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Abstract. Foragroup G, a weak Cayley table isomorphismisabijectionf : G — G
such that f(g;g») is conjugate to f(g1)f (g2) for all g, g» € G. The set of all weak Cayley
table isomorphisms forms a group W(G) that is the group of symmetries of the weak
Cayley table of G. We determine W(G) for each of the 17 wallpaper groups G, and for
some other crystallographic groups.
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1. Introduction. For a group G, the weak Cayley table group YW(G) is the set of
bijections f : G — G such that f(g1g2) ~ f(g1)f (g2) for all g1, g» € G. Here, ~ denotes
conjugacy in G. An element of W(G) is called a weak Cayley table isomorphism (of G).

It is easy to see that W(G) is a group that contains Aut(G) and the inverse map
t=16:G— G:u(g) =g ' Welet Wy(G) = (Aut(G), 1), the subgroup of trivial weak
Cayley table isomorphisms. We note that Wy(G) = Aut(G) x (ig).

IfG={g1=1,g,...,}, then the group W(G) acts naturally on the weak Cayley
table, this being the |G| x |G| matrix whose j entry is the conjugacy class of g;g;. It
is well-known that two finite groups have the same weak Cayley table if and only if
they have the same 1- and 2-characters, in the sense of Frobenius [10]. Here, for a
character x, the corresponding 1-character is x(!) = yx, and the 2-character is x® :
G* - C, xD(x,») = x()x () — x(xp).

We note that the notion of k-character only makes sense in the situation where G
is finite; however, the weak Cayley table is defined for any countable group, and the
group W(G) makes sense for any group.

In previous papers [5-7], we have determined classes of groups that have the
property W(G) = Wy(G); these include finite symmetric groups, some free groups and
free products, some Coxeter groups, PSL(2, p") and some sporadic groups. Groups
with this property are termed trivial. Elements of W(G)\W,(G) are called non-trivial.

In this paper, we consider the 17 wallpaper groups G, and determine the group
WI(G) explicitly; while doing so we determine which are trivial. We recall the standard
notation and definitions for these crystallographic groups [8, 9]: a wallpaper group
is a discrete group of isometries of the plane whose subgroup, A, of translations is
isomorphic to Z2. Two such are considered equivalent if they are conjugate by an affine
transformation. Such a group contains only translations, rotations, reflections, and
glide reflections as symmetries. We use the Hermann—Mauguin notation for wallpaper
groups, also called the IUC notation. We note that the automorphism group Aut(G)
of each wallpaper group G has been determined in [4], however we do not make use
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of their result in this paper, and so our classification will give an independent proof
of their result; in fact in each case we determine generators for Wy(G) = Aut(G) x (i),
and note that Aut(G) can then be easily determined.

The trivial cases are (see Section 2 for notation) as follows:

pl, p2, clml,plml, plgl, c2mm, p2mg, p2gg, p3m1, p31m,
p4mg, p4mm, pémm.

For the non-trivial cases, we have the following theorem.

THEOREM 1.1. Let G be one of the 17 wallpaper groups. Then, we have W(G) #
Wo(G) if and only if either

(i) G is a direct product of non-abelian groups (i.e., G is of type p2mm, which is
isomorphic to Dy, X Dy, ), or

(ii) G contains only translations and rotations, with some rotation of order greater
than 2 (i.e., G is of type p3, p4, p6 ).
If G has rotations of order at least 4, then there is a subgroup N(G) < W(G), all
of whose non-identity elements are non-trivial, such that

W(G) = N(G) x Wy(G).

( This latter case consists of groups of types p4, p6.)

More detailed descriptions of the groups W(G) will be given later.

Let C,, denote the cyclic group of order m. Many crystallographic groups in higher
dimensions have the form Z”" x C,,; for groups of this type, we have the following
theorems.

THEOREM 1.2. Any semi-direct product 7" x Cy, n > 0, has trivial weak Cayley table
group.

THEOREM 1.3. Let p be an odd prime and let G = 7" x C,, n > 1, be a non-abelian
semi-direct product. Then, G has a non-trivial weak Cayley table isomorphism.

In Section 2, we recall some facts about elements of W(G), describe properties of
wallpaper groups, and explain the strategy for finding W(G) for each wallpaper group
G. In Sections 3-8, we prove the various steps outlined in the strategy. In Section 9, we
prove Theorems 1.2 and 1.3.

2. Weak Cayley table maps and wallpaper groups. We collect together some results
on weak Cayley table isomorphisms taken from [10]. For groups G, H a weak Cayley
table map is a bijection ¢ : G — H such that f(g1g2) ~ f(g1)f(g2), for all g1, g, € G,
where ~ denotes conjugacy in H.

LEMMA 2.1 [10]. Let ¢ : G — G be a weak Cayley table isomorphism and let g €
G, N < G. Then,

(1) g(e) = eand p(g~") = ¢(g)~", where e denotes the identity element of G. Further,

if g® = e, then p(g)* = e.

(2) (N)<G.

(3) p(gN) = p(g)p(N).

(4) ¢ induces a weak Cayley table map o : G/N — G/@p(N).

(5) ¢! : G — G is aweak Cayley table isomorphism.

(6) If a, b € G, then a ~ b if and only if p(a) ~ ¢(b).
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We have already remarked that a wallpaper group G contains a translation
subgroup A. Also, G = A if and only if G is abelian. If G = A, then certainly
W(G) = Wy(G), so we will assume that G is not abelian from now on. The following is
well-known.

LEMMA 2.2. Let G be a wallpaper group. Then,
(i) [G: A] < oo,
(it) g € G has a finite conjugacy class if and only if g € A.

Here, we introduce the 17 types of wallpaper groups and give a presentation for
each group type. We also, for each of the 17 wallpaper groups, identify a set F of coset
representatives for G/ A:
pl (x, yl(x, p)); F = {1}.

P2 (x, 2 pl(x, ), ¥ =x7 )P =y 0P F = (p).

p3 (X, 2, Pl 1) X0 =x71p = X7 p7) F = (p).

P4 (X, 016 ), X" =y, 0" =x"", p*)i F = (p).

P6 (X, ¥, pl(x, ), " =p, )" =x""y, p°); F = (p).

clml (x,y,0l(x,),x° =y,)° =x,0°);F = (o).

plml  (x,,01(x, ), %" = x,)" =y~ 0?); F = (o).

plgl  (x,p, yI0xp), x = x, 0" =y~ y? =) F = {1, y).

2mm (x,y,p,0|(x, ), p% 0% x" =x"1, ) =y x7 = »,)7 = x,(p0));

F={p,o0).
p2mm (x,y, p,ol|(x,y), p>, 0% (p, o), x’ =x"1, P =y L x7 =x,)" =y71);
F={p,0).

p2mg  (x,y,p,0|(x,)), p% 0% x" =x" )y =y X =x,)" =y (po)? =y);
F={1,p,0,p0}.

1

p2gg (x.y, p. ¥ (v, ) p* ¥ =x, 2" =x"" =y X =x, 0" =y (py)* = y);

F={l,p,y, 0y}

p3ml  (x,y,p,0l(x, 1), 0>, 0%, (po)’, X" = x7"y, y’ =x7" %7 =y,)7 = x);
F=(p, o).

p3Im  (x,y,p, 0 |(xp), p*, 0%, (po)’, X" =x"'p, " =x71 X7 =x, )7 =xp7');
F={p,o).

1

pdmg  (x, 1, 0,7 | (x,1), 0"y =x,x" =3, 0 =x, ¥ =x,)" =y, (py)?);

F={lp.p%p " y.pv.0%v.p 'y}

pdmm  (x.y,p,0 [(x,y),p% 0% x" =y, )’ =x"" . x7 =x,)" =y (po));
F=(p, o).

pémm  (x,y, p.0l(x, ), p% 0%, ¥ =y, )’ =x"'y, X7 =x,)" =xp7, (po)’);
F={(p,o).

In these presentations, translation generators are denoted by x, y, rotation generators
by ps, reflection generators by os, and glide reflection generators by ys.
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Fundamental to what we do is the following, which is the first step in the strategy
for determining W(G).

LEMMA 2.3. If ¢ € W(G), then ¢(A) = A. In particular, for g € G we have (gA) =
p()A.

Proof. Since ¢ preserves the size of a conjugacy class (Lemma 2.1 (6)), the first
statement follows from Lemma 2.2 (ii). The rest follows from Lemma 2.1 (3). O

The following indicates the rest of the strategy for determining WW(G) (we call these
items the Steps of the proof):

(1) Show that ¢|4 : 4 — A is an automorphism.

(2) Show that we can compose ¢ with an element of Wy(G) so that the resulting

element of W(G) is the identity on A.

(3) Show that we can then compose ¢ with an element of Wy(G) so that the resulting
element of W(G) (which we still call ) satisfies ¢(Ag) = Ag for all g € G. This
is the same as showing that ¢ : G/4 — G/ A is the identity.

(4) Show that we can assume, after composing with some specified generators (not
necessarily trivial elements), that the resulting ¢ fixes each of the elements in F.

(5) Show that for every ¢ € F there is some f = f; € F such that ¢(at) = &'t for all
ae A,

(6) Show that ¢ can be adjusted so as to be the identity on each coset of 4. We find
that this step is only necessary in the non-trivial cases.

The wallpaper group G acts by isometries on the Euclidean space [E?; we think of a
wallpaper pattern corresponding to G as a subset of [E? (containing (0, 0)) whose set of
symmetries is G. In the given presentation of G, we have generators x, y of 4. Further,
for any a € A there is a translation of E? by a vector v, € [E? (say) corresponding to a.
Thus, vy, v, span a lattice £ C E2. We will think of A4 as identified with the lattice £:
a = x'y/ € A corresponds to v, = ivy + jv, € E. The natural action of G on E? satisfies
(V))g =vy foraec A, g €G.

Now, relative to the metric on [E?, we have (closed) balls B, of radius r > 0 centred
at (0, 0). Further, each f € F determines an element of the orthogonal group O(E?),
where a > @', and so each conjugacy class a’’, a € A, is contained in the boundary of
the ball B|a|.

For any reflection or glide reflection r € G, there is a line of reflection L(r) <
A, L(r) = {a € A|ld" = a}. Given G, we let

H = H(G) = {a € A]|d°| #£[G : A]}.

It is easy to see that H is the union of the lines of reflection for all reflections and glide
reflections in G. Since ¢ € W(G) respects the sizes of conjugacy classes we have the
following lemma.

LEMMA 2.4. For any ¢ € W(G), we have ¢(H) = H.

Suppose that r € G is a reflection or a glide reflection. Let LY (r) = {a € A|a" =
a~'}. We have the following lemma.

LEMMA 2.5. Suppose r € G is a reflection or a glide reflection. Let B = r* € A. Then,
fora € Awe have (ar)> = B if and only if a € L*(r). In particular, if o € G is a reflection,
then (ac)* = 1 if and only if a € L*+(o).
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Proof. We have (ar)* = B ifand onlyif ar’ - r—'ar = afa” = p ifand only if aa" = 1
if and only if @ € L*(r). O

For G of type p2mg let By =62 =1, B = (po)* = .

For G of type p2gg let B = y* = x, B = (py)* = y.

For G of type pdmg let 8 = y> = x, B = (p°y)* = ).

For G of any other type let 8 = 8> = 1.

Let py denote rotation by 6 about (0, 0).

Our convention for the commutator (g, /) is g~'4~'gh. For f € G, we define

Kr={(a,f):ac A}
Since (ab, f) = (a, f)(b,f), for a, b € A4, it is easy to see that K is a subgroup of 4.

LEMMA 2.6. Let f € F. Then,
(D) Ky = {(x./), 0./
(ii) [G : Ky is finite if and only if f is a non-trivial rotation. Also, Ky = {1} if and only
iff=1
(iii) Ky is a non-trivial cyclic group if and only if f is a reflection or glide reflection. If
f.f" are reflections or glide reflections, then Ky = Ky if and only if f = f".
(iv) Foralla € A, we have

@NH’naf = Ki(afy'

f'eF’

where F' = {f" € F|(f,f") € A}. In the cases where G = A X F, this is equivalent
t0 (af)’ N Af = Uypec Krd' f where C is the centralizer of f in F.
(v) If f is a rotation, then (iv) gives the following:

aKsf U a’ Kef if G contains py)2;

akyf U(apiBa)~' Ksf  if G is of type p2mm, p2mg or p2gg;
(af)’ NnAf = aKef U a® Kef if G is of type c2mm;

aKyf U ap By Ky f iff = px in G of type p4mg;

ak;f otherwise.

If f is glide reflection or reflection, (iv) implies that

akyf U (apiB) ' Ksf  if G contains py;
aKsf otherwise.

(af)GﬂAf={

If G has no glide reflections, the above becomes

@) N Af = akKif Ua 'Kf if G COI’.llal'nS O
aKf otherwise.
Proof. Since A is abelian the Witt—Hall identities [12, p. 290] show that if a, b €
A, then (ab, ) = (a, f)(b, f), from which (i) follows. Now, (ii) and (iii) follow from
consideration of the specific groups and the choice of F.
Then, (iv) follows because conjugates of the element af result from conjugating
by something in 4 or something in F. Conjugating by elements in A gives us Kraf'. If
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(f'.f) ¢ A, then (af)" ¢ Af. Thus, it only remains to conjugate by those /” that satisfy
(".f) e 4.

Most of the rest is left to the reader. We will do two cases. First, consider the
group of type p4mm, which contains p,/>. The conjugacy class of ap contains (ap)* =
a(x, p~"p and (ap) = a(y, p~")p, as well as (ap)” = a’p. Since (ap)® ¢ Ap, we see
(ap)? N Ap = aK,p U a’K,p. Likewise, the conjugacy class of ap? contains (ap?)* =
a(x, p*)p* and (ap?y = a(y, p*)p?, as well as (ap?)” = a”p>. Since (ap?)° € aK 2 p?,
we have (ap?)% N Ap® = aK,»p> U a” K p2, proving the first line of (v).

For a second example, suppose y is a glide reflection in a group with a generator
p = px. Recall that we defined B = y2, B, = (py)>. Then, (ay)? will include (ay)* =
a(x, y Yy and(ayy = a(y, y ')y, thusitincludes aK, y. Note that (a, y) € K, implies
that (ay)” € aK, y. Last, we consider (ay)”. Since y” = B, 18,7, we have (ay)” =
(aBi1By")~'y. But since B3 € K, we see that (af1,) 'K,y C (ay)°. Thus, (ay)? =
ak,y U (a,31,32)_1Kyy- U

Some automorphisms of wallpaper groups. Here, we list some automorphisms that
we will use in what follows. Inner automorphisms, which will be denoted I, g € G, are
not listed here unless we compose with them in Step (2).
p3, p4po Y X > X,y > Y, r= XY, L X X, Y Y, T VL
clml ¢ : (x,y,0) — (x7 !,y !, o);also I, and (x, y, 0) — (x, y, ac), for a € A where

(ac)?) = 1.
plml ¢ : (x,y,0) — (x~!,y7!, 0);also I, and (x, y, o) — (x, y, ac), for a € A where
(ac)?) = 1.

plgl v, : (x,y.y) > (x.p.yy)also 1 (x,y,y) > (x~' y~', y Hand .

2mm Yy (x,y, 0,0) = (5,37 p,p0) and Yyt (X, 9, 0,0) = (X, 0, X9p,
x'y~'o) where u = v + 2i; also I, and /,,.

p2mm ¥, , 1 (X, y, p,0) = (X, p, X“p'p, y'o); also ¥ : (x, y, p, 0) = (¥, X, p, po).
p2mg Yy (X, py,p,0) > (X, p,xp,0), Yy i(x,p,0,0) > (x,p,pp,y0), and
V(x5 p,0,0)— (x7Ly7 ylp, 0); also 1, and I,.

p2gg V1 : (x, ¥, p,¥) > (0, X, p, py) as well as ¥ 1 (x, 3, p, ¥) = (x, 3, xp, y) and
Yy (X, 3, 0,7) = (X, p, yp, yy); also I, and I,,.

p3ml ¥ 1 (x,y,p,0) — (x,y,y ' p,0) and ¥ : (x,y, p,0) — (x ', y7!, p,0); also
I, and I,.

p3lm I, and ¥ : (x,y, p, o) — (v, x" 1y, p, p0).

pdmg Yy (x,p, 0. 7) > (5,0, %0, y); a0 v) e (LY T xy);
also I, and 7,.

pdmm ¥, : (x,y, p,0) — (X, y, yp, yo); also, I, and I,,.

pémm /,, I,.

Some non-trivial weak Cayley table isomorphisms of wallpaper groups.
g g forge AU Apo;

gr>g° forge ApU Ao’

gr>g forg ¢ Ap U Ap*;

g g° forge Ap U Ap*

p2mm Define 7 by 7 : {

p3 Define 7 :

gr> g forg¢ Ap*;

p4 For h € {x, y, p*} define 7, : [g > g forge Ap*
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g—g forge AU Ap%;

Forhe{xs%,o}deﬁne“h:[g._)g}’ forg¢ AU Ap*

g g forge Ap U Ap* U Ap>;
g g forg¢ ApU Ap* U Ap>”
g g forgé¢ AU Ap;
g g forge AU Ap*”

p6 For h € {xy, xy~2, p?} define 7}, : [

For I € {x?, )%, p} define u, : {

3. Steps (1) and (2). Let ¢ € W(G) where G is a wallpaper group. In this section,
we will denote 4 additively, so that the action of g € G on 4 by conjugation is denoted
(a)g,a € A. Then, for all a, b € A4 there is some g, € F such that

pla+b) = (p(a) + ¢(b))gu.b- (3.1)

Thus,

@(b) =pla+b—a) = (pla+b)+ o(—a)gutb—a
= (p(a + b) — ¢(a)gutb.—a- (3.2)

LEMMA 3.1. For all a, b € A, there is f € F such that

pla+b) = p(a)+ ¢(b).

Proof. From equation (3.2), we see that f = g;ibﬁa will work. ]

Let a, b € A. We wish to show that ¢(a + b) = ¢(a) + ¢(b). From equation (3.1)
and Lemma 3.1, we see that

pla+b) € (p(a) + @) F N (p(a) + (b)F) N (p(a)F + ¢(b)). (3.3)

Since F acts by orthogonal matrices we see that
(1) any point of the form (¢(a) + ¢(b))F is on the circle C; of radius |¢(a) + ¢(b)|
centred at (0, 0);
(ii) any point of the form ¢(a) + ¢(b)F is on the circle C, of radius |¢(b)| centred
at p(a);
(iii) any point of the form ¢(a)F + ¢(b) is on the circle C; of radius |¢(a)| centred
at o(b).

The intersection C; N C, N Cs certainly contains the point p; = ¢(a) + ¢(b), and
any other possibility for ¢(a + b). If py is the only such point of C; N C; N C3, then by
equation (3.3), we must have p(a + b) = ¢(a) + ¢(b), and we are done.

So, now assume that C; N C; N C3 also contains p, # py; then the arc p;p, has a
perpendicular bisector, L say, that contains the centres of each of Cy, C; and C;. Thus,
¢(a), p(b) and (0, 0) are on this line, and so p; = ¢(a) + ¢(b) is also on L.

But p; was on a line perpendicular to L that also contains p,, where the distance
from p; to L was the same as the distance of p, to L. It follows that p; = p>, and we
have a contradiction. Thus, ¢|4 is a homomorphism, however ¢ is a bijection, and so
we have shown Step (1):

LEMMA 3.2. For any ¢ € W(G), we have |4 : A — A is an automorphism.
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So, we may now assume that ¢|4 : 4 — A4 is an automorphism. Relative to the
basis vy, v, the matrix representing ¢|4 is an integer matrix, M(¢) say, and since it is
invertible M (@) must have determinant +1. We first show:

LEMMA 3.3. If G does not have type pl,p2, then ¢| 4 has finite order.

Proof. First, assume that there is some a € A4 such that (a)F does not span a cyclic
subgroup of 4. Let a;, a» € (a)F generate a Z> subgroup. If ¢| 4 has infinite order, then
for every N > 0 there is k € N such that some point of ¢*((a)F) is outside the ball
By. But all the elements of (a)F are conjugate, and so all the elements of ¢*((a)F) are
conjugate by Lemma 2.1. Thus, if one of the points of ¢*((a)F) is outside By, then
they are all outside of By. Thus, ¢(a;), ¢(az) are both on the boundary of the ball
By D By. Now, the triangle with vertices (0, 0), a1, a> is sent to the triangle with
vertices (0, 0), p(a1), ¢(az); however (as the distance between ¢(a;), ¢(ay) is at least 1,
and we can choose N arbitrarily large), the latter triangle clearly has larger area than
the former, contradicting the fact that M(¢) has determinant +1.

Now, one can check (i) and (ii) of the following result.

LEMMA 3.4. (i) Every wallpaper group G other then pl and p2 has some a € A,
where (a)F does not span a cyclic group.

(ii) If T is some isometry of the wallpaper paper pattern in E> corresponding to the
wallpaper group G and t((0,0)) = (0, 0), then there is some element of Wy(G) whose
action on A is equal to that of T on 2.

The elements referred to in Lemma 3.4 (ii) are compositions of ¢ and the
automorphisms that were defined in Section 2.
Lemma 3.3 now follows from Lemma 3.4 (i). O

Thus, by Lemma 3.3, we see that if G is not of type pl,p2, then M(y) is an integer
matrix of finite order. This order is well-known to be 1, 2, 3, 4, or 6, and the element is
an orthogonal rotation or a reflection. This matrix also preserves the lattice £. It thus
corresponds to the action of some element of Wy(G), by Lemma 3.4 (ii). Composing
@ with the inverse of this element gives a new ¢ where ¢|4 = Id,4, as required for
Step (2).

Thus, we now assume that G has type p2. In this case, it is easy to see that whenever
a, b, c,d € Z satisfy ad — bc = %1, then the assignments

X x"yb, V> xcyd, T,

determine an automorphism of G. Thus, we can compose ¢ with some element of
Wo(G) to obtain a new ¢ satisfying ¢|4 = Id4. This gives Step (2):

PROPOSITION 3.5. For ¢ € W(G), there is ¢' € Wy(G) with (¢’ o ¢)|4 = Id4.

4. Step (3). Since A< G, we see from Lemma 2.1 that ¢ induces a weak
Cayley table isomorphism ¢ :G/4A — G/A. Now, G/A is one of the groups
C1,Cs,C3,C4,Cs, Dy = Cy x Ca, Dg, Dg, D15. It is known [5] that each of these groups
has trivial weak Cayley table group.
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LEMMA 4.1. If G is a wallpaper group having no glide reflections in F, with
presentation as given in Section 2 with generators x, y, p, o, (respectively x, y, p), then
the assignments

xr—)x’l,y|—>y’1,p»—>p,o|—>a,

(respectively x — x~ ',y y~!' p > p) determine an automorphism of G that we
denote by 1 4.

Proof. This follows from the fact that each relation involving x, y has the form (x, y)
or x* = w = w(x, y) € 4, this latter type being equivalent to (x~')” = w(x,y)~! =
w(x!, yh.

Since ¢ : G/A — G/A is an automorphism or antiautomorphism, we see that if
p € G is a rotation that generates the subgroup of rotations fixing (0, 0), then we must
have ¢(A4p) = Ap*', and so ¢(p) € Ap™!. If p(p) € Ap~', then we compose ¢ with ¢
and then with ¢4, to give a new ¢ which is still the identity on A4, but which satisfies
@(p) € Ap.

If |G/ A| = 2, then @ is the identity. So, assume that |G/A| > 2.

If G does not have reflections or glide reflections, then the above shows that ¢ is
the identity.

So, now we assume that G has reflections, but does not have glide reflections.
Then, we have G/A = Dy = C, x Ca, Dg, Dg, D1». In particular, G has at least two
reflection cosets: there are o1, 0, € G, Aoy # Aoy, where o;,i = 1, 2, are reflections.
Assume that ¢(o1) = ao,. Since o is a reflection, it follows that a € L*(0,) by Lemmas
2.5 and 2.1 (1). Also, L*(01) # L*(0,), since Aoy # Aoy. Then, there is b € L*(o7)
such that ab ¢ L*(0»). But boy has order 2, however ¢(bo) ~ ¢(b)p(o1) = baos; since
ab ¢ L*(0,), we see that abo, does not have order 2, a contradiction. Thus, we have
proved Step (3) for groups without glide reflections:

LEMMA 4.2. If G does not have glide reflections in F, then we can assume (by
composing with a trivial weak Cayley table map if necessary) that 9|4 = 1d4 and that
¢ : G/A — G/A is the identity.

So, now assume that G has a glide reflection in F. There are four wallpaper groups
of this type that we now consider individually.

If G is of type plgl, then |G/A| = 2 and so we certainly have ¢ = Idg4.

If G is of type p2mg, then G/A4 = CZ, and the cosets are A, Ap, Ao, Apo. Here, Ap
consists entirely of rotations; if x'y/o € Ao, then (x'y/o)?> = x%; and if X'y/ po € Apo,
then (x'y/ po)> = y¥*1. This shows that ¢(A4p) = Ap. If we have ¢(0) = x'y/po, then
o? = lgives(x'y/po)* = 1, so that y¥*! = 1, a contradiction. Thus, we have $ = Idg,4.

If G is of type p2gg, then G/A = CZ, and the cosets are 4, Ap, Ay, Apy. Again
Ap consists entirely of order 2 rotations, while each element of Ay, Apy is a glide
reflection and so not of order 2. Thus, we have p(4p) = Ap. If p(y) = x'y/py, then

x=o(x) = o(y?) ~ (XY py)* = xVpyxy py
=Xy pypx~y Ty = xyyy IxTy Ty = p¥Hh

Thus, y¥ ! € x% = {x, x7!}, a contradiction. Thus, we have ¢ = Idg/ 4.
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If G is of type pdmg, then G/4 = Dg. We describe W(G/A). Order the cosets of
G/A as

A, Ap*, Ap*y, Ay, Apy. Ap’y, Ap*, Ap.

Then, relative to this ordering the action of W(G/ A4) is given by the permutation group
((3,5,4,6),(3,4),(7,8)) = Dg x C,.

Thus, the possibilities for ¢(A4p) are Ap, Ap>; we also see that p(4p?) = Ap>, and
that {Ay, Apy, Ap*y, Ap’y} are permuted by @. If p(4p) = Ap>, then composing
with ¢« and then v, shows that we can assume ¢|4 = Id,, @(4p) = Ap, Pp(Ap?) =
Ap*, p(Ap®) = Ap>.

Considering the other cosets, we have

Yy =" Yoy =Xy
&Y ety =y (YY) = o)
This shows that 4py, Ap3y are the only cosets that contain involutions, so that

we must have {¢(4py), p(4p>y)} = {Apy, Ap>y}. This shows that the action of ¢ is
given by some element of the group ((3, 4), (5, 6)). If ¢ # 1, then we must either have

@(Ay) = Ap*y or p(Apy) = Ap’y.
CASE 1. We first show that we cannot have ¢(4y) = Ap?y. So, assume that this is the
case, and that ¢(y) = x“y"p?y. Since y2 = x, we have

x = 9(x) = p(y?) ~ (¥ p*y): = X"y p’y - X"y py

= X7y )x Ty y = Xy Dx Ty Ty = Kty =yt

Since x¢ = {x, y, x~!, y~!}, we see that 2v + 1 € {1, —1}, so that v € {0, —1}.
The next result follows from the presentation for G of type p4mg:

LEMMA 4.3. Let G have type pAmg. Let X = (x*), Y = (y*). For a € A, we have

(ap*y)® =yYa”y Ux ' Yay U Xap*y Uxy~' Xa’ py.

Now, (xy)* = x?, giving x* = ¢(x*) = ¢((xy)?) ~ ¢(xy)* ~ (p(x)¢(y))*, so that
X3~ (x*t1y?p2y)?. Lemma 4.3 shows that (x“t1yVp?y)¢ has one of the following
forms, for some k € Z:

)y Hy= Ity @y Ty
(lll) x2kxuyvp2y; (zv) x2k+ly71xu+1yfvp2y.
If we have (i), then

Zkfuxv 2 72k+uxv — x2v+l

x3 ~ 0/2k+1y7u71xvy)2 — y2k7uxvy .y2k7uxvy =y vy

which is a contradiction since v € {0, —1}.
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If we have (ii), then x> ~ (p*+ut1x=v=11)2 where

2k+u+1 —v—1 2 2k+u+l —v—1 2k+u+1 —v—1
v Xy =y X"Tyy X"y

— y2k+u+1x—v—l,y2 . y—Zk—u—lx—v—l — x—2v—l

which is a contradiction since v € {0, —1}.

If we have (iii), then x* ~ (x**%y* p2y)?, where
> 2 ok 2 2 > 2 T
(FFuyr pPy)? = Xy ply XK Fy ply = Y py plym Yy
2k+u v -1 —2k—u, — 2v+1

yyy x Yy =y,

which is a contradiction since v € {0, —1}.

If we have (iv), then x> ~ (x**2+4)v p2y)2 where
( 2k+2+u vp 7/)2 2k+2+uyvp2y x2k+2+uyup2,y 2k+2+uyup2yp X 2k727uy7vy
2k+2+uyvyy lx 2k—2—uy—vy — y2v+1

which is a contradiction since v € {0, —1}. Thus, Case 1 does not happen.

CASE 2. Here, we assume that ¢(4py) = Ap’y and write p(py) = bp’y, b = x*p".
Since (py)> = 1, we must have (hp’y)*> = 1. But

(bp’y)? = Xy o’y - Xy oYy = X pypy TN = Xy yyyTixYe
_ xuyv+152yuxv _ (xy)u-i-v-i—l’
sothatu4+v+1=0.

Now, (xypy)* = 1, and so 1 = ¢((xypy)?) ~ ¢(xypy)*, so that p(xypy)* = 1. But
o(xypy) ~ xy - x*y*po, and so we must have (x**!'y**1p35)? = 1. One finds that
(x*+1yv+l p35)2 = (xy)“*v+3, so that u + v 4+ 3 = 0, a contradiction.

Thus, Case 2 does not happen either, and we have proved Step (3).

5. Step (4). We need to show that we can assume (after possibly composing ¢
with an element of Wy(G) or a known non-trivial weak Cayley table isomorphism) that
¢ fixes each element of F. We do this in such a way as to preserve the fact that ¢|4 is
the identity on 4, and that ¢ is the identity map on cosets of 4. We consider each type
of wallpaper group.

p2, p3, p4, p6 cases: Here, we have ¢(p) = ap,a € A; however, the assignment
(x, ¥, p) = (x,y, ap) determines an automorphism of G in this case. We thus compose
¢ with the inverse of this automorphism to obtain ¢(p) = p, ¢(p~') = p~'. This then
does the cases p2, p3.
For p4, we note that ¢(p?) ~ ¢(p)* = p?, which shows that (p(,oz) =(pH)* a=
x'y/ € A. But then composing ¢ with t~'7,” w111 then give ¢(p’) = p',0 < i < 4.
For p6, we note that ¢(p2) ~ ¢(p)? = p%, which shows that ¢(p?) = (p2)¢, a =
X'y € A. Thus, ¢(p?) = (xy)(xy~2)" p? for some k, m < 7. But now we can compose

k—m

¢ with 7z ", s0 as to be able to assume o(p?) =p> e(p ) =p2 Now o(p) ~
(p(,o)(p(p2) = p so that (p(,o) = x?y¥p3 i, j € Z. Now, one can use ;sz Myz so as to be
able to assume ¢(p?) = p*. This does the p6 case.
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clml, plm1 cases: Here, we must have (o) = ao, a € A, where (ac )’ = 1 sinceo? = 1,
however the assignment (x, y, o) — (x, y, ao’) determines an automorphism of G in
these cases, and we are done.

plgl case: Here, we note that x = y? is central in G, so that we must have ¢(y)* = x;
one finds that if p(y) = x*)"y, then u = 0. Thus, we can compose with a power of the
automorphism ¥, of Gso asto get ¢|4 = Id and ¢(y) = .

We will find the following useful in what follows:

LEMMA 5.1. Suppose that ¢|4 = 1d4 and that ¢(p) = p for a rotation p. Suppose
that o, op are distinct reflections in G with 9(Ao) = Ao. Then, (o) = 0.

Proof. Since ¢(Ao) = Ao, we can write ¢(o) = ao, a € A. Since 0> = 1, we must
have a € L' (o). Now, ¢(p - 0) ~ pac = a*” po and so a” € L*(po). But then a €
L*(op). Since 0 # op, we have a € L*(o) N L*+(op) = {1}, and we are done. O

LEMMA 5.2. Let ¢| 4 = 1d| 4 and assume p(Ay) = Ay for some glide reflection coset
Ay. Then, o(y) = ay implies that a € L*(y).

Proof. Let B = y?, so that 8 € L(y), B # 1. Squaring both sides of ¢(y) = ay gives
us B ~ Baa’. Since B and aa” both lie on L(y), this implies that faa” = g*!. Then,
we have two possibilities: either aa” = 1 which implies that a € L*(y), or aa’ = g2
in which case a € B~'L*(y). Now, let L*(y) = (a), o € A, and suppose we have a =
B~ 'ak. Then, ¢(B - y) ~ B -ay = o¥y. Since (By)* = B°, squaring both sides gives
B? ~ B, which is a contradiction. Thus, we must have a € L (y). a

LEMMA 5.3. Let G be a wallpaper group not of type pdmg, with a reflection or glide
reflection coset Ar. Assume ¢|4 = 1d4 and ¢(Ar) = Ar. Suppose that for ar € Ar, we
have @(ar) ~ ar. Then, ¢(ar) € K,ar. In particular, ar = @(r) ~ r implies that a € K,.

Proof. If p; ¢ G, then by Lemma 2.6, we have (ar)® N Ar = K,ar and we are done,
so suppose p; € G. Let A = (py, 7~ !), so that A € 4 and r”* = Ar. Let g = r? so that
r = Br~!. (If r is a reflection, then B = 1.) Thus, again by Lemma 2.6, we have

(ar)’ N Ar = K,ar U K,(ar)’” = K,ar U K,a~'Ar.

First, we note that if A = 1 and &® € K, then we have nothing to prove; so suppose that
this is not the case. Since ¢(A4r) = Ar it suffices to show that ¢(ar) ¢ K,(ar)’~. Now, K,
is a cyclic group: K, = («), where o € A. Also, in this case one sees that K, < L*(r).
Suppose to the contrary that ¢(ar) = a'(ar)’~ for some o € K,. Then, for any b € A,
we have

@(b - ar) ~ ba‘a 'ar.
Squaring both sides, we have
g(bar)® ~ ¢((bar)?) = p(baB(ba)) = bap(ba) ~ (ba'a~' 1p)(ba'a 'R .
Reordering the elements this becomes

Baa"bb" ~ Ba' () a” (a1 bH AN (5.1)
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Recall that L(r) is the line fixed by the action of r. Note that aa” is in L(r) (since (aa")" =
d'a = aa’.) Similarly, bb", AL" € L(r). Recall that « € K, < L*(r), so thata” = a~'. So,
we know /(') = 1. Also, B € L(r) (since " = (r*)" = r> = B). Thus, Equation (5.1)
is stating that two elements of L(r) are conjugate to each other. This implies that they
are equal or they are inverses. If they are inverses of each other, Equation (5.1) becomes
b~2(b~%)" = B*AA" which can’t be true for all » € 4. Thus, they are equal to each other
and we have ¢?(a*)" = AA". We can assume A is not trivial in this case because if A = 1,
then «*> € K., and we assumed both of those cannot be true together.

So, assume A # 1. Now, the fact that G has a reflection or glide reflection r,
contains p;, and A = (p,, r~!) # 1, restricts us to the groups of type p2mg, p2gg. In
these cases, one checks that a’(a?)" € (x*, y*). However (looking at the possible As in
each of these three groups), we find that AA" ¢ (x*, y*). This is a contradiction. Thus,
p(ar) ¢ K (ar)’. O

c¢2mm case: Suppose that ¢(p) = x*)p, ¢(c) = x'y/o. We must have j = —i since
(0)*> = 1. Similarly, the fact that (po)?> =1 implies that 1 = ¢((p0)?) = ¢(po)* =
(p(p)p(0))* = (x*y’px'y~'o)?, which is only true when u = v + 2i, so that we can
compose ¢ with the inverse of v, , ; to get (p) = p, (o) = 0. To get p(po) = po, we
now apply Lemma 5.1, and we are done.

p2mm case: Suppose that ¢(p) = x*y'p, ¢(c) = y'o. We can compose ¢ with the inverse
of ¥, to get p(p) = p. To get p(0) = o and ¢(po) = po, we now apply Lemma 5.1,
and we are done.

p2mg case: Suppose that ¢(p) = x"y'p. Composing with a power of ¥, and then
a power of i, we can arrange that v =0 and u = 0. Let ¢(0) = ao. The fact that
02 = 1givesa € L*(o). In this group, this implies ¢(c) ~ o and we may apply Lemma
5.3togivea € K,. If p(po) = bpo, then Lemma 5.2 gives b € L*(po). Since (cpo )¢ =
(xYacpo U (x*)(cy) " po, LY (po) = (x*) and bpo = ¢(p - 0) ~ a” po, we see a” lies on
Lt (po) Uy~ 'L (po). Thus, alies on (L' (po) U yL*(po)) N K,. Hence, a = 1, which
gives us ¢(po) ~ po, and so by Lemma 5.3, we know b € K,,. Now, 0 = ¢(p - po) ~
b*o which tells us b € L*(o), and so b is also trivial.

p2gg case: Suppose that ¢(p) = x*y"p. By using ¥/, ¥, we can arrange thatu = v = 0.
Let ¢(y) = ay, ¢(py) = bpy. By Lemma (5.2), a € L*(y). Note that L*(y) contains
elements from only two conjugacy classes, namely ¥ and (yy)°. If ay ~ yy, then we
may compose with 7, o t. So, now we have ¢(y) ~ y and so by Lemma 5.3 a € K,,.
Lemma 5.2 gives us b € L*-(py) and thus boy = ¢(p - y) ~ pay = a~' py implies that
a € L*(py) U yL*(py). This intersects K, trivially hence ¢(y) = .

Now, ¢(p - y) ~ py so we may apply Lemma 5.3 which gives us b € K,,,,. We also
know y = ¢(p - py) ~ b~'y which tellsus b € K, U xyK, . The only possibility then is
that b = 1.

p3ml case: Suppose that ¢(p) = x*y'p. Composing with an element of (v, 1) we
can arrange that ¢(p) = p. Thus, ¢(p) = p, ¢(p?) = p>. We now apply Lemma 5.1 to
conclude that ¢(0') = o, p(po) = po, p(p*c) = p*o, and we are done.

p31m case: Suppose that ¢(p) = x*)*p, ¢(c) = x'y/o . Here, we note that by composing
with an element of (I, 1,) we can arrange that ¢(p) = p, so that ¢(p?) = p*>. From
Lemma 5.1, we obtain ¢(p¥0) = p¥o, k =0, 1, 2, as required.

p4mm case: Suppose that ¢(p) = x*3"p, ¢(0) = x'y'y. Then, acting by some I, b € A,
we can assume ¢(p) € {p, yp}. If we have ¢(p) = yp, then acting by the automorphism
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Yt we see that ¢(p) = p, 9(p’) = p>. Now, Lemma 5.1 gives ¢(po) = pko,
0<k<3.

Let ¢(p?) = x'y/p>. Then, for any reflection ¢ € {o, po, p>op’c}, we have p’t =
(p%1) ~ @(p?)(t) = x'y/ p°t, from which we see that x'y/ € L+(p?¢) for all ¢. This gives
i =j =0, sowe have p(p*) = p* and this concludes this case.

pémm case: Suppose that ¢(p) = x“3"p, ¢(0) = x'y/y. Then, acting by some I, b € A,
we can assume that ¢(p) = p. Now, Lemma 5.1 gives ¢(p*c) = p*0,0 < k < 5, and
the rest of the proof follows as in the previous case. This completes this case and
concludes the proof of Step (4). O

6. Steps (5)and (6). LEMMA 6.1. Suppose that |4 = Id 4 and t € G where p(t) = t.
If a € A where p(at) = bt, then a ~ b.

Proof. Given the hypotheses, we have
a~d =)= at)~ (™) - plar) = bt ~ b. O

Recall that F is a set of coset representatives for G/A. In the situation of Lemma
6.1, we will write ¢(at) = a’«t, where r, € F.

PROPOSITION 6.2. Suppose that ¢|4 = 1d4 and t € F where ¢(t) = t. Then, there is
f € F such that p(at) = d' t for all a € A.

Proof. From Lemma 2.1, we see that ¢(At) = At. Now, for a, b € 4 we have
ab™' = at(bt)y™' = p(at - (bt)y ") ~ det - 1) = @ (b) 7.

Thus, thereis somef € Fsuchthatab™' = (a«(b)~'Y,so thatlettinga = r,f. B = ryf.
we have

a(a™")* = b(b™"P. (6.1)

For a € A, we let C, denote the circle in E? that contains the origin and that is
centred at v,, and let S, = {vy,-1y : f € F}. Then, S, consists of |a’| points that lie on
C,. Note that (0,0) € S, for all a € 4. Since two distinct circles can meet in at most
two points equation (6.1) gives |S, N S| € {1, 2}.

LEMMA 6.3.

(i) If |S, N Sp| = 1, then there is § € F such that a = a®, b = b°.
(ii) If (0, 0), vy, vp are collinear, then there is a § € F such that a"« = a®, b = bP.

Proof.

1) If IS, NSy =1, then S, NS, = {(0,0)} and so from equation (6.1), we get
a(@)* = b(b~"? =1, so that a = a*, b = bP. From this, we obtain ¢/ =
a, b~ = b", so that we can let § = /1.

(i) We may assume that a # b. Since (0, 0), v,, vy are collinear the centres of the
circles C,, Cp are on the line through these points. Since a ## b we have C, # Cp;
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since (0, 0) is common to C, and C, we see that C, # Cj, implies C, N C, =
{(0, 0)}. This gives |S, N Sp| = 1, as in (i), which then gives the result. ]

LEMMA 6.4. Let b € A, b ¢ H. Then, there is a unique f = f; € F such that for all
a € A we have p(at) = d't, p(bt) = b't.

Proof. Recall that b ¢ H means that |b°| = |F|. If (0, 0), v,, vj are collinear, then
the existence of such a § € F follows from Lemma 6.3 (ii), while the uniqueness follows
from the fact that b ¢ H.

Now, assume that (0, 0), v,, v, are not collinear. If |S, N S;| = 1, then by Lemma
6.3 (i), there is § € F such that a’« = a®, b = b°, and the fact that § is unique follows
from b ¢ H. So, now assume that |S, N Sp| = 2. Then, by Lemma 6.3 (ii), there is
some f € F such that for all k € N we have (b¥y = (b*)"#. Since b ¢ H this element
f is unique. Since S, is finite there is some k& € N such that |S, N Sy | = 1; then we
have h, i € F with b = b" b = (b*)" and b+ = (W), a"« = a". Since b ¢ H we
again see that /4, /' are unique, so that 4 = /. Thus, we have @’ = ¢" and b" = b", as
required. ]

Now, let a, b, c € A where b ¢ H. Then, by Lemma 6.4 there are unique f, h € F
such that g(at) = a't, p(bt) = b't and @(bt) = b"t, p(ct) = /1. Since f, h are unique
and ¢(bt) = b't, p(bt) = b"t we must have f = h; it follows (by fixing a and varying c)
that for all d € A we must have ¢(dt) = d’t for this value of f € F that is completely
determined by b ¢ H. This concludes the proof of Proposition 6.2, and so completes
Step (5). O

For the remainder of this section, we assume that ¢|4 = Id, and that ¢(f) = f for
all f € F. We also assume that for all /' € F there is r; such that ¢(af) = a7 f for all
a € A. Our goal will be to reduce to the situation where p(af) = af forallf € F,a € A.
We start with the following lemma.

LEMMA 6.5. For all a € A and all reflections or glide reflections r € F, we have
o(ar) € {ar, d'r}.

Proof. Since ar ~ ¢(a - r) we may apply Lemma 5.3. This gives us ¢(ar) = a'r €
K,ar for some t € F. This implies that a~'a’ € K, foralla € A. But a~'a’ = (a, t) and
K, ={(a, t) : a € A} shows that K, C K,. From Lemma 2.6 (ii1), it follows that either
K, = {1} or K; = K,, from which we see that eithert =1or¢=r. ]

The following applies to the groups of type p4mm, p4mg, p31m, p3ml, p6mm.

THEOREM 6.6. Let G be a wallpaper group having a non-trivial rotation p # py,
and distinct reflection or glide reflection cosets Ar, Arp. Suppose we have ¢|4 = 1dy4,

@(r) =1, @(rp) = rp, and ¢(p) = p. Then, ¢|4 = ldy, .
Proof. Recall from Lemma 2.6 that for any of these five groups, we have
(ar)’ N Ar € K,ar U K,(aB1B2) " 'r,
where 818, = xy when G is of type pd4mg, but is trivial otherwise. Suppose to the
contrary that ¢|4 # Idy,. Then, by Lemma 6.5, we must have ¢(ar) = &'r for all

a € A. Now, rp is also a reflection or a glide reflection, and so we have

dr-p~glar-p)=qgla-rp)~ arp.
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Thus, for all @ € A we must have (i) @’a™! € K,,, or (i) a’a € K,,(B182)". Since r and
rp are distinct reflections, case (i) is only true for a which satisfy a’'a~! = 1. Any such
a € A must lie on L(r).

Since p # px, L(r), and K,, are not parallel. Hence, L(r) N K,,(B182)~" is exactly
one point. (If G is of type p4mg and r = py this point is xy~!, when r = p?y itis y=2,
and when r = py it is x~'y~!. In all other cases, this point is trivial.) Thus, case (ii)
is only true for @ € L*(r)y~! or a € L*(r). This shows that the only a € 4 that satisfy
a’rp ~ arp are in the union of two lines (either L(r) U L*(r) or L(r) U L*(r)y~") which
is not all of 4. Thus, ¢(ar) = a'r is not possible. We conclude that ¢| 4 = Id. O

The following applies to the eight groups ¢2mm, p2mm, p2mg, p2gg, p4mm, p4mg,
p31m, p3ml, and p6mm.

THEOREM 6.7. Let G be a wallpaper group having at least two cosets that are reflection
or glide reflection cosets. Suppose we have ¢|4 = 1d4 and ¢| 4, = Id for all reflection
cosets Ao as well as ¢| 4, = 1d for all glide reflection cosets Ay. Assume ¢(t) = t for all
teF. Then, ¢ = 1d.

Proof. Let Ar denote a reflection or glide reflection coset. Let ApX be a rotation
coset. We know by Proposition 6.2 that there is some ¢ € F such that ¢(ap¥) = a’p* for
all @ € A. By hypothesis, we have ¢(ra~!) = ra—!' which gives

ot~ ) = p(ra™t - aph) ~rat - d' o = (@ aly T

This gives (a'a’Y” € Kyyx U K,«(B12)~" for all @ € A. Write 8, = ((8182)"")" so that
(a,t) € Ky, U Ky, B for all @ € A. Now, the element 7 € F depends upon k and not
on r. Then, the fact that we have at least two reflection or glide reflection cosets,
say r, ¥’ € F means that (a, 1) € (K¢, U Ky, B:) N (Kt U K Br). This intersection is
trivial if neither r nor 1 are glide reflections. Otherwise, this intersection is finite and
therefore bounded. Thus, there exists a ¢t € F such that for all « € 4, we must have
(a, 1) in this small intersection. This can only be true if ¢ is trivial. So, ¢(ap¥) = ap*.
This completes the proof. O

The group of type c2mm By Lemma 6.5, thereare s € {1, o}, u € {1, po}, where p(ac) =
a‘o, p(apo) = a'po for all a € A. If we have u = po, we may compose with I, ot so
that we have u = 1. If s = o, then we have

xyp ~ @(xy - p) = ¢(xo - Xpo) ~ yoxpo = y*p.

Since xyp ~ yp, this is not possible so we must have s = 1. Theorem 6.7 now shows
that ¢(ap) = ap for all a € A, and so G has trivial weak Cayley table group. ]

The group of type p2mm
By Lemma 6.5, there are s € {1,0},u € {1, po}, where ¢(ao) = a’o, p(apo) =
a“po for all a € A. If we have s = o, we may compose with t so that we have s = 1.
Now, note that t¥ is the identity on 4 U Ao and conjugates elements of Ap U Apo
by po. Thus, if we now have u = po, then we compose with t¥ to obtains = 1, u = 1.
Theorem 6.7 now shows that ¢(ap) = ap for all a € A. This shows that groups G of
type p2mm have weak Cayley table group generated by Wy(G) and . l
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The group of type p2mg By Lemma 6.5, we know that p(ao) = a*o, and p(apo) = @*po
forsomes e {l,0},u € {1, po}, foralla € A. Now, if s = o, then

po = @(po) = p(yo - p) ~yop =y'y ' po =y *po,

which contradicts Lemma 2.6. Thus, s = 1.
Next, if u = po, then

xo = @(x0) = p(xop - p) = @(xy~ ' po - p) ~ (xy ) pop = (xp~')yo,

so that (xy~ 1)y = x~1y~!y = x~! has the form xy** or x~1y*~1, both of which are
not possible. Thus, u = 1. Theorem 6.7 now shows that ¢(ap) = ap for all a € 4, and
so G has trivial weak Cayley table group. U

The group p2gg By Proposition 6.2, thereare s, u € F = {1, p, y, py} such that p(ay) =
a'y, and ¢(apy) = a"py for all a € A. By Lemma 6.5, s € {1, y},u € {1, py}. Let
X = (x?), Y = (3*). Thus, for G a group of type p2gg we have

LEMMA 6.8. Let a, b € A. Then,

(i) ay ~ by ifand only ifab=" € Y orab € x"'yY.
(ii) apy ~ bpy if and only if ab™' € X or ab € xy~' X.
(iii) If v e Fanda € A, then aa’ ¢ x~'yY Uxy~' X.

Proof. (1) and (ii) follow from the presentation (see Lemma 2.6). For (iii), note that
fora = x'y) we have a® = a™!, a¥ = x'y~/, a?¥ = x~'y/, which gives (iii). O
Now, for all a € 4, we have

(@Y py = a”"py = p(@” py) = ¢((apy)"”) ~ plapy) ~ ¢(py - a)
-1 3 s, — s
=p(pa” y)=g(p-a’y)~ p@)y =a*py = (a) " py.

From Lemma 6.8 (ii), (iii), we thus get a’(a=")* € X for all @ € A. Let a = x'y/,
and recall that u € {1, py}. We show that this implies s =1, for if s =y, then
the possibility u = 1 gives a*(a~")* = (x'y /) (x~'y7) = y=% ¢ X; while u = py gives
a'(a Y = (x'y7)(x'y7) = x¥y=%¥ ¢ X. Thus, we have s = 1.

Similarly, for all « € A we have

a’'y =gp@y)=o¢(p-a"” py) ~ pa oy =a"y,
from which we obtain (a~')”a"" € Y foralla € A;ora 'a" € Y foralla € A. However,

if u = py, then x~'x?” = x~2, a contradiction. Thus, u = 1. O

Theorem 6.7 now shows that ¢(ap) = ap for all a € A4, and so any G of type p2gg
has trivial weak Cayley table group. O
Using the above cases, Theorems 6.6 and 6.7, we see that

COROLLARY 6.9. Each group of type c2mm, p2mg, p2gg, p4mm, p31m, p3m1, pomm
has trivial weak Cayley table group. L]

The group p2
We have ¢| 4 = Id 4 and that there is some ¢ € F such that ¢(ap) = a’p foralla € A.
If t =1, then ¢ = id, while if ¢ = p, then ¢ = I,, and we have proved

COROLLARY 6.10. The group of type p2 has trivial weak Cayley table group.
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LEMMA 6.11. Let G be one of the groups of type p3, p4, pb (respectively), and let
d = 3,4,6 (respectively ). Suppose that p € F is a rotation of order d, and that there are
s,t € Fwitho(ap) =d'p, p(ap™") = a*p~" foralla € A. Then, s = t.

Proof. Given a € A, let ap?' = (bp)~', b € A. Then, solving gives b = (a=')*""".
Since (¢, p) = 1 we have

plap®™ ) = @bp) = ') = p 7 B = p @) = dlpd O

The group p3

We know that ¢| 4 = Id 4 and that thereis r € F = {1, p, p?} such that p(ap) = da'p
for all @ € A. By Lemma 6.11, we have ¢(ap?) = a'p* for all a € A. Thus, ¢ is a power
of the weak Cayley table isomorphism 7 defined in Section 2, and we have proved

COROLLARY 6.12. The group of type p3 has weak Cayley table group generated by
Wo(G) and .

The group p4

We know that ¢|, = Id4 and that there is some ¢ € F = (p) such that ¢(ap) =
a'p for all a € A. By Lemma 6.11, we have g(ap®) =da'p> for all ae 4. If t =1,
then @|4pu4p5 = Id. If 1 = p¥, then composing with 1;* reduces to the case where
(p|ApUAp3 = Id, also.

Now, there is u € F such that ¢(ap?) = a*p> for all a € A. If u= p?, then we
can compose with 7, to obtain ¢ = Id. Thus, the remaining case reduces to u = p. In
this situation, one has ¢(x?p?) = (x?)? p*> = y?p?, while p(x - xp?) ~ x - x°p? = x - yp>,
giving y?p> ~ xyp?, a contradiction. This gives

COROLLARY 6.13. The group of type p4 has weak Cayley table group generated by
WO(G) and Txv Tya sz7 /“va Myv Mp-

The group p6

We know that ¢|4 = Id4 and that there is some ¢ € F = {p) such that ¢(ap) = a'p
for alla € A. By Lemma 6.11, we have ¢(ap’) = a'p> for all a € A. Similarly, there is
s € F such that if p(ap?) = a*p? for all a € A, then we also have ¢(ap*) = a*p* for all
a € A. Last, assume that ¢(ap’) = a"p> for alla € A.

Now, using an element of (t,21,2, 11,31,3), we can reduce to the case where # = 1
while preserving the conditions ¢4 = Id4, ¢(p*) = p*,0 < k < 6.

LEMMA 6.14. Assume that for some t € (p), we havea™'a' € K,» N K 5 foralla € A.
Then, t = 1.

Proof- If a = y, then {ala’ 1v e (o)} =11, x 1, x’ly’l, xy’z, xy’l,y’z}. Now,
Ky = ((x, p), (0, p7)) = (x %y, xp) and K5 = (x*, )7),

so that K, N K, = (x*y?, x?y~%). But the only element of {I,x~!, x~1y~! xy=2,
xy~!, y=?} that is also in K> N K, is the identity, and so we are done. O

Now, we have the following:

(i) a'p* = p(ap®) = plap - p) ~ ap® gives a™'a’ € K ;
(i) a’p* = p(ap’ - p) ~ a“p* gives (a~')'a" € Ky;
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(i) a“p® = p(ap®) = g(ap - p*) ~ ap® gives a~'a" € Kpys;
(iv) ap® = p(ap? - p) ~ a*p> give a"(a™')* € K.
Since K2, K3 are subgroups (i) and (ii) give ala' e K, for all a € A. Thus,
by (iii), we have a~'a* € K,» N K3, so that Lemma 6.14 tells us that u = 1.
Similarly, (iii) and (iv) give a~'a® € K 5, which combined with (i) gives a~'a® €
K,» N K3, from which we obtain s = 1, using Lemma 6.14. Thus, we now have ¢ = Idg.
This gives:

COROLLARY 6.15. The group of type p6 has weak Cayley table group generated by
WO(G) and Tas Tﬂv sz i H’p3 y Mx2, [LyZ.

The groups clml, plml, plgl

Here, we have ¢ € F such that ¢(ac) = a'c. If t = 1, then we are done. So, assume
that 1 # 1,¢ € F. In each such group, we have the automorphism ¢ : (x, y,r)
(x~1, y~1, 1), where r is o, o, y, respectively, for the three groups. Then, composing
Y with ¢ gives ¢, and we have proved:

COROLLARY 6.16. The groups of type clml, plml, plgl have trivial weak Cayley
table groups.

7. The groups of type pdmg. We note that much of what we have done in other
cases does not apply to a group of type p4mg.
Here, we start by assuming ¢|4 = Id4 and ¢(A4f) = At forall t € F. Let

U=(wx), X=%), Y=07 V=) W=
In the next two results, we list the conjugacy classes and involutions:
LEMMA 7.1. Let a = x'y/ € A. Then,
() = (y )
(ap)® = Uap U Uaxp?;
(ap*)® = Uap?;
(ap*)? = Uap® U Uaxp;
(ay)’ = Yay U Ya 'x7yy U Xa’xp*y U Xa"zy_lpzy;
(apy)® = Vapy UVa ' py U Wy~ la?p’y U Wx~' (@'Y p'y;
(ap*y)¢ = Xap*y U Xa 'xy~1p?y U Ya"Byy U Ya’xy;
(apy)? = Wapdy U wx 'y la 3y U anps,oy Urxlapy.

LEMMA 7.2. Any involution in G is in one of the cosets:
(@) Ap*;  (b) Vpy; (o) x ' Wp'y.
Now, assume that ¢(p) = ap, a € A. Note that I,(p) = (xp)"'p, L(p) = xy~' p, s0

that by acting by some I;,, b € A, we can assume ¢(p) € {p, xp}. If we have p(p) = xp,
then composing with the automorphism v; we see that ¢(p) = p. Now, let p(y) = ay.
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Lemma 5.2 givesa € (p). Note that (py)? = 1 and Lemma 7.2 implies that ¢(py) ~ py.
So, Lemma 7.2 (b) with ¢(p - y) ~ pay tells us a’’ € V,soae VP = W.We conclude
that a € (y) N W is trivial. Thus, we now have ¢(p) = p, ¢(y) = ¥, so that ¢(p?) = p>.

Now, let ¢(p’y) = bo’y,b € A. Lemma 5.2 gives b € (x). Then, using Lemma
7.2 (b) again, (py)* = 1 and ¢(py) = w(p‘l -pzy) ~ p~'bp*y = b py gives b’ € V,
hence b € W N (x). Thus, b_ 1 and ¢(p%y) = p*y.

Assume that <p(,o y) =cp’y,ce A. By Lemma 5.2, we have c € W. Note thaty =
w(p - p 3y) ~ ,oc,o y = i y 1mp11esthatc" e YUYxly, andson e XUXxy! But
also, p%y = @(p® - p3y) ~ ¢ p*y implies that ¢ € X U Xxy~!, sothatc e YU Yx~'y.
Asce WN(XUXxy H)Nn(Y U Yx'y), we see that ¢ = 1, and so ¢(p3y) = p3y

The above shows that ¢(v) = v for all v € F \ {p?, py}. Thus, by Proposition 6.2,
forv e F\ {p?, py} thereis t, € F\ {p>, py} such that for all a € A4 we have ¢(av) =
av. Let t,u, w € F satisfy ¢(ap) = a'p, p(ay) = ay, and ¢(ap~'y) =a“p~'y. By
Lemma 6.5, we have u € {1, y} and w € {1, p~'y}.

Now, let p(py) = apy, a € A. Then, Lemma 7.2 (b) givesa € V, while ¢(p - py) ~
ar” p’y tells us a € Y U Yxy. Therefore, we know a € {1, xy}. However, if we write
t?Y = s, and assume ¢(py) = xypy, then

Py ~ o - x7y) = (P pyp) = e(py - (X)) p)

3)? -1 _y(x3)sy.

~ xypy ()7 p = xp(x’) pyp = xp(x
This gives a contradiction unless s € {p?, p>y} which corresponds to ¢ € {p?, y}. But
. 2 .
since (71" = ()Y =y and (x~')” = x~! for any choice of t € {p?, ¥} and u €
{1, vy}, we have

oy ~e(py) =0 o - xTy) ~ ) o(x Yy = yo(x Ny = Py,

which is a contradiction. Thus, go(,oy) = py.

Now, we have ¢(p¥y) = pXy for k € {0, 1, 2, 3}, and we may apply Theorem 6.6
four times to get ¢ = Id on both reflection cosets and both glide reflection cosets.

Let @(p?) =bp>, b e A. Since ¢(p>-y)~bp’y we see be XU Xxy~'. By
considering ¢(p? - p>y) ~ by, weknowh € Y U Yx~!y. Thus, b € {1, x"'y~!}. Assume
b= x"'y~!. Since p?y = x~'yyp? this gives

p*y = o(xyy - p?) ~ xlyyxTly T e = x 7 ye = x ey,

which is a contradiction according to Lemma 7.1. Thus, ¢(p?) = p>. We may now
apply Theorem 6.7 to obtain ¢ = Idg. Thus, the groups of type p4mg have trivial weak
Cayley table group. Ol

8. Non-trivial cases. Thus, we have found generators for W(G) for each wallpaper
group G. Presentations for W(G) can now be obtained; however, in the trivial cases one
can find such a presentation in [4]. We, thus, only give presentations in the non-trivial
cases:
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Groups G of type p3 Here, we have an order 6 automorphism ¥ : x+> y,y
x~'y, p — p and an order 2 automorphism ¥ : x = x, y — xy~!, p > p~!. Then,

W = (((Wxs ¥y) % (7)) 3 (Y1) X (¥2))) % (1) (8.1)
= ((Z2 X C3) X D]z) x Cs.

Note that [, = ¢, I, = ¢ 'y 1 I, = U, 2. Here, the actions for the semi-direct
products are determined by

vi=y, Yl = vy

and

W = = g = = =
Here, we note that Wy(G) is generated by the v, ¥, ¥1, ¥2, 1.
Groups G of typep4d Let ¢ : x = x, y+— y~', p > p~!'. Then, we have

W(G) = ((Tx, Ty, Tp2y Mxs Ky, /'Lp> A ((%, ¢}> X (Ipa wl>)) x (1) (82)

= ([(Z% % Cy) x (Z* % C4)] % (Z* x Dg)) x Cs
Here, 72 x C, = (1, Ty, T,2) Where T =T T, r;p{ = ‘l,'pz‘Cx‘L'y_l, gives this semi-
direct product, and 72 x Cy = {fix, [iy, J4,), Where p}’ = ! wy” =, gives this
semi-direct product.
Next, the subgroup 7> x Dy is Aut(G) = (Y, ¥,) % (I, Y1) To see that Z*> x Dy
acts on Z° x C, and Z* x C4, we note that for ¥ € Aut(G), we have

(Tu)w = Ty—1(u)» (/Lu)w = Ky—1(u)-

Thus, for G of type p4, we can take N (G) = (ty, Ty, T2, [y, iy, ) in Theorem 1.1.

In this case, Wo(G) = ((¥x, ¥ry) X (Lp, Y1) X (1).
Groups G of typepb Leta = xy, B =xy>and ¢ : x— y,y — x, p — p~!. Here, we
have

W(G) = ({iy2, Hy2, Mp»‘) X (Ta, 18, fpz) X (L, Iy) X (Ipa V) x (1) (8.3)
= ([(Z* x Cy) x (Z* % C3)] % (Z* x D)) x Ca,

with the details being similar to the last case.

Here, we have Wy(G) = ({1, I;) % (1,, ¥))) x (1).

Groups G of type p2mm We note that if G = H x J is a direct product of non-abelian
groups, then G always has a non-trivial weak Cayley table isomorphism: just take
@ x ¥, where ¢ € Aut(H) and ¢ € W(J) is an anti-automorphism. A group of type
p2mm is a direct product. In this case, we have

W(G) = (Y10, Yo.1) x (T, T7)) % (Lo, Ir, ) x (1) (8.4)
= ((Z% % (C2 x C2)) x D) x Ca.

We note that equations (8.1)—(8.4) determine Wy(G) for each of the groups with
non-trivial W(G).
Here, we have Wo(G) = (1.0 Yo.1) % (I Ir. Y1) x (). O
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9. The semi-direct product cases: H = 4 x C,, where A is abelian. So, let H =
A %y Co, where A = (ay, ..., a,) = 7" and 6 € Aut(A). Let C; = (r) and Z = Z(H).
We write elements of H asar®,a € A, ¢ € {0, 1}. We also assume that H is not abelian.
This allows us to assume that «; ¢ Z(H) for all 1 <i <n, since if a; € Z(H) and
a; ¢ Z(H), then we just replace a; by a;a;. We further note that @ € 4 is in Z(H) if and
only if " = a.

Let 4; = (a;), 1<i<n.

LEMMA 9.1.

(i) Fora € A, we have a® = {a, a'}.
(ii) Forh=ar € H\ A, we have h = H'h.

Proof. (i) is clear since 4 is abelian of index 2.
For (i), we note that ¥ = a~'a’r, so that for b € A we have (br)"" = b(a~'a")"r for
allm e Z. Let

,Bi:afla?EH’, l<i<n
Let B, = (8;) < H', 1 < i < n, and note that

-1 N—1 “1 -1
(@' @) = (@) 'a; = (a;'d)" € B,

Also, for a € A, we have (ar)! = aB;r and so (ar)! = a(By, ..., B,)r.
Also,

(ar)™ = ((By, ..., Byar) = (Bi,..., B d'r=(B,..., B)dr
=(B,...,B)da ") ar

Here, we note that @’'a~' € H’ and the result will follow upon showing that H' =
(B, ..., B,). Now, for b € A, we have
1

(a;, br) = al-_lrb_la,-br =a; ra;r = al-_la;f € B;,

and
(air, ajr) = rai’lra;lairajr = (alr»)’la,' . aj_laj’f € BB,
shows that H' < (B, ..., B,), and it follows that H' = (By, ..., B,). O
LEMMA 9.2. Let ¢ € W(H). Then, 9(A) = A and if ¢(a;) = o;, 1 < i <n, then
p(a)" ...a"y=a}' ... a} forall e 7.

Proof. From Lemma 9.1, we see that (ar) is infinite for any a € 4. Thus, only the
elements of A have finite conjugacy classes, and so ¢(4) = 4. Now, from a’ = {a, "},
we have p(a) ~ ¢(a") = p(a)". Thus, p({a, a'}) = {¢(a), p(a)'}. U

LEMMA 9.3. Foralln € Z and a € A, we have p(a") = p(a)".
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Proof- Wehave a” = {a, d"}. Let ¢(a) = «, sothat p(a”) = «”. We then have ¢(a°) =
af fore = 0, £1. So, now assume (inductively) that ¢(a’) = o' for |i| < nforsomen > 2
and that p(a") # o". Then,

o) =gp(a-d" ")~ aa"" € (o, (@)},

which shows that ¢(a") = («")". In particular, we have p(a") = (¢")" # o”.

Now, o = ¢(a) = ¢(d" - a'™") ~ («")"«'~". Thus, we must have either

@) («"'a'™ =a, or

(b) (@) =o'

If we have (a), then (@”)" = «”, from which we get (since A4 is a free abelian group)
o' = «a, giving a contradiction.

If we have (b), then we get (a’)"~! = o"~!, which again gives a" = «, since n > 2.
This gives another contradiction and we have completed the proof. O

For any a € A, we can write a = a1 a2 ... aﬁ'f, Ai € Z. We define a length function
on A as follows:

lal = A1l + [A2] 4+ - - + |l

Thus, we now know that ¢(a) = [, e} for alla € 4 with |a| < 1.
So, now assume (mductlvely) that there is m > 2 such that (,o(a1 a2 coal) =

ay'ey? ..ol for all a)'dy’. a eA with |a}'a}*...al"| <m, and that there
A1 o A — o Ay
is a}'ay’...a; such that |al ay...d»| =m and (,o(a1 a2 cdny £ alad . akn
Without loss, we can assume that A > 1
) —
Further since <p(a1 a2 coaim) # 0‘1 a2 .. , we must have (,0(61l a2 Lay) =
n\l'
(' ...y since
_ xl 1 2 a—1 ,\2 A
(p(a1 a2 . a N=g(ar-ai' ay .. .a ”)~g0(a1)<p(a Lo.ag)
=1 2 A Mo A
=a-o)'” azz...an":al'az Lo
By induction, we have ¢(ay* ... ay") = a*z ..a)m; however, using Lemma 9.3, we
also have
A2 n) — Spws —AN o (M A2 Y -
Py ... am) = glay'ds’ ...dy - a;™) ~ (@) a5 . a)) - o
Thus, we have o5 ... a}" ~ (a}'ad? ...y - a; ™.

This gives two cases:

(@) ay?...op = (ot1 0132 a’\")" (xl_}“, or

(b) a“...a "= (a}'a)? .. adn) - (al’\‘)’

Here p0551b111ty (a) glves (0‘1 oe2 coay = a?laéz ..., a contradiction since
pla)dy ...d; )—(Oll @bk £ aay

But (b) gives (oe1 = 1 this shows that ¢(a;) = «; € Z(H), which in turn shows

that a; € Z(H), which is a contradiction to the choice of the a;. This concludes the
proof of Lemma 9.2. 0

Thus, we see that ¢|4 : 4 — A is an automorphism of 4.

LEMMA 9.4. (1) For any b € A such that br has order 2, the homomorphism
determined by a — a, (a € A), r — br is an automorphism of H.
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(2) Let ¥ € Aut(A) where  commutes with 6. Then, the homomorphism determined
by a— ¥ (a), (a € A), r — ris an automorphism of H.

Proof.

(1) Is clear since r and br have order 2 and " = '.

(2) Therelationsin H have the forma” = @’ and > = 1. We have ¥/(¢) = ¥ (0(a)) =
0(y¥(a)) = (¥(a))", and we are done. O

Since ¢(Ar) = Ar we can assume that ¢(r) = br for some b € A. Further, we know
that br has order 2, since ¢ is a weak Cayley table map.

By Lemma 9.4, we can assume (by composing ¢ with the inverse of such an
automorphism) that b = 1, i.e., that ¢(r) = r.

LEMMA 9.5. Suppose that a € A. Then, p(d") = p(a)".

Proof. We know that ¢(a") € {p(a), p(a)'}; however if p(a") = ¢(a), then a" = a (so
that a = &" and ¢(a) = ¢(a") are central), and otherwise we have ¢(a") = ¢(a)". O

This lemma shows that the automorphism of 4 determined by the action of ¢
commutes with the action of 8. Since ¢|4 is a automorphism of 4 we can now use
Lemmas 9.4 (2) and9.5 so as to be able to assume that ¢|4 = Id| 4.

Thus, we can now assume: ¢|4 = Id|4 and ¢(r) =r.

By Lemma 6.1, we know thatifa € A and ¢(ar) = br, b € A,thenb € {a, a"}. Thus,
if p(ar) # ar, then p(ar) = d'r = ra.

Now, assume that there are @, b € A \ {1} such that p(ar) = ar # a'r, p(br) = b'r #
br. Then,

bd" = @(ba") = @(br - ar) ~ @(br)p(ar) = b'rar = b"d’".

It follows that either ba" = b"a" or ba" = ab, each possibility giving a contradiction.

Thus, there is & € {0, 1} such that ¢(ar) = @ r for alla € A. If ¢ = 0, then ¢ is the
identity map on H.

So, now assume that ¢ = 1, so that ¢ satisfies

pla)=a, ¢ar)y=dr, forallaec A.

Then, for all a, b € A, we have: rab = (ab)'r = ¢(a - br) ~ ab"r = arb, so that either (i)
rab = arb; or (ii) rab = (arb)". But (i) gives (a,r) = 1, and (ii) gives (b, r) = 1. Since
(1) and (i) are true for all a, b € A we have a contradiction, and we have proved
Theorem 1.2. O

THEOREM 9.6. Let p be an odd prime, A an abelian group and let G = A x4 C, be
a semi-direct product. We assume that 0 is not trivial. Then, G has a non-trivial weak
Cayley table map.

Proof. This will also give a proof of Theorem 1.3. Let C, = (r). O

LEMMA 9.7.

(i) Let 1 <k < p. Then, every g € G’ has the form (a, ) for some a € A.
(ii) Forany 1 <k <pandg € G, there is a € A such that (’*)* = gr*.
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Proof. The proof of (i) is standard, using the Witt—Hall identities [12, p. 290].
(i1)) Now, let g € G’ and fix 1 < k < p. Then, by (i) there is a € A4 such that

g=(a,r* =a"Yar ", sothat g = ().

This concludes the proof of Lemma 9.7. ]
Now, define a bijection ¢ : G — G by

pl@)=d forae A, ¢(g)=gforge G\ 4.

Since 6 is not trivial there is some a@ € 4 such that a” # a. Thus, p(@)e(r) =da" - r #
ar = ¢(ar), so that ¢ is not a homomorphism. Similarly, we have, using the fact that
p>2

o(ar)p(r) = arr # rar = @(r - ar),

so that ¢ is not an antihomomorphism.

We now show that ¢ is a weak Cayley table isomorphism. We need to show that
o(g1g2) ~ ¢(g1)p(gy) for all g1, g» € G, and we do this by considering the following
situations:

CASE 1. g1, g2 € A. Here, we have ¢(g1)¢(g2) = 8185 = (2182)" = ¢(122)-
CASE2.g; € A, g, ¢ A. Here, we write g| = a, g» = br*, a,b € k, 1 < k < p. Then,

0(2122) = plabr’) = abr*,  p(g1)¢(22) = p(@)p(br*) = (d'b) - I*.
Now, by Lemma 9.7, there is ¢ € A4 such that
@b)ab) ! =da = (e, = (F) 17,
Then, we have
0(2182)" = (abr*) = (ab)(*)* = (ab) - (a'b)(ab)~'r*
= d'(br") = ¢(g)e(22).
This does this case and a similar argument does the case where g, ¢ A4, g, € A.

CASE3.g1 ¢ 4,82 ¢ A, 8182 ¢ A. Here,wehave p(g1) = g1, ¢(g2) = &2, 9(2182) = 2182
and so ¢(g122) = 2122 = ¢(g1)e(g2), which does this case.

CasE 4. g1 ¢ 4,82 ¢ 4,218 € A. Here, we have ¢(g122) = (g122)" and ¢(g1)p(g2) =
2182, from which it follows that ¢(g122) = (¢(g1)¢(g2))".

This concludes the proof that ¢ is a weak Cayley table isomorphism. O
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