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INVARIANTS FOR AUTOMORPHISMS OF
CERTAIN ITERATED SKEW POLYNOMIAL RINGS

by DAVID A. JORDAN and IMOGEN E. WELLS*
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Rings of invariants are identified for some automorphisms 9 of certain iterated skew polynomial rings R,
including the enveloping algebra of sl2(k), the Weyl algebra A, and their quantizations. We investigate how
finite-dimensional simple R-modules split over the ring of invariants Rs and how finite-dimensional simple
R9-modules extend to R.

1991 Mathematics subject classification: 16S36, 17B37.

1. Introduction

In a sequence of papers [3, 4, 5, 7] the first author has studied a class of iterated
skew polynomial rings R in two indeterminates y and x over a finitely generated
commutative fc-algebra A, where k is an algebraically closed field. The principal
example is the enveloping algebra of the Lie algebra s/2(fe) [3]. Other examples include
the quantized enveloping algebra of sl2(k) [3], the quantized Weyl algebra in two
variables [5, 7], the coordinate rings for various quantum groups [3, 5, 7], and the
enveloping algebra of the dispin Lie superalgebra [5, 7].

Given a positive integer n not divisible by char/c, these algebras all admit an auto-
morphism 6 of order n acting as the identity on A and with y t-> coy and x i->- oT'x, where
co e k is a primitive nth root of unity. The purpose of this paper is to study the ring of
invariants for such automorphisms for a slightly more general iterated skew polynomial
ring R in two variables, including, for example, the ordinary Weyl algebra Ax as well
as the quantized Weyl algebra. The ring of invariants turns out to be a factor of a ring
constructed in the same way from the polynomial ring A[w] as R is from A. As a
consequence, the results in [7] determining the finite-dimensional simple modules over R
may be applied to determine the finite-dimensional simple modules over the ring of
invariants R°. Indeed it is possible to see how each finite-dimensional simple i?-module
splits over R°. We shall see that for a certain class of finite-dimensional simple /^-module
X, which often yields all the finite-dimensional simple modules, X is the direct sum of
r simple J?°-modules of dimension q + 1 and, provided q > 0, n — r simple R0-modules of
dimension q, where dimt X = qn + r, 0 < r < n. From this it follows, for example, that
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if R = t/(s/2(fc)) then R° has n2 simple modules of each positive dimension. This result
for U(sl2(k)) has been obtained independently by Kraft and Small [8].

2. Basic details of R and Re

2.1 The ring R. Let A be a finitely generated commutative algebra over an
algebraically closed field k, let a be a /c-automorphism of A, let v e A and let p e k\{0).
Let S be the skew polynomial ring A\y; a] and extend a to S by setting a(y) = p~ly.
There is an a"1-derivation 5 of S such that 5(A) — 0 and d(y) = v. This is a special case
of a construction of skew derivations described in [2, 2.8]. The ring R — R(A, a, v, p)
is the skew polynomial ring S[x; a"1,8]. Thus xy — pyx — v and, for all a e A,
xa = a~l(a)x and ya — <x(a)y.

This notation will be fixed throughout the paper.

2.2 Casimir element. If v = u — pa.(u) for some u e A then the element z = xy — u =
p(yx — <X(H)) is a normal element of R inducing a fc-automorphism /} of R such that
p\a) = a for all a e A, P(y) = py and fi(x) = p~lx. We shall say that the 4-tuple
(A, a, v, p) is conformal when v has this form u — pa(w). Examples of rings which arise
in the conformal case are listed in [3], where p = 1, and [7]. If p = 1 then z is central
and if p is an nth root of unity then z" is central. In the general case, we set
w = xy = pyx + v. Then aw — wa for all a e A and when i; is of the form w — pa(u),
w = z + u and A[z] = A[w].

We extend a to a fc-automorphism, also denoted a, of the ring A[w] by setting
a(w) = p~l(w — v) and a~'(w) = pw + ct~l(v). In the conformal case, <x(z) = p~'z and, in
general, yw — cc{w)y and xw = a~'(w)x.

In the conformal case, the normal element z generates a non-zero proper ideal of R
which consequently is not simple. The most obvious example of a ring of the form R in
which v is not of the form u — p<x(u) is the Weyl algebra Ax where A — k, a. = id,
p — 1 and v = 1 whereas u — pa(u) — 0 for all u e A. The ring A, is well known to be
simple if and only if char k = 0. Conditions for R to be simple will be discussed in
[11].

2.3 Identities. Set v0 = 0 and, for m > 1, um = £™^' Pict'(v). It is easy to see that,
for all m, m' e N, vm + pmam(t>m/) = um+m, and that, in the conformal case, vm =
u — pm<xm(u). The following identities, which hold for m > 1, can be checked inductively.
In (3)-(6), a is extended to A[w] as in 2.2.

(i) xJr-prjrx = vmjrl.
(2) xmy-pmyxm = ai-m{vm)xm-i.
(3) '

(4) n^,
(5) om(w) = p-m(w-i;m).
(6) a-m(W) = pm

W + «-m(vm).
Note that#(l) is equivalent to saying that a~'(/") = pmy and (5(/") = i^
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2.4 Grading. Every element of R is a unique /1-linear combination of the elements
y'x1, i > 0,j > 0. For m e Z, let Rm be the set of all /1-linear combinations of the
elements y V with i—j = m. Because of the relations used to define R as a ring
extension of A, R = 0 m e Z Rm is a Z-graded ring. Note that w e Ro. By 2.3 (3) and (4),
Ro =A[w], while if m > 0 then Rn = fA[w] =A[w]f and i?_m = xmA[w] = A[w]xm. Note
that Rm can also be described as the set of all /1-linear combinations of the elements
x'y with; — i = m. In the conformal case, Rm = A[z]f or ^[z]x~m as appropriate.

2.5 The factor ring T. Suppose that (A, a, v, p) is conformal. We shall denote the
factor ring R/zR, which was studied in [4] and [6], by T or, more explicitly, T(A, a, u).
It is the ring extension of A generated by X and Y, the images of x and y respectively,
subject to the relations

XY = u, YX = a(w)

and, for all a e A,

Ya = a(a)Y, Xa = ar\a)X.

Note that T is independent of the parameter p. As the normal element z is homo-
geneous of degree 0, there is an induced Z-grading on T, T = ®meZ Tm, where To —A,
and, for m > 0, Tm = YmA -AY"1 and T_m = XmA —AXm. Each element has a canonical
form

anX" + ... + aiX + a0 + blY+... + bmYm, where a,-, b; € A.

2.6 The automorphism 6 of R and its invariants. Let n be a positive integer and let
(o e fc be a primitive nth root of unity. Note that n must be invertible in k. There is a fe-
automorphism 8 of R acting as the identity on A and with 6(y) = coy and
8(x) = ar 'x. Clearly 6 has order n and, for the grading described in 2.4, 9 is a graded
automorphism. It is easy to identify the ring R° of invariants in terms of this grading.
For each m, 9 acts on Rm by multiplication by com. Thus

that is,

R° =

Writing B for the polynomial ring A[w],

https://doi.org/10.1017/S0013091500023221 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500023221


464 DAVID A. JORDAN AND IMOGEN E. WELLS

By 2.2(3) and (4), XY=Un and YX = «"((/„), where Un = \\n
j^)a.-'{w) so that

It follows that there is a surjective graded homomorphism x '• T(B, a", Un) ->• i?° given
by x(X) =*" and x(y) = y"- Given that x ' s graded, it is easily seen to be an
isomorphism. Thus we have the following result.

Theorem. The fixed ring R° of R for 9 is isomorphic to T(B, a", Un).

In the remainder of the paper we shall use the isomorphism x t o identity R° with
T(B, a", [/„). This includes the case n — 1 which gives a different way of viewing the ring
R.

Corollary. R(A, a, v, p) = T(A[w], a, w), where a is extended to A[w] by setting
a(w) = p"'(w — v).

This corollary gives a way of generalizing known results from the conformal case
with p = 1 to the general case. In 3.7 we shall do this for a result from [3] on
extensions of simple modules.

2.7 The automorphism 0 of T and its invariants. Consider a /c-algebra of the form
T = T(A, a, u) = R/zR where R = R(A, a.,u - a(u), 1). The automorphism 9 of R
introduced in 2.6 fixes z and induces a ^-automorphism of order n, also to be denoted
6, of T acting as the identity on A and with 0(Y) - coY and 9(X) = co~[X. It is easy
to see that the fixed ring is the ring extension of A generated by Y" and X" subject to
the relations

X"Y" = un, Y"X" = a"(un),

where un = fT/Jo a~J(")- Hence T° can be identified with T(A, a", «„), where the
indeterminates are written as Y" and X" rather than Y and X.

When R is identified with T(v4[w], a, w) using Corollary 2.6, the automorphism 9 of
R becomes the automorphism 9 of T(/4[w], a, w) as above, that is 9 acts as the identity
on A[w], 9{Y) = coY and 9(X) = OJ"'X. The descriptions in Theorem 2.6 and above of
the invariants for R and rings of the form T both give the ring of invariants of
R = r(/4[w], a, w) to be T(/4[w], a", Un). As it is easier to work with rings of the form T
than those of the form R, we shall often work with a general ring T and then use
Corollary 2.6 to apply results to the general ring R(A, a, v, p).

2.8 Examples. One case for which the fixed ring already appears in the literature
is when A = k, p—\ = v and a = id so that R is the Weyl algebra A,. In the notation
of this paper, the fixed ring is isomorphic to T(k[w],a",Y\1^(w+j)) where
a(w) = w — 1. The algebras similar to the enveloping algebra of s/2(fc) which are the
subject of [10] are of the form R = R(A, a, v, p) with A = k[w] and in [10] the fixed ring
of the automorphism 0 of At is identified as a factor of such an algebra.
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For another example, take A = k[t], a(t) = t + 2, u = -\(t - I)2 and p = 1 so that
v — u - pa(u) = t. In this case, R is the enveloping algebra of the Lie algebra s/2(fc). (In
the more standard notation for this algebra, x, y and t are written as e, f and h.) Here
a extends to A[w] = k[t, w] with a(w) = w — t and a~'(w) = w + t — 2. T h e element Un

in 2.6 is r £ o ' ( w +J* ~J2 ~J) a n d t n e fixed ring of 8 is isomorphic to T(k[t, w], a".£/n).
Finally, suppose that char/c / 2 and take /I = k[t], a(t) = t + l , p = —1 and

u — (2t — l ) /4 so that v = u + a(«) = t. When k = C, the ring R is the universal
enveloping algebra of the dispin Lie superalgebra B[0,1], see [7, Example 1.3]. Here a
extends to A[w] = k[t, w] with a(w) = t — w and oT'(w) = t — w — 1. The fixed ring of 0
is isomorphic to T(k[t, w], a", [/„), where, in the formula, Un = rĵ To a J(w)»

w — ^ if 7 is even
-w + t - * i if; is odd.

3. Finite-dimensional simple modules

3.1 Finite-dimensional simple /{-modules. If a.'(I) = I for an ideal I of A or A[w]
and some positive integer s then we say that / is periodic and call the least such s the
order of /.

Theorem, (a) Let R = R(A, <x, v, p). Every finite-dimensional simple R-module is
isomorphic to one of the following:

(i) the d-dimensional module L(M) = R/(MR + xR + /R) for each maximal ideal M
of A containing vdfor some (minimal) d > 0;

(ii) the s-dimensional modules R/(NR + (ys - £)R) and R/(NR + (xs — £)R) for each
periodic maximal ideal N ofA[w] of order s and each 0 ^ £ € k.

(b) Let T = T(A, a, u). Every finite-dimensional simple R-module is isomorphic to one
of the following:

(i) the d-dimensional module C(M) = T/(MT + XT + YdT)fr each maximal ideal M
of A containing u and a.d(u)for some minimal d > 0;

(ii) the s-dimensional modules T/(MT+(Y° - £)T) and T/(MT + (XS - QT) for each
periodic maximal ideal M of A of order s and each 0 / <f; e k.

Proof, (a) is proved in [7] for the conformal case. We shall deduce (b) from the
conformal case of (a) and the general case of (a) from (b).

Recall that T-R/zR, where R — R(A, a, u - a(u), 1) and z = xy-u. The simple
K-modules are then as given in (a). A simple R-module of type (i) is annihilated by z
if and only if u e M. Here vd = u — txd(u) and so those simple i?-modules L{M) which
are also simple T-modules are those with u e M and a.d(u) e M. The periodic maximal
ideals of A[w] = A[z] for which the simple R-module of type (ii) gives rise to a simple
T-module are of the form M/4[z] + zA[z] where M is a periodic maximal ideal of A.
Thus (b) follows from the conformal case of (a).

For the general case of (a), recall from Corollary 2.6 that R(A, a, v, p) —
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T(A[w], a, w). For each d > 1, there is a bijection between the maximal ideals of A con-
taining vd and the maximal ideals of A[w] containing w and of(w) given by Mi->-
MX[w] + w/l[w]. Also, if T = T(A[w], a, w) then, because w = XY, (MA[w] +
wA[w])T+XT+ YdT'= MT+XT+ YdT. The general case of (a) then follows from (b).

Note that if A has no periodic maximal ideals, as in the cases of the enveloping
algebras of the Lie algebra sl2(k) and the dispin Lie superalgebra when char k = 0, only
type (i) occurs.

3.2 Finite-dimensional simple 7^-modules. Let T = T(A, a, u), let n be a positive
integer and let 9 be the automorphism of T introduced in 2.7. Thus T° — T(A, a", un),
where un = Y[^ a~;(«) and the indeterminates are Y" and X" rather than Y and X.

Theorem 3.1(b) gives the following classification of the finite-dimensional simple
T°-modules. Every finite-dimensional simple T°-module is isomorphic to one of the
following:

(i) the d-dimensional module £„(#)= T°/(NT° + X"T° + r " V ) for each maximal
ideal JV of A containing un and am'(un) for some (minimal) d > 0;

(ii) the s-dimensional modules T°/(NT° + (7™ - £)T°) and T°/(NT° + (X*5 - QT°)
for each periodic maximal ideal N of A of order s under a" and each 0 / £ e k.

A similar classification for the finite-dimensional simple R°-modules can be derived
using Theorem 2.6.

We next analyse how the finite-dimensional simple T-modules split over T°.

Theorem. Let Mbea maximal ideal of A giving rise to a d-dimensional simple T-module
£(M) = T/(MT + XT+YdT) as in 3.1 (a)(i). Write d = qn + r where 0 < r < n. Then
L(M) is isomorphic to the direct sum of r simple T°-modules L0{oT'{M)), 0 < i < r, of
dimension q+\ and, ifq > 0,n — r simple T°-modules £/fl(or'(M)), r < i < n, of dimension q.
Furthermore every finite-dimensional T° -module of the form Cio(N) occurs as a T°-summand
of a simple T-module £>(<x'(N))for some i.

Proof. Recall that d > 0 is minimal with u e M and ad{u) e M. For 0 < i < n - 1,
set JV,. = a~XM). Thus un e TV, for each i. Note that «"«(«„) = r£o' «"*-'(«) and
a»(«+i)(uj _ fi^ an«+j(u) Let o < i < r. Then a"«+(r-°(«) = </-(«) e N, and so

(Mn) e N,. Moreover, q + 1 is the least positive integer; such that a"y(un) € N,. Thus
there is a q + 1-dimensional simple T°-module £,ff(iV,). Now suppose that r < i < n.
Notice that this implies that q > 0 and d > n. Then a"*"(I"r)(u) = ^"'(u) e N, and so
an*(«n) € Nj. Furthermore, q is the least positive integer j such that a"J(«B) € N,. Hence
there is a ^-dimensional simple T*-module £/0(7Vj). Thus, unless q = 0, in addition to
the above r simple T^-modules of dimension q + 1, M gives rise to n - r simple T°-
modules of dimension q.

We next show that, over T°, the simple T-module £(M) splits as the direct sum of
the simple modules £0(N,), 1 < i < TO, where TO is the minimum of n and d. For
0 < j < d - 1, let fc, = r + (MT + XT + YdT). Then {&;}„<,<,,-, is a basis for -C(M) and
each Abj = b}A is a one-dimensional /1-submodule of £(M) with ann^b, = a";(M). The
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action of X and Y is given by the rules b0X = 0 = bd_} Y, bjY = bj+l for 0 <j < d - 2
and, because YX = <x(u), bjX = bj^aiu) for 1 <j<d—l.

Fix 0 < i < m and let ef = dim CB(Ni). Thus e, = q + 1 if 0 < i < r and c, = <? if
g > 0 and r <i < n. Then Z0(N,) has a basis {Cylosys*,-! analogous to the basis [bj] of
£(M). Thus c,; = r - K M T ' + r f + r T " ) , each'A^ = c^A is a one-dimensional
4-submodule of £„(#,), ann^Cy = a^^iV,), cl0X

n = 0 = cf,,,_,Yn, c0T" = cu +, for
0 < 7 < e , - 2 , and CyX" — fy_,a"(un) for l < j < e f — 1 . Now let L, be the subspace
0 ^ ' bi+jnA = btA + bi+nA + ... biHe._x)nA of £(M). As T° is generated, as a ring
extension of A, by Y" and X", each L( is an e,-dimensional T"-submodule of L(M).
Clearly L(M) = 0 « U-

Each L, has basis {fc,+;n}0<y<f,-i a n d ann^^i+;/i = a l'+I"\M) = a n;(N,) = ann^c^-. Also
b.X

n = 0 = bi+<ei_l)nY
n and fc^'r = bi+ij+l)n for 0 < ; < « , - 2 . If l < j < e , - l then

bi+jnX
n = bi+u_t)noi(u)tx2(u)... a."(u) = fcI+0_i)na"(«n). Hence there is a ^-isomorphism

/ : L, ->• £0(N,) given by / : bi+jn i-> c9. Identifying each L, with /(L,), £(M) splits over
T° as claimed.

Now let TV be a maximal ideal of A for which there is a finite-dimensional simple
T°-module £fl(A0. Then un — fT^J a~;(u) e iV and dim to(iV) is the minimal positive
integer e such that a"'(«n) e N. As un e N there exists a minimal integer j , such that
0 <ji < n — 1 and u € <xll(N). Let M = txn(N). Also there exists a maximal integer j 2

with 0 < j2 < n - 1 and u e ah""(N). If d = ne -j2 +;', then ^(u) e ah(N) and, by the
choice of e,jt and 72. d is the least positive integer with aJ(w) e M. Thus there is a d-
dimensional simple T-module L(M) and, in the above notation, N = Nh is a T0-
summand of £(M).

3.3 Finite-dimensional simple /{-modules and /^-modules. Let 0 be the auto-
morphism of R introduced in 2.6. Thus R° — T(A[w], a", [/„). Theorem 3.2 can be
applied to the finite-dimensional simple /?-modules and /?"-modules.

Corollary. Let M be a maximal ideal of A giving rise to a d-dimensional simple R-
module L(M) = R/(MR + xR + /R) as in 3.1 (a) (i). Write d-qn + r, where 0 < r < n.
Then L{M) is isomorphic to the direct sum of r simple Re-modules L(a~'(MA[w]+
wA[w])), 0 < i < r, of dimension q + 1 and, if q > 0, n — r simple R°-modules
L(a~'(MA[w] + wA[w])), r < i < n, of dimension q. Furthermore every finite-dimensional
R°-module of the form C(N) occurs as an R°-summand of a simple R-module L(a.'(N) D A)
for some i.

Proof. When R is identified with T(i4[w], a, w) as in 2.6, L{M) becomes
£(My4[w] + w/l[w]), see 3.1. The result follows on applying Theorem 3.2 to
T(A[w],a,W).

3.4 Examples. With n and 0 as in 2.6, we discuss three examples in which A has
no periodic maximal ideals so that, by 3.1 and 3.3, every finite-dimensional R-module
has the form L{M) and splits as the direct sum of r simple /?"-modules of dimension
q + 1 and, if q > 0, n — r simple modules of dimension q, where dim L{M) = qn + r and
0 < r < n. All finite-dimensional simple /?°-modules occur in this way.
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(i) As is well-known, or can be seen from the classification in 3.1 (see [3, 3.17] for
the details), if char k = 0 then R = U(sl2(k)) has a unique i-dimensional simple module
Ld for each positive integer d. Fix a positive integer j . The values of d for which Ld

has ./-dimensional simple /?°-summands are d = n(j — I) + s, 1 < s < n, in which case
there are s such summands, and d= nj + s, 1 < s < n, in which case there are n — s.
Thus the number of y-dimensional simple modules is £ ^ ( 5 + n — s) = n2. This result
has been obtained independently by Kraft and Small, [8, Example 3].

(ii) The quantized enveloping algebra Uq(sl2(k)) is a ring of the form R and, provided
q is not a root of unity, has four d-dimensional simple modules for each positive
integer d. See [3, 3.19] for details. A similar calculation to the above shows that R° has
4n2 simple modules of dimension j for each positive integer j .

(iii) Here we consider the case where R is the enveloping algebra of the dispin Lie
superalgebra and charfc = 0. Thus A = k[t], a(t) = t+l and p = —1. Then R has a
unique d-dimensional simple module Ld for each odd positive integer d and no simple
modules of even degree. See [7, 4.2] for details.

Suppose that n = 2m — 1 is odd. Fix an odd positive integer j . The values of d for
which Ld has 7-dimensional simple /?"-summands are d = n(j — 1) + s, 1 < s < n, s odd,
in which case there are s such summands, and d — nj'• + s, 1 < s < n, s even, in which
case there are n — s. This gives a total of 2m2 — 2m + 1 simple modules of each odd
dimension j . A similar calculation shows that there are 2m2 — 2m simple modules of
each even dimension j .

Now suppose that n — 2m is even and fix a positive integer j . The values of d for
which Ld has y'-dimensional simple R°-summands are d = n(j — 1) + s, 1 < s < n, s odd,
in which case there are s such commands, and d — nj'• + s, 1 < s < n, s odd, in which
case there are n - s. This gives a total of 2m2 simple modules of each dimension j ,
whether j is odd or even.

3.5 Extending simple r*-modules to T. Let AT be a maximal ideal of A for which
there is a finite-dimensional simple T^-module £o(iV). As shown in 3.2, there exists a
maximal ideal M of A such that C0(N) is a direct summand, over T°, of the simple
T-module HM). It is reasonable to ask whether C0(N) ®T(i T must be isomorphic to
£(M). If, with e,jf and;2 as in the proof of Theorem 3.2, y, is the unique integer such
that 0 < jx < n — 1 and u e <xh(N) and j2 is the unique integer with 0 < j2 < n — 1 and
u e ot?2~n'(N) then the answer is positive. The following example shows that it is not
positive in general.

Let char k = 0, let A be the polynomial ring k[t, w], and let a be the fe-automorphism
of A such that a(t) = t + 1 and <x(w) = w + t(t - 1) (4t + 1). Let n = 2 and let M be the
maximal ideal tA + W/4. Form the ring T = T(/4, a, w). Then w e M, a(w) e M and
«2(w) e M but a~'(w) = w-(t- l)(r - 2)(-4t + 3) = -6modM. As weM and
<x(w) e M, there is a one-dimensional T-module £(M) = T/(XT+ YT + MT). As a T°-
module, this is £fl(M), its annihilator in T° is the ideal X2T° + Y2T° + MT° and

g)^ T~T/(X2T+Y2T + MT). Let J = X2T + Y2T + MT. Then X2y = Arw =
=-6*modM7\ Hence X e J and so J = XT + Y2T + MT. Also Y2X =

Y<x(w) = a\w)Y eMT and therefore J = Jfr+y2S + Mr, where S = A[Y; a]. From
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this it follows easily that Y & J. Hence £<,(M) <S>T<> T ~ T/J is not annihilated by
Y, is two-dimensional with basis {1, Y] and is not isomorphic to C(M).

Note that, by Corollary 2.6, T = T(k[t, w], a, w) = R(k[t], a, u - a(u), 1) where
u — fit — 1)(£ — 2) so this example answers the corresponding question for rings of the
form R. The simpler example with u = t{t - \){t — 2) works equally here but the
specified example has another role later. If the above example is amended so
that <x2(u) ̂  M, for example, by taking u — t2(t — 1) and so a(w) = w+t(3t+1),
then 7 e J and £0 ®ro T ~ £(M). Calculations of this sort are used to establish
that Lg(N) ®7-o T ~ £(M) in the case claimed above.

3.6 Other finite-dimensional simple T-moduIes and ^-modules. If there are periodic
maximal ideals in A then there are finite-dimensional simple T-modules S not of the
form L{M). The way in which these modules split over T° is different to that for those
of the form £(M). In particular, the summands all have the same dimension. Such a
module S has one of the forms T/(MT + {Ys - &T) or T/(MT + (Xs - £)T) for some
periodic maximal ideal M of A of order s and some 0 ^ £ e k. Let m be the highest
common factor of n and s and note that N has order s/m under a". Then it can be
checked that, as a T°-module, S is a direct sum of m simple T°-modules, each of
dimension s/m and of the form given in 3.2(ii). Also, for each of these T°-modules S',
S' ®R(, R ~ S.

3.7 Semisimplicity of finite-dimensional /{-modules. Suppose that A has no periodic
maximal ideals and let R = R(A, a, v, p). In [3, Section 5] it is shown that, in the
conformal case with p = 1, all finite-dimensional i?-modules are semisimple if and only
if, for all maximal ideals M of A and all positive integers d < e,

u - «•*(«) e M =» (« - <x<(") $ M and M2 + (u - <xd(u))A = M).

It follows from this result and the action of the Casimir element z on the non-split
extensions which can occur, that, for T = T(A, a, u) — R/zR, all finite-dimensional
T-modules are semisimple if and only if for all maximal ideals M of A and all positive
integers d < e,

(ueM and «•*(«) e M) =• (<x'(u) $ M and M2 + uA + a\u)A = M).

Applying this to R — T(A[w], a, w), we obtain the following generalization of [3, 5.6].

Theorem. Suppose that A has no periodic maximal ideals. All finite-dimensional
R-modules are semisimple if and only if, for all maximal ideals M of A and positive
integers d < e,

vd € M =>• (ve $ M and M2 + vdA = M).
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Proof. By the above, all finite-dimensional J?-modules are semisimple if and only
if, for all maximal ideals N of A[w] and positive integers d < e,

(weN and o (̂w) eJV)z> (a'(w) g N and N2 + wA[w] + ad(w)A[w] = N).

There is a bijection between the set of maximal ideals N of A[w] containing w and the
set of maximal ideals M of A given by N = MA[w] + wA[w] «-> M = N D A. As
txd(w) - p~\w - vd) by 2.3(5), it is clear that vd e M •& a.d(w) e N. Also
N2 + wA[w] + ad(w)A[w] = N •& N2 + wA[w] + vdA[w] = N & M2+ vdA = M. The result
follows.

3.8 Example. Suppose that A is the Laurent polynomial ring k[t, t~l] with oc(t) = q2t
where 0 ^ q e k is not a root of unity. Thus A is a-simple and is a principal ideal domain.
Let v — at + b for some a,bek with a ^ 0 and consider the ring R = R{A, a.v, p) where
p = q~l. For d > 1, vd = (1 + q + ... q*'1)^ + (1 + q~l + ... q-{d~l))b which generates the
maximal ideal Md = (t 4- qd~x |)/4. As these maximal ideals are distinct, Theorem 3.7
applies to show that all finite-dimensional R-modules are semisimple. A particular case
of interest is [7, Example 1.4(ii)] where q = v2 and v = iT1 (t + ̂ ) . This algebra R is
the localization at the powers of t of the algebra, first considered by Woronowicz [12],
obtained as above but with A = k[t] rather than k[t, t~1]. Alternative proofs of the
semisimplicity of the finite-dimensional modules for the localization are given in [12]
and [1].

3.9 Semisimplicity of finite-dimensional /?fl-modules. Applying the method of 3.7 to
the fixed ring R° = T(A[w], a", [/„) gives that all finite-dimensional /?"-modules are
semisimple if and only if, for all maximal ideals N of A[w] and positive integers
d < e,

(UneN and a ^ l / J € TV) => (a"'(l/n) £JV and N2 + UnA[w] + <xnd(Un)A[w] = N).

It can be checked that this criterion is equivalent to the corresponding criterion for
the case n — 1 in the proof of 3.7. Thus all finite-dimensional R-modules are
semisimple if and only if the same is true for R°. The "only if" part of this is true in
general for the ring of invariants S = RG of a finite group G of automorphisms of a
right Noetherian algebra R provided \G\ is invertible in R. One proof involves using
the trace map, see [9, p. 242], to show that for each right ideal / of S, IR n S — I. From
this it follows that any finite-dimensional S-module S/I embeds in the R-module
R/IR. As R is finitely generated as an R°-module by [9, 26.13(ii)], R/IR is finite-
dimensional and hence semisimple as an /?"-module. By [9, 26.13(iv)], R/IR is
semisimple as an S-module and therefore S/I is semisimple. Alternatively, see [8, proof
of Proposition 1]. The criterion in 3.7 can fail on either of two counts, ve e M or
M2 + vdA ^ M. The two give rise to different types of non-split extensions. The first
gives rise to non-split extensions of HM) by L{N) and of L(N) by L(M), where
N = aTd{M), and the second gives ExtJj(L(M), UM)) to be non-zero. See [3, Section 5]
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for details. Although there is a similar dichotomy for /^-modules, it is possible, as
the next example shows, for R to have the property that E\tl

R(X, X) = 0 for all finite-
dimensional simple K-modules X but for R° to fail to inherit this property.

3.10 Example. Consider the example of 3.5, that is R = R(k[t], a, « - a(u), 1) where
a(r) = t + 1 and u = ?{t - 1) (t - 2) or, equivalently, T = T(k[t, w], a, w) with a(t) = t + 1
and a(w) = w + t(t — l)(4r+1). As k[t] is a-simple it follows that each finite-
dimensional simple /^-module has the form L{M) for some maximal ideal M of A
containing vd for some positive integer d. The two-dimensional module R/J(= T/J) in
3.5 is not semisimple.

Suppose that ExtJj(L(M), L(Af)) ^ 0 for some maximal ideal M of A. Then for some
positive integer d, vd e M but M1 + vdA / M. As M/M2 is one-dimensional, it follows
that vdeM2. But vd-u- a\u) = 4r3 + (6d - 9)^ + (4d2 -9d + A)t + (d3 - Id2 + Id) so
this cubic and its derivative share a common root which must be

2(11 -Ad})

From this it follows that d is a root of the polynomial

(Ad6 - 528rf" + \AS2d2 - 1088 = {Ad1 - 11)3 + 243.

This polynomial has no integer roots and so ExtJj(L(M), L(M)) = 0.
On the other hand, consider the fixed ring R° in the case n = 2. Let N be the maximal

ideal wA[w] + tA[w] of A[w]. Then U2 = wa~'(w) e N and a2((/2) = ( w - u2)(w- »,) =
(w - « + a2(«)) (w - u + «(«)) e N2 and so JV2 + U2A[w] + a\U2)A[w] c N2 + Wi4[w] c N.
It follows that there is a one-dimensional simple i?"-module £(N) with ExtJjO(.C(AO.
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