
relativistic field theories. One very good chapter is devoted to the 
theory of a many-component field. The existence of a canonical energy-
momentum tensor is deduced directly from Lorentz-invariance, and 
the Belinfante-Rosenfeld symmetrization method is added. As examples, 
the author discusses the scalar field and the Proca vector field. 

The last and longest chapter deals with spinors and the Lorentz 
group. The unimodular representation and the anti-l inear representa­
tion of temporal and spatial reflexions are discussed in some detail. 
Other irreducible representations of the full Lorentz groups are con­
sidered as well. There i s , of course, something to be said for the 
inclusion of a single chapter on spinors in a textbook of special relat i ­
vity. However, the author neither provides nor (apparently) expects 
much understanding of group theory for its own sake, which seems 
unsatisfactory in view of the close connexion between spinors and the 
Lorentz group. In the reviewer' s opinion, some account of the abstract 
theory of groups and their representations would do much to explain the 
rather elaborate notation which spinors require. Possible the happiest 
alternatives would be either the deliberate omission of spinors, or a 
full treatment of the Lorentz group on the same level a s , say, Wigner' s 
book. 

Apart from an appendix on the Michelson-Morley experiment, 
not much attention has been paid to the experimental foundations of the 
theory. Fur thermore , it seems odd that in a book whose tone is formal 
throughout there should be several patches of rather inelegant notation. 
No problems are provided, but a bibliography at the end l ists a score 
of t i t les . 

R. H. Boyer, McGill University 

Formes sesquilinéaires et formes quadratiques, by N. Bourbaki, 
Eléments de Mathématique, Livre II, Algèbre, Chapitre IX. Actuali­
tés scientifiques et industrielles 1272, Hermann, Pa r i s , 1959. 
211 pages. 

Early in 1953, when chapitres I-II, livre V of the Eléments de 
Mathématique came out, the readers were informed (p. 41 Espaces 
vectoriels topologiques, chapitre II) that for affine spaces they should 
look in the book on Algebra (chapitre II, livre II). But in 1955 the 
second edition on Linear Algebra (chapitre II, livre II) introduced affine 
and projective spaces respectively in Appendice II and Appendice III. 
Appendice I called Applications semi-l inéaires was a prelude (in a 
certain sense) to the present chapitre IX. 

It is in fact very natural to change what had been planned many-
years ago for the livre II. As a result Bourbaki* s treatment of algebra 
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can sti l l be considered as the most suitable training in this field, for 
anybody who looks for a solid and deep knowledge regard le s s of the 
length of the text. 

The meaning of the prefix "sesqui" is "one and a half". Let us 
see what the sesqui l inear transformations are and we will agree that the 
name was chosen very suggest ively . A sesqui l inear map sat i s f ies all 
but the "last half" of the conditions asked (in t e r m s of two variables) 
for a bi l inear map. 

If A , B are rings with units and E i s a right A-module , F a left 
B-module and G an (A, B)-bimodule , then a map <(>: E X F -* G is bi l inear 
if 

(1) for each y € F, the map x -* <j>(x, y) i s A- l inear , 

(2) for each x c E, the map y -* <f>(x, y) i s B-linear» 

These two conditions imply the ex i s tence of two maps 

(1M d : F - -CA(E.G) 
<t> A 

(2») s + : E - - T B ( F , G ) 

which are respect ive ly B - l i n e a r and A- l inear , XjJi'E, G) being the B - m o ­
dule of all the A- l inear maps of E into G and ^ ^ ( F , G) the A-module of 
al l the B-I inear maps of F into G. Converse ly two such maps d^, sx 
define just a b i l inear map of E X F into the (A, B)-bimodule G. 

If both d^, Si are infect ive, <f> i s ca l led non-degenerate . 

The bi l inear maps are complete ly defined if we know the va lues 
for the generators of E and F. If E, F, G have finite b a s e s then we can 
a s s o c i a t e a matr ix with every bi l inear map. 

A s e m i - l i n e a r map u: E -*• F, where E is a right (left) A-module 
and F i s a right (left) B-module , i s said to be a s soc ia ted with an 
i somorphi sm X : A -* B , if u i s an homomorphism of the two additive 
underlying groups E and F which sat i s f ies a l so the following diagram 

A X E - E fer (a ,x ) = a x 
(3) X I l u l u where j 

B X F - F l ^ ( b , y ) = by 
^F F 

If A and B are the same ring and X the identity i s o m o r p h i s m , then u 
wi l l be an A- l inear map. The knowledge of the i somorph i sm X : A -*• B 
g i v e s the poss ibi l i ty of knowing u complete ly if the va lues of u for a 
set of generators are given. 

Suppose now that, in the definition of the bi l inear m a p s , we re ­
place the condition (2) by something which can be cons idered a s "half 
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as strong " and we will obtain the sesquilinear maps. This is done as 
follows. Take a fixed anti-automorphism J:B -** B; then, instead of 
each map y -*- 4>(x, y) being a B-linear map, assume that it is just a 
semi-l inear map, where the J-anti-automorphism is considered as an 
isomorphism of B onto the opposite ring structure of B. If these con­
ditions are satisfied then 4>: E X F -*• G is called a sesquilinear right 
map associated with J. 

We can get the J-r ight sesquilinear maps also by requiring that 
d^: F -*• *£^(E,G) should be a semilinear map with respect to J, considered 
as an isomorphism of B onto the opposite ring structure of B. A simi­
lar definition will give the J-left sesquilinear maps. 

I believe that the foregoing is sufficient justification of this name, 
a sesquilinear map being "one and a half" linear (but not necessarily 
twice linear as the bilinear maps). Also it is conceivable that many of 
the techniques related to linear algebra may be used for the sesquilinear 
maps. A matr ix can be associated with a sesquilinear map 4>: E X F - » G 
if E, F , G have finite bases . 

Taking the particular case of a left A-module E, a right A-module 
F, and the (A, A)-bimodule structure on A, we will get the right J - s e s ­
quilinear forms 4>: E F -*• A. In this case d^: F -*» E* (dual of E) and 
s^: E -*• F*. Therefore we have 

(4) <t>(x,y) = < x,d (y)> = < y , s (x) > . 

Rank, tensor product, orthogonality and calculus of mat r ices can easily 
be adapted to sesquilinear maps. 

The discriminant of a sesquilinear form is introduced in §2. 

§3 deals with hermitian and quadratic forms; if A is a ring with 
an involutory anti-automorphism a -*• a (as for instance z -*• z for com­
plex numbers) and e a central element of A, a sesquilinear form <j> (for 
this anti-automorphism) is called a e-hermit ian form if <t>(x,y) =e<j>(y,x). 
The 1-hermitian form is simply called hermitian and the (- l )-hermit ian 
form is called anti-hermitian. 

If A is a commutative ring, a quadratic form Q on £ is a map 
Q: E -* A such that 

(i) Q(ax) = a2 Q(x) 

(ii) <(>: (x,y) -*> Q(x + y) - Q(x) - Q(y) is a bilinear symmetric 
(alternating) form if A is of characterist ic 4= 2 (characterist ic 2). <(> is 
called the associated bilinear form of Q and <j>(x, x) = 2Q(x). 

Conversely, for each symmetric bilinear form 4> on E, x -** <|>(x, x) 
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i s a quadra t i c fo rm on E. T h e r e is t h e r e f o r e a 1-1 c o r r e s p o n d e n c e 
be tween the s y m m e t r i c b i l i n e a r f o r m s and the q u a d r a t i c f o r m s , if the 
s c a l a r 1+1 has an i n v e r s e in A( the re fo re if c h a r a c t e r i s t i c A 4= 2). 

§ 4 i n t roduces the i so t rop i c e l e m e n t s of a module (an e l e m e n t i s 
ca l led i so t rop i c for an h e r m i t i a n fo rm <)> if 4>(x, x) = 0, tha t i s if it i s 
o r thogona l to i tse l f for <f>) and g ives the Witt decompos i t i on of a v e c t o r 
space and the t h e o r e m of E. Witt. 

f 5 is c o n c e r n e d with the r educ t ion of the b i l i n e a r a l t e r n a t i n g 
f o r m s defined for a f ree A-modu le w h e r e A is a domain of in tegr i ty 
having only p r i n c i p a l i d e a l s . Then the symplec t i c group Sp(<j>) i s defined 
for an a l t e rna t i ng fo rm <(> on E, a s the g roup of a l l the a u t o m o r p h i s m s of 
E which leave <J> inva r i an t . 

§6 g ives m o r e in format ion on h e r m i t i a n f o r m s . The group U(4>) 
of a l l the a u t o m o r p h i s m s of E. which leave i nva r i an t the h e r m i t i a n fo rm 
4> on E i s ca l led the un i t a ry group a s s o c i a t e d with <j>. F o r a q u a d r a t i c 
fo rm Q ^ 0 on E the or thogona l group O(Q) a s s o c i a t e d with Q i s defined 
in the s a m e way. Then the g roup of s i m i l a r i t i e s a s s o c i a t e d with a 
h e r m i t i a n fo rm i s in t roduced . 

The s t r u c t u r e of h e r m i t i a n g e o m e t r y i s given a s fol lows: an add i ­
t ional s t r u c t u r e is put on the under ly ing affine space L, by c o n s i d e r i n g 
a non-degenera te h e r m i t i a n fo rm <j> (with r e s p e c t to an a n t i - a u t o m o r p h i s m 
J : A —- A) on the A - v e c t o r space T of the t r a n s l a t i o n s of L<; 4> is ca l l ed 
the defining m e t r i c fo rm of the h e r m i t i a n g e o m e t r y o n L . If J : A -*• A 
i s the ident i ty and A i s c o m m u t a t i v e then L. i s ca l l ed a euc l idean space 
(for 4>); if the c h a r a c t e r i s t i c of A 4= 2 the " T h e o r e m of P y t h a g o r a s 1 1 

holds for the euc l idean c a s e . F o r t h i s p a r a g r a p h , 29 e x e r c i s e s , which 
a r e left to the r e a d e r who wan t s to check h i s ab i l i ty , conta in a l a r g e 
amount of i m p o r t a n t c l a s s i c a l r e s u l t s . 

In § 7 the field of s c a l a r s A i s r e s t r i c t e d to the c a s e s : 

(i) a m a x i m a l o r d e r e d field ( t he r e fo r e c o m m u t a t i v e and of 
c h a r a c t e r i s t i c z e r o ) . 

(ii) a quad ra t i c ex tens ion K(i) of a m a x i m a l o r d e r e d field K with 
i 2 = . 1 . 

(iii) the q u a t e r n i o n s on a m a x i m a l o r d e r e d K. 
The J - a n t i - a u t o m o r p h i s m i s the ident i ty in (i) and J : a -+~5 for (ii) and 
(i i i) . 

Then the pos i t ive h e r m i t i a n f o r m s a r e i n t r o d u c e d and the t h e o r e m 
known a s the "Law of i n e r t i a " i s p roved . Also m u c h in fo rmat ion i s given 
in the 27 e x e r c i s e s left to the r e a d e r . 

§ 8 , T y p e s de f o r m e s q u a d r a t i q u e s , i s b a s e d on E . Witt ' s p a p e r 
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(J. Reine Angew. Math. 176 (1937), 31-44). An equivalence relation i s 
defined for the non-degenerate quadratic forms on an A-vector space E, 
where A i s commutative. The equivalence c l a s s e s for this relation are 
cal led "types" (set - theoret ica l precautions are taken in the Bourbaki 
way so that the "all" difficulties are avoided). A group structure, 
cal led the Witt group,is available for the set of types of non-degenerate 
quadratic forms defined for the finite dimensional vector spaces on A. 
If character is t ic A ^ 2 then the Witt group can become the underlying 
additive group of a commutative ring with unit, where the multiplication 
i s obtained by pass ing through a tensor product of two quadratic forms . 
An unusual exception; no e x e r c i s e i s given. 

In v9 we have the description of Clifford Algebras and their c l a s ­
sification. The Clifford group and the special Clifford group are intro­
duced, with a good deal of mater ia l in the e x e r c i s e s . 

§10 is cal led "Angles". As "space" i s taken a "plane", 
i. e. , an A-vec tor space E of dimension 2, where A i s commutative, of 
character is t ic ^2, with an assoc ia ted bi l inear, non- de gene rate , symmetr ic 
form <|> on E. The group of s imi lar i t i e s , the group S+ of direct s imi la ­
r i t i e s , the group O of rotations, the group H of homothet ies are intro­
duced, and a sketch i s given of plane trigonometry in this general setting. 
For the definition of angles the field A is restr icted to a maximal ordered 
field (therefore of character is t ic 0) and <j> i s posi t ive . The angles are 
equivalence c l a s s e s of straight l ines (1-dimensional vec tor spaces) , for 
a relation involving direct s imi lar i t i e s (or rotations). A canonical 1-1 
map of S + /H onto the set XZQ °f a ^ ^e angles g ives the poss ibi l i ty of 
transporting the group structure on XXQ- The right angle i s then the 
only e lement of order two in this group. Finally tr igonometric functions 
are introduced. 

The his tor ical note has 14 pages and i s a m a s t e r p i e c e . As usual , 
the bibliography i s assoc iated with the his tor ical note but not ( s o m e t i m e s 
unfortunately) with the text itself . 

148 e x e r c i s e s containing minor and major resul t s wil l insure a 
good training on al l these topics . 

An index of notations and of terminology i s included and at the end 
there i s a fold-out with a summary of the most important definitions. 

In conclusion I would adopt this formula of advert i s ing: "a new 
Bourbaki product of high quality". 

Philip Obreanu, Queen1 s University 
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