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Proof: Let  have  digits. Then , so . If ,
then, by the Lemma, . But the sum of the digits of  is at most
(reached when each digit is 9). Thus if ,  exceeds the sum of the
digits of .

A n A ≥ 10n − 1 A ≥ 10(n − 1)/2 n ≥ 5
A > 9n A 9n

n ≥ 5 A
A

If , the digit sum of  is at most , so if
, then  exceeds the sum of the digits of . But if

, then the sum of its digits is less than , yet
.

n = 4 A 9 × 4 = 36
A > 1296 = 362 A A
A ≤ 1296 1 + 2 + 9 + 9 = 21

A ≥ 1000 > 21
It remains to consider the case . Now, by direct verification, it is

easy to find that there are only two numbers, 1 and 81, that satisfy the problem:
n ≤ 3

number (number)2 sum of digits number (number)2 sum of digits
1 1 1 16 256 13
2 4 4 17 289 19
3 9 9 18 324 9
4 16 7 19 361 10
5 25 7 20 400 4
6 36 9 21 441 9
7 49 13 22 484 16
8 64 10 23 529 16
9 81 9 24 576 18

10 100 1 25 625 13
11 121 4 26 676 19
12 144 9 27 729 18
13 169 16 28 784 19
14 196 16 29 841 13
15 225 9 30 900 9

31 961 16
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108.39 A quick proof that  is less than π 2φ
The golden ratio  is  and . The aim of

this Note is to give a quick proof of the well known inequality . Our
proof is more elementary than Nelsen ([1]).

φ 1
2 (1 + 5) tan 1

12π = 2 − 3
π < 2φ

This proof uses the familiar inequality  for
. An alternative to the standard proof is given by the following

diagram:

sin x < x < tan x
0 < x < 1

2π
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(x, 1)

(x, cos x)

x

y = cos t

x · cos x < ∫
x

0
cos t dt = sin x < x · 1.

With , we have , so that x = 1
12π 1

12π < tan 1
12π = 2 − 3

π < 12 (2 − 3) < 2φ = 5 + 1,
since  (by squaring both sides).23 < 12 3 + 5

This bound is equivalent to comparing the area of a unit circle with that
of a circumscribing regular dodecagon where, as usual, a lower bound of

 comes from the inscribed dodecagon.12 sin 1
12π < π

Furthermore, the actual computing yields a slightly sharper inequality
(but perhaps less interesting): .π < 3.2154
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