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Abstract

Scale-free percolation is a stochastic model for complex networks. In this spatial ran-
dom graph model, vertices x, y ∈Zd are linked by an edge with probability depending
on independent and identically distributed vertex weights and the Euclidean distance
|x− y|. Depending on the various parameters involved, we get a rich phase diagram. We
study graph distance and compare it to the Euclidean distance of the vertices. Our main
attention is on a regime where graph distances are (poly-)logarithmic in the Euclidean
distance. We obtain improved bounds on the logarithmic exponents. In the light tail
regime, the correct exponent is identified.
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1. Introduction

1.1. The model

We study scale-free percolation, which we henceforth abbreviate as SFP. This is a stochastic
model for real networks such as social networks, biological networks, the internet, etc. that was
introduced in [9]. Many real networks share ubiquitous features such as scale-free degrees and
small-world behaviour. Our model, SFP, is an infinite spatial random graph model that exhibits
these features; it is embedded into the hypercubic lattice Z

d and shows geometric clustering.
Closely related models are based on point processes rather than the fixed grid structure of Zd,
and such models have been studied on finite and infinite domains. We discuss these variants in
Section 1.4.

We now describe the model in detail. We consider the lattice Zd with fixed dimension d≥ 1
and construct a locally finite random subgraph of the complete graph on the vertex set Zd.
Recall that a graph is called locally finite if all its vertices have finite degrees. To each vertex
x ∈Zd, we assign an independent and identically distributed (i.i.d.) weight Wx which fol-
lows a power-law distribution with parameter τ − 1 (τ > 1), i.e. P(Wx ≥w)=w−(τ−1), w≥ 1.
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Conditioning on these weights, we declare an edge {x, y} to be open independently of the status
of other edges with probability

px,y = 1− exp

(
−λ

WxWy

|x− y|α
)

, (1.1)

where | · | denotes the Euclidean norm and α, λ > 0 are further parameters of the model. We
write x∼ y if the edge {x, y} is open. The object of interest in the present study is the subgraph
induced by the open edges; we call its connected components clusters.

Scale-free percolation indeed generates scale-free networks in the sense that the degrees of
vertices follow a power-law distribution with tail exponent

γ = α(τ − 1)/d. (1.2)

That is,
P(Dx ≥ k)= k−γ �(k), k ∈N,

where Dx is the degree of x ∈Zd and � is slowly varying at infinity, cf. [9].
The focus of the present paper is on graph distances. Recall that the graph distance between

two vertices is defined as the length of a shortest open path connecting them. If the vertices are
in different clusters (and hence such open paths do not exist), then the graph distance is ∞.
Graph distances in real networks, in particular social networks, have been the focus of network
research since Milgram’s experimental discovery of the small-world effect (casually phrased
as ‘six degrees of separation’), and have also been investigated theoretically since then, e.g.
[17, 18].

On finite networks, say with N vertices, ‘small world’ means that the graph distance between
two points is much shorter than a regular structure would suggest, e.g. (log N)O(1) as N→∞.
Our network is infinite, and we therefore give a different interpretation to the small-world
effect. We call an infinite subgraph C ⊂Z

d a small-world graph if the graph distance D(x, y)
on C is much smaller than the Euclidean distance, i.e. if

D(x, y)= (log |x− y|)O(1) as |x− y|→∞. (1.3)

For graph distances in scale-free percolation, a rich phase diagram has been established in
the literature: conditional on two points, x and y say, to be in the (unique) infinite component,
we get that, with high probability (as |x− y|→∞),

• if γ ≤ 1 then D(x, y)≤ 2, cf. [15];

• if α < d, then D(x, y)≤ 
d/(d− α)�, cf. [15];

• if γ ∈ (1, 2) and α > d, then D(x, y)= 2
| log(γ−1)| log log |x− y|, cf. [9, 22];

• if γ > 2 and α > 2d, then D(x, y) � |x− y|, cf. [10, 19].

This behaviour (together with our new results) is summarized in Fig. 1. The results in the
first three cases are referred to as the ‘ultra-small-world’ phenomenon, because the asymp-
totics are of smaller order than the requirements of (1.3). In these regimes, shortest paths are
typically formed by vertices that have the highest weight in a certain neighbourhood (locally
dominanting vertices or hubs). In contrast, for d < α < 2d and γ > 2, the weights are more
homogeneous, and it is not sufficient to consider only dominant vertices to find the shortest
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FIGURE 1. Graph distances in different regimes of scale-free percolation. The shaded regions are those
we are interested in. The areas (a), (b), and (c) represent our improved bounds established in Theorem 1.1.

paths. In this regime, there is a fine interplay between weights and spatial positions of vari-
ous vertices, which leads to (poly-)logarithmic upper and lower bounds on graph distances.
The aim of this paper is to identify the right logarithmic power, thereby completing the phase
diagram.

At the phase boundaries (γ = 1 and γ = 2) we expect that the graph distances depend on
the precise tail behaviour of the connectivity function in (1.1), so that any universality is lost.

1.2. Main results

Before stating the main results, we first introduce some parameters:

α1 := α ∧ α(τ − 1)

2
= α ∧ γ d

2
, α2 := α ∧ (α(τ − 1)− d)= α ∧ (γ − 1)d, (1.4)

� := log 2

log(2d/α)
, �1 := log 2

log(2d/α1)
, �2 := log 2

log(2d/α2)
. (1.5)

Here, x∧ y means the minimum of x and y. If γ in (1.2) is larger than 2, then d < α1 ≤ α2 ≤
α < 2d. As a consequence, 1 < �1 ≤�2 ≤�.

Deijfen et al. showed in [9] that, for d < α < 2d and γ > 1, if P(W = 0) < 1 then there exists
a critical value λc ∈ (0,∞) such that for λ > λc there exists a unique infinite cluster. We thus
may condition on two vertices x and y being in the same infinite cluster.

Theorem 1.1. For scale-free percolation with parameters λ > λc, γ > 2, and d < α < 2d, we
have, for any ε > 0,

lim|x−y|→∞ P
(
(log |x− y|)�1−ε ≤D(x, y)≤ (log |x− y|)�2+ε | x, y ∈ C∞

)= 1.

Depending on the values of γ and α, the various minima in (1.4) give rise to three different
regimes. These are depicted in Fig. 1. Writing C∞ for the unique infinite cluster in the graph,
we get:

https://doi.org/10.1017/jpr.2022.44 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.44


298 N. HAO AND M. HEYDENREICH

(a) for γ > 2, α(τ − 2) < d, and arbitrary ε > 0,

lim|x−y|→∞ P
(
(log |x− y|)�1−ε ≤D(x, y)≤ (log |x− y|)�2+ε | x, y ∈ C∞

)= 1;

(b) for τ < 3, α(τ − 2)≥ d, and arbitrary ε > 0,

lim|x−y|→∞ P
(
(log |x− y|)�1−ε ≤D(x, y)≤ (log |x− y|)�+ε | x, y ∈ C∞

)= 1;

(c) for τ ≥ 3 and arbitrary ε > 0,

lim|x−y|→∞ P
(
(log |x− y|)�−ε ≤D(x, y)≤ (log |x− y|)�+ε | x, y ∈ C∞

)= 1.

Note that here the upper bounds in (b) and (c) are from [10].
Despite the improvements in both the upper and lower bounds, the reader may observe

that there is still a gap between them in cases (a) and (b) in our result. Therefore, it remains
open as to what the correct exponent is. The main difficulty in closing the gap between the
upper and lower bounds is that we do not have a precise estimate for the probability of a path
being open in scale-free percolation. Lemma 2.2 gives a nice upper bound. However, in view of
Proposition 3.2, it appears that this bound is not optimal for τ < 3. As shown in Proposition 3.2,
the actual asymptotics of the probability of a path being open in SFP are heterogeneous in the
exponents of edges, which poses a great difficulty.

In fact, our methods also apply to more general forms of connection probabilities than
(1.1). We return to this observation in Remark 3.1. If we make the extra assumption that addi-
tionally all nearest-neighbour edges are open, then a comparison with long-range percolation
(explained in the following paragraph) gives the following improvement to (b) and (c) above:
there exists C > 0 such that

lim|x−y|→∞ P
(
D(x, y)≤C(log |x− y|)�)= 1. (1.6)

Note that the extra assumption ensures that x, y ∈ C∞.

1.3. Comparison with long-range percolation

Before we proceed to the proofs of the results, we first introduce a related (though easier)
model named long-range percolation. Our analysis of scale-free percolation is crucially based
on techniques developed for long-range percolation.

Long-range percolation (henceforth LRP) is also defined on the lattice Z
d for fixed dimen-

sion d≥ 1. Independently of all the other edges, the edge {x, y} is open with probability pLRP
xy .

A typical choice of pLRP
xy is

pLRP
xy = 1− exp

(
− λ

|x− y|α
)

.

Note that pLRP
xy is equal to pxy for scale-free percolation (as defined in (1.1)) if Wx ≡ 1 or τ =∞.

Biskup et al. studied the graph distances in long-range percolation and obtained sharp
results.

Theorem 1.2. ([3, 4, 20].) Consider the long-range percolation with connection probability
{pxy} such that

lim inf|x−y|→∞ pLRP
xy |x− y|α > 0 (1.7)
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for some α > 0. If d < α < 2d and a unique infinite open cluster exists, then, for all ε > 0, we
have

lim|x−y|→∞ P
(
( log |x− y|)�−ε ≤D(x, y)≤ (log |x− y|)�+ε | x, y ∈ C∞

)= 1.

If, moreover, we have the stronger form of connection probability

pLRP
xy = 1− exp

(
− λ

|x− y|α
)

,

and assume the existence of all nearest-neighbour edges, then there exist constants C > c > 0
such that

lim|x−y|→∞ P
(
c( log |x− y|)� ≤D(x, y)≤C(log |x− y|)�)= 1.

Trapman [20], moreover, identified the growth of the balls {x ∈Zd : D(0, x)≤ n} for LRP
with d < α < 2d.

Now we can describe a coupling between LRP and SFP. To this end, we view the two models
from another perspective: to each edge {x, y} of the graph, we assign an i.i.d. Uniform[0, 1]-
distributed random variable Uxy. Then, for the scale-free percolation model, we consider for
each edge {x, y} the event

Ax,y :=
{

Uxy ≤ 1− exp

(
−λ

WxWy

|x− y|α
)}

,

and we make the edge {x, y} open whenever Ax,y occurs. In the same way, for long-range
percolation we consider the event

Bx,y :=
{

Uxy ≤ 1− exp

(
−λ

1

|x− y|α
)}

.

We have thus constructed a coupling for the two models: since Wx ≥ 1 for all x ∈Zd, we have

1− exp

(
−λ

1

|x− y|α
)
≤ 1− exp

(
−λ

WxWy

|x− y|α
)

,

which implies Ax,y ⊇ Bx,y, and thus scale-free percolation dominates long-range percolation in
the sense that all the open edges in the LRP remain open in SFP. We therefore get that distances
in LRP are an upper bound for distances in SFP, and in particular get the upper bound (1.6).

For the remaining regimes, there are many rigorous results about the graph distance D(x, y)
as |x− y|→∞. When α < d, [1] showed that D(x, y) is bounded by some (explicit) constant.
When α > 2d, [2] showed that D(x, y) ≥ |x− y|. For the borderline case α = 2 for d= 1, [12]
showed that D(x, y)≈ |x− y|δ for some δ ∈ (0, 1).

1.4. Related work

Various aspects of scale-free percolation (also known as heterogeneous long-range percola-
tion) have been investigated in the literature, both on the lattice Zd [10, 15] and as a continuum
analogue [8, 11], where vertices are given as a Poisson point process. The results in the present
paper have been obtained on Z

d, but it appears that we do not make use of the lattice structure
in any crucial way, so that analogue results should hold for a continuum version of the model.
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A continuum version of scale-free percolation on a finite domain (properly rescaled) is known
a geometric inhomogeneous random graph; see [5, 6, 7].

It has been pointed out recently [13, 14] that (continuum) scale-free percolation, as well as
many other random graph models, can be understood as special cases of the weight-dependent
random connection models. In the language of [13], scale-free percolation corresponds to the
weight-dependent random-connection model with a product kernel and polynomial profile
function. Note that the parametrization in [13] is different; see in particular [13, Table 2].

For related recent work on spatial preferential attachment graphs we refer to [16].

1.5. Overview

We first prove the lower bound in Section 2. More precisely, we show that the probability
that there exists a shorter path than the lower bound is negligible. We do this by estimating
the path probability and counting the eligible paths using a so-called ‘hierarchy’ argument. In
Section 3 we prove the upper bound with a double edge argument.

2. Proof of the lower bound

In order to prove the lower bound, we derive variants of Biskup’s arguments [3] in the set-
ting of scale-free percolation. Similar to [3], we split the argument into three propositions. The
key difference between SFP and LRP is that adjacent edges in the former model are only con-
ditionally independent. We resolve this by adjusting the definition of a hierarchy and combine
it with estimates from [9] to break up the dependence structure.

Definition 2.1. Given an integer n≥ 1 and distinct vertices x, y ∈Zd, we say that the collection
Hn(x, y)= {(zσ ) : σ ∈ {0, 1}k, k= 1, 2, . . . , n; zσ ∈Zd} is a hierarchy of depth n connecting x
and y if

(i) z0 = x and z1 = y;

(ii) zσ00 = zσ0 and zσ11 = zσ1 for all k= 0, 1, . . . , n− 2 and all σ ∈ {0, 1}k;

(iii) for all k= 0, 1, . . . , n− 2 and all σ ∈ {0, 1}k such that zσ01 �= zσ10, the edge {zσ01, zσ10}
is open;

(iv) each edge {zσ01, zσ10} as specified in (iii) appears only once in Hn(x, y);

(v) for zσ1, zσ2 in Hn(x, y) with k ∈ {0, 1, . . . , n− 1}, σ1, σ2 ∈ {0, 1}k+1, and σ1 �= σ2, we
have zσ1 = zσ2 if and only if there exists σ ∈ {0, 1}k such that σ1 = σ0 and σ2 = σ1. In
this case, we call the vertices zσ1 and zσ2 degenerate, otherwise non-degenerate.

The vertices (zσ ) are called sites of the hierarchy Hn(x, y).

In the toy example depicted in Fig. 2, we find two overlapping sites. For z001(=z0011) and
z0010, there exists σ = (0, 0, 1) ∈ {0, 1}3 such that zσ1 = zσ0. Therefore, this is a degenerate
site in the sense of Condition (v). Similarly for z010 and z0101.

Remark 2.1. With only Conditions (i)–(iv), our definition would coincide with [3, Definition
2.1]. In addition, we impose Condition (v) to make sure that every element (zσ ) ∈Hn(x, y) can
be fitted into a vertex self-avoiding path connecting x and y. By adding an additional condition,
we realise that the set of all hierarchies here is a subset of the hierarchies defined in [3], and
this will be helpful when we count the eligible hierarchies, e.g. in (2.18).
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FIGURE 2. A hierarchy of depth 4 with two degenerate sites z001 and z010.

The hierarchy Hn(x, y) is essentially a (random) subgraph of the complete graph with
vertex set Zd. Condition (iv) ensures that the number of open edges in this subgraph is at
most 2n−1, and Condition (v) guarantees that the degree of all vertices in Hn is no more
than 2.

Since the shortest path connecting x and y is necessarily vertex self-avoiding, meaning that
the weight of a single vertex appears at most twice in the path, we can estimate the probability
of such a path by the Cauchy–Schwarz inequality.

Lemma 2.1. ([9, Lemma 4.3]) Let x, y ∈Zd be distinct. Then, for all δ > 0, there exists a
constant Cδ := C(δ, λ) > 1 such that

E

[(
λ

WxWy

|x− y|α ∧ 1

)2
]1/2

≤Cδ|x− y|−α1+δ, (2.1)

where α1 is defined as in (1.4).

Proof. From the proof of [9, Lemma 4.3] we know that

E

[(
λ

WxWy

|x− y|α ∧ 1

)2
]
≤C1(1+ log |x− y|) |x− y|−2α1

for some constant C1 ∈ (0,∞). Then, for all δ > 0, we have

lim
r→∞

1+ log r

r2δ
= 0.

Hence, there exists a constant C2 > 0 such that 1+ log r≤C2r2δ for all r > 0. Then we choose
Cδ := √C1C2 ∨ 2 as desired. �

Remark 2.2. Actually, the estimation above can be further refined for τ > 3. If τ > 3, the
weights Wx and Wy have finite variance. In this case, we can get rid of the δ in (2.1). On the
other hand, since we can choose δ arbitrarily small, the refinement does not change our result.
For our purpose, we choose δ small enough that α− δ > d and α1 − δ > d.
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Now we estimate the probability that a path is open from above. Note that we call π a path
of length n if there exist n+ 1 distinct vertices x0, . . . , xn ∈Zd such that π = (x0, . . . , xn). We
say that π is open if all the edges {xi−1, xi}i=1,...,n are open.

Lemma 2.2. ([9, Theorem 4.2]) Let π := (z0, z1, . . . , zn) ∈ (Zd
)n+1

be a path of length n.
Then, for all δ > 0, P(π is open)≤∏n

i=1 Cδ|zi − zi−1|−α1+δ , where the constant Cδ is as in
Lemma 2.1.

The proof of Lemma 2.2 can be found in the proof of [9, Theorem 4.2], which combines the
Cauchy–Schwarz inequality with the alternating independence of the edges in the path. With
Lemma 2.2, we immediately realise that SFP behaves similarly to LRP in the sense that they
have similar upper bounds for the probability of a path, which also indicates that the lower
bound of SFP might be treated similarly to LRP.

Definition 2.2. Let x, y ∈Zd be distinct, η ∈ (0, α1/(2d)), and n≥ 2. We define En = En(η) as
the event that every hierarchy Hn(x, y) of depth n connecting x and y such that

|zσ01 − zσ10| ≥ |zσ0 − zσ1|(log N)−�1 (2.2)

holds for all k= 0, 1, . . . , n− 2, and all σ ∈ {0, 1}k also satisfy the bounds∏
σ∈{0,1}k

|zσ0 − zσ1| ∨ 1≥N(2η)k
for all k= 1, 2, . . . , n− 1, (2.3)

where N = |x− y| is the Euclidean distance between x and y.

With help of Lemma 2.2 we now can estimate the probability of the event En.

Proposition 2.1. Let η ∈ (0, α1/(2d)). Pick δ > 0 so small that α1 − δ − d > 0 and α1 − δ ∈
(2dη, α1); then, there exists a constant c1 > 0 such that, for all x, y ∈Zd with N = |x− y|
satisfying

ηn log N ≥ 2(α1 − δ− d),

P(Ec
n+1 ∩ En)≤ (log N)c12n

N−(α1−δ−2dη)(2η)n
,

P(Ec
2)≤ (log N)c1 N−(α1−δ−2dη).

Proof. We modify the proof of [3, Lemma 4.5] to fit our model.
Let A(n) be the set of all 2n-tuples (zσ ) of sites (or hierarchies) such that (2.2) holds for

all σ ∈ {{0, 1}k : k= 0, 1, . . . , n− 1} and (2.3) is true for k= 1, 2, . . . , n− 1 but not for k= n.
Then

P(Ec
n+1 ∩ En)≤

∑
(zσ )∈A(n)

P(Hn(x, y) with sites (zσ )). (2.4)

Here, the event ‘Hn(x, y) with sites (zσ )’ means that all the edges in this hierarchy with sites
(zσ ) are open as in Definition 2.1(iii).

Now we fix one single hierarchy Hn(x, y) with sites (zσ ) and estimate its probability.
Typically, a hierarchy consists of isolated edges, i.e. edges that do not share a common ver-
tex. However, since we also allow degenerate vertices as in Definition 2.1(v), there might be
adjacent edges in the hierarchy. Nevertheless, we can decompose one hierarchy into several
disjoint connected components, as exemplified in Fig. 2. Condition (v) ensures that each of the
connected components is an open path.
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Example 2.1. Consider the toy example in Fig. 2. This hierarchy H4(x, y) can be divided into
five disjoint paths:

π1 = (z0110, z110, z001, z0001), π2 = (z01, z10),

π3 = (z1001, z1010), π4 = (z101, z110), π5 = (z1101, z1110).

Now assume that the hierarchy Hn(x, y) can be divided into m disjoint open paths
πi, i= 1, 2, . . . , m, with πi = (xi0, xi1, . . . , ximi ) and xij ∈ (zσ ). Then, independence of edge
occupation implies

P(Hn(x, y) with sites (zσ ))= P

( n−1⋂
k=0

⋂
σ∈{0,1}k

{zσ01 ∼ zσ10}
)

= P

( m⋂
i=1

{πi is open}
)
=

m∏
i=1

P(πi is open),

where we rearrange the open edges in the hierarchy in the second step and use the fact that
these open paths are vertex-disjoint and therefore independent in the last step. Further,

P(Hn(x, y) with sites (zσ ))≤
m∏

i=1

mi∏
j=1

Cδ

∣∣ximj − ximj−1

∣∣−α1+δ

=
n−1∏
k=0

∏
σ∈{0,1}k

Cδ

(|zσ01 − zσ10| ∨ 1)α1−δ
,

where we apply Lemma 2.2 first and then bring the edges back in the original order again. In
the last step we add the maximum with 1 to make sure that the denominator is not zero.

Likewise, we denote the ‘gaps’ in the hierarchy by tσ := zσ0 − zσ1, and t∅ := x− y. With
this notation, we rewrite condition (2.2) as

|zσ01 − zσ10| ≥ |tσ |(log N)−�1 (2.5)

and condition (2.3) as ∏
σ∈{0,1}k

|tσ | ∨ 1≥N(2η)k
. (2.6)

Let B(k) be the set of all collections (tσ )σ∈{0,1}k of vertices in Z
d such that (2.6) is true. Then

(2.4) implies

P(Ec
n+1 ∩ En)≤ ∣∣Bc(n)

∣∣ n−1∏
k=0

( ∑
(tσ )∈B(k)

∏
σ∈{0,1}k

Cδ

(
(log N)�1

|tσ | ∨ 1

)α1−δ
)

.

Note that for k= 0, we have |t∅| =N. Hence, the estimation above can be written as

∣∣Bc(n)
∣∣ (Cδ(log N)�1(α1−δ))2n

Nα1−δ

n−1∏
k=1

( ∑
(tσ )∈B(k)

∏
σ∈{0,1}k

Cδ

(|tσ | ∨ 1)α1−δ

)
. (2.7)
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For each k there are at most 2k multipliers in the product over all σ ∈ {0, 1}k (the number
is smaller if degenerate sites exist). Therefore, there are in total

∑n−1
k=0 2k = 2n − 1 and we get

the exponent 2n in the numerator in the first fraction.
In addition, for n= 2 the event Ec

2 means that there exists a hierarchy with sites (zσ ) of
depth 2 such that |z01 − z10| ≥ |z0 − z1|(log N)−�1 =N(log N)−�1 and |z0 − z01||z11 − z1| ≤
N2η. Therefore,

P(Ec
2)≤

∑
(tσ )/∈B(1)

P(z01 ∼ z10)≤ |Bc(1)|Cδ(log N)�1(α1−δ)

Nα1−δ
. (2.8)

In order to estimate (2.7) and (2.8), we need two lemmas from the appendix of [3].
First, for κ ∈N and b > 0, we let �κ (b)= {(ni) ∈Nκ : ni ≥ 1,

∏κ
i=1 ni ≥ bκ

}
, and �c

κ (b) be
its complement in N

κ . Then one has the following estimates.

Lemma 2.3 ([3, Lemma A.1]). For each ε > 0 there exists a constant g1 = g1(ε) <∞ such
that ∑

(ni)∈�κ (b)

κ∏
i=1

1

n1+β
i

≤ (g1b−β log b)κ

is true for all β > 0, all b > 1, and all κ ∈N with

β − κ − 1

κ log b
≥ ε.

Lemma 2.4 ([3, Lemma A.2]). There exists a constant g2 <∞ such that, for each β > 1, each
b≥ e/4, and any κ ∈N,

∑
(ni)∈�c

κ (b)
∏κ

i=1 nβ−1
i ≤ (g2bβ log b)κ .

Let (nσ ) be a collection of positive integers with nσ ≤ |tσ | ∨ 1 < nσ + 1. Note that |{x ∈
Z

d : n≤ |x| ∨ 1 < n+ 1}| ≤ cnd−1 for some positive constant c= c(d) independent of n. Then,
for each nσ there exist at most cnd−1

σ such tσ s. Therefore,

∑
(tσ )∈B(k)

∏
σ∈{0,1}k

Cδ

(|tσ | ∨ 1)α1−δ
≤

∑
(nσ )∈�2k (Nηk )

∏
σ∈{0,1}k

(
cnd−1

σ

Cδ

nα1−δ
σ

)

≤ (Cδcg1)2k(ηk)2k
(log N)2k

Nηk2k(α1−δ−d)
, (2.9)

where we have applied Lemma 2.3 in the last step with β = α1 − δ − d, b=Nηk
, and κ = 2k.

Since η < 1, we obtain the further bound

∑
(tσ )∈B(k)

∏
σ∈{0,1}k

Cδ

(|tσ | ∨ 1)α1−δ
≤ (C1 log N)2k

N(α1−δ−d)(2η)k ,

where we choose C1 := cCδg1. Now it is left to estimate the size of Bc(n), and this can be
done with help of Lemma 2.4 as

∑
(tσ )/∈Bc(n) 1≤ (C2 log N)2n

Nd(2η)n
with β = d, b=Nηn

, and
κ = 2n.
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Now (2.7) can be simplified to

(C2 log N)2n
Nd(2η)n (Cδ(log N)�1(α1−δ))2n

Nα1−δ

n−1∏
i=1

(C1 log N)2k

N(α1−δ−d)(2η)k

≤ (C1C2Cδ(log N)�1(α1−δ)+2)2n
N
−
(

(α1−δ−d)
∑n−1

k=1 (2η)k+α1−δ−d(2η)n
)

≤ (log N)c12n
N−(α1−δ−2dη)(2η)n

,

where the last step uses the bound (α1 − δ − d)
∑n−1

k=1 (2η)k + α1 − δ − d(2η)n ≥ (α1 − δ −
2dη)(2η)n. �

Our further strategy is to show that an open path with distance shorter then poly-logarithm
is impossible. More precisely, we show that the existence of a shorter path is contained in some
event with negligible probability. The event we use is as follows.

Definition 2.3. Let x, y ∈Zd be distinct and n ∈N. We define Fn := Fn(x, y) as the event that,
for every hierarchy of depth n connecting x and y and satisfying (2.2), every collection of
(vertex self-avoiding and) mutually disjoint paths πσ with σ ∈ {0, 1}n−1 such that πσ connects
zσ0 and zσ1 without using any vertex from the hierarchy (except for the endpoints zσ0 and zσ1)
obeys the bound

∑
σ∈{0,1}n−1

|πσ | ≥ 2n. (2.10)

It might be instructive to look at the complement Fc
n : this is the event that there exists such

a hierarchy between x and y satisfying (2.2), but the edges filling the gaps violate (2.10). In the
following proposition we construct such a hierarchy in Fc

n from the shortest path.

Proposition 2.2 ([3, Lemma 4.6].) Let ε ∈ (0, �1). If N = |x− y| is sufficiently large and

n >
�1 − ε

log 2
log log N, (2.11)

then {D(x, y)≤ (log N)�1−ε} ∩Fn =∅.
Proof. The proof of [3, Lemma 4.6] still holds here for the event with modified hierarchy,

because the hierarchy there was constructed from the shortest path in which all the vertices
have degree at most 2. �

Now we start to fill the ‘gaps’ in the hierarchy. More precisely, we relate the events En and
Fn by the following proposition.

Proposition 2.3. Let η ∈ (0, α1/(2d)). For δ > 0 so small that α1 − δ − d > 0 and α1 − δ ∈
(2dη, α1), there exists a constant c2 > 0 such that, for all distinct x, y ∈Zd with N = |x− y|
satisfying ηn log N ≥ 2(α1 − δ− d), P

(Fc
n ∩ En

)≤ (log N)c22n
N−(α1−δ)(2η)n−1

.

The idea of proof is to first fix one hierarchy with the sites (zσ ), and estimate the probability
that the paths that fill the gaps of this hierarchy have a certain length. Then the gap-filling
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paths and the open edges in the hierarchy constitute a path connecting x and y. With help of
Lemma 2.2 we get the upper bound by summing over all possible hierarchies.

Proof. Let A∗(n) be the set of all collections (zσ ), σ ∈ {0, 1}n, satisfying (2.2) for k= 0,

1, . . . , n− 2 and (2.3) for k= 1, 2, . . . , n− 1. Then

P(Fc
n ∩ En)=

∑
(zσ )∈A∗(n)

P(Fc
n ∩Hn on (zσ )). (2.12)

Here, ‘Fc
n ∩Hn on (zσ )’ means that Hn with sites (zσ ) is a hierarchy satisfying Fc

n , as explained
after Definition 2.3.

We estimate the summands on the right-hand side of (2.12) by considering all possible
lengths of πσ . More precisely, let (mσ ) be a tuple of non-negative integers for σ ∈ {0, 1}n−1.
Then

P(Fc
n ∩Hn on (zσ ))=

∑
(mσ )

P(Fc
n ∩Hn on (zσ ) with (|πσ |)= (mσ )). (2.13)

Note that the open path πσ fills the gap between zσ0 and zσ1 in Hn for all σ ∈ {0, 1}n−1. All
such open paths, together with all the open edges (zσ01, zσ10), σ ∈ {0, 1}n−2, constitute a self-
avoiding open path between x and y. Let �σ (mσ ) be the set of all paths of length mσ connecting
zσ0 and zσ1, i.e. �σ (mσ )= {π : π = (x0, x1, . . . , xmσ ) with x0 = zσ0 and xmσ = zσ1

}
. Now we

estimate the probability in (2.13) as

P(Fc
n ∩Hn on (zσ ) with (|πσ |)= (mσ ))

=E
[
P(Fc

n ∩Hn on (zσ ) with (|πσ |)= (mσ )) | (Wx)x∈Zd

]
=E

[
P

( ⋂
σ∈{0,1}n−1

{zσ0
πσ←→ zσ1}

⋂
σ∈{0,1}n−2

{zσ01 ∼ zσ10} | (Wx)x∈Zd

)]
, (2.14)

where {zσ0
πσ←→ zσ1} means πσ connects zσ0 and zσ1.

By the conditional independence of edges, we rewrite (2.14) as

P(Fc
n ∩Hn on (zσ ) with (|πσ |)= (mσ ))

≤
∑

(πσ ):πσ=(xσ0,...,xσmσ )
vertex-disjoint

E

[ ∏
σ∈{0,1}n−1

P(πσ | (Wx)x∈Zd )
n−2∏
k=0

∏
σ ′∈{0,1}k

pzσ ′01zσ ′10

]

=
∑

(πσ ):πσ=(xσ0,...,xσmσ )
vertex-disjoint

E

[ ∏
σ∈{0,1}n−1

mσ∏
i=1

pxσ (i−1),xσ i

n−2∏
k=0

∏
σ ′∈{0,1}k

pzσ ′01zσ ′10

]
, (2.15)

where we sum over all possible paths between zσ0 and zσ1 for all σ ∈ {0, 1}n−1 and pxy is the
connection probability as in (1.1).

In the expectation in (2.15) the probability is divided into two parts: the first double product
involves the edges filling the gaps in the hierarchy, while the second double product is about
the open edges in the hierarchy, as depicted in Fig. 3.
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FIGURE 3. A hierarchy of depth 3 with site (zσ )σ∈{0,1}3 . The gap-filling paths are {πσ } with σ ∈ {0, 1}2.

In this example, |π00| = 1, |π01| = 3, |π10| = 1, |π11| = 2, and
∑ |πσ | = 7 < 23 = 8. We see that the paths

here, together with the edges in the hierarchy, form a path connecting x and y.

Note that all these paths (πσ ) have mutually disjoint vertices. Therefore, for fixed sites (zσ )
and fixed paths (πσ ), we obtain a self-avoiding open path starting from x and ending in y. Now
we use Lemma 2.2 to bound the probability of this path, i.e. the expectation in (2.15), as

E

[ ∏
σ∈{0,1}n−1

mσ∏
i=1

pxσ (i−1),xσ i

n−2∏
k=0

∏
σ ′∈{0,1}k

pzσ ′01zσ ′10

]

≤
∏

σ∈{0,1}n−1

mσ∏
i=1

Cδ

(|xσ (i−1) − xσ i| ∨ 1)α1−δ

n−2∏
k=0

∏
σ ′∈{0,1}k

Cδ

|zσ ′01 − zσ ′10|α1−δ
.

Then, (2.15) becomes

P(Fc
n ∩Hn on (zσ ) with (|πσ |)= (mσ ))

≤
∑
(πσ )

∏
σ∈{0,1}n−1

mσ∏
i=1

Cδ

(|xσ (i−1) − xσ i| ∨ 1)α1−δ

n−2∏
k=0

∏
σ ′∈{0,1}k

Cδ

|zσ ′01 − zσ ′10|α1−δ

=
( ∏

σ∈{0,1}n−1

Qmσ(zσ0, zσ1)

)
n−2∏
k=0

∏
σ ′∈{0,1}k

Cδ

|zσ ′01 − zσ ′10|α1−δ
,

where

Qm(u, v) :=
∑

π=(x0,...,xm)
x0=u, xm=v

m∏
i=1

Cδ

(|xi−1 − xi| ∨ 1)α1−δ
.

Here, the sum runs over self-avoiding paths π of length m, and therefore Qm(u, v) is the upper
bound for the probability that u and w are connected by an open path with length m. Note
that for all u, v ∈Zd with u �= v and α > d, there exits a constant a ∈ (0,∞), independent of
u and v, such that ∑

w∈Zd,w/∈{u,v}

1

|u−w|α
1

|v−w|α ≤
a

|u− v|α . (2.16)

The estimate above can be obtained by splitting the sum into two cases: {w ∈Zd : |u−w| ≤
|v−w|} and {w ∈Zd : |u−w|> |v−w|}. In the first case we have |v−w| ≥ 1/2|u− v|, and
since α > d,

∑
w�=u 1/|u−w|α <∞. A similar argument holds for the second case.
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Then we can bound Qm(u, v) from above by applying (2.16) m times iteratively and obtain

Qm(u, v)≤ (Cδa)m

(|u− v| ∨ 1)α1−δ
. (2.17)

If we now sum over all the possible combinations of (mσ ) with
∑

σ mσ < 2n, we obtain the
upper bound

P(Fc
n ∩Hn on (zσ ))

≤
∑

(mσ ) :
∑

σ mσ <2n

( ∏
σ∈{0,1}n−1

Qmσ(zσ0, zσ1)

)
n−2∏
k=0

∏
σ ′∈{0,1}k

Cδ

|zσ ′01 − zσ ′10|α1−δ

≤ (4aCδ)2n ∏
σ∈{0,1}n−1

1

(|zσ0 − zσ1| ∨ 1)α1−δ

n−2∏
k=0

∏
σ ′∈{0,1}k

Cδ

|zσ ′01 − zσ ′10|α1−δ

≤ (4aCδ)2n
n−1∏
k=0

∏
σ∈{0,1}k

Cδ(log N)(α1−δ)�′

(|zσ0 − zσ1| ∨ 1)α1−δ
.

Here, we first used the estimation for Qm(u, v) in (2.17) and the fact that the number of such
eligible tuples (mσ ) is at most 42n

, and subsequently used the fact that on En the lengths of
open edges in the hierarchy are subject to the constraint (2.5).

We now can estimate the desired probability as

P(Fc
n ∩ En)=

∑
(zσ )∈A∗(n)

(4aCδ)2n
n−1∏
k=0

∏
σ∈{0,1}k

Cδ(log N)(α1−δ)�′

(|zσ0 − zσ1| ∨ 1)α1−δ
(2.18)

≤ (C1(log N)�1(α1−δ))2n

Nα1−δ

n−1∏
k=0

∑
(tσ )∈B(k)

∏
σ∈{0,1}k

Cδ

(|tσ | ∨ 1)α1−δ
.

Recall that B(k) is the set of all collections (tσ ), σ ∈ {0, 1}k, of vertices in Z
d such that (2.6)

is true. Then, by applying Lemma 2.3 again (as in (2.9)), together with α1 − δ + (α1 − δ)∑n−1
k=1 (2η)k ≥ (α1 − δ)(2η)n−1, the result follows. �

Proof of Theorem 1.1, lower bound. By Proposition 2.2 we can bound the probability of the
event {D(x, y)≤ (log N)�1−ε} by the probability of the event Fc

n once Proposition 2.2 holds.
That is, if the depth of the hierarchy n satisfies (2.11), P

(
D(x, y)≤ (log N)�1−ε

)≤ P(Fc
n ).

Now we fix ε ∈ (0, �1 − 1). Since 2−1/�1 = α1/2d by (1.5), we can choose δ > 0 and η

such that 2−1/(�1−ε) < η < (α1 − δ)/2d, so that, in particular,

�1 − ε

log 2
<

1

log 1/η
.

We further fix δ1 ∈ (0, α1 − δ− 2dη). For large N we thus find n ∈N such that

�1 − ε

log 2
log log N < n≤ log log N + log δ1

c1
− log log log N

log 1/η
. (2.19)
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We henceforth assume that N is large enough that, for c1 from Proposition 2.1,

(log N)c12n ≤Nδ1(2η)n
. (2.20)

In this case, the right-hand side of (2.19) is further bounded from above by

log log N − log 2(α1 − δ − d)

log 1/η
.

Therefore, we may apply the assertions of Proposition 2.1, 2.2, and 2.3 (Proposition 2.1 even
for all smaller values of n), and we thus get

P
(
D(x, y)≤ (log N)�1−ε

)≤ P(Fc
n )≤ P(Ec

n)+ P(Fc
n ∩ En)

≤
n∑

k=3

P(Ec
k ∩ Ek−1)+ P(Ec

2)+ P(Fc
n ∩ En).

≤ ε′ + ε′ + ε′ = 3ε′. (2.21)

Using Proposition 2.1 and (2.20), we get, for k≤ n, P(Ec
k+1 ∩ Ek)≤N−(α1−δ−2dη−δ1)(2η)k

, and
Proposition 2.3 yields a similar bound for P(Fc

n ∩ En). Since 2η > 1, we thus get the right-hand
side of (2.21) arbitrarily close to 0 by choosing N sufficiently large.

Translation invariance and the Fortuin–Kasteleyn–Ginibre (FKG) inequality yield P(x, y ∈
C∞)≥ P(x ∈ C∞)2 > 0. Therefore, we have lim|x−y|→∞ P(D(x, y)≤ (log |x− y|)�1−ε | x, y ∈
C∞)= 0, as desired. �

3. Proof of the upper bound

The upper bound in Theorem 1.1(b) and (c) is already established in [10], so we restrict our
attention here to the case τ ∈ (2, 3). Interestingly, for τ > 3 the logarithmic power of the upper
and lower bounds match, and we have thus identified the correct exponent.

Unlike in long-range percolation, edges in scale-free percolation are only conditionally
independent. Intuitively speaking, adjacent edges are positively correlated due to the weight
of their joint vertex (see [21, Exercise 9.45]). Here we state a more general result, which is
implied by the FKG inequality.

Proposition 3.1. Let π = (xi)i=0,...,n be a path in scale-free percolation and k ∈ {1, . . . , n− 1},
and let π1 and π2 be two subpaths of π by cutting π at vertex xk. That is, π1 = (xi)i=0,...,k and
π2 = (xi)i=k,...,n. Then P(π is open)≥ P(π1 is open)P(π2 is open).

From Proposition 3.1 we see that two adjacent edges (or even paths) in scale-free perco-
lation are indeed positively correlated. The next result tells us that in some cases the positive
correlation is significant.

Proposition 3.2. (Probability of adjacent edges.) In scale-free percolation with τ ∈ (2, 3) there
exist x0 > 0 and c2 > c1 > 0 such that, for all x, y, z ∈Zd with |x− y| ≥ |y− z| ≥ x0, we have
c1|x− y|−α|y− z|−α(τ−2) ≤ P(x∼ y∼ z)≤ c2|x− y|−α|y− z|−α(τ−2).

Proof. We start by calculating the probability of this joint occurrence as

P(x∼ y∼ z)=E

[(
1− exp

(
− λWxWy

|x− y|α
))(

1− exp

(
− λWyWz

|y− z|α
))]

.
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For t ∈ (0,∞), we have 1
2 (t ∧ 1)≤ 1− e−t ≤ t ∧ 1, so that

P(x∼ y∼ z)≤E

[(
λWxWy

|x− y|α ∧ 1

)(
λWyWz

|y− z|α ∧ 1

)]
≤ 4 P(x∼ y∼ z), (3.1)

and it is sufficient to compute the expectation in the middle.
First, we show that the two single weights Wx and Wz do not play a role in the result. On

the one hand, we know Wx ≥ 1, therefore

E

[(
λWxWy

|x− y|α ∧ 1

)(
λWyWz

|y− z|α ∧ 1

)]
≥E

[(
λWy

|x− y|α ∧ 1

)(
λWy

|y− z|α ∧ 1

)]
.

On the other hand, st ∧ 1≤ s(t ∧ 1) (s≥ 1 and t > 0) implies

E

[(
λWxWy

|x− y|α ∧ 1

)(
λWyWz

|y− z|α ∧ 1

)]
≤E

[
Wx

(
λWy

|x− y|α ∧ 1

)(
λWy

|y− z|α ∧ 1

)
Wz

]

=μ2
E

[(
λWy

|x− y|α ∧ 1

)(
λWy

|y− z|α ∧ 1

)]
,

where μ := E[Wx] <∞ since τ > 2. Together with (3.1), we thus obtain

1

μ2
P(x∼ y∼ z)≤E

[(
λWy

|x− y|α ∧ 1

)(
λWy

|y− z|α ∧ 1

)]
≤ 4P(x∼ y∼ z).

Thus it suffices to compute the expectation

E

[(
λWy

|x− y|α ∧ 1

)(
λWy

|y− z|α ∧ 1

)]

=
∫
R

(
λu

|x− y|α ∧ 1

)(
λu

|y− z|α ∧ 1

)
dWy(u)

=
∫ ∞

1

(
λu

|x− y|α ∧ 1

)(
λu

|y− z|α ∧ 1

)
(τ − 1)u−τ du.

We now split the domain of integration into three intervals: [1, |y− z|α/λ], (|y− z|α/λ, |x−
y|α/λ], and (|x− y|α/λ,∞). After some calculation, we obtain

E

[(
λWy

|x− y|α ∧ 1

)(
λWy

|y− z|α ∧ 1

)]

= τ − 1

(3− τ )(τ − 2)

λ

|x− y|α
λτ−2

|y− z|α(τ−2)
− τ − 1

3− τ

λ

|x− y|α
λ

|y− z|α −
λτ−1

τ − 2

1

|x− y|α(τ−1)
.

We may therefore choose

c2 := τ − 1

(3− τ )(τ − 2)
μ2λτ−1.

For τ ∈ (2, 3), we find that the first term dominates the sum when |y− z|→∞ (the other terms
are negative, but the total sum is trivially nonnegative). Hence, there exist positive constant x0
and c1 such that P(x∼ y∼ z)≥ c1|x− y|−α|y− z|−α(τ−2) for |y− z| ≥ x0. �
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In fact, the weights of two end points do not contribute to the significant positive correlation
in Proposition 3.2, as we formulate in the next corollary.

Corollary 3.1. In scale-free percolation with τ ∈ (2, 3), there exist constants ci = ci(a, b) > 0
for i= 1, 2 and x0 = x0(a, b) > 0 such that, for all x, y, z ∈Zd with |x− y| ≥ |y− z| ≥ x0,

c1|x− y|−α|y− z|−α(τ−2) ≤ P(x∼ y∼ z |Wx = a, Wz = b)≤ c2|x− y|−α|y− z|−α(τ−2).

In particular, for constants M > m > 0, there exist Ci =Ci(a, b, m, M) > 0, i= 1, 2, and x′0 =
x′0(a, b) > 0 such that, if |x− y| and |y− z| are comparable in the sense m|x− y| ≤ |y− z| ≤
M|x− y|, then

C1|x− y|−α(τ−1)/2|y− z|−α(τ−1)/2

≤ P(x∼ y∼ z |Wx = a, Wz = b)≤C2|x− y|−α(τ−1)/2|y− z|−α(τ−1)/2

for all |x− y| ≥ x′0.

In light of Proposition 3.1 and 3.2 and Corollary 3.1, we now aim to construct a path with
edges of comparable length. Instead of connecting two vertices directly, we use an intermediate
vertex as a ‘bridge’ to connect the two vertices. For x, y ∈Zd, A⊂Z

d, we write {x∼ A∼ y} =⋃
z∈A{x∼ z∼ y} for the event that x and y are connected via an ‘intermediate vertex’ in A.

Proposition 3.3. For β ∈ (0, 1), there exist constants N0, K > 0 such that, for all x, y ∈Zd with
N := |x− y| ≥N0, it is true that

P (x∼ A∼ y)≥ K

N2α1−dβ
,

where A := ( 1
2 (x+ y)+ [−Nβ, Nβ ]d

)∩Zd is the cube with side length Nβ centred at the
middle point of the line segment between x and y.

Proof. Since β < 1, there exist constants l= l(β, d) and L= L(β, d) with L > l > 0 and
N1 > 0 such that lN ≤ |x− z| ≤ LN and lN ≤ |y− z| ≤ LN for all z ∈ A and all N ≥N1.
Therefore, |x− z| and |y− z| are comparable in the sense of Corollary 3.1. Thus, we
have P(x∼ A∼ y)≥ P(x∼ A∼ y |Wx = 1, Wy = 1)= 1−∏z∈A (1− P(x∼ z∼ y |Wx =Wy =
1)), where we used the conditional independence of edges and the independence of vertex
weights. We estimate this further using Corollary 3.1 and get that there exist N2 > 0 and c1 > 0
such that, for all N ≥N2,

P(x∼ z∼ y |Wx =Wy = 1)≥ c1
1

|x− z|α1

1

|z− y|α1
≥ c1

L2α1

1

N2α1
.

Note that the right-hand side of this inequality is independent of z, which allows us to
estimate

P(x∼ A∼ y)≥ 1−
(

1− c1

L2α1 N2α1

)Ndβ

.

Now we use the elementary bound 1− t≤ e−t ≤ 1− 1
2 t (0 < t < 1) to conclude that

(
1− c1

L2α1 N2α1

)Ndβ

≤ e−CNdβ−2α1 /L2α1 ≤ 1− c1

2N2α1−dβL2α1
.
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Since dβ − 2α1 < 0, there exists N3 > 0 such that c1Ndβ−2α1/L2α1 < 1 for all N ≥N3, and
consequently also c1N−2α1 L−2α1 < 1. Finally, we have

P(x∼ A∼ y)≥ c1

2N2α1−dβL2α1

for all N ≥N0 := max{N1, N2, N3}, and choose

K := c1

2L2α1

as desired. �

With these preparations we finally prove the upper bound.

Proof of Theorem 1.1, upper bound. Since the adjacent paths in scale-free percolation are
positively correlated (by Proposition 3.1) and the probability of the compound edge ‘x∼ A∼ y’
decays algebraically with exponent 2α1 − dβ (by Proposition 3.3), we have that the probabil-
ity of a path being open in SFP dominates that in LRP with edge probability decaying with
exponent 2α1 − dβ in (1.7). Therefore, the graph distance in SFP in this case is no more than
twice the distance in long-range percolation with connection probability as in (1.7) but with
α replaced by 2α1 − dβ. Since we can choose β arbitrarily close to 1, the result follows from
Theorem 1.2. �

Remark 3.1. In this paper we made a specific choice for the connection probability in (1.1).
However, the proofs for both lower and upper bounds in Sections 2 and 3 only require asymp-
totics of the connection probability to estimate the path, for example in Lemma 2.1 and
Proposition 3.2. Therefore, our results generalise to the scale-free percolation with connection
probability

px,y =�

(
λWxWy

|x− y|α ∧ 1

)

provided that a unique infinite cluster exists.
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