part δωi is
always positive in the low-field regime, almost always positive in the intermediate regime
and almost always negative (and much smaller) in the high-field regime. The real part
δωr has some positive differences in the intermediate regime, especially its upper end, but
elsewhere is very small.

The additional mode amplitudes (figure 3b) accompanying these calculations show
that the discrete mode 2 real amplitude is substantial and generally negative in the two
lower-field regimes, but slightly positive in the high-field regime. Its imaginary amplitude
is substantial only in the upper part of the intermediate regime. The continuum mode
amplitude is effectively zero in the purely growing regime, but substantially negative
imaginary in the intermediate regime. It is mostly real, negative and somewhat smaller
in the high-field regime.
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(b)(a)

FIGURE 3. (a) Frequency ω and frequency difference between multimode and shiftmode
calculations δω and (b) additional mode amplitudes a2/a4 and aq/a4, all as a function of Ω ,
but for four different values of k⊥.

The overall picture is that there are only rather small differences between the
multimode and shiftmode eigenfrequencies, and that almost all results show the multimode
to be somewhat more unstable in the two lower-field regimes. This summary is in
reasonable agreement with prior expectations. The additional multimode shape flexibility
slightly enhances instability growth rates, but overall the shiftmode gives rather accurate
eigenfrequencies.

To help explain the mechanisms underlying the three regimes, figure 4 shows contours
in the ω plane of the residual of the force balance parameter whose roots are found in the
prior figures. Figure 4(a) shows the high-field regime, plotting contours of the real and
imaginary parts of the pure shiftmode force balance M11. The eigenfrequency is where the
two zero contours (blue and green solid lines) intersect, at very small ωi. In addition, the
zero contours of D, the multimode equation, are plotted as long-dashed lines. Actually the
real D = 0 contour is invisible, but lies just below the (corresponding) imaginary M11 = 0,
where ωi is small. The two calculations agree on the eigenfrequency quite closely; more
detail is given of this regime later.

Figure 4(b), by contrast, shows the low-field regime in which the instability is purely
growing. Contours of D are shown, plus the zero shiftmode contour of M11; the zero
imaginary contours coincide with the vertical axis. The Newton iterations, which find
this intersection precisely, are indicated with iteration numbers at the corresponding
frequencies. The multimode growth rate slightly exceeds that of the shiftmode. The
mechanisms governing the instability are the same as those identified in shiftmode analysis
(Hutchinson 2018a, 2019b).

The intermediate-field regime is illustrated in figure 5. In figure 5(a) we show the
contours, and observe this to be a case where there is a visible difference between the
locations of the zero intersections (the eigenfrequencies) in the vicinity of ω/

√
ψ =

0.11 + 0.01i, for multimode and shiftmode. This difference arises mostly from the real part
of D. In figure 5(b) are shown plots of the corresponding multimode potential perturbation
as a function of position z. In the upper panel one sees that in addition to mode 4
contribution, which far exceeds the vertical axis length, there is a substantial (up to 0.08)
real contribution from mode 2 (a2/a4 = −0.21 − 0.025i). The resultant total (real) mode
shape is shown in the lower panel by the solid line, with the mode 4 contribution alone
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(b)(a)

FIGURE 4. Contours of force balance quantities which should be zero for the eigenfrequency.
(a) High-magnetic-field regime showing shiftmode contours and multimode zero contours
(long-dashed curves). (b) Low-field regime showing multimode D contours and shiftmode zero
contours (long-dashed curves), but also the Newton steps to convergence.

shown dotted. We observe that the mode 2 contribution increases the total perturbation
for |z| � 0.25 and decreases it for |z| � 0.25. The multimode distortion tends to enhance
the influence of deeply trapped particles (concentrated near z = 0) and decrease that of
marginally trapped particles, which spend most of their time at large |z|. This effect
qualitatively explains the greater growth rate of the multimode instability because, as has
been noted before (Hutchinson 2019b), the deeply trapped particles drive the instability
in this regime, while the marginally trapped tend to stabilize it. In further support of
this interpretation, figure 6 compares the mode shape observed in prior PIC simulations
(Hutchinson 2019b) with the total mode shape calculated by the present analysis. The
parameters are very similar, ψ = 0.16, Ω/

√
ψ = 0.68, k⊥/

√
ψ = 0.6, and are at the

upper end of the intermediate-field regime. The coupled amplitude of |2〉 for the converged
eigenfrequency (ω = 0.12 + 0.0022i) is very substantial: a2/a4 = −0.51. This implies a
multimode shape considerably narrowed from the raw |4〉 shape, with some overshoot. The
observed PIC simulation mode shape is similarly narrowed, which is highly suggestive.
However, the PIC mode is slightly narrower and does not show overshoot, which we
take as an indication that for such an extreme case even the multimode treatment is not
quite sufficient to represent the most unstable mode, perhaps because the expansion in
adiabatic eigenmodes is no longer adequate. We remark that the real parts of the found
frequencies agree very well, but the PIC growth rate was observed to be ∼0.004, a factor
of approximately 2 larger than the multimode calculation. No analytic pure shiftmode
instability was found for these parameters.

At very high magnetic field Ω � 5, the approximation of one-dimensional motion
can be used, and dependence on B disappears from the calculations. It has previously
been shown that shiftmode analysis indicates a very slowly growing overstability that
agrees approximately with simulations (Hutchinson 2019a). Bounce resonance provides
a stabilizing contribution to it because the mode has negative energy. An example
comparison of contours calculated with multimode and shiftmode analysis is given in
figure 7. Multimode analysis finds an unstable eigenfrequency at ω = 0.0285 + 0.0002i,
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(b)(a)

FIGURE 5. (a) Intermediate field dispersion contours. (b) Contributions to the multimode
potential perturbation.

FIGURE 6. Scaled (total) mode shapes found from multimode analysis compared with shape
observed in a PIC simulation having similar parameters: ψ = 0.16, Ω/

√
ψ = 0.68, k⊥/

√
ψ =

0.6.

whose growth rate is a factor of nearly 3 lower than that of the shiftmode. The differences
are essentially entirely caused by coupling to a small, predominantly real, amplitude of
the continuum, aq/a4 = −0.014 − 0.0018i. (The negligible influence of |2〉, for which
a2/a4 = 0.002 − 0.0001i, has been verified, for example, by temporarily removing |q〉
but not |2〉 from the analysis, and finding agreement with shiftmode.) The shiftmode
zero contours are the long-dashed lines. The real-part zero contour of ω is essentially
unchanged by inclusion of the continuum mode, but the imaginary zero contour is
suppressed to lower ωi. Cases with smaller ψ see somewhat less multimode suppression,
but they have a very small growth rate anyway, since ωi scales approximately as ψ3/2.
In no case has the high-B instability been demonstrated to be completely stabilized in
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FIGURE 7. Reduction of the high-field instability growth rate by the influence of the
continuum mode.

this multimode infinite-domain analysis, but for ψ � 0.2 the predicted growth time is far
longer than probable hole lifetimes.

Prior high-B simulations observed somewhat higher growth rate than predicted by
shiftmode analysis. The multimode analysis giving lower growth rate appears to rule
out explanation of this observation by mode distortion, and to favour the cause being
suppression in the simulations of the bounce resonance stabilization by reduced df /dW
for shallow trapped orbits. However, the simulations are for finite, not infinite, parallel
domain length. We can definitely conclude from the present infinite-domain analysis that
coupling to the continuum mode is a significant effect, which is in line with previous
interpretations; but we cannot directly apply our analysis to simulations of limited domain
length.

6. Discussion

The analysis here uses a specific potential shape φ0 ∝ sech4(z/4). This is the shape
most widely advocated as ‘natural’ for electron holes. It is by no means unique, but it
is part of the family sechl(z/l) that satisfies the Debye shielding requirement that the
potential decays ∝ exp(−z/λDe) at large |z|. Members of this family have the number of
discrete adiabatic eigenmodes equal to l + 1 (see Appendix A). Higher l corresponds to
a broader profile at its peak and would call for more than the two discrete antisymmetric
modes we have analysed here. That possibility also exists for broader profiles of different
mathematical form, not having the convenience of closed analytic expressions for their
eigenmodes. We believe that the current choice is representative, and that the same
qualitative trends would be observed for other profiles.

We also here take the domain boundary to be at infinity. This is the natural idealization
for an isolated hole. However, simulations always deal with finite (usually periodic)
domains. They would require a different treatment of the continuum modes. External
waves would be restricted to a discrete set of wavenumbers that satisfies the boundary
conditions, and the continuum become discrete. A perhaps more important difference is
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that in a finite domain there will be inward-propagating waves (perhaps as components
of standing waves) as well as the outward ones of the present treatment. As a result, the
length of the parallel domain will determine whether certain waves are or are not coupled
resonantly to the perturbed electron hole. The result could perhaps be stabilizing or
destabilizing, depending on domain size. Accommodating incoming waves would require
a major modification of the analysis, which is beyond our present scope. The infinite
domain analysed here properly represents truly isolated electron holes. Exactly periodic
analysis would not correctly represent electron holes in nature, even if they are part of an
irregularly spaced train of holes.

Although our focus here has been on the non-zero k⊥ transverse instability, some
similar adjustments to the stability might arise in purely one-dimensional oscillatory
phenomena. For example, some regimes of slow electron holes, whose speeds are close to
the ion velocity distribution, experience one-dimensional oscillatory instabilities (Zhou
& Hutchinson 2017; Hutchinson 2021), and their growth rates might be modified in
multimode analysis. However, it seems likely that the multimode corrections would be
relatively small, as observed in our present work. Ion response is negligible for holes
moving faster than a few times the ion sound speed. We have also treated here only
symmetric electron distributions, which limits the quantitative reliability to holes that
are not moving at a large fraction of the electron thermal speed. The very considerable
additional complexity of including ions and asymmetry hardly seems justified within the
present context.

In summary, it has been shown how to perform multimode analysis of electron hole
transverse instability, identifying the key effects as being (1) modification of the effective
width of the eigenstructure, corresponding to an additional discrete eigenmode of the
adiabatic Poisson operator, and (2) coupling to external waves on the whistler branch,
corresponding to a narrow band of the adiabatic operator’s continuum. The width effect
slightly increases the growth rate at low and intermediate magnetic field, and permits
relatively fast-growing overstability at magnetic fields up to ∼20 % above the prior
shiftmode maximum. The total mode shape is similar to that observed in PIC simulations.
The external wave coupling decreases the growth rate at high magnetic field. Despite these
adjustments, the prior single-shiftmode analysis is confirmed as giving results very close,
in most cases, to those of the multimode analysis.
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Appendix A. Eigenmode derivation

The adiabatic operator (generalizing (2.1)) for equilibrium φ0 = sechn−1(z/l) = Sn−1

is d2/dz2 + [n(n + 1)S2 − (n − 1)2]/l2. Define the operator for positive n ∈ Z : Ln =
l2(d2/dz2)+ n(n + 1)S2; define also the operators L+

n = l(d/dz)+ nT , L−
n = l(d/dz)−
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nT , where T = tanh(z/l). Then

L+
n L−

n = l2 d2

dz2
− nS2 − n2T2 = Ln−1 − n2,

L−
n L+

n = l2 d2

dz2
+ nS2 − n2T2 = Ln − n2.

⎫⎪⎪⎬
⎪⎪⎭ (A1)

Using these properties, we immediately find that

LnL−
n = (L−

n L+
n + n2)L−

n = L−
n (L

+
n L−

n )+ n2L−
n = L−

n (Ln−1 − n2)+ n2L−
n = L−

n Ln−1,
(A2)

which shows that L−
n can be considered a raising ladder operator in the sense that Ln =

L−
n Ln−1(L−

n )
−1. As a result, (A2) leads to

LnL−
n L−

n−1 · · · L−
1 = L−

n Ln−1L−
n−1 · · · L−

1 =L−
n L−

n−1Ln−2L−
n−2 · · · L−

1

= · · · = L−
n L−

n−1 · · · L−
1 L0. (A3)

The eigenfunctions of L0 have the form |e0〉 = euz/l with eigenvalue u2, where u can be
either real or imaginary. Specializing to our current case, n = l + 1 = 5 in (A3) we have

L5L−
5 L−

4 · · · L−
1 |e0〉 = L−

5 L−
4 · · · L−

1 L0|e0〉 = u2L−
5 L−

4 · · · L−
1 |e0〉. (A4)

Therefore, |u〉 = L−
5 L−

4 · · · L−
1 |e0〉 is an eigenfunction of L5 with eigenvalue u2. Since Va =

L5/l2 − 1 = L5/42 − 1, |u〉 is also an eigenfunction of Va but the corresponding eigenvalue
becomes u2/16 − 1. Written out in full,

|u〉 = L−
5 L−

4 L−
3 L−

2 L−
1 euz/l

=
(

l
d
dz

− 5T
)(

l
d
dz

− 4T
)(

l
d
dz

− 3T
)(

l
d
dz

− 2T
)(

l
d
dz

− T
)

euz/4

= euz/4{[−15u4 + (420S2 − 225)u2 − 945S4 + 840S2 − 120]T

+ u[u4 + (−105S2 + 85)u2 + (945S4 − 1155S2 + 274)]}, (A5)

which is exactly (2.2). When the boundary conditions require |u〉 to be bounded at
|z| → ∞, and u is real, the polynomial obtained by letting S → 0 and T → sign(z)must be
zero, which restricts the real values of u to that polynomial’s roots. These are the first five
positive integers and give the discrete modes. Imaginary u values give finite |u〉 at infinity
and are not restricted except by parity considerations: they are the continuum modes.
Evidently the same process can be used to find the adiabatic eigenmodes of any potential of
the form sechl(z/l) with 0 < l = (n − 1) ∈ Z . Such a potential has l + 1 discrete modes.
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