Proof: Let A have n digits. Then $A \ge 10^{n-1}$, so $\sqrt{A} \ge 10^{(n-1)/2}$. If $n \ge 5$, then, by the Lemma, $\sqrt{A} > 9n$. But the sum of the digits of A is at most 9n (reached when each digit is 9). Thus if $n \ge 5$, \sqrt{A} exceeds the sum of the digits of A.

If n = 4, the digit sum of A is at most $9 \times 4 = 36$, so if $A > 1296 = 36^2$, then \sqrt{A} exceeds the sum of the digits of A. But if $A \le 1296$, then the sum of its digits is less than 1 + 2 + 9 + 9 = 21, yet $\sqrt{A} \ge \sqrt{1000} > 21$.

It remains to consider the case $n \leq 3$. Now, by direct verification, it is easy to find that there are only two numbers, 1 and 81, that satisfy the problem:

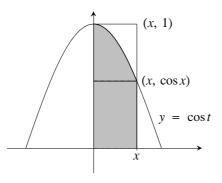
number	(number) ²	sum of digits	number	(number) ²	sum of digits
1	1	1	16	256	13
2	4	4	17	289	19
3	9	9	18	324	9
4	16	7	19	361	10
5	25	7	20	400	4
6	36	9	21	441	9
7	49	13	22	484	16
8	64	10	23	529	16
9	81	9	24	576	18
10	100	1	25	625	13
11	121	4	26	676	19
12	144	9	27	729	18
13	169	16	28	784	19
14	196	16	29	841	13
15	225	9	30	900	9
			31	961	16

10.1017/mag.2024.122 © The Authors, 2024 Published by Cambridge University Press on behalf of The Mathematical Association VICTOR OXMAN Western Galilee College, Acre, Israel MOSHE STUPEL Shaanan College, Gordon College, Haifa, Israel

108.39 A quick proof that π is less than 2ϕ

The golden ratio ϕ is $\frac{1}{2}(1 + \sqrt{5})$ and $\tan \frac{1}{12}\pi = 2 - \sqrt{3}$. The aim of this Note is to give a quick proof of the well known inequality $\pi < 2\phi$. Our proof is more elementary than Nelsen ([1]).

This proof uses the familiar inequality $\sin x < x < \tan x$ for $0 < x < \frac{1}{2}\pi$. An alternative to the standard proof is given by the following diagram:



$$x \cdot \cos x < \int_0^x \cos t \, dt = \sin x < x \cdot 1.$$

With $x = \frac{1}{12}\pi$, we have $\frac{1}{12}\pi < \tan \frac{1}{12}\pi = 2 - \sqrt{3}$, so that

$$\pi < 12(2 - \sqrt{3}) < 2\phi = \sqrt{5} + 1$$

since 23 < $12\sqrt{3}$ + $\sqrt{5}$ (by squaring both sides).

This bound is equivalent to comparing the area of a unit circle with that of a circumscribing regular dodecagon where, as usual, a lower bound of 12 sin $\frac{1}{12}\pi < \pi$ comes from the inscribed dodecagon.

Furthermore, the actual computing yields a slightly sharper inequality (but perhaps less interesting): $\pi < 3.2154$.

Acknowledgements

We are thankful to the anonymous referee and the Editor for their careful reading the manuscript and necessary suggestions.

References

- 1. Roger B. Nelsen, Pi is less than twice phi, *Math. Mag.*, **94** no. 5 (2021) p. 387.
- 2. Alejandro H. Morales, Igor Pak, Greta Panova, Why is pi less than twice phi?, *Amer. Math. Monthly*, **125** no. 8, (2018) pp. 715-723.

10.1017/mag.2024.123 © The Authors, 2024BIKASH CHAKRABORTY,Published by Cambridge University PressRITAM SINHAon behalf of The Mathematical AssociationNevanlinna Lab,Department of Mathematics,Department of Mathematics,

Ramakrishna Mission Vivekananda Centenary College, Rahara, West Bengal 700 118, India e-mail addresses: bikashchakraborty.math@yahoo.com,

bikash@rkmvccrahara.org, ritamsinha23@gmail.com