
Canad. J. Math. 2024, pp. 1–30
http://dx.doi.org/10.4153/S0008414X23000871
© The Author(s), 2023. Published by Cambridge University Press on behalf of
The Canadian Mathematical Society

Affine isoperimetric inequalities on flag
manifolds
Susanna Dann, Grigoris Paouris, and Peter Pivovarov
Abstract. Building on work of Furstenberg and Tzkoni, we introduce r-flag affine quermassintegrals
and their dual versions. These quantities generalize affine and dual affine quermassintegrals as
averages on flag manifolds (where the Grassmannian can be considered as a special case). We
establish affine and linear invariance properties and extend fundamental results to this new setting.
In particular, we prove several affine isoperimetric inequalities from convex geometry and their
approximate reverse forms. We also introduce functional forms of these quantities and establish
corresponding inequalities.

1 Introduction

Affine isoperimetric inequalities provide a rich foundation for understanding prin-
ciples in geometry and analysis that arise in the presence of symmetries. Among the
most fundamental examples is the Blaschke–Santaló inequality [48] on the product
of volumes of an origin-symmetric convex body L in R

n and its polar L○ = {x ∈ Rn ∶
⟨x , y⟩ ≤ 1, ∀y ∈ L}. The latter asserts that this product is maximized for ellipsoids, i.e.,

∣L∣ ∣L○∣ ≤ ω2
n ,(1)

where ωn is the volume of the unit Euclidean ball Bn
2 , and ∣⋅∣ denotes Lebesgue

measure. The Blaschke–Santaló inequality, and its version for non-origin-symmetric
bodies, is one of several equivalent forms of the affine isoperimetric inequality; see,
e.g., the survey [34]. Moreover, it admits numerous extensions: for example, Lp
versions [37], generalizations from convex bodies to functions, e.g., [1, 3, 14] with
applications to concentration of measure [1, 27]; further functional affine isoperimet-
ric inequalities, e.g., [2]; stronger versions in which stochastic dominance holds [10].

Another fundamental affine isoperimetric inequality is the Petty projection
inequality [44]. This concerns projection bodies, which are special zonoids that play
a fundamental role in convex geometry and functional analysis, among other fields,
e.g., [17, 49, 50]. The projection body of a convex body L ⊆ R

n is the convex body ΠL
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defined by its support function in direction θ ∈ Sn−1 as hΠL(θ) = ∣Pθ⊥L∣, where Pθ⊥

is the orthogonal projection onto θ⊥, the central hyperplane perpendicular to θ. The
Petty projection inequality asserts that the affine-invariant quantity ∣L∣n−1 ∣(ΠL)○∣ is
maximized by ellipsoids, i.e.,

∣L∣n−1 ∣(ΠL)○∣ ≤ ωn
n ω−n

n−1 .(2)

The Petty projection inequality is the geometric foundation for Zhang’s affine Sobolev
inequality [53]. Its equivalent forms and extensions have given rise to fundamental
inequalities in analysis, geometry, and information theory, e.g., [35, 36].

The affine invariance in inequalities (1) and (2) follows from volumetric consider-
ations. However, as we will review below, the underlying principle goes much deeper
and extends to the family of affine quermassintegrals, of which ∣L○∣ and ∣(ΠL)○∣ are
just two special cases, up to normalization. Formally, the affine quermassintegrals are
defined for compact bodies L in R

n (i.e., compact sets with non-empty interior), and
1 ≤ k ≤ n, by

Φ[k](L) = (∫
Gn ,k

∣PE L∣−n dνn ,k(E))
− 1

kn

,(3)

where Gn ,k is the Grassmannian manifold of k-dimensional linear subspaces equipped
with the Haar probability measure νn ,k (see [30]). Writing ∣L○∣ and ∣(ΠL)○∣ in polar
coordinates shows a direct connection to k = 1 and k = n − 1 in (3), respectively. As
the name suggests, they are affine-invariant, i.e., Φ[k](TL) = Φ[k](L) for each volume
preserving affine transformation T, as proved by Grinberg [20], extending earlier work
on ellipsoids by Furstenberg and Tzkoni [16] and Lutwak [32].

The quantities Φ[k](L) are affine versions of quermassintegrals or intrinsic vol-
umes, which play a central role in Brunn–Minkowski theory [49]. In particular, the
intrinsic volumes V1(L), . . . , Vn(L) of a convex body L admit similar representations
through Kubota’s integral recursion as

Vk(L) = cn ,k ∫
Gn ,k

∣PE L∣ dνn ,k(E),

where cn ,k is a constant that depends only on n and k. They enjoy many fundamental
inequalities, such as

Vk(L) ≥ Vk(rLBn
2 ),(4)

for k = 1, . . . , n − 1, where rL is the radius of a Euclidean ball in R
n having the

same volume as L. Taking k = 1 in (4) corresponds to Urysohn’s inequality, while
k = n − 1 is the standard isoperimetric inequality. From Jensen’s inequality, one sees
that (1) and (2) provide stronger affine-invariant analogues of (4) for k = 1 and k =
n − 1, respectively. For the intermediary values 1 < k < n − 1, the inequalities in (4)
are well-known consequences of Alexandrov–Fenchel inequality (e.g., [49]). It was
a long-standing problem posed by Lutwak [32] whether affine quermassintegrals are
minimized by ellipsoids. In a recent breakthrough, this has been resolved by E. Milman
and Yehudayoff in [38]; namely, for any convex body L, and 1 < k < n − 1,

Φ[k](L) ≥ Φ[k](rLBn
2 ).(5)
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Affine isoperimetric inequalities on flag manifolds 3

In the last 40 years, a compelling dual theory, initiated by Lutwak in [29], has
flourished (see, e.g., [17, 49]). Rather than convex bodies and projections onto lower-
dimensional subspaces, this involves star-shaped sets and intersections with sub-
spaces. As above, a key isoperimetric inequality lies at its foundation. The intersection
body of a star-shaped body L is the star-shaped body IL with radial function ρIL(θ) ∶=
∣L ∩ θ⊥∣. The Busemann intersection inequality [8], proved originally for convex
bodies L, states that

∣IL∣ ∣L∣−(n−1) ≤ ωn
n−1ω−(n−2)

n .(6)

The volume of the intersection body lies at one endpoint of a sequence of
SLn-invariant quantities that are called the dual affine quermassintegrals. These are
SLn-invariant analogues of the dual quermassintegrals introduced by Lutwak [31].
Formally, for a compact body L ⊆ R

n and 1 ≤ k ≤ n, the dual affine quermassintegrals1

of L are defined by

Ψ[k](L) = (∫
Gn ,k

∣L ∩ E∣n dνn ,k(E))
1

kn

.(7)

As above, Grinberg [20], drawing on [16], showed that these enjoy invariance under
volume-preserving linear transformations, i.e., Ψ[k](TL) = Ψ[k](L) for T ∈ SLn . They
also satisfy the following extension of (6), proved by Busemann and Straus [9] and
Grinberg [20]:

Ψ[k](L) ≤ Ψ[k](rLBn
2 ).(8)

While the dual theory has been developed for star-shaped bodies, the investigation
of these quantities goes deeper and can be extended to bounded Borel sets and non-
negative measurable functions [12, 18]. For recent developments on dual Brunn–
Minkowski theory, see [17, 22, 49] and the references therein.

Affine and dual affine quermassintegrals have implications well outside of inte-
gral geometry, convexity, and isoperimetry. They are essential for understanding
phenomena in high-dimensional probability. Indeed, functional versions of (8) lead
to sharp asymptotics for small-ball probabilities for marginal densities of proba-
bility measures [12]. They also govern key parameters of marginals of log-concave
probability measures connected to the Slicing Problem [43]. Furthermore, small-ball
probabilities for the volume of random convex sets in [42] also depend on quantifying
volumetric bounds for random projections and sections of convex bodies. Each of
these applications to high-dimensional probability boils down to understanding affine
invariant quantities on Grassmannians.

1.1 A return to flag manifolds

The work of Furstenberg and Tzkoni [16] that established the SLn-invariance of
(7) for ellipsoids on the Grassmannian provided the impetus for the development
of affine and dual affine quermassintegrals. However, Furstenberg and Tzkoni went

1These quantities are dual to affine quermassintegrals, but we emphasize that they are not translation-
invariant.
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well beyond the Grassmannian and derived kindred integral geometric formulas for
ellipsoids on flag manifolds. They established deeper connections to representation
of spherical functions on symmetric spaces. Their work was motivated by results in
ergodic theory of Furstenberg and Keston [15]. Recently, Hanin and the second-named
author studied randomness on flag manifolds and implications for high-dimensional
frames and products of random matrices. They derived non-asymptotic results in
the ergodic theorem [21] that ultimately rely on notions for affine quantities on flag
manifolds.

Unlike for affine or dual affine quermassintegrals, the corresponding notions for
convex bodies, compact bodies, and functions have not been investigated in the setting
of flag manifolds. Our main goal is to initiate such a study in this paper. We extend and
develop fundamental notions that are currently only available on Grassmannians to
the setting of flag manifolds. We introduce flag versions of (dual) affine quermassin-
tegrals (cf. (3) and (7)). Our investigation includes (i) affine invariance properties, (ii)
sharp extremal inequalities, (iii) approximate reverse isoperimetric inequalities, and
(iv) functional versions. As mentioned, each of these notions on the Grassmannian has
played an important role in high-dimensional convex geometry and probability. New
connections discovered in [21] suggest that corresponding flag versions are needed
and will have broader applicability.

As flag manifolds are natural generalizations of Grassmannians, they have been
studied from several different perspectives. In convex geometry, mixed volumes
admit representations in terms of certain flag measures (e.g., [23]). Recently, there is
increasing interest in other probabilistic aspects of Grassmannians and flag manifolds
such as topological properties of random sets in real algebraic geometry (see [7] and
the references therein). Our aim here is to develop a corresponding theory within
high-dimensional convex geometry.

1.2 Main results

We start by recalling the setting from work of Furstenberg and Tzkoni [16]. Let
1 ≤ r ≤ n − 1, and let r ∶= (i1 , i2 , . . . , ir) be a strictly increasing sequence of integers,
1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ir ≤ n − 1. Let ξr ∶= (F1 , . . . , Fr) be a (partial) flag of subspaces; i.e.,
F1 ⊂ F2 ⊂ ⋅ ⋅ ⋅ ⊂ Fr with each F j an i j-dimensional subspace. We denote by Fn

r the flag
manifold (with indices r) as the set of all partial flags ξr. Fn

r is equipped with the unique
Haar probability measure that is invariant under the action of SOn and all integrations
on this set in this note are meant with respect to this measure.

In the special case when r = 1 and i1 = k, the partial flag manifold Fn
r is just

the Grassmann manifold Gn ,k . Hence, (partial) flag-manifolds can be considered as
generalizations of Grassmannians. When r = n − 1, so that r ∶= (1, 2, . . . , n − 1), we
write Fn ∶= Fn

r for the complete flag manifold. We follow the convention that i0 = 0
and ir+1 = n; hence,

r
∑
j=1

i j(i j+1 − i j−1) = ir n.(9)
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Affine isoperimetric inequalities on flag manifolds 5

Let L be a compact body in R
n , and let 1 ≤ r ≤ n − 1 and r be a set of indices as

above. We define the r-flag affine quermassintegral of L by

Φr(L) ∶=
⎛
⎝∫Fn

r

r
∏
j=1
∣PF j L∣i j−1−i j+1 dξr

⎞
⎠

− 1
ir n

.(10)

Similarly, we define the dual r-flag affine quermassintegral of L by

Ψr(L) ∶=
⎛
⎝∫Fn

r

r
∏
j=1
∣L ∩ F j ∣i j+1−i j−1 dξr

⎞
⎠

1
ir n

.(11)

In [16], it was shown that when L = E is an ellipsoid, Ψr(E) is invariant under SLn .
When r = 1, the r-flag affine quermassintegrals are exactly the affine quermassin-
tegrals; similarly for the dual case. Thus, the latter quantities can be considered as
extensions of the (dual) affine quermassintegrals to flag manifolds. For complete flag
manifolds, we similarly define

ΨFn(L) ∶= (∫
Fn

n−1
∏
i=1
∣L ∩ Fi ∣2dξ)

1
n(n−1)

and ΦFn(L) ∶= (∫
Fn

n−1
∏
i=1
∣PFi L∣−2dξ)

− 1
n(n−1)

.

(12)

Clearly, by (9),

Ψr(λL) = λΨr(L), Φr(λL) = λΦr(L) (λ > 0).

Our first result extends the invariance results of Grinberg [20] that give invariance
of (3) and (7) under volume-preserving affine and linear transformations, respectively.

Theorem 1.1 Let L be a compact body inR
n , 1 ≤ r ≤ n − 1, and let r ∶= (i1 , . . . , ir) be an

increasing sequence of integers between 1 and n − 1. Let A be an affine map that preserves
volume and T ∈ SLn . Then

Φr(AL) = Φr(L) and Ψr(TL) = Ψr(L).

With such invariance properties, it is natural to seek extremizers of Φr(L) and
Ψr(L), especially over convex bodies L ⊆ R

n . However, even for the Grassmannian,
very few such results are known; cf. (5) and (8), with (5) established only recently
in [38]. Previously, (5) was shown to hold at the expense of a universal constant in
[42] by the second- and third-named authors. It is easy to construct compact sets L ⊆
R

n of a given volume such that Φ[k](L) is arbitrarily large. This, however, cannot
happen when L is convex: in [11], it was shown that up to a logarithmic factor in the
dimension n, Φ[k](L) does not exceed Φ[k](rLBn

2 ) (where, as above, rL is the radius
of a Euclidean ball in R

n with the same volume as L).
We extend the aforementioned results to the setting of flag manifolds. In this

note, c, c′ , c0 , . . . etc. will denote universal constants (not necessarily the same at each
occurrence).
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Theorem 1.2 Let L be a compact body in R
n , 1 ≤ r ≤ n − 1 and r ∶= (i1 , . . . , ir) an

increasing sequence of integers between 1 and n − 1. Then

Ψr(L) ≤ Ψr(rLBn
2 ).(13)

If L is an origin-symmetric convex body, then

Ψr(L) ≥ c
min{

√
n
ir

, log n}
Ψr(rLBn

2 ).(14)

If L is a convex body, then

Φr(rLBn
2 ) ≤ Φr(L) ≤ c min{

√
n
ir

, log n}Φr(rLBn
2 ).(15)

The necessity of the logarithmic factors appearing in (14) and (15) remains an open
question. For Φ[k], the analogous theorem was proved in [11]. For Φr and Ψr, the result
is new and the path that we use to prove Theorem 1.2 is quite different than that of [11].
We use isotropic position and the theory of isotropic convex bodies. In particular, we
use the isomorphic solution to the Slicing Problem, due to B. Klartag. We believe this
is of its own independent interest.

Further drawing on [16], we also consider variants of (dual) r-flag affine quermass-
integrals involving permutations ω of {1, . . . , n}. We define the ω-flag quermassinte-
gral and dual ω-flag quermassintegral as follows: for every compact body L in R

n ,

Φω(L) ∶=
⎧⎪⎪⎨⎪⎪⎩

(∫Fn ∏n−1
j=1 ∣PF j L∣−ω( j)+ω( j+1)−1dξ)−

1
n(n−ω(n)) , if ω(n) ≠ n,

∫Fn ∏n−1
j=1 ∣PF j L∣−ω( j)+ω( j+1)−1dξ, if ω(n) = n,

(16)

and

Ψω(L) ∶=
⎧⎪⎪⎨⎪⎪⎩

(∫Fn ∏n−1
j=1 ∣L ∩ F j ∣ω( j)−ω( j+1)+1dξ)

1
n(n−ω(n)) , if ω(n) ≠ n,

∫Fn ∏n−1
j=1 ∣L ∩ F j ∣ω( j)−ω( j+1)+1dξ, if ω(n) = n.

(17)

Furstenberg and Tzkoni showed SLn-invariance of Ψω for ellipsoids. We investigate
the extent to which this invariance carries over to compact bodies. Moreover, in the
case of convex bodies, we show that such quantities cannot be too degenerate in the
sense that they admit uniform upper and lower bounds, independent of the body.
We apply V. D. Milman’s M-ellipsoids [40], together with the aforementioned SLn-
invariance of Furstenberg–Tzkoni to establish these bounds (see Corollary 4.4).

In Section 5, we introduce functional analogues of the dual r-flag affine quermass-
integrals. We show that more general quantities share the SLn-invariance properties,
and we prove sharp isoperimetric inequalities. In this section, we invoke techniques
and results from our previous work [12]. Lastly, in Section 5, we also introduce a
functional form of r-flag affine quermassintegrals. There is much recent interest in
extending fundamental geometric inequalities from convex bodies to certain classes
of functions (e.g., [4, 25, 39]). The latter works have treated variants of inequalities
for intrinsic volumes, or even mixed volumes, and other general quantities; for
example, they establish functional analogues of (4). Here, we establish a functional
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Affine isoperimetric inequalities on flag manifolds 7

generalization of (15), using E. Milman and Yehudayoff ’s result (5). Invariance prop-
erties and bounds for these quantities are treated in Section 5.2.

2 Affine invariance

In this section, we will present the proof of Theorem 1.1. The following proposition
relates integration on a flag manifold to integration on nested Grassmannians (see
[51, Theorem 7.1.1 on p. 267] for such a result for flags of elements consisting of
two subspaces). Since we will use this fact many times throughout this paper, we
include the proof. For a subspace F ⊂ R

n , we denote by GF , i the Grassmannian of all
i-dimensional subspaces contained in F.

Proposition 2.1 Let 1 ≤ r ≤ n − 1 and r ∶= (i1 , . . . , ir) be an increasing sequence of
integers between 1 and n − 1. For G ∈ L1(Fn

r ),

∫
Fn

r

G(ξr)dξr = ∫
Gn , ir

∫
GFr , ir−1

. . . ∫
GF2 , i1

G(F1 , . . . , Fr−1 , Fr) dF1 . . . dFr−1dFr .(18)

For simplicity, we have suppressed the notation to write dF1 rather than
dμGF2 , i1

(F1), which is the Haar probability measure on the Grassmannian of all
i1-dimensional subspaces of the ambient space F2; similarly for all other indices. This
convention will be used throughout.

Proof Fix i j . Denote by SO(F j) the subgroup of SOn acting transitively on GF j , i j−1 .
For example, if Fo = span{e1 , . . . , e i j} and Eo = span{e1 , . . . , e i j−1}, then elements of
SO(Fo) are given by

( SO i j 0
0 In−i j

) .

And, the stabilizer of Eo in SO(Fo) is

⎛
⎜
⎝

SO i j−1 0 0
0 SO i j−i j−1 0
0 0 In−i j

⎞
⎟
⎠

.

The measure μGF j , i j−1 is invariant under SO(F j). Further, for g ∈ SOn and a Borel
subset A ⊂ GF j , i j−1 , we have μGgF j , i j−1

(gA) = μGF j , i j−1
(A).

We will show that both integrals are invariant under the action of SOn . Fix g ∈ SOn .
We start with the integral on the right-hand side of (18):

∫
Gn , ir
∫

GFr , ir−1

. . .∫
GF2 , i1

G(g−1 ⋅ (F1 , . . . , Fr)) dF1 . . . dFr−1dFr

= ∫
Gn , ir
∫

GgFr , ir−1

. . .∫
GgF2 , i1

G(F1 , . . . , Fr) d(gF1) . . . d(gFr−1)d(gFr)

= ∫
Gn , ir
∫

GgFr , ir−1

. . .∫
GgF3 , i2

∫
GF2 , i1

G(F1 , . . . , Fr) dF1d(gF2) . . . d(gFr−1)d(gFr),
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8 S. Dann, G. Paouris, and P. Pivovarov

where we have sent (F1 , . . . , Fr) → g ⋅ (F1 , . . . , Fr) and then used the invariance
property

μGgF j , i j−1
(gA) = μGF j , i j−1

(A).

Continuing this way for all inner integrals and using the SOn-invariance of the
measure μGn , ir

for the outer integral, the above expression reduces to

∫
Gn , ir

∫
GFr , ir−1

. . .∫
GF2 , i1

G(F1 , . . . , Fr) dF1 . . . dFr−1dFr .

Note that at each step (F1 , . . . , Fr) remains an element of Fn
r , this is to say that the

inclusion relation is preserved. The invariance of the integral on the left-hand side of
(18) is a consequence of the SOn-invariance of the measure μFn

r
. The proposition now

follows by the uniqueness of the SOn-invariant probability measure on Fn
r (see, for

example, Section 13.3 in [51]). ∎

The following fact allows one to view an integral of a function on a partial flag as
an integral over the full flag manifold. In this case, to avoid confusion, the subspaces
of flag manifolds are indexed by their dimension.

Proposition 2.2 Let 1 ≤ r ≤ n − 1 and r ∶= (i1 , . . . , ir) be an increasing sequence of
integers between 1 and n − 1. For a function G on the partial flag Fn

r , denote by G̃ its
trivial extension to the full flag manifold Fn , i.e., G̃(F1 , . . . , Fn−1) ∶= G(Fi1 , . . . , Fir).
Then

∫
Fn

G̃(η)dη = ∫
Fn

r

G(ξr)dξr .(19)

Proof We “integrate out” the Grassmannians that do not contain subspaces that G
depends on by repeatedly using the identity

∫
GF j+1 , j

∫
GF j , j−1

f (F j−1)dF j−1dF j = ∫
GF j+1 , j−1

f (F j−1)dF j−1 .

On the right-hand side, we integrate over the set of all ( j − 1)-dimensional subspaces
in the ambient ( j + 1)-dimensional space. On the left-hand side, we integrate over the
same set of planes (up to a null set) stepwise, we step from one j-dimensional subspace
in the ambient ( j + 1)-dimensional space to the next, and in each such subspace, we
consider all ( j − 1)-dimensional subspaces. The above identity holds since we are using
probability measures on each nested Grassmannian. Applying the latter iteratively, we
get

∫
Fn

G̃(η)dη

= ∫
Gn ,n−1

∫
GFn−1 ,n−2

. . .∫
GF2 ,1

G̃(F1 , . . . , Fn−1)dF1 . . . dFn−2dFn−1

= ∫
Gn ,n−1

∫
GFn−1 ,n−2

. . .∫
GF2 ,1

G(Fi1 , . . . , Fir)dF1 . . . dFn−2dFn−1

= ∫
Gn ,n−1

. . .∫
GFi1+1 , i1

G(Fi1 , . . . , Fir)(∫GFi1 , i1−1
. . .∫

GF2 ,1
dF1 . . . dFi1−1) dFi1 . . . dFn−1

https://doi.org/10.4153/S0008414X23000871 Published online by Cambridge University Press
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Affine isoperimetric inequalities on flag manifolds 9

= ∫
Gn ,n−1

. . .∫
GFi1+1 , i1

G(Fi1 , . . . , Fir)dFi1 . . . dFn−1

= ∫
Gn ,n−1

. . . (∫
GFi2 , i2−1

. . .∫
GFi1+1 , i1

G(Fi1 , . . . , Fir)dFi1 . . . dFi2−1) . . . dFn−1

= ∫
Gn ,n−1

. . . (∫
GFi2 , i1

G(Fi1 , . . . , Fir)dFi1) . . . dFn−1

= ⋅ ⋅ ⋅

= ∫
Gn , ir

∫
GFir , ir−1

. . .∫
GFi2 , i1

G(Fi1 , . . . , Fir)dFi1 . . . dFir−1 dFir

= ∫
Fn

r

G(ξr)dξr . ∎

We now turn to the invariance properties of the functionals Φr and Ψr. Although
self-contained proofs are possible, they require somewhat involved machinery. Since
all of the ingredients are available in the literature [12, 16, 20], we have chosen to gather
the essentials without proofs. For readers less familiar with the relevant work, we will
explain the main points behind the affine invariance of the functionals Φ[k](K) and
Ψ[k](K) along the way. There are two important changes of variables: a “global” change
of variables on the Grassmannian Gn ,k or the flag manifold Fn

r and a “local” change
of variables on each element F ∈ Gn ,k or ξr ∈ Fn

r .
Let g ∈ SLn , F ∈ Gn ,k , and A ⊂ F be a full-dimensional Borel set, then ∣gA∣ =

∣det(g∣F)∣∣A∣. This determinant of the transformation g restricted to the subspace F,
det(g∣F), is the Jacobian in the following change of variables:

∫
gF

f (g−1 t)dt = ∫
F

f (t)∣det(g∣F)∣dt.(20)

Denote it as in [16] by σk(g , F) ∶= ∣det(g∣F)∣ = ∣gA∣
∣A∣ .

For the relevant manifolds M considered in this paper, denote by σM(g , F) the
Jacobian determinant in the following change of variables:

∫
M

f (F)dF = ∫
M

f (gF)σM(g , F)dF .(21)

Furstenberg and Tzkoni proved in [16] that

σGn ,k(g , F) = σ−n
k (g , F)(22)

and

σFn
r
(g , ξr) = σ−i2

i1
(g , F1)σ i1−i3

i2
(g , F2) ⋅ ⋅ ⋅ σ ir−1−n

ir
(g , Fr),(23)

where r ∶= (i1 , . . . , ir). The linear invariance of the dual affine quermassintegrals Ψ[k]
now follows immediately. Indeed, for g ∈ SLn ,

Ψkn
[k](gL) = ∫

Gn ,k
∣gL ∩ F∣ndF = ∫

Gn ,k
∣gL ∩ gF∣n σGn ,k(g , F)dF

= ∫
Gn ,k

(σk(g , F)∣L ∩ F∣)n σ−n
k (g , F)dF = Ψkn

[k](L),
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where we have used (21), (20) with f = 1L , and (22). Now we turn toward the proof of
Theorem 1.1. We start with the case of dual r-flag affine quermassintegrals.

Proposition 2.3 Let 1 ≤ r ≤ n − 1 and r ∶= (i1 , . . . , ir) be an increasing sequence of
integers between 1 and n − 1. For every compact body L in R

n and every g ∈ SLn ,

Ψr(gL) = Ψr(L).(24)

Proof Let us start by expressing σFn
r
(g , ξr) in terms of sections. For this, note that

σi j(g , F j) =
∣g(L ∩ F j)∣
∣L ∩ F j ∣

,

where as a subset of F j we use the section L ∩ F j . By (23) with i0 = 0 and ir+1 = n, we
have

σFn
r
(g , ξr) ∶=

r
∏
j=1

σ−i j+1+i j−1
i j

(g , F j) =
r
∏
j=1

∣L ∩ F j ∣i j+1−i j−1

∣gL ∩ gF j ∣i j+1−i j−1
.

Using the change of variables (21) with the above expression for σFn
r
, yields

Ψnir
r (gL) = ∫

Fn
r

r
∏
j=1
∣gL ∩ F j ∣i j+1−i j−1 dξr

= ∫
Fn

r

r
∏
j=1
∣gL ∩ gF j ∣i j+1−i j−1 σFn

r
(g , ξr)dξr

= ∫
Fn

r

r
∏
j=1
∣gL ∩ gF j ∣i j+1−i j−1

r
∏
j=1

∣L ∩ F j ∣i j+1−i j−1

∣gL ∩ gF j ∣i j+1−i j−1
dξr

= ∫
Fn

r

r
∏
j=1
∣L ∩ F j ∣i j+1−i j−1 dξr

= Ψnir
r (L). ∎

To recall the linear invariance of the operator Φ[k], we follow Grinberg [20].
Observe that for F ∈ Gn ,k and g ∈ SLn upper-triangular with respect to the decom-
position R

n = F + F⊥, we have

∣PF(g t L)∣ = ∣gPF L∣ = ∣det(g∣F)∣∣PF L∣ = σk(g , F)∣PF L∣,
where g t stands for the transpose of g. While for l ∈ SOn , we have PF(l t L) = Pl F(L).
Since any g ∈ SLn can be written as a product of a rotation and an upper-triangular
matrix, combining the two observations yields the following.

Lemma 2.4 [20] Let L be a compact body in R
n , F ∈ Gn ,k , and g ∈ SLn . Then

∣PF(g t L)∣ = ∣PgF L∣σk(g , F).(25)

The linear invariance of the affine quermassintegrals Φ[k] can now be seen as
follows: let g ∈ SLn ,

Φ−kn
[k] (g t L) = ∫

Gn ,k
∣PF(g t L)∣−ndF = ∫

Gn ,k
∣PgF L∣−n σ−n

k (g , F)dF = Φ−kn
[k] (L),

where we have used (25) and (21) taking into account (22).
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Proposition 2.5 Let 1 ≤ r ≤ n − 1 and r ∶= (i1 , . . . , ir) be an increasing sequence of
integers between 1 and n − 1. Let A be an affine volume preserving map in R

n . Then,
for every compact body L in R

n ,

Φr(AL) = Φr(L).(26)

Proof We will first prove the theorem in the case A ∶= g ∈ SLn . Using (25) for the
projection onto each F j , (23), and making the change of variables (21), we get

Φ−nir
r (g t L) = ∫

Fn
r

r
∏
j=1
∣PF j(g t L)∣−i j+1+i j−1 dξr

= ∫
Fn

r

r
∏
j=1
(∣PgF j L∣σi j(g , F j))

−i j+1+i j−1 dξr

= ∫
Fn

r

r
∏
j=1
∣PgF j L∣−i j+1+i j−1

r
∏
j=1

σ−i j+1+i j−1
i j

(g , F j)dξr

= ∫
Fn

r

r
∏
j=1
∣PgF j L∣−i j+1+i j−1 σFn

r
(g , ξr)dξr

= ∫
Fn

r

r
∏
j=1
∣PF j L∣−i j+1+i j−1 dξr

= Φ−nir
r (L).

The general case follows easily. This proves (26). ∎

The proof of Theorem 1.1 is now complete.

3 Inequalities

We start by proving an extension of the inequality of Busemann–Straus and Grinberg
(8) to flag manifolds.

Proposition 3.1 Let 1 < r ≤ n − 1 and r ∶= (i1 , . . . , ir) be an increasing sequence of
integers between 1 and n − 1. Then, for every compact body L in R

n ,

Ψr(L) ≤ Ψr(rLBn
2 )(27)

with equality if and only if L is an origin-symmetric ellipsoid (up to a set of measure
zero).

Proof Inequality (8) implies that for every n, every E ∈ Gn ,m , any 1 ≤ � ≤ m − 1 and
every compact body L ⊆ R

n ,

∫
GE ,�

∣(L ∩ E) ∩ F∣mdμGE ,�(F) ≤ ωm
�

ω�
m
∣L ∩ E∣� ,(28)

with equality iff L ∩ E is an ellipsoid (up to a measure 0 set; see [18]). Using (18) and
(28), we have that
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Ψ ir n
r (L) = ∫

Fn
r

r
∏
j=1
∣L ∩ F j ∣i j+1−i j−1 dξr

= ∫
Gn , ir

∫
GFr , ir−1

. . .∫
GF2 , i1

r
∏
j=1
∣L ∩ F j ∣i j+1−i j−1 dF1 . . . dFr−1dFr

= ∫
Gn , ir

∫
GFr , ir−1

. . .∫
GF3 , i2

r
∏
j=2
∣L ∩ F j ∣i j+1−i j−1×

× (∫
GF2 , i1

∣L ∩ F1∣i2 dF1) dF2 . . . dFr−1dFr

= ∫
Gn , ir

∫
GFr , ir−1

. . .∫
GF3 , i2

r
∏
j=2
∣L ∩ F j ∣i j+1−i j−1×

× (∫
GF2 , i1

∣(L ∩ F2) ∩ F1∣i2 dF1) dF2 . . . dFr−1dFr

≤
ω i2

i1

ω i1
i2

∫
Gn , ir

∫
GFr , ir−1

. . .∫
GF3 , i2

r
∏
j=2
∣L ∩ F j ∣i j+1−i j−1×

× ∣L ∩ F2∣i1 dF2 . . . dFr−1dFr

≤ ⋅ ⋅ ⋅

≤ ∣L∣ir
r
∏
j=1

ω i j+1
i j

ω i j
i j+1

.

The last inequality is an equality only when L is an origin-symmetric ellipsoid, up
to a set of measure zero (see [18]). Since for the Euclidean ball all inequalities in the
previous chain are actually equalities, we can compute the constants and by the linear-
invariance property established by Furstenberg and Tzkoni, we conclude the proof.

∎
Our next result is a type of Blaschke–Santaló and reverse Blaschke–Santaló inequal-

ity for r-flag affine quermassintegrals. These inequalities concern the volume of the
polar body. For a compact set L, we define the polar body L○ (with respect to the origin)
as the convex body

L○ ∶= {x ∈ Rn ∶ ⟨x , y⟩ ≤ 1, ∀y ∈ L}.

It is straightforward to check the following inclusion: for every compact set L in R
n

and F ∈ Gn ,k ,

PF L○ ⊆ (L ∩ F)○ .(29)

If, in addition, L is convex and 0 is in the interior of L,

PF L○ = (L ∩ F)○ .(30)

Recall that the Blaschke–Santaló inequality (e.g., [17, 49]) states that for every origin-
symmetric convex body L in R

n ,

∣L∣∣L○∣ ≤ ∣Bn
2 ∣2 .(31)
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Moreover, (31) holds when L is a convex body and L○ is centered, i.e., the centroid of
L○ is at the origin (see [49]). We do not know the first reference for (31) in case of
compact sets; (31) for centered star-shaped sets appears in [33]. For origin-symmetric
compact sets with interior points, (31) follows from a more general result in [10] (as a
limiting case of Theorem 1.1 with f = 1L′ , where L′ is the closure of the interior of L).
For a general proof, see [38]. An approximate reverse form of this inequality is known
as the Bourgain–Milman theorem [5]: for every compact, convex set L with 0 ∈ int(L),

∣L∣∣L○∣ ≥ cn ∣Bn
2 ∣2 ,(32)

for some absolute constant c > 0. For further background and alternate proofs of this
inequality, see [19, 26, 40, 41].

The next proposition is the aforementioned Blaschke–Santaló inequality and its
(approximate) reversal in the setting of r-flag manifolds:

Proposition 3.2 Let 1 ≤ r ≤ n − 1 and r ∶= (i1 , . . . , ir) be an increasing sequence of
integers between 1 and n − 1. Then, for an origin-symmetric compact body L in R

n ,

Φr(L○)Ψr(L) ≤ Φr(Bn
2 )Ψr(Bn

2 ).(33)

Moreover, if L is a convex body in R
n with 0 ∈ int(L), we have that

Φr(L○)Ψr(L) ≥ c Φr(Bn
2 )Ψr(Bn

2 ),(34)

where c > 0 is an absolute constant (from the reverse Santaló inequality (32)).

Proof First, note that

Φir n
r (Bn

2 )Ψ ir n
r (Bn

2 ) =
⎛
⎝

r
∏
j=1
∣Bn

2 ∩ F j ∣i j+1−i j−1
⎞
⎠

2

,

where F j are i j-dimensional subspaces as defined in Section 1.2 and the expression is
independent of ξr ∶= (F1 , . . . , Fr). Replacing L ∩ F j by its convex hull in F j , using the
Blaschke–Santaló inequality (31) and (29), we have

Ψ ir n
r (L) = ∫

Fn
r

r
∏
j=1
∣L ∩ F j ∣i j+1−i j−1 dξr

≤ ∫
Fn

r

⎛
⎝

r
∏
j=1
∣Bn

2 ∩ F j ∣i j+1−i j−1
⎞
⎠

2 r
∏
j=1

1
∣(L ∩ F j)○∣i j+1−i j−1

dξr

≤ ∫
Fn

yr

⎛
⎝

r
∏
j=1
∣Bn

2 ∩ F j ∣i j+1−i j−1
⎞
⎠

2 r
∏
j=1

1
∣PF j L○∣i j+1−i j−1

dξr

= Φir n
r (Bn

2 )Ψ ir n
r (Bn

2 )Φ−ir n
r (L○).

On the other hand, using the reverse Blaschke–Santaló inequality (32), (30), and (9),
we get
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Ψ ir n
r (L) = ∫

Fn
r

r
∏
j=1
∣L ∩ F j ∣i j+1−i j−1 dξr

≥ c∑
r
j=1 i j(i j+1−i j−1)∫

Fn
r

⎛
⎝

r
∏
j=1
∣Bn

2 ∩ F j ∣i j+1−i j−1
⎞
⎠

2 r
∏
j=1

1
∣(L ∩ F j)○∣i j+1−i j−1

dξr

= c ir n ∫
Fn

r

⎛
⎝

r
∏
j=1
∣Bn

2 ∩ F j ∣i j+1−i j−1
⎞
⎠

2 r
∏
j=1

1
∣PF j L○∣i j+1−i j−1

dξr

= c ir nΦir n
r (Bn

2 )Ψ ir n
r (Bn

2 )Φ−ir n
r (L○).

The proof is complete. ∎

We now turn to the proof of (5) in the setting of r-flag manifolds. Let us first prove
an analogue of (5) for r-flag affine quermassintegrals at the expense of a universal
constant using known techniques. The case r = 1 of the following corollary has been
proved in [42] before.

Corollary 3.3 Let 1 ≤ r ≤ n − 1 and r ∶= (i1 , . . . , ir) be an increasing sequence of
integers between 1 and n − 1. Then, for every convex body L,

Φr(L) ≥ c Φr(rLBn
2 ),

where c > 0 is an absolute constant.

Proof As Φr(L) is translation-invariant, we may assume that L is centered. The
Blaschke–Santaló inequality implies rLrL○ ≤ 1, so with (34) and (27), we obtain

Φr(L) ≥ c Φr(Bn
2 )Ψr(Bn

2 )
Ψr(L○) ≥ c Φr(Bn

2 )Ψr(Bn
2 )

Ψr(rL○Bn
2 )

= c
rL○

Φr(Bn
2 ) ≥ c Φr(rLBn

2 ).

The proof is complete. ∎

The constant in the above corollary can be made 1 using (5) and an argument similar
to that of Proposition 3.1, as we argue next.

Proposition 3.4 Let 1 < r ≤ n − 1 and r ∶= (i1 , . . . , ir) be an increasing sequence of
integers between 1 and n − 1. Then, for every convex body L in R

n ,

Φr(L) ≥ Φr(rLBn
2 ) ,(35)

with equality if and only if L is an ellipsoid.

Proof First, note that (5) can be written equivalently as

∫
Gn ,k

∣PE L∣−n dE ≤ ωk
n ω−n

k ∣L∣−k ,(36)

and

Φ−ir n
r (rLBn

2 ) =
r
∏
j=1
∣rLB i j

2 ∣i j−1−i j+1 =
⎛
⎝

r
∏
j=1

ω i j−1−i j+1
i j

⎞
⎠

ω ir
n ∣L∣−ir .(37)
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We repeatedly use the following simple reformulation of (36) that for every n, every
E ∈ Gn ,m , and any 1 ≤ � ≤ m − 1,

∫
GE ,�

∣PF L∣−mdF = ∫
GE ,�

∣PF(PE L)∣−mdF ≤ ω�
m ω−m

� ∣PE L∣−� .(38)

Using (18) and (36)–(38), we obtain

Φ−ir n
r (L)

= ∫
Fn

r

r
∏
j=1
∣PF j L∣i j−1−i j+1 dξr

= ∫
Gn , ir

. . .∫
GF3 , i2

r
∏
j=2
∣PF j L∣i j−1−i j+1 (∫

GF2 , i1

∣PF1(PF2 L)∣−i2 dF1) dF2 . . . dFr

≤ ω i1
i2

ω−i2
i1 ∫

Gn , ir

. . .∫
GF3 , i2

r
∏
j=2
∣PF j L∣i j−1−i j+1 (∣PF2 L∣−i1) dF2 . . . dFr

= ω i1
i2

ω−i2
i1 ∫

Gn , ir

. . .∫
GF4 , i3

r
∏
j=3
∣PF j L∣i j−1−i j+1 (∫

GF3 , i2

∣PF2(PF3 L)∣−i3 dF2) dF3 . . . dFr

≤ (ω i1
i2

ω−i2
i1
)(ω i2

i3
ω−i3

i2
)∫

Gn , ir

. . .∫
GF4 , i3

r
∏
j=3
∣PF j L∣i j−1−i j+1 (∣PF3 L∣−i2) dF3 . . . dFr

⋅ ⋅ ⋅

≤
r
∏
j=1

ω i j
i j+1

ω−i j+1
i j

∣L∣−ir =
⎛
⎝

r
∏
j=1

ω i j−1−i j+1
i j

⎞
⎠

ω ir
n ∣L∣−ir = Φ−ir n

r (rLBn
2 ) ,

where for the penultimate equality we have used the convention that i0 = 0 and ir+1 =
n. This proves (35). For the Euclidean ball, all inequalities in the above argument are
equalities [38]. By the affine invariance of Φr, the equality holds only when L is an
ellipsoid. ∎

The next proposition shows that for a convex body L inR
n , all the quantities Φr(L)

lie between the volume-radius rL and the mean width W(L) = 2 ∫Sn−1 hL(θ)dσ(θ);
here, hL is the support function of L, i.e., hL(θ) = supx∈L⟨x , θ⟩. We also set

WL ∶= inf
T∈SLn

W(TL).(39)

It will be convenient to use Urysohn’s inequality (k = 1 in (4)) in the following form.
For any convex body K in R

n ,

( ∣K∣∣Bn
2 ∣
)

1/n

≤ W(K)
2

.

Proposition 3.5 Let 1 ≤ r ≤ n − 1 and r ∶= (i1 , . . . , ir) be an increasing sequence of
integers between 1 and n − 1. Then, for any convex body L in R

n ,

rL ≤
Φr(L)

Φr(Bn
2 )

≤ WL

2
.(40)
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Proof The left-most inequality follows from (35). Next, for s > 0, Hölder’s inequality
and the fact that hL(x) = hPF L(x) for x ∈ F, give

(∫
Gn ,k

W(PF L)−sdF)
−1/s

≤ ∫
Gn ,k

W(PF L) dF = W(L).(41)

Toward proving the right-hand side, we write

Φ−nir
r (L) = ∫

Gn , ir

. . .∫
GF3 , i2

∫
GF2 , i1

r
∏
j=1
∣PF j L∣i j−1−i j+1 dF1dF2 . . . dFr .(42)

Working with the inner-most integral (recall i0 = 0), we invoke Urysohn’s inequality,
followed by (41) to obtain

∫
GF2 , i1

1
∣PF1 L∣i2

dF1 ≥ ∫
GF2 , i1

2i1 i2

ω i2
i1

W(PF1 L)i1 i2
dF1 ≥

2i1 i2

ω i2
i1

W(PF2 L)i1 i2
.

Similarly, by Urysohn’s inequality,

1
∣PF2 L∣i3−i1

≥ 2i2(i3−i1)

ω i3−i1
i2

W(PF2 L)i2(i3−i1)
.

Inserting the last two inequalities into (42) and applying the same argument iteratively,
we have

Φ−nir
r (L) ≥ ∫

Gn , ir

. . .∫
GF4 , i3

r
∏
j=3
∣PF j L∣

i j−1−i j+1 ∫
GF3 , i2

2i2 i3

ω i3−i1
i2

ω i2
i1

W(PF2 L)i2 i3
dF2dF3 . . . dFr

≥ ∫
Gn , ir

. . .∫
GF4 , i3

r
∏
j=3
∣PF j L∣

i j−1−i j+1 2i2 i3

ω i3−i1
i2

ω i2
i1

W(PF3 L)i2 i3
dF3 . . . dFr

≥ . . .

≥ 2nir Φ−nir
r (Bn

2 )∫
Gn , ir

1
W(PFr L)nir

dFr

≥ 2nir Φ−nir
r (Bn

2 )W(L)−nir .

In the above argument, we may replace L by TL, where T ∈ SLn . Since the left-hand
side of this inequality remains the same for all T by Theorem 1.1, we may take the
infimum over all T on the right-hand side. This completes the proof. ∎

We conclude this subsection with a discussion of inequalities of isomorphic nature.
For convex bodies L inR

n , we define the Banach–Mazur distance to the Euclidean ball
Bn

2 by

dBM(L) ∶= inf {ab ∶ a > 0, b > 0, 1
b

Bn
2 ⊆ T(L − L) ⊆ aBn

2 , T ∈ GLn} .

For origin-symmetric convex bodies, this coincides with the standard notion of
Banach–Mazur distance (for more information, see, e.g., [52]).
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Proposition 3.6 Let 1 ≤ r ≤ n − 1 and r ∶= (i1 , . . . , ir) be an increasing sequence of
integers between 1 and n − 1. Then, for any convex body L in R

n ,

Φr(L) ≤ c1 min{
√

n
ir

, log (1 + dBM(L))}Φr(rLBn
2 ),(43)

and, if L is also symmetric, then

Ψr(L) ≥ c2

min{
√

n
ir

, log (1 + dBM(L))}
Ψr(rLBn

2 ),(44)

where c1 , c2 > 0 are absolute constants.

The proof relies on several different tools. We draw on ideas from Dafnis and the
second-named author [11] to exploit the affine invariance of Φr(L), Ψr(L) by using
appropriately chosen affine images of L. To this end, recall the following fundamental
theorem, which combines work of Figiel–Tomczak-Jaegermann [13], Lewis [28], Pisier
[45], and Rogers–Shephard [47] (see Theorem 1.11.5 on page 52 in [6]).

Theorem 3.7 Let L be a centered convex body in R
n . Then there exists a linear map

T ∈ SLn such that

W(TL) ≤ c log{1 + dBM(L)}
√

n∣L∣1/n ,

for some absolute constant c > 0.

We will also use recent results on isotropic convex bodies. For background, the
reader may consult [6], but we will recall all facts that we need here. To each convex
body M ⊆ R

n with unit volume, one can associate an ellipsoid Z2(M), called the L2-
centroid body of M, which is defined by its support function as

hZ2(M)(θ) ∶= (∫
M
∣⟨x , θ⟩∣2dx)

1
2

.

The isotropic constant of M is defined by LM ∶= rZ2(M). We say that M is isotropic if it
is centered and Z2(M) = LM Bn

2 . Fix an isotropic convex body M and a k-dimensional
subspace F. Ball [3] proved that

∣M ∩ F⊥∣ 1
k ≥ c

LM
;(45)

a corresponding inequality for projections,

∣PF M∣ ≤ (c n
k

LM)
k

,(46)

follows immediately from (45) and the Rogers–Shephard inequality [47]:

∣PF M∣∣M ∩ F⊥∣ ≤ (n
k
).

Next, we recall a variant of Ψ[k](M) studied by Dafnis and the second-named
author [11]. For every 1 ≤ k ≤ n − 1 and a compact body M inR

n with ∣M∣ = 1, we define
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Φ̃[k](M) ∶= (∫
Gn ,k

∣M ∩ F⊥∣ndμGn ,k(F))
1

nk

.(47)

In [11], it is shown that for every centered convex body M in R
n of unit volume,

c1

LM
≤ Φ̃[k](M) ≤ Φ̃[k](Dn) ≃ 1,

where Dn is the Euclidean ball of volume one.
We also invoke Klartag’s [24] fundamental result on perturbations of isotropic

convex bodies having a well-bounded isotropic constant.

Theorem 3.8 Let M be a convex body in R
n . For every ε ∈ (0, 1), there exists a centered

convex body MKl ⊂ R
n and a point x ∈ Rn such that

1
1 + ε

MKl ⊆ M + x ⊆ (1 + ε)MKl(48)

and

LMK l ≤
c√
ε

.(49)

We are now ready to complete the proof.

Proof of Proposition 3.6 By homogeneity of the operators Φr and Ψr, we can assume
that L has unit volume.

First, we will prove the bound (43) for r-flag affine quermassintegrals. By transla-
tion invariance of projections, we may further assume that L is centered. Bounding
Φr(L) by W(L) according to (40), using affine invariance of Φr and reverse Urysohn
inequality from Theorem 3.7, we get

Φr(L) ≤ c log(1 + dBM(L))Φr(Dn).(50)

For the Euclidean ball Dn of unit volume, we have ∣PF Dn ∣
1
k = ∣Dn ∩ F∣ 1

k ≃
√ n

k for
every F ∈ Gn ,k , so

Φr(Dn) ≃
⎛
⎝

r
∏
j=1
( n

i j
)

i j(i j+1−i j−1)⎞
⎠

1
2ir n

.

The AM/GM inequality implies

⎛
⎝

r
∏
j=1
( n

i j
)

i j(i j+1−i j−1)⎞
⎠

1
2ir n

≤
5
667 n

ir n

r
∑
j=1

i j(i j+1 − j j−1)
i j

≤
√

n
ir

.

Thus,

Φr(Dn) = Ψr(Dn) ≃
⎛
⎝

r
∏
j=1
( n

i j
)

i j(i j+1−i j−1)⎞
⎠

1
2ir n

≤
√

n
ir

.(51)

Let K1 ⊂ R
n be a centered convex body and x ∈ Rn from the conclusion of Theorem

3.8 corresponding to ε = 1
2 . Then (48) implies 1 = ∣L∣1/n ≥ 2

3 ∣K1∣1/n , while (49) implies
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LK1 ≃ 1. Let K2 ∶= K1

∣K1 ∣
1
n

. Then LK2 = LK1 ≃ 1 and our choice of ε and the latter volume
bound give

Φr(L) = Φr(L + x) ≤ 3
2

Φr(K1) ≤
9
4

Φr(K2).(52)

Affine invariance of Φr (Theorem 1.1) allows us to assume that K2 is isotropic. Using
(46), (51), LK2 ≃ 1, and (51) one more time, we obtain

Φr(K2) =
⎛
⎝∫Fn

r

r
∏
j=1
∣PF j K2∣−i j+1+i j−1 dξr

⎞
⎠

− 1
ir n

≤
⎛
⎝

r
∏
j=1
( n

i j
)

i j(i j+1−i j−1)⎞
⎠

1
ir n

(cLK2)
1

ir n ∑
r
j=1 i j(i j+1−i j−1)

≤ c LK2 Φr(Dn)2

≤ c
√

n
ir

Φr(Dn).

By (52), we have Φr(L) ≤ c′
√

n
ir

Φr(Dn), which together with (50) implies (43).
Applying (34), (43) for L○, and the Blaschke–Santaló inequality rLrL○ ≤ 1, we get

Ψr(L) ≥ c Φr(Bn
2 )Ψr(Bn

2 )
Φr(L○)

≥ c
rL○

1
min{log (1 + dBM(L○)),

√
n
ir
}

Φr(Bn
2 )Ψr(Bn

2 )
Φr(Bn

2 )

≥ c
min{log (1 + dBM(L)),

√
n
ir
}

Ψr(rLBn
2 ),

where we have also used the identity dBM(L○) = dBM(L) for origin-symmetric convex
bodies. This proves (44). ∎

4 Flag manifolds and permutations

In this section, we discuss more general quantities involving permutations. We inves-
tigate the extent to which SLn-invariance properties established by Furstenberg and
Tzkoni [16] carry over from ellipsoids to compact bodies. In particular, we provide
an example of a convex body for which SLn-invariance fails. Nevertheless, we show
that for convex bodies, such quantities cannot be too degenerate in the sense that they
admit uniform upper and lower bounds, independent of the body. The key ingredient
is the notion of M-ellipsoids, introduced by V. D. Milman [40].

The next definition is motivated by the work of Furstenberg and Tzkoni [16] for
ellipsoids.

Definition 4.1 Let Πn be the set of permutations of {1, 2, . . . , n} and ω ∈ Πn . For
compact bodies L in R

n , we define the ω-flag quermassintegral and dual ω-flag
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quermassintegrals as follows: if ω(n) ≠ n, then

Φω(L) ∶=
⎛
⎝∫Fn

n−1
∏
j=1
∣PF j L∣−ω( j)+ω( j+1)−1dξ

⎞
⎠

− 1
n(n−ω(n))

(53)

and

Ψω(L) ∶=
⎛
⎝∫Fn

n−1
∏
j=1
∣L ∩ F j ∣ω( j)−ω( j+1)+1dξ

⎞
⎠

1
n(n−ω(n))

.(54)

When ω(n) = n, we set

Φω(L) ∶= ∫
Fn

n−1
∏
j=1
∣PF j L∣−ω( j)+ω( j+1)−1dξ(55)

and

Ψω(L) ∶= ∫
Fn

n−1
∏
j=1
∣L ∩ F j ∣ω( j)−ω( j+1)+1dξ.(56)

Note that
n−1
∑
j=1
(ω( j) − ω( j + 1) + 1) = n − ω(n) + ω(1) − 1(57)

and
n−1
∑
j=1

j (ω( j) − ω( j + 1) + 1) = n(n − ω(n)).(58)

Identity (58) guarantees that Ψω(L) and Φω(L) are 1-homogeneous when ω(n) ≠
n and 0-homogeneous when ω(n) = n.

The following fact for dual ω-flag quermassintegrals is from [16]. For ω-flag
quermassintegrals, it follows, for example, by duality.

Theorem 4.2 Let E be an ellipsoid in R
n and ω ∈ Πn . Then

Ψω(E) = Ψω(rEBn
2 ) and Φω(E) = Φω(rEBn

2 ).

An equivalent formulation of the latter result is that for every ellipsoid E,

Ψω(E) = cω ∣E∣
1
n , ω(n) ≠ n and Ψω(E) = cω , ω(n) = n,

where cω is a constant that depends only on ω. An analogous statement holds for
Φω(E) (see the proof of Proposition 3.2).

The operators Ψω and Φω are generalizations of Ψr and Φr. Indeed, let 1 ≤ r ≤
n − 1, 1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ir ≤ n − 1, and r ∶= (i1 , . . . , ir). Define ω by ω(1) = n − i1 + 1,
and ω(t + 1) = ω(t) + 1, for t ≠ i j , 1 ≤ j ≤ r, and ω(i j + 1) = ω(i j) + 1 − i j+1 + i j−1 for
1 ≤ j ≤ r. Then ω ∈ Πn with ω(i j) − ω(i j + 1) + 1 = i j+1 − i j−1 for 1 ≤ j ≤ r and ω(t) −
ω(t + 1) + 1 = 0, t ≠ i j , for 1 ≤ j ≤ r. Since ω(n) = n − ir , for a compact body L in R

n ,
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we have

Ψnir
ω (L) = ∫

Fn

n−1
∏
j=1
∣L ∩ F j ∣ω( j)−ω( j+1)+1dξ = ∫

Fn

r
∏
j=1
∣L ∩ Fi j ∣i j+1−i j−1 dξ = Ψnir

r (L),

where, in the last equality, we have used (19). Correspondingly, we also have Φω(L) =
Φr(L). In particular, for this permutation ω, Ψω(L) is SLn-invariant and Φω(L) is
affine invariant. As a particular case of the preceding discussion, let r = 1, i1 = k, 1 ≤
k ≤ n, and let ω(1) = n − k + 1 and ω(t + 1) = ω(t) + 1 for t ≠ k and ω(k + 1) = ω(k) −
n + 1. Then Φω(L) = Φ[k](L).

Given that Ψr(L) and Φr(L) enjoy invariance properties and arise as permutations,
it is natural to investigate the extent to which the invariance from Theorem 4.2 carries
over to compact bodies. We do not have a complete answer. However, there are
cases outside of those considered above where the invariance holds and also counter-
examples where it fails as the next two examples show. It will be convenient to recall
that a star-body L is a compact body with 0 ∈ int(L) such that αx ∈ L whenever x ∈ L
and α ∈ [0, 1], with continuous radial function ρL(θ) = sup{r ≥ 0 ∶ rθ ∈ L} (θ ∈ Sn−1).

Example 1 Let n ≥ 3. Define ω by ω(1) = 2, ω(2) = 1 and ω(t) = t for all 3 ≤ t ≤ n.
We will show that for every origin-symmetric star-body L in R

n ,

Ψω(L) = 4
π

.

In particular, Ψω(L) is SLn-invariant. Note that our choice of the permutation ω
satisfies

ω(1) − ω(2) + 1 = 2, ω(2) − ω(3) + 1 = −1, ω( j) − ω( j + 1) + 1 = 0 for 3 ≤ j ≤ n − 1,

or equivalently

ω(2) = ω(1) − 1, ω(3) = ω(1) + 1, ω( j + 1) = ω(1) + ( j − 1) for 3 ≤ j ≤ n − 1.

Moreover, ω is the unique permutation satisfying the latter equations, as 1 ≤ ω( j) ≤ n
for all 1 ≤ j ≤ n. For a k-dimensional subspace Fk of Rn , denote by SFk the unit sphere
in Fk . Now, using (19) and recalling the notation for ρL above, we compute

Ψω(L) = ∫
Fn

n−1
∏
j=1
∣L ∩ F j ∣ω( j)−ω( j+1)+1dξ

= ∫
Fn
∣L ∩ F1∣2∣L ∩ F2∣−1dξ

= ∫
Gn ,2

∣L ∩ F2∣−1 ∫
GF2 ,1

∣(L ∩ F2) ∩ F1∣2dF1dF2

= ∫
Gn ,2

∣L ∩ F2∣−1 ∫
SF2

(2ρL∩F2(θ))2dσ(θ)dF2

= ∫
Gn ,2

∣L ∩ F2∣−1 4
∣SF2 ∣

∫
SF2

ρ2
L∩F2

(θ)dθ dF2
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= 4
π ∫

Gn ,2
∣L ∩ F2∣−1∣L ∩ F2∣dF2

= 4
π

.

When n = 3, for permutations ω with ω(3) = 3, Ψω(L) are absolute constants.
Moreover, the discussion following Theorem 4.2 shows that for three of the remaining
four permutations ω in Π3, Ψω(L) = Ψr(L). Altogether, for n = 3, for five out of
six permutations ω, Ψω(L) are SLn-invariant. The next example shows that for the
remaining permutation, the invariance does not carry over for all convex bodies.

Example 2 Let ω ∈ Π3 with ω(1) = 1, ω(2) = 3, and ω(3) = 2. We claim that for a
centered cube Q ∶= [−1, 1]3 and the diagonal matrix D = diag(1, 2, 1/2), Φω(DQ) >
Φω(Q). Since D ∈ SL3, this shows that the operator Φω is not invariant under volume-
preserving transformations.

To show this, we first note that for any convex body L ⊂ R
3

Φ−3
ω (L) = ∫

G3,2
∣PF2 L∣−2

∫
GF2 ,1

∣PF1 L∣ dF1dF2 = ∫
S2

W(Pϕ⊥L)
h2

ΠL(ϕ) dσ(ϕ),

where hΠL(ϕ) = ∣Pϕ⊥L∣. For θ ∈ S2, we have hQ(θ) = ∑3
i=1 ∣θ i ∣ and, for g ∈ GL3,

hgL(θ) = hL(g t θ). We will also use the following facts about projection bodies (see,
e.g., [17]). The projection body of a cube is again a cube, ΠQ = 2Q, and for g ∈ GL3,

Π(gL) = ∣detg∣ g−t ΠL.

Let A = [a1 a2 a3] ∈ SL3 with columns a i . Fix ϕ ∈ S2. Let U ∈ O3 be given in column
form by U = [u v ϕ]. Since U is orthogonal, U t ϕ = e3 and U t ϕ⊥ = span{e1 , e2} = R

2.
Then

W(Pϕ⊥AQ) = 2∫
Sϕ⊥

hAQ(θ)dσ(θ) = 2∫
S 1

hAQ(Uθ)dσ(θ) = 2∫
S 1

hQ(AtUθ)dσ(θ).

Thus, denoting by P the orthogonal projection onto R
2, we have

W(Pϕ⊥AQ) = 2
3
∑
i=1
∫

S1
∣⟨θ , U t Ae i⟩∣dσ(θ) = 2

3
∑
i=1
∫

S1
∣⟨θ , PU t Ae i⟩∣dσ(θ) = 4

π

3
∑
i=1
∥PU t Ae i∥2 .

One can verify the last equality in this setting by a direct computation
as follows. We realize integration over S1 as integration over [0, 2π].
Hence, we write θ = (cos α, sin α), v ∈ R2 as v = ∥v∥2(cos β, sin β) and
∫S 1 ∣⟨θ , v⟩∣dσ(θ) = ∥v∥2

2π ∫
2π

0 ∣ cos α cos β + sin α sin β∣dα = ∥v∥2
2π ∫

2π
0 ∣ cos(α − β)∣dα =

∥v∥2
2π ∫

2π
0 ∣ cos α∣dα = 2

π ∥v∥2. We have that Ae i = a i , U t a i = (⟨u, a i⟩, ⟨v , a i⟩, ⟨ϕ, a i⟩)t

and

∥PU t Ae i∥2
2 = ∥U t Ae i∥2

2 − ∥(I − P)U t Ae i∥2
2 = ∥a i∥2

2 − ⟨ϕ, a i⟩2 .

Therefore,

W(Pϕ⊥AQ) = 4
π

3
∑
i=1

√
∥a i∥2

2 − ⟨ϕ, a i⟩2 .
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Moreover, by the aforementioned properties of a centered cube, hΠ(AQ)(ϕ) =
hΠQ(A−1ϕ) = 2∑3

i=1 ∣⟨A−1ϕ, e i⟩∣. Thus,

Φ−3
ω (AQ) = 1

π ∫
S2

∑3
i=1
√
∥a i∥2

2 − ⟨ϕ, a i⟩2

(∑3
j=1 ∣⟨A−1ϕ, e j⟩∣)

2 dσ(ϕ).

Set A ∶= diag(d1 , d2 , d3) with ∏3
i=1 d i = 1 and d i > 0. Then the quantity

A(d1 , d2 , d3) ∶= ∫
S2

∑3
i=1 d i

√
1 − ϕ2

i

(∑3
j=1
∣ϕ j ∣

d j
)

2 dσ(ϕ)

is not constant. Indeed, using MATLAB, for example, one can verify thatA(1, 2, 1/2) <
A(1, 1, 1).

In the case of convex bodies, the quantities Ψω(K), Φω(K) are uniformly bounded
by a constant that depends on ω only. We will use the following well-known conse-
quence of the celebrated “existence of M-ellipsoids” by V. D. Milman [40].

Theorem 4.3 Let K be an origin-symmetric convex body in R
n . Then there exists an

ellipsoid E such that ∣E∣1/n ≤ ec ∣K∣1/n and for every F ∈ Gn ,k ,

∣PFE∣ ≤ ∣PF K∣ ≤ ecn ∣PFE∣(59)

and

∣E ∩ F∣ ≤ ∣K ∩ F∣ ≤ ecn ∣E ∩ F∣,(60)

where c > 0 is an absolute constant.

Corollary 4.4 Let ω ∈ Πn such that ω(n) ≠ n. Let δω( j) ∶= ω( j) − ω( j + 1) + 1. Set

Iω ∶= { j ≤ n ∶ δω( j) ≥ 0} and Δ(ω) ∶=
min{∑ j∈Iω

δω( j),∑ j∈Ic
ω
∣δω( j)∣}

n − ω(n) + 1.

We have that

e−cΔ(ω)cω ∣K∣
1
n ≤ Ψω(K) ≤ ecΔ(ω)cω ∣K∣

1
n(61)

and

e−cΔ(ω)cω ∣K∣
1
n ≤ Φω(K) ≤ ecΔ(ω)cω ∣K∣

1
n ,(62)

where c > 0 is an absolute constant.

Proof Set Δ+(ω) ∶= ∑ j∈Iω δω( j)
n−ω(n) and Δ−(ω) ∶= ∑ j∈Ic

ω
∣δω( j)∣

n−ω(n) . In the ensuing computa-
tion, we use the bounds on ∣K ∩ F∣ in (60): for j ∈ Iω , we use the upper bound, while
for j ∉ Iω , we use the lower bound. Thus, we obtain

Ψω(K) =
⎛
⎝∫Fn

n−1
∏
j=1
∣K ∩ F j ∣ω( j)−ω( j+1)+1dξ

⎞
⎠

1
n(n−ω(n))

≤
⎛
⎝∫Fn

ecn∑ j∈Iω (ω( j)−ω( j+1)+1)
n−1
∏
j=1
∣E ∩ F j ∣ω( j)−ω( j+1)+1dξ

⎞
⎠

1
n(n−ω(n))
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= ecΔ+(ω) ⎛
⎝∫Fn

n−1
∏
j=1
∣E ∩ F j ∣ω( j)−ω( j+1)+1dξ

⎞
⎠

1
n(n−ω(n))

= ecΔ+(ω)cω ∣E∣
1
n

≤ ec(Δ+(ω)+1)cω ∣K∣
1
n .

One can verify that a similar inequality with the quantity Δ−(ω) holds as well,
which leads to the right-hand side in (61). The proof of the other inequalities is
identical and hence is omitted. ∎

Remark A similar proposition (with the same proof) holds for the case ω(n) = n.
Moreover, using Pisier’s regular M-position (see [46]), one can get more precise
estimates.

5 Functional forms

In this section, we derive functional forms of some of the previous geometric inequal-
ities. Section 5.1 concerns the dual setting with sharp inequalities for restrictions of
functions to flags of subspaces; these do not depend on their counterparts for sets. In
Section 5.2, we define a new notion of r-flag affine quermassintegrals for functions
and establish a double-sided approximate isoperimetric inequality.

5.1 Functional forms of dual r-flag affine quermassintegrals

Let f be a bounded integrable function on R
n . We denote by I( f ) the functional form

of the dual r-flag affine quermassintegral

I( f ) ∶= ∫
Fn

r

r
∏
j=1
∥ f ∣F j∥

i j+1−i j−1
1 dξr .

Theorem 5.1 For every g ∈ SLn , I(g ⋅ f ) = I( f ), where g ⋅ f (x) = f (g−1x).

Proof Starting with the left-hand side, I(g ⋅ f ), we do a global change of variables
(21) on the flag manifold:

I(g ⋅ f ) = ∫
Fn

r

r
∏
j=1
∥g ⋅ f ∣F j∥

i j+1−i j−1
1 dξr = ∫

Fn
r

r
∏
j=1
∥g ⋅ f ∣g⋅F j∥

i j+1−i j−1
1 σFn

r
(g , ξ)dξr ,

where by (23) σFn
r
(g , ξ) = σ−i2

i1
(g , F1)σ i1−i3

i2
(g , F2) ⋅ ⋅ ⋅ σ ir−1−n

ir
(g , Fr). Now we do r local

changes of variables (20) on each nested subspace F j in the product. For each 1 ≤ j ≤ r,
we thus have

∥g ⋅ f ∣g⋅F j∥1 = ∥ f ∣F j∥1 σi j(g , F j).

For the product under the integral, we obtain
r
∏
j=1
∥g ⋅ f ∣g⋅F j∥

i j+1−i j−1
1 =

r
∏
j=1
(∥ f ∣F j∥1 σi j(g , F j))

i j+1−i j−1 =
r
∏
j=1
∥ f ∣F j∥

i j+1−i j−1
1 σ−1

Fn
r
(g , ξ).

∎
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The latter result admits several generalizations as in [12] for functional forms of dual
quermassintegrals. Rather than taking L1(F j) norms, one can take Lp j(F j) norms and
replace the powers i j+1 − i j−1 by α j . As long as α j

p j
= i j+1 − i j−1 and the integrals exist,

the conclusion of Theorem 5.1 will hold. Theorem 5.1 also generalizes to a product
of m functions. One can replace ∥ f ∣F j∥

i j+1−i j−1
1 by ∏m

i=1 ∥ f i ∣E j∥
α i , j
p i , j

. For the analogue of
Theorem 5.1 to hold in this case, we have to require∑m

i=1
α i , j

p i , j
= i j+1 − i j−1. Another way

to generalize functional forms of dual quermassintegrals is to replace

∥ f ∣F j∥
i j+1−i j−1
1 by

∥ f ∣F j∥
α j
p j

∥g∣F j∥
β j
q j

with
α j

p j
−

β j

q j
= i j+1 − i j−1 ,

to ensure they remain invariant under volume-preserving transformations. Letting

q j →∞modifies the integrand to
∥ f ∣F j ∥

α j
p j

∥ f ∣F j ∥
β j
∞

and the condition on the powers and norms

to α j

p j
= i j+1 − i j−1. Note that in this case the invariance holds for arbitrary powers β j .

As a particular case, this proves invariance under volume-preserving transformations
of the integrand appearing in the next theorem. One can also take the quotient of
products of functions, replacing

∥ f ∣F j∥
i j+1−i j−1
1 by

∏m
i=1 ∥ f i ∣F j∥

α i , j
p i , j

∏m′
l=1 ∥g l ∣F j∥

β l , j
q l , j

with
m
∑
i=1

α i , j

p i , j
−

m′

∑
l=1

β l , j

q l , j
= i j+1 − i j−1 .

Here again, we can let q l , j →∞, obtaining the corresponding generalization with no
restrictions on β l , j .

Theorem 5.2 Let f be a non-negative bounded integrable function on R
n , then

∫
Fn

r

r
∏
j=1

∥ f ∣F j∥
i j+1−i j−1
1

∥ f ∣F j∥
i j+1−i j
∞

dξr ≤
r
∏
j=1

ω i j+1
i j

ω i j
i j+1

∥ f ∥ir
1 .

Proof The result follows by iteration of an inequality on Gn ,k for one function from
our previous work [12, Theorem 1.2]:

∫
Gn ,k

∥ f ∣E∥n
1

∥ f ∣E∥n−k
∞

dE ≤
ωn

k
ωk

n
∥ f ∥k

1 .(63)

Applying the latter inequality repeatedly, we get

∫
Fn

r

r
∏
j=1

∥ f ∣F j∥
i j+1−i j−1
1

∥ f ∣F j∥
i j+1−i j
∞

dξr

= ∫
Gn , ir

. . .∫
GF3 , i2

r
∏
j=2

∥ f ∣F j∥
i j+1−i j−1
1

∥ f ∣F j∥
i j+1−i j
∞

∫
GF2 , i1

∥ f ∣F1∥i2
1

∥ f ∣F1∥i2−i1
∞

dF1dF2 . . . dFr

≤
ω i2

i1

ω i1
i2

∫
Gn , ir

. . .∫
GF3 , i2

r
∏
j=2

∥ f ∣F j∥
i j+1−i j−1
1

∥ f ∣F j∥
i j+1−i j
∞

∥ f ∣F2∥i1
1 dF2 . . . dFr
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=
ω i2

i1

ω i1
i2

∫
Gn , ir

. . .∫
GF4 , i3

r
∏
j=3

∥ f ∣F j∥
i j+1−i j−1
1

∥ f ∣F j∥
i j+1−i j
∞

∫
GF3 , i2

∥ f ∣F2∥i3
1

∥ f ∣F2∥i3−i2
∞

dF2dF3 . . . dFr

≤
ω i2

i1

ω i1
i2

ω i3
i2

ω i2
i3

∫
Gn , ir

. . .∫
GF4 , i3

r
∏
j=3

∥ f ∣
F j∥

i j+1−i j−1
1

∥ f ∣F j∥
i j+1−i j
∞

∥ f ∣F3∥i2
1 dF3 . . . dFr

= ⋅ ⋅ ⋅

≤
r
∏
j=1

ω i j+1
i j

ω i j
i j+1

∥ f ∥ir
1 .

∎

In [12], more general versions of (63) are proved with several functions and different
powers. These also carry over to extremal inequalities on flag manifolds by mimicking
the previous proof. As a sample, we mention just one statement. Let 1 ≤ q ≤ i1 and let
f1 , . . . , fq be non-negative bounded integrable functions on R

n , then

∫
Fn

r

q

∏
k=1

r
∏
j=2

∥ fk ∣F j∥
i j+1−i j

i j
1

∥ fk ∣F j∥
i j+1−i j

i j
∞

∥ fk ∣F1∥
i2
i1

1

∥ fk ∣F1∥
i2−i1

i1
∞

dξr ≤
r
∏
j=1

ω i j+1
i j

ω i j
i j+1

q

∏
k=1

∥ fk∥1 .

5.2 Functional forms of the r-flag affine quermassintegrals

In this subsection, we extend the notion of r-flag affine quermassintegrals to functions.
In particular, this will lead to functional versions of affine quermassintegrals. This is
motivated by recent work of Bobkov, Colesanti, and Fragalá [4] and V. Milman and
Rotem [39]. The latter authors proposed and studied a notion of quermassintegrals for
log-concave or even quasi-concave functions, which we now recall.

Definition 5.3 Suppose that f ∶ Rn → [0,∞) is upper-semicontinuous and quasi-
concave. For 1 ≤ k ≤ n, let

Vk( f ) ∶= ∫
∞

0
Vk({ f ≥ t})dt.

The above definition is consistent with the notion of projection of a function onto a
subspace as introduced by Klartag and V. Milman in [25]. Namely, let f ∶ Rn → [0,∞]
be a non-negative function and F ∈ Gn ,k . Define the orthogonal projection of f onto
F as the function PF f ∶ F → [0,∞] given by

(PF f )(z) ∶= sup
y∈F⊥

f (z + y).

Note that if K is compact and f ∶= 1K , then PF f ∶= 1PF(K). Moreover, from the defini-
tion, one has

{z ∈ F ∶ (PF f )(z) > t} = PF({x ∈ Rn ∶ f (x) > t}).

Assume from now on that f ∶ Rn → [0,∞) and

{x ∈ Rn ∶ f (x) ≥ t} is a compact body for each t > 0.(64)
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For 1 ≤ k ≤ n − 1, we define the affine quermassintegral of f by

Φ[k]( f ) ∶= ∫
∞

0
Φ[k]({ f ≥ t})dt = ∫

∞

0
(∫

Gn ,k
∣{PF f ≥ t}∣−ndF)

− 1
nk

dt.(65)

Note that for f = 1K , we have Φ[k](1K) = ∫
1

0 Φ[k](K)dt = Φ[k](K); hence, the notions
coincide for sets. For 1 ≤ r ≤ n − 1 and 1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ir ≤ n − 1, r ∶= (i1 , ⋅ ⋅ ⋅ , ir), we
define the r-flag affine quermassintegrals of f by

Φr( f ) ∶= ∫
∞

0
Φr({ f ≥ t})dt.(66)

For comparison, we recall that for every f ∶ Rn → [0,∞],

∫
Rn

f (x)dx = ∫
∞

0
∣{ f ≥ t}∣dt.

For λ ∈ R/{0} and f as above, we write

f(λ) ∶ Rn → [0,∞], as f(λ)(x) ∶= f (x
λ
) ,

and if T ∈ GLn ,

f ○ T ∶ Rn → [0,∞], as f ○ T(x) ∶= f (T−1x).

Note that if f ∶= 1K , then

f(λ)(x) = 1λK(x) and f ○ T(x) = 1TK(x).

For f ∶ Rn → [0,∞], λ > 0, and T ∈ GLn , we have

{ f ○ T ≥ t} = T ({ f ≥ t}) and { f(λ) ≥ t} = λ{ f ≥ t}.

Thus, by the 1-homogeneity of the r-flag affine quermassintegrals for sets, and the
affine invariance of these quantities, we obtain the following theorem.

Theorem 5.4 Let f ∶ Rn → [0,∞] satisfy (64). Let λ > 0 and T be an affine volume-
preserving map. Then

Φr( f(λ)) = λΦr( f ) and Φr( f ○ T) = Φr( f ).

We recall the symmetric decreasing rearrangement of an integrable function f. For
a set A ⊆ R

n with finite volume, the decreasing rearrangement A∗ is defined as A∗ ∶=
rABn

2 , where rA is the volume-radius of A. The symmetric decreasing rearrangement
f ∗ of f is defined as the radial function f ∗ such that, for t > 0,

{ f ≥ t}∗ = { f ∗ ≥ t}.

In particular, r{ f≥t}Bn
2 = { f ∗ ≥ t}. Using (66) and (35), we have, for non-negative

quasi-concave functions f on R
n ,

Φr( f ) = ∫
∞

0
Φr({ f ≥ t})dt ≥ ∫

∞

0
Φr(r{ f≥t}Bn

2 )dt = ∫
∞

0
Φr({ f ∗ ≥ t})dt = Φr( f ∗).
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Lastly, let f be a non-negative quasi-concave function on R
n satisfying (64). We

define

dBM( f ) ∶= sup
t>0

dBM({ f ≥ t}).

The results of Section 3 lead to the following double-sided inequality for Φr( f ):

Theorem 5.5 Let f be a non-negative quasi-concave function on R
n satisfying (64).

Then

Φr( f ∗) ≤ Φr( f ) ≤ c′min{
√

n
ir

, log(1 + dBM( f ))}Φr( f ∗).
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