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THE TRANSLATIONAL HULL OF A SEMILATTICE OF
WEAKLY REDUCTIVE SEMIGROUPS

MARIO PETRICH

1. Introduction and summary. The translational hull is of central im-
portance in the construction of ideal extensions and the study of densely
embedded ideals particularly for weakly reductive semigroups (see [4, Chapter
[11]). The translational hull of semigroups belonging to a few special classes is
known in an explicit form, and for some other classes of semigroups, certain
properties of their translational hulls have been established (see [4, Chapter V]).
We have generalized in [5] the concept of an inverse limit of groups in order to
give a construction of the translational hull of a semigroup which is a semi-
lattice of groups. The purpose of this paper is further to generalize the con-
struction in [5] in order to construct the translational hull of any semilattice
of weakly reductive semigroups. Based on this construction, we are able to
consider a variety of special cases providing extra information peculiar to these
cases.

We list in §2 most of the needed definitions and notation; those not explicitly
stated can be found in [4]. In §3, we present the main construction and estab-
lish the needed characterization of the translational hull of a semilattice of
weakly reductive semigroups. The special case of a strong semilattice of
weakly reductive semigroups is treated in §4. A discussion of the further
special case of a sturdy semilattice of weakly reductive semigroups is the
content of §5. The translational hull of a semigroup which is a subdirect product
of a semilattice and a cancellative semigroup is constructed in §6. Finally, in
§7, we provide certain information about the translational hull of a spined
product of semigroups satisfying certain restrictions. We deduce a number of
corollaries concerning semilattices of cancellative and some other special
kinds of semigroups.

2. Preliminaries. Let .S be any semigroup and let x and v stand for arbitrary
elements of S. A function X (resp. p), written on the left (resp. right) mapping
S into itself is a left (resp. right) translation if N(xy) = (\x)y (resp. (xy)p =
x(yp)); in addition, the pair (\, p) is a bitranslation if also x(\y) = (xp)y. The
set of all bitranslations of S under the operation (A, p) (N, p’) = (AN, pp’),
where (A\N)x = A(Nx) and x(pp’) = (xp)p’, is a semigroup, the translational
hull of S, to be denoted by ©(S). We will denote the pair (), p) by a single letter
w and consider it as a bioperator on S with wx = A\x, xw = xp. For any s € S,
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the function \; (resp. p;) defined by N = sx (resp. xp, = xs) is the inner left
(resp. right) tramslation induced by s. We write my = (\,, p,) and note that
I(S) = {xys € S} is an ideal of Q(S), called the tnner part of Q(S). The
mapping = : § — w; is the canonical homomorphism of .S onto II(S), and is
one-to-one if and only if S is weakly reductive.

If I is an ideal of .S, then .S is an (ideal) extension of I. If also the equality
relation on S is the only congruence on .S whose restriction to [ is the equality
relation on I, then Sis a dense extension of I;if Sis (under inclusion) a maximal
dense extension of I, then I is a densely embedded ideal of S. For a subsemigroup
A of S, the idealizer of 4 in S is the largest subsemigroup of S having 4 as an
ideal, and is given by

i15(4) = {s € S|sa, as € A for all a € A}.

An embedding x of a semigroup 7" into .S is dense if 1x is a densely embedded
ideal of its idealizer in .S.

An ideal I of S'is a retract ideal, and S is a retract extension of I, if there exists
a homomorphism of S onto I which leaves the elements of I fixed. If ¥V is a
semilattice, its ideals form a semigroup £y under intersection; its retract
ideals # y form a subsemigroup of #y. The principal ideal generated by an
element « of a semilattice ¥ will be denoted by (). The elements I of # y are
characterized by the property that I M («) is a principal ideal for every
a €Y.

Let ¢ be a semilattice congruence on S (i.e., S/¢ is a semilattice); then S
is a semilattice YV of semigroups S, where ¥V = S/o and S, are the o-classes.
Such an S can be constructed from the semigroups S, if these are weakly
reductive as follows.

Let {S.}acy be a family of pairwise disjoint weakly reductive semigroups
indexed by a semilattice Y. For each pair o = 8, let a function Y, 5 : S, —
Q(Ss) be given, Y45 : @ — a5, and assume that:

(i) Y.« is the canonical isomorphism S, — II(S,);
(i) (a¥a,ap) (D¥s.a8) € T(Sap) for all @ € Sa, b € Sp;
(iii) if & > Bv, then for all @ € S, b € Sg,

(1) [(0¥a,a) (0¥8.08) Ve as Vapy = (a¥ar) (0¥s.)-

On S = Uaey S« define an operation * by

(2) axb = [(a‘//a.aﬂ) (b'l/B,aﬂ)]‘l/aﬂ,aﬁ’_l (0, € Say b € SB)

Then S is a semilattice Y of semigroups S,, in notation S = (V;S,, Vas).
Conversely, every semilattice ¥ of semigroups S, can be so constructed.

A special case of particular interest is obtained by taking ¥ and S, as above
and a system of homomorphisms ¢, : S, —Ss for all pairs « = 8, with
¢« the identity mapping on S,, satisfying the transitivity condition: if
a> B> v, then @op5¢s+y = ¢ay (functions written on the right), with an
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operation % on S defined by
axb = (0@a,ap) (bpsas) (@ € Say b € Sp).

Then S is a strong semilattice Y of semigroups S,, in notation S = [V; S, ¢a.sl-
If all ¢, g are one-to-one, S is a sturdy semilattice Y of semigroups S, in notation
S = (V; S, ¢ap). We will be mainly interested in semilattices of semigroups
belonging to a class % rather than in a special semilattice ¥ of fixed semi-
groups Se.

As usual, E s denotes the (partially ordered) set of idempotents of S.

For undefined concepts as well as for a full discussion of the notions listed
above, see [4]. Further information concerning the translational hull is sum-
marized in [1].

3. The main construction theorem. The result in question is preceded by
some auxiliary statements, notation and constructions. These are of basic
importance for a large part of the paper.

LEMMA 1. Let S be a semigroup, o be a congruence on S such that S/o is reductive
and w € Q(S). If a o b, then wa ¢ wb and aw o bw.

Proof. Assume that a o b. Then for any ¢ € .S, we have (cw)a ¢ (cw)b and
thus also ¢(wa) o c(wb). Let x — & be the canonical homomorphism of .S onto
S/o. Then ¢ wa = ¢ wb for all ¢ € S/q. Since S/s is reductive, it follows that
@@ = wb. Consequently wa o wb; the relation aw o bw is proved similarly.

LEmMmA 2. Let S = (V; S, Yap). We define a mapping € by
Elw— @ (w € Q(S))
where & is defined on Y by
oa =aw =8 ifa €S, wa € Sp.
Then € is a homomorphism of Q(S) into Q(Y). Moreover, if wa € S, then aw € Sg.
Proof. By Lemma 1, @ is well-defined. If ¢ € S,, b € Sg, then
w(ad) € Sgep,  (wa)b € SzuSs S S@as

and thus @(aB) = (@a)B. Hence & € Q(Y) since YV is a semilattice. If w, § €
Q(S), a € S,, then

(wd)a € S35a, w(fa) € wSta & SEna

which proves that wd = wf. Consequently e is a homomorphism.

In order to prove the last statement, let @ € S, wa € Sg, aw € S,. Then
wa? € Sg by Lemma 1, so that (wa)a = wa? implies B = B. Hence 8 =< « and
similarly ¥ =< a. Further, (aw)e = a(wa) implies ya = B which finally implies
v =B since B, v = a.
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Recall from [4, V. 6.1] that for any semilattice ¥, the mapping
w— I, = wY

is an isomorphism of (Y) onto %y ; for more information on semilattices see
[2]. Returning to the situation in Lemma 2, if we let

I ={a € VSN S, = ¢}, Iz = aY,
we see from Lemma 2 that I, = I3 and
LemMmA 3. The mapping
w— I,
is @ homomorphism of Q(S) into R y.

Let S = (V;S,, ¥u,s) where each S, is weakly reductive. We will consistently
use the following notation.

F(Y; S tap) = U ] 2(Sa)

IE.FY a€ I
with multiplication
(@a)aer * (Ou)acs = (Waba)acrn s-

We will usually write # instead of # (V; Sa, Yas). It is easy to see that Z is
a semigroup, in fact,

F = [jy; Q, '//1,1]
where Q; = I, Q(S,) for any I € Sy and
V7,7t (Wa)aer = (Wa)ae s I, J € jy) I27).

Next let Z = B (Y; Sa, ¥ap) be the set of all (wa)aer in F satisfying:
(C1) I € Ry, write (@) NI = (@),
(C2) for every a € S, there exist a’, a’’ € S, such that
a'Yzp = wpg(adas), a"Vap = (Was)ws B = a).

Finally, let € = % (Y; Sa, ¥a,s) be the set of all (we)egy in ¥ satisfying:
(C3) there exists ¢ € S, such that

Wo = WYy ,a (0‘ = 'Y)-

Both & and % inherit the multiplication from % . It will follow from the
theorem below that they are both semigroups. We will adhere to this notation
as well as to @, I,, I introduced above.

THEOREM 1. Let S = (Y Say Ya,s), Where each S, is weakly reductive. The
mapping x defined by

X0 (wlsa)ael (w € Q(S))
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is an isomorphism of Q(S) into F satisfying
n(S)x = ¢, QUS)x = Z = is (7).

Proof. Let w € Q(S). Then & € Q(Y) by Lemma 2 and hence & leaves every
element of Iy fixed. It follows from Lemma 2 that v maps S, into itself for
every a € I, = I;. Consequently w|s, € 2(S,) for all « € I,. Hence x maps
Q(S) into & .

Let w, 8 € Q(S). Using Lemma 3, we deduce

(wf)x = ((W0)|Su)ael¢uo = ((we)lsa)ﬂawmo
= (@lsy)acr, * Olsg)acry = (@x)(6x),
that is, x is a homomorphism.

Letw € ©(S) and o € V. Then @o = @ and oo € I, so that (ea) & (a) N
I,  Let 8 € (@) M 1,. Then B =« and B € I, which implies that &8 = 8.
Consequently

(Ga)B = @(aB) = @(Ba) = (aB)a = o =B

which shows that 8 £ &a, and thus (a¢) N I, & (@a). Hence (@) N I, = (oa)
proving that I, € #y. This establishes condition (C1) above. We write
(@) VI, = (@) and will prove next condition (C2). Let a € S,, ¢’ = wa,
a" = aw so that @/, @’ € Sz. Writing wg = w|s, for any g € I, we obtain for

any b € S, 8 £ a,
(@V¥z5) b =a'b = (0a)b = w(ab) = ws(avas)d
b(a'yzp) = ba' = b(wa) = (bw)a = bws(aep)
which proves that ¢’y s = wg(ayea ). This establishes the first formula in (C2);
the second formula is proved similarly. Therefore x maps 2(S) into #.
Now let w, 8 € Q(S) and suppose that wx = 6x. Then I, = Iy and w|s, =
8|s, for all @ € I,. For 8 = ain (C2), we obtain
(walYzz = wa(@Wez) = Oz(tWaz) = (Ba)¥az

which by weak reductivity of Sz yields wa = 6a. One shows similarly that
aw = af. Consequently w = 6 and hence x is one-to-one.

Let (wa)acr € Z. Using the notation introduced in conditions (C1) and
(C2), we let

!

wae =a, aw=ad" (a € 9).

We will now prove that w € Q(S) and that wx = (wa)aes- Let @ € Sy, b € Ss.
Using (1), (2) of §2 and (C2), we obtain

(ab)'¥apas = Wa,asl(a0)Vap a5] = wap(aVa z5) (b¥s,35)
= [wzs(a¥a,a8)] (W¥s.38) = (a'Vazs) W¥sa5) = (@'0)Vapas

which by weak reductivity in Sz yields w(ad) = (wa)b. One proves similarly
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that (ab)w = a(bw). Further,

(@b Wasas = (Wazs) (0'¥538) = (aaz8)[was (O¥s.35)]
= [(t¥uz5)was) 0¥s38) = (¢"¥zz8) (Wsas) = (@"0)¥as a5

and thus a(wb) = (aw)b. Consequently w € Q(S). It is clear that I = I,. For
a € Iand a € S,, we have

a,‘l/a,a = wa(a‘pa,a) = (waa’)‘l/a,a

so that wa = w,a. One shows similarly that ¢w = aw,. Hence w|s, = w, which
implies that wx = (wa)acs. Therefore x maps Q(S) onto Z.
Let ¢ € S,, (Wa)axy = mex. Then for any a € S,, @ = v, we have

We@ = ca = (CYy q4)a, awe = a¢ = a(CYy.a)

and thus w, = ¢, .. Hence (C3) holds and thus =.x € ¥. Conversely, if
we = Cy o for some ¢ € Sy and all @ £ v, then

TeX = (Cll/'r,a)agv = (wa)aé'y-

Consequently x maps II(S) onto % .

It remains to show that & = iz (%). Since I(S) is an ideal of Q(S), we
have that % is an ideal of # because of the isomorphism x. Hence Z C i (%).
In order to prove the opposite inclusion, we let (wa)acr € 15 (%). By virtue
of the isomorphism ¥, for every ¢ € .S, there exists ¢’ € S5 such that

(wa)aél : (Clp“r,a)aé’v = (C,Ip?,u)aé?'

Consequently I M (y) = (7) and wa(c¥y,a) = ¢'¥7,4 for all a = 5. It follows

that (C1) and the first formula in (C2) are satisfied; the second formula in
(C2) is proved similarly. Hence (wa)ac;r € # which proves the inclusion

i(%) C .
COROLLARY 1. Let S be as in Theorem 1. Then the function ¢ defined on S by
§1a— (Waplpsa 1f @ € Sa
is a dense embedding of S into ¥ .

Proof. It follows easily from the proof of Theorem 1 that ¢ is the composition
of the canonical isomorphism ¢ — m, and x. Recall from [4, I11.5.9] that II (S)
is a densely embedded ideal of @ (S). Theorem 1 implies that % is a densely
embedded ideal of & because of the isomorphism x. Finally, by Theorem 1
we conclude that & = iz (S¢), and therefore { is a dense embedding.

Recall that a semigroup S is separative if for any x, y € S, xy = x?, yx = 2
implies x = y and xy = y?%, yx = x? implies x = y.

COROLLARY 2. Every (commutative) separative semigroup can be densely
embedded into a strong semilattice of (commutative) cancellative monoids.
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Proof. Let S be a (commutative) separative semigroup. By [4, 11.6.4],
S = (Y;S,,¥a5) where each S, is a (commutative) cancellative semigroup. By
Corollary 1, S can be densely embedded into % (V; S, ¥as); the latter is
isomorphic to [£y; Q;, ¥;, ;] as noted before Theorem 1. Since S, is (commu-
tative) cancellative, so is Q(S,) by [4, III.5.9, 5.14, 5.16] and hence also
Q = HaEIQ(Sa)-

In view of [4, 11.6.4], Corollary 2 implies that if S is (commutative) separa-
tive, so is ©(S). This can be proved directly using the definition of a separative
semigroup. It is easy to see that if 7" is a semilattice of cancellative monoids,
then E7 is a subsemigroup of 7', and thus the semilattice composition is strong.
Hence “‘strong” in Corollary 2 is automatic. Corollary 1 can be applied to any
semilattice of monoids having a property preserved by direct products to
yield a result similar to Corollary 2.

4. Strong compositions. If the composition in Theorem 1 is strong, we can
make much more precise statements about Q(S) as follows.

THEOREM 2. Let S = [V; Suy ¢as), Where each S, 1s weakly reductive. Then
the following statements hold.
(i) Z consists of all (wa)acr 1n F satisfying (C1l) and
(C2') for every a € Sy, = B, € 1,
(Wa) ap = w5(aPag), (AWa)@ap = (Aap)ws.

(i) B =Ry, & N Q, &, ;] where ;5 = Y1 slsn0;
(111) Cg = {(’H‘aa)aéy Egzv!dﬂgog,a = Qq ’Lfb E Sﬂ, o __<. ;8 é ’Y}.

Proof. The hypothesis that the composition is strong implies
Was = (@pas)¥s.6 (@ € Saya ZB).
(i) Assume first that (C1) and (C2) hold. For a € S,, we obtain
dYaz = wi(Wez) = wal(@paz)¥azl = lwz(avez) ¥z
which implies ¢’ = wz(a¢sz). One shows similarly that ¢’ = (a¢.z)wz. Next
leta € Sa,a = B,a € 1. Then
[(wat)@aslibs s = (watt)Vap = ws(a¥as) = [ws(apas)l¥se

and thus (we@)¢as = ws(@eas). The second formula in (C2’) is proved analo-
gously.
Now assume that (Cl) and (C2’) hold. For a € S,, let ¢/ = wz(a¢a7),
a’ = (apaz)wz. If B = &, we obtain
a'Yzp = (@'ezp)¥s.s = {[wz(@pez)]easl¥ss = [(0at)@az0z sl¥s,s
= [(wa@)@al¥s.s = [ws(agas)]¥ss = wsl(apap)¥s.8] = wp(aa,s)

giving the first formula in (C2). The second formula in (C2) is proved similarly.
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(ii) We note first that for any I € Xy, Z M Q; contains (wa)ae; Wwith
we = (15, ts,), the identity bitranslation. Consequently &% M Q; # ¢. For
L JERy, I DT, (Wa)aesr € Z M Q, condition (C2') for (wa)acs is the
restriction of condition (C2') for (wa)ac;. Consequently (wi)acsr € Z N R,
and &; ; maps & N Q; into & N Q,. The assertion now follows from the
multiplication in % .

(iii) The remark at the beginning of the proof implies that

¢ = {((C‘P%a)'pu,a)aév for some ¢ € Sy v € Y}

It is easy to see that this set coincides with the set in item (iii).
Condition (C2') can be schematically represented as the commutativity of
the following diagram:

S, 22, S,

Pa,p l l Pa,B

S22, S

CoRrOLLARY 1. If S is a sirong semilattice of (commutative) cancellative semsi-
groups, so is Q(S).

In [5] we have modified the notion of an inverse limit of groups to describe
the translational hull of a semilattice of groups. We now offer the following
variant of this concept.

For a given system [Y; S,, ¢a 5], we let

Inv limg{Stacy = { @a)acs|l] € Z v, ta € Su; CGapas = agif a > B}

with multiplication

(aa)aEI (ba)aEJ = ((laba)aelﬂ.l-

COROLLARY 2. Let S = (V; Su, Yas), where each S, has an identity e, and the
set E = {eda € Y} is a subsemigroup of S. Then Q(S) =2 Inv limag{Sa}acy.

Proof. Since each S, has an identity, for any a > 8, the semigroup S, \U Sg
is an extension of Sz determined by the homomorphism ¢.5: a — aes = ega
by [4, I111.4.5]. The hypothesis that E is a subsemigroup easily implies that
Ca g8y = Qa,y if @ > B > v. Consequently the composition is strong.

Let (wa)acr € Z. Since S, has an identity, we must have Q(S,) = II(S.)
by [4, V.1.4]. Hence w, = @afu,o for some a, € S,a € I. If nowa € I, a > 8,
we obtain by (C2'),

Gatap = [(CaVa,a)lalvas = (as¥s.8) (Capa,s) = ages = ag,

which shows that (@s)ecr € Inv limg{Ss}acy. Conversely, if (@a)acr € Invlimg-
{Sa}acy, then it is clear that (Gelue)ecr € L.
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For a given system [Y; S,, ¢. 4], We can also define
inv im{Su}acy = {(ta) € Tacy Sal@apas = agif & > B}
with multiplication inhereted from the direct product. It is easy to see that
Inv limg!{Saacy = [y, inv im{Sa}acr, @1,
where
&1,7 ¢ (Ga)aer = (Qa)acs (I, J € Ry, I 2T).

Most of the results in [5, §3] can be obtained by specializing some of the
statements of this section to a semigroup which is a semilattice of groups.
5. Sturdy compositions. In this section we fix a sturdy composition

S =(Y; S, ¢ap)
of weakly reductive semigroups S,.
LeEmMA 4. The functions ®;, ; defined in Theorem 2 are one-to-one.
Proof. Let (wa)acry (Bu)acs € B, 12T, 1, J € Xy and assume that
(Wa)acr®r,r = (Ou)acr®r, .-
Then w, = O, foralla € J. Leta € S,, 0 =2 8, € I,8 € J. Then
(watt)¢a,s = w(apas) = 05(a¢us) = (6a0)¢ap,

which by hypothesis on ¢, implies w,a = 6,a. One shows analogously that
awe = aby, so that w, = 6,. Consequently (wa)acr = (Oa)acr-

On any sturdy composition 7" = (Z; T,, {« ) define a relation ¢ by
aobif afaes = 05pas (@ € Say b € .Sp).

It is proved in [4, I11.7.11] that ¢ is a congruence. We will use the notation
T = T/o. Caution: ¢ depends on the way 7" is decomposed into a semilattice of
subsemigroups. The class of ¢ containing an element ¢ € 7" will be denoted by
[a] in any semigroup. We now let

B = Ry; BN, Or,5)

so that, by Theorem 2 and Lemma 4, we have & =~ B. Let S =.5/¢ and
B = B/os where both ¢’s are defined relative to the particular semilattice
decompositions expressed by the above notation. From Lemma 4 and [4,
I11.7.11], we immediately obtain

COROLLARY. The mapping

{: (wa)HEI - (I! [(@a)aer]) ((wa)aEI € g)

is an isomorphism of B onto a subdirect product of Ry and B.
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THEOREM 3. On B define a mapping 1 by

n: [(wa)aEI] —w

where for a € So, (@) NI = (@),

wla] = [wz(agaz)],  [alo = [(¢¢az)wz]-
Then y is an embedding of B into Q(.S).

Proof. Let (wa)acr € Z and @ = [(wa)acsln. In order to show that o is
well-defined, we let ¢ € S,, b € S, [a] = [b], (y) I = (7) for all v € V.
Then agaos = bes s and thus

(wz(@paz))¢aas = wap(A¢aara as) = was(A¢aas)
= 035(0¢a,ap0uz8) = was(005,08¢a8,3)
= wap(besas) = wap(bessesas) = (wp(besp))¢sas
so that w[a] = w[b]. A similar argument shows that also [¢]w = [b]w.
We show next that w € Q(S). With the same notation, we obtain

(wla])[0] = [wz(agaz)][0] = [(wz(agaz))ez a5(besa5)]
= [(was(agaa5)) (besan)] = [wap((a¢az5) (besa5))]
= (w5 (((0Qa,ap) (008,8) ) ap,z5)] = [waz((ad)@as z5)]

w([ad]) = w([a](b]),

I

and similarly

[a]([b]w) = ([a][0])w.
Further,
([a]w)[0] = [(a¢az)wz]lb] = [((0¢a,z)wz)¢a a8 (00 a5)]
= [((a¢az8)was) (bes,zp)] = [(a¢a,z8) (wza(besas))] = [a](w[D]).

Consequently w € Q(S).
Let (wa)ae[, (ea)aEJ E egg,. FOI" any o 6 Y, let

(@) NI = (&), () VT = (&), o* = a.
Then

@) =@NI={()NI)NI= ()N TNJ),
and thus, for any a € S,, we have

[(@a)aer]n (Bu)ac sInla] = [(wa)acrln[0a(a¢a,a)]
= [wa* ( (03 (acpa ,'&) ) Pu ,a*] = [wa*ea* ((qua ,a*)]

= [(waba)acrn[a] = ([(wa)aEI][(oa)ae.l])"l[a]-

The formula with [a] on the left is proved analogously. Hence 5 is a homo-
morphism.
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With the same notation, assume that

[(@a)aer]n = [(Ba)acs]n.

Then for any ¢ € S,, « € IMNJ, we have [w,a] = [f.c] which evidently
implies w,a = 6,a; analogously aw, = af,. Consequently [(wa)acr] = [(Ba)acs]
which proves that 5 is one-to-one.

COROLLARY. Q(S) can be embedded into Q(Y) X Q(.S).

Proof. By Theorem 1, Q(S) =~ % ; by [4, V.6.1], Q(V) = Ay. It remains to
apply Theorem 3 and the corollary preceding it.

This corollary establishes a connection between the translational hull of S
and the translational hulls of two of its homomorphic images. For example,
if each S, is (commutative) cancellative, then by [4, I11.7.11], S is also, and
the corollary implies that if S is a subdirect product of a semilattice and a
(commutative) cancellative semigroup, then so is Q(S), for the corresponding
statement holds both for semilattices and (commutative) cancellative semi-
groups by [4, I11.5.14, 5.17]. In the next section, we will prove this statement
directly and obtain some additional information.

6. Subdirect product of a semilattice and a cancellative semigroup.
For these semigroups we establish here precise statements concerning their
translational hulls.

THEOREM 4. Let S be a subdirect product of a semilattice Y and a cancellative
semigroup C. For any w € Q(S), there exist unique o' € Q(Y) and "’ € Q(C)
such that

1) ol a) = (We,w"a), (o a)o = (a' aw’)  ((ea) €235).
The mapping

e:w— (o, &) (w € Q(S))
is an isomorphism of Q(S) onto T acyyx ey (IL(S)e).

Proof. We may suppose that .S is a subsemigroup of ¥ X C. Let w € Q(S)
and define bioperators ¢ and 7 on .S by the following formulae

w(a, a) = (o(a, a), 7(a, a)),
(o, a)o = ((a, @), (@, a)T).
For any (e, a), (8, b) € S, using the properties of w, we easily derive
[o(e, a)]8 = o(aB, ab)  [7(a, a)]b = 7(aB, ab)
al(B, b)a] = (aB, ab)e  a[(B, b)7] = (aB, ab)r
[(@, a)o]8 = a[c(8,0)]  [(a, a)r]b = a[r(8, b)].
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The relation 5 defined on S by
(@,a)n (B,0) ifa=2p

is evidently a semilattice congruence. Now let (e, @), (o, b) € S. Then (a, a)y-
(e, b) which by Lemma 1 implies w (e, a) 1 o (e, b). This means that o (e, a) =
o(a, b). Hence we may write ca = o(a, a) and consider ¢ defined on Y. The
same type of argument is valid for (@, ¢)w, and hence writing as = (a, a), we
have a bioperator mapping Y into itself. The properties of o stated above
imply at once that ¢ € Q(Y).

Next let (¢, a), (8, @) € S. Then

(o, a)a = 7(aB, a?) = 7(Ba, a®) = 7(8, a)a

which by cancellation in C implies 7(a, a¢) = 7(8, ¢). Hence we may write
7a = 7(a, a). The same type of argument is valid for (a, a)7 and we may write
ar = (a, a)r. Consequently 7 is a bioperator mapping C into itself. The
properties of 7 stated above yield 7 € Q(C).

The uniqueness of ¢ and 7 follows immediately from the hypothesis that .S
is a subdirect product of ¥ and C. Letting o = ¢ and o'’ = 7, we obtain
formulae (1). It is very easy to see that e is an isomorphism of Q(S) into
Q(Y) X Q(C). Since II(S) is an ideal of Q(S), it follows that II(S)e is an ideal
of Q(S)e and thus

(2) 2(S)e S iommxaw (II(S)e).
It is easy to see that
(3) € T(a,a) —_ (7r¢xy 7ra) ((av a’) E S)'

In order to establish the opposite inclusion in (2), we let (o, 7) € Zo(yxac (II-
(S)e). Let (a, a) € S. In view of (3), there exist unique (a, a)’, (a, @) € S

such that
@) (0, 7)(T@we) = T@are (T@w€) (0, 7) = T@,are
Now writing (a, @)’ = (\(a, @), p(a, a)), by (3) and the first formula in (4),
we have
(Uy T) (7('04, 77(1) = (7r)\(a,a), 7l'p(oz,a))
and thus
Toa = 0Ta = Ti(a,a)) Trg = Thg = Tp(a,a)

so that ca = N, ¢) and 7¢ = p(e, a). Consequently (oe, 7a) = (a, a)’ € S.
A similar argument, using the second formula in (4), can be used to prove that
(a0, ar) = (a, a)” € S. Now letting

w(a, a) = (oa, Ta), (a, a)w = (ag, ar) (e, a) € 5)
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we evidently have w € Q(S) and we = (o, 7). Consequently (e, 7) € Q(S)e,
as required.

COROLLARY 1. Let the notation be as in Theorem 4. Then S can be densely
embedded into Q(Y) X Q(C) and also into Iy X Q(C).

Proof. For the first embedding it suffices to take we, where 7 : S — II(S) is
the canonical isomorphism, and apply Theorem 4. By [4, V.6.1], Q(Y) = % ;.
Hence S can be densely embedded into #y X Q(C) in view of the first em-
bedding. It is easy to verify that the image of Sin #y X Q(C) has the same
idealizer in Zy X Q(C) as in Fy X Q(C). Consequently .S can also be densely
embedded into £y X Q(C).

COROLLARY 2. If S is a subdirect product of a semilaitice and a (commutative)
cancellative semigroup, so is Q(S).

Proof. In the notation of Theorem 4, 2(Y) is a semilattice by [4, V.6.2];
Q(C) is cancellative by [4, 1I11.5.14], Q(C) is also commutative if C is by
[4, II1.5.16]. The assertion now follows from the fact that (S)e is a subdirect
product of its projections in 2(Y) and Q(C).

COROLLARY 3. Let Y be a semilattice and C be a cancellative semigroup. Then
QY X C) = (YY) X Q(C).

Proof. This follows easily from the proof of Theorem 4.
The principal results of [5, §4] follow from the statements of this section by

specialization.

7. Spined products. These represent a special case of a subdirect product,
the pertinent definitions are given below.

Let Si, Sy, . . ., S, be semigroups. If o; € Q(S;) forz =1, 2, ..., n, it is easy
to see that the bioperator w defined on the direct product.S; X Sz X ... X S,
by

w(s1, Sz, . . .y Sp) = (0151, 0252, . . ., 0,5,),
(s1, S2y « « +y Sp)@ = ($101, S22, - . -, Sp0,)
is a bitranslation of S; X S2 X ... X S,; we write = (g1, 02, . . ., 0,).

Definition 1. The bitranslations of S1 X S2 X ... X S, split if every w €
QS X Se X ... X S,) is of the form (o1, o9, ..., 0,) for some o; € Q(S,),
1=1,2,..., n

Note that o1, 02, . . ., 0, are unique and that this property implies that
Q(S1 X Se X ... X S,) =Q(S1) X 2(S:) X ... X Q(S,).

For example, this is the case when .S is a semilattice, S; a left zero semigroup,
S; a group, Sy a right zero semigroup according to [4, V.6.8, Exercise 2]. It
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follows from Theorem 4 that this is the case also when S; is a semilattice and
S» is a cancellative semigroup.
We next modify the notion of a spined product as follows:

Definition 2. Fort = 1,2, ..., n,let S; be a semilattice ¥ of semigroups S .
Then the subsemigroup

U (S X Sy X... XS5

acYy

of the direct product S; X S2 X ... X S, is the spined product of S, S, . . ., S,
over Y. The phrase “over Y’ will be omitted if YV is the greatest semilattice
decomposition of each .S;.

It should be remarked that ¥ is common to all S; and that the decomposition
of S; induced by Y need not be the greatest semilattice decomposition. For
examples of spined products see [4, IV.4.6, 4.7]; we will encounter some below.
The desired theorem can now be stated. For simplicity, we consider only the
case n = 2; the general case then follows by induction, or by an obvious
modification of the proof below.

THEOREM 5. Let S be a spined product of T = (V; Tu, @ap) and V = (Y,
Vay Yap) over Y, and assume that for every a € Y, both T, and V, are weakly
reductive and the bitranslations of Tou X Vu split. Then Q(S) is a spined product
of UT) and Q(V) over X y.

Proof. In light of Definition 2, we can write
S = (Y; Say XC!,IS)
where S, = T, X V,and
(1) (4 9)Xap = (tpap Wap)
for all (¢, v) € S., @ = 8. Each S, is weakly reductive, so by Theorem 1, we
can consider & = % (Y; S., x«s) instead of Q(S).

Let (wa)acr € &. For each a € I, we have w, € Q(T, X V.), which by the
hypothesis of splitting implies that w, = (7., v.) for some 7, € Q(7,) and
ve € Q(V,). Now let (¢, v) € Ty X Va; (@) I = (&) by condition (C1). In
view of condition (C2), there exist (¢, v)’, (¢, v)"" € T3 X Vg such that
(2) (tyv)/xz',ﬂ = wﬁ[(t’v)xa,ﬁ]y (tyv)”XZ,ﬁ = [(tr v)Xaﬁ]wﬁ (B = 5[).

We now write (¢, v)’ = ((¢, v)§, (¢, v)n) € T35 X Vs, so that the first formula
in (2) by virtue of (1) becomes
([(t! U)E]%,B, [(ty 7’)77}’#3,;8) = (Tﬂv Vﬁ) (t¢a,ﬂr t\ba,ﬂ)'

Writing this expression by coordinates gives

(3) [t v)Elezs = 7a(teap), L[t v)nlvas = vs(vWa,s).
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The right hand side of the first formula in (3) does not contain v, so that the
left hand side is independent of ». Consequently we can write ¢ instead of
(¢, v)t. Similarly, in the second formula in (3) we can write ¢’ instead of
(t, )n. Hence (3) takes on the form

4) Vezp = 18(tgas),  VV¥ap = vs(WWasp).
An analogous argument shows that (#/, v"/) can be found in 15 X V3
satisfying

(B) t'ezp = (toap)ts, V'¥as = (Was)vs.

Formulae (4) and (5) are valid for all & € Y which in view of Theorem 1
implies that (7a)acr € Z1, Va)aesr € B2 where B1 = B(YV; Ty, tap), B+ =
‘@(Yr Vav ’aba,B)-

Since for each a € I, w, uniquely determines 7, and »,, we have that

{: (wa)aEI - ((Ta)aEIy (Va)aéI)

maps & (Y; Sa, X«6) into the spined product of &, and &, over Z y. It is now
clear that if we start with ((ra)acr, (Va)acz) € B1 X B, then (14, va)acr is the
unique element (wy)acr of & such that

(wa)aelﬂ = ((Ta>0161v (Va)aEI)-

An easy verification shows that ¢ is also a homomorphism. Therefore ¢ is the
required isomorphism of & onto a spined product of &, and & ,. The assertion
of the theorem now follows from Theorem 1.

Semigroups which are orthodox bands of groups have been characterized in
[6, Theorem 3.2] as spined products of bands and semilattices of groups. It
follows from [4, V.3.12] that the bitranslations of B X G split, where B is a
rectangular band and G is a group. Hence the theorem yields

COROLLARY 1. If Sts a spined product of T = (V; Ta, ¢ap), Where each Tois a
rectangular band, and V = (Y; Ve, Yap), Where each Vo is a group, then Q(S)
is a spined product of Q(T) and Q(V) over X y.

It follows from [7, Theorem 5 and Corollary 2 to Theorem 7] that completely
regular orthodox semigroups in which both Green’s relations . and # are
congruences can be characterized as spined products of a left regular band, a
semilattice of groups and a right regular band. Since by [4, V.3.12], the
bitranslations of L X G X R split, where L is a left zero semigroup, G is a
group and R is a right zero semigroup, the theorem implies

COROLLARY 2. If S is a spined product of L = (Y; Lo, 00 ), G = (V; Gay 0ap),
R = (Y; Ra, Yap), Where each L, is a left zero semigroup, G, is a group and R, is
a right zero semigroup, then Q(S) is a spined product of (L), U(G) and Q(R)
over X y.
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Completely regular semigroups whose idempotents form a normal band have
been characterized in [3, Construction 4.4] as spined products of a left normal
band, a semilattice of groups and a right normal band. All three of these
semigroups are strong compositions of their 4 -classes. Hence we are dealing
with a semigroup S which is a spined product of

[Yy Lou Qoa,ﬁ]y [Y» Gay wa,B]y [Y, Ray ‘Pa,ﬂ]-

Corollary 2 is applicable in this case. We will give a more precise description
of the translational hull of each of these three semigroups. First note that the
translational hull of a left (resp. right) zero semigroup A4 can be identified
with the semigroup of all transformations on 4 written on the left (resp. right),
see [4, V.3.12], and that all bitranslations of a group are inner. We now intro-
duce some convenient notation.

Let [V; Ty, ¢ap; F.] stand for the following: [V; T, ¢a 6] is a system as
defined previously, F, is a nonempty set of functions on 7, written on the
left or right. Let

lim[Y; T, ¢as; Fol
be the set of all (Yu)acy € Hacy Fa for which the diagram

Ya

Ta—) ‘a
Pa,f J Pa,B
7,7,
is commutative whenever a > 3, with the multiplication inherited from the

direct product. Next let
Lim [Yy Tar PaysBy Fa] = U lim [Iy Tay @a,B Fa]

IRy
with the multiplication

(‘/’a)aEI : (5a)aEJ = (¢a5a)aEIﬂ J.

For example, if all 7, are groups, F, are right translations, then it is easy to
see that (pa,)acy € Um[Y; T, ¢as; Fa) if and only if (Ga)acy € inv im{To}acy.
Consequently (ps,)aer € LiIm[Y; Tu, @ap; Fo] if and only if (da)aer € Inv
limg{ To}acy. Hence the above concept can be considered as a generalization
of the inverse limit of groups.

In view of the above discussion, the theorem yields

COROLLARY 3. If S is a spined product of
[Y; La) ¢d.ﬁ]v [Ya Gar wa.ﬁ]y [Y, Rm ‘pa.ﬂ},
where Ly X Ga X Ra s a rectangular group, then Q(S) is a spined product of
Lim[Y; La, ¢a; 7 (L)), Inv lim{Gaacr, Lim[Y; Re, a7 (Ra)]

over R y.
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