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TWO THEOREMS ON THE CLASS NUMBER OF
POSITIVE DEFINITE QUADRATIC FORMS

YOSHIYUKI KITAOKA

0. In this note we study the estimate from above and below and
the asymptotic behaviour of the class number of positive definite integral
quadratic forms.

1. Let S,, S, be positive definite matrices of degree m; then S,,S,
are called equivalent (resp. equivalent in the narrow sense) if S, = ‘TS,T
for some T in GL(m, Z) (vresp. SL(m,Z)). By definition E(S) is the order
of the unit group of S, i.e., the number of matrices in GL(m,Z) such
that ‘TST = S. Let m,D be natural numbers; by H,(D) (resp. h,(D))
we denote the number of equivalence classes (resp. equivalence classes
in the narrow sense) in positive definite integral matrices of degree m
and determinant D.

THEOREM 1. Let m be a natural number larger than 2, and e be
any positive number. Then we have

e(m)D™92 < H,(D) < c,(m, ) Dm0+,

where c¢,(m) is a positive constant depending on m, and c(m,e) is a
positive constant depending on m and c. Moreover we can take 0 instead
of ¢ if we consider cases of square-free D.

COROLLARY. For even m we have
hn(D) ~* 2H (D) as D — oo .

THEOREM 2. Let m be a natural number; then
1
H,D)~2> as D — oo,
D ~22 5@ ~
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*) f(x) ~ g(%) as & — co means lim f@) _ 4
a=e g

79

https://doi.org/10.1017/50027763000015737 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015737

80 Y. KITAOKA

where S runs over a set of representatives of different equivalence classes
in positive definite integral matrices of degree m and determinant D.

COROLLARY. Let m be an odd natural number. Then we have

 Ho(D) e R\ 20
tim o == fr(g) T eew,
D: odd

square-free

where {(s) is the Riemann zeta-function.

Remark. It is possible that we obtain the similar result to Theorem
2 for the number of classes in a genus on some assumptions (for ex-
ample, on the assumption that D is square-free).

2. LEMMA 1. The number of groups of finite order in GL(m,Z)
is finite up to conjugacy.

Proof. Let G be a group of finite order in GL(m, Z). and S be the
positive definite matrix > ,.4°AA. Then there exists an element U in
GL(m, Z) such that !USU is reduced in the sense of Minkowski and the
integral orthogonal group of (USU contains U-'GU. From Satz 4 in
[8], absolute values of all entries of U'MU(M ¢ G) are not larger than
some constant depending on m.

3. Proof of Theorem 1.

Let S be a positive definite integral matrix of degree m and de-
terminant D. Then the mass M(S) of S is by definition

1

2 ESy ’

where S, runs over the representatives of equivalence classes in the
genus of S, and it is well known ([7])

2F(1/2)F(2/2)’ . 'F(m/z) LD+

n.m(m+l)/4 I—[p Ct.’p

M@S) = (m>1,
where a, = «,(S) is the density of S at the prime p and it is defined by

= lim ()" PRM(S; ),

£—o0
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where M(S; p% is the number of integral matrices T mod p’ such that
tTST = S mod p°.
If » does not divide 2D, then we have ([3], [7])

(m—=1)/2
T a—p™ m: odd,
&p = m, m/2) —

(1 _ ((_1) 2D >p—m/2>( ﬁ 1(1 _ p—Zk) m: even .

p k=1
If
1.,
(1) S = &p over Z, for p|D and p # 2,

De;?

where ¢, is a unit of Z,,
then we have ([3])

1— ((—1)(;_1)/2517 >p—(m—1>/2> (m_ﬁm_l(l — pF) m: odd,

a, = 2D

(m/2)-1
ﬂl 1 —p7*) m: even,

where D™ represents the p-part of D.
If 8D, and

(2) s=(4 ) overz,
where A is unimodular over Z, with determinant 1, then by the similar
proof to Hilfssatz 10, 11 in [3] we have
M(S; 29 = 2¢mYM(A; 29M(D; 29,
and so
@,(S) = 4D®a,(4) ,

where D@ represents the 2-part of D. Thus, on the assumption (2) if
8|D, we have

az(S)/Dm <e¢,

where ¢, depends on only m. From now on, c¢; represents a positive
constant depending on only m, and c;(c) depends on m and e.
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If S satisfies the above condition (1) for any odd prime p, then we
have

D(z) (m-=1)/2 (m—-1)/2
IT ¢Ck) [T A =22 T]]27"QA — p~™D)
k=1 k=1 p|D
P2
i (2 )y ) n: od,
1!;[2061—71 =9{p® 1 m-1 0L m [ (—1)m2D \\ m2-1 1 _ o
D J]2 kUIC ) (?,( * )) kUI( - )
na
X (1 — (#)2'”/2) m: even.

Thus on the assumptions (1), and (2) if 8|D, the mass M(S) satisfies
Lis (5] mes,
M@S) = e, Db [] 2714 215 p
e (1 m>4.
Therefore if the number of odd primes dividing D is zero or one, and S

satisfies above conditions (1) and (2) if 8D (for example, S = (1m—1 D)),

then
H, (D) > M(S) > ¢,D™b”? for m > 3.

Suppose that odd primes dividing D are p,,p,, - -+, p,(t > 2), and put
the p-part of D = p*». If there exists j such that Uy, is odd, then for
any given unit €p, of Zpi(z' #+ 7) there exist a unit &, of Z,,j and a posi-
tive definite integral matrix S with |S| = D such that S satisfies the
condition (1) and

1
S = ( m-1D> over Z,.

If any u,, is even, then for any given unit ¢, of Z, there exist a unit
e, of Z, and a positive definite integral matrix S with |S| = D such that
S satisfies the condition (1) and

N
n

-1 over Z,.
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Hence we obtain

H.D) > > ME)>:eDm2  for m>4,
R
;ej

and for m = 3

H.D)> 3 M®S) > D2 ZH (1 n (l)p)

(%):il Y2
i#Ej
> D2 1 (L4 ()
=1 Dy
i#j
= 27%¢,D .

Thus, we have proved H,(D) > ¢, D™ /2,
Let ¢, be the maximal order of groups of finite order in GL(m, Z).
Then we have

H,(D) < ¢; 33 M(S),

where S runs over the representatives of genera of positive definite
integral matrices of degree m and determinant D. This implies

(3) H,(D) < ¢,D™2 1] a" [ (35 a5,

pi2D ~ pl2D

where } ) a,' is the sum of the inverses of densities of matrices, up to
equivalence, over Z, of degree m and determinant D. On the other
hand, we have

(m=1)/2

]—l (1 _ p—Zk)—l m: odd ’

1 0(;1 _ Jpip k=1 ) )
pi2D 1 (1 . ((_1)m/2D)p—m/2) ”’"ﬁ) ‘A —p® m: even,

pi2D p -

<e.
Let
p"S,
S ~ . over Z,, (p+#2)

P'S,
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where S; are unimodular and 0 <, <, < ... <, and put #; = degree
of S;, m; = > 5., n;. Then we get

ay(S) = 28-potand ]EI (S for odd prime p,
i=1

where wo(t;,n) = 25 teng(my, — (v, — 1)/2), and the sum 3 «;* in (3) is
Yegt= 2 3 ap
i B S

21-8

nth pfa(tk,nk)

Y IEXCARE
k=1
We, now, estimate Y A[[:i.; a,(Se)~*:

zgmm*
= X 1807 [] ay(S)™

ng= kEF2
_lSkl -1 - -1
=511 (1= (F2)p) " 1 antsy
nE=2 vy nEF2
<{fla-po " (1+ (F0)).
k=2 nE=2 p
If some n, is not 2, then we can take any unit of Z, as |S;| for k
satisfying n; = 2, and > [] (1 + (—_Lﬂ)p‘l) =21, If all n, are 2,
ng=2
then > ]’s[ (1 + (_L‘Sk')p-l) = 28-1(1 + (w) p—m/z). This im-
k=1 P P

plies

et {fla-p)" S b for odd p,

P pm(tk,nk)
Put D® = pv», then u, = >, n;t; and w(t;, n,) > u, and the equality arises
if and only if n,=m —1, n,=1, ¢, =0 and ¢, = u,.

If we confine ourselves to the case of square-free D, then we have
m=m-—1 n=1, {t,=0 and £, =u, (=1). Hence in this case, we
have

[l S ;' < DD

»ID
D+2
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We come back to the case of general D. Let 5, be the number of
partitions m = >, n;,n, > 0, and put £ = w(ty, ny) — U, = tm(n, — 1)/2
+ > teng(my, — (n, + 1)/2); then in case of s > 1, we have t,_, < ¢
and 0 <¢,_; < ¢ — 14+ 1. This implies that the number of systems {t;}i_,
such that ¢ = w(ty, ny) — u, for some n, satisfying > 5., n, = m,n; > 0,
ity =Uup, and 0< ¢t <, < .- <t is at most (4 + 144 —1)--.
(4 — s + 3). Therefore we get

ST petnm < 1 {i 8, i G+l —s + 3)} 1 pruptmen/2

o - DW® 22" T S5e P’
1 o, (8 —1) !7 2 —up(m—l)/z}
= {z B gyt ,

and finally we have

p¥#2

Now we estimate > a;':
Let S= (Sl S) over Z, and S, is unimodular of degree n and S, = 0(2);
2

then from the similar proof of Hilfssatz 10, 11 in [3] it follows that
M(8;529 > @)™ M(S,; 29M(S; 5 29
and so a,(S) > 2-m-mng (S)a,(S,). Let

2u8,

%}
I

. over Z,,
ous,
where S; are unimodular and 0 < ¢, < --- < ¢, and put n; = degree of
S; and m; = > 5_;n;; then we get
()™t < 26D -sttemn r Fmmens [T @,(S,)7" .

The number of unimodular matrices, up to equivalence, of degree < m,
and the number of partitions 5., n; = m, are finite, hence we get

DS L ey 2ot
1
S CIZW .
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From these we have
Hm(-D) < Ols(e)D(m—l)/2+s .

4, LEMMA 2. Let L be a positive definite quadratic lattice over Z,
and suppose that there is a non-trivial isometry o of L such that ¢ has
1 as an eigenvalue of o. Then there exist non-zero two sublattices L,, L,
such that

LoL,| L,De,L,
where ¢, s a natural number depending on the rank of L.

Proof. Let n be the order of ¢. Then n is not larger than some
constant depending on the rank of L. The assumption implies > 7, o¢
#0. Put Ly={reL;ox=x}. Then L, 0, since there exists some z
in L such that > 7 ,¢%c #+ 0, and the rank of L, is not equal to the rank
of L. For any element z in L, >, ¢ is in L,, and nx — > 7, ¢z is
in Lj. This means

LoL, | L onL.
Remark. L DL, | L, D c¢,L is equivalent to
L, | L, >e,LDey(l, | L.

5. LEMMA 3. By H%(D) we denote the number of equivalence classes
of positive definite integral matrices of degree m and determinant D
which have a non-trivial unit with 1 as an eigenvalue. Then we have

H(D) < cy(e)Dm-d/2+e for any ¢ > 0.
Proof. For m = 2, ¢,(e)D**~* < Hy(D) < ¢,(e)D"*** for any e > 0 is

proved by Siegel. From Lemma 2 it follows

(D) < o 32S Hy(OHn_o(@D/0)

a=1b=1claD

37 [m/2]
< c5(e) 25 O (@D)m-b-brte 57 cGo- m/2

a=1b=1 claD

c2m

< 019(6) IZ‘: a(m-—2)/2+2sD(m—2)/2+Zs
- a=1

S czo(s)D(m—-z)/2+2s .

6. Proof of Corollary of Theorem 1.

Let S be a positive definite integral matrix of even degree m and
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determinant D. Suppose that any matrix which is equivalent to S is
always equivalent to S in the narrow sense; then the unit group of S
contains a unit of whose determinant is —1. This implies that the
difference 2H,.(D) — h,(D) is at most the number of equivalence classes
which have a unit of determinant —1. From Lemma 3 and Theorem 1
follows our corollary.

7: Proof of Theorem 2

In case of m =2, let S = (g’ 2) and D = ac — b* and ¢ > a > 2|b|.
Since E(S) > 2 implies ¢ =a or a =|2b|, the number of equivalence
classes which have a non-trivial unit is at most ¢,(e)D* for any ¢ > 0.
This completes the proof in case of m = 2. From Lemma 8 it is suf-
ficient to prove Theorem 2 that we estimate the number of equivalence
classes such that they have a non-trivial unit and any non-trivial unit
has not 1 as an eigenvalue. Let S be such a matrix, and L be a lattice
over Z corresponding to S. We denote the orthogonal group of L (= the
unit group of S) by G. From the assumption, we see that G containg
a unit ¢ such that ¢ has not 1 as an eigenvalue and the order ¢ of ¢
is an odd prime or 4. If ¢ =4, then ¢*= —1. If g #4, theng + ---
+ ¢72 = 0. Hence the ring Z[s] is isomorphic to the maximal order O of
QW'1). Since, then, L is a torsion-free O-module, from the theory of
modules over Dedekind domain it follows that L is O-isomorphic to a
direct sum of ideals of QW 1):

LA DA4,D---DA,,

where 4, = ... = A,_; = 0, and the ideal A, is a (fixed) representative
of some ideal class. (This ideal class is uniquely determined by L.) This
identification transforms S to a totally positive definite Hermitian matrix
H(S) = (h;y) with h;; in (4,4,0)"', where the bar denotes the complex
conjugate and ¢ is the different of Qv 1). Moreover if S,, S, are equiva-
lent and have ¢ as a unit and S, = S,[T] for some T in GL(m, Z) satis-
fying ¢T = oT, then for corresponding Hermitian forms H(S,), H(S,) there
exists a matrix X = (x;;) such that

H(S) = XH(S)'X, and z;,z),eA;'4;,

where (z;;) = X~'. We remark that there is a natural number ¢ such
that all entries of cH(S) are integers in Qv 1), and the group G = {X
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= (%45) 5 45, X;; € A7'A;, where () = X'} and GL(n,0) are commensu-
rable. On the other hand, any totally positive definite Hermitian matrix
is equivalent (with respect to GL(n,0)) to some element in (¢, S{X,},
where S is a sufficiently large Siegel domain and X, is a non-singular
integral matrix. (S, X;,d depend on only ¢ and %#.) This implies that
the class number of positive definite Hermitian forms with the norm of
determinant < D is at most c¢(q)D*?, where the constant ¢(g) depends on
only q. From these it follows that the number of equivalence classes in
which there is some positive definite matrix S such that S has ¢ as a
unit and |S| < D is at most ¢,D*?. Since m > 2 implies n < m — 1, we
have proved Theorem 2.

7. Proof of Corollary of Theorem 2.
It is easy to calculate the mass of square-free and odd determinant
by using [3], [6]:

1 _ Dm-vz m L\ m=0/2
ZS: E(S) o Jmim+1)/4 Elp(z) k1—=[1 £@k)

y {(1 4+ 2-m-nn) (1 L 5(—1) S D-(m-m)
D

1 m+1

1 — 2-m-n/2y(1 _ 5( - )TD—(m—l)/Z ,
+ -o(5 )

where S runs over a set of representatives of classes of positive definite
integral matricies of odd degree m >3 and of square-free and odd
determinant D, and § = (—1)*D@+2+D-0An(y — (m — 3)/2). Corollary
follows from this.
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