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Abstract
The least squares Monte Carlo method has become a standard approach in the insurance and financial industries for
evaluating a company’s exposure to market risk. However, the non-linear regression of simulated responses on risk
factors poses a challenge in this procedure. This article presents a novel approach to address this issue by employing
an a-priori segmentation of responses. Using a K-means algorithm, we identify clusters of responses that are then
locally regressed on their corresponding risk factors. The global regression function is obtained by combining the
local models with logistic regression. We demonstrate the effectiveness of the proposed local least squares Monte
Carlo method through two case studies. The first case study investigates butterfly and bull trap options within a
Heston stochastic volatility model, while the second case study examines the exposure to risks in a participating
life insurance scenario.

1. Introduction
The least squares Monte Carlo (LSMC) method of Longstaff and Schwartz (2001) is a powerful and
simple simulation method for pricing path-dependent options. By its nature, simulation is an alternative
to traditional finite difference and binomial techniques in particular when the value of the option depends
on multiple factors. The LSMC method relies on the property that the conditional expectation of a
random process minimizes the mean squared distance between a simulated sample of this process and
an adapted Borel measurable function. This function is approximated by a regression in a subspace of
basis functions.

Clement et al. (2002) prove under fairly general conditions the almost sure convergence of LSMC.
Glasserman and Yu (2004) investigate the behavior of this algorithm with the simultaneous grows of the
number of the basis functions and the number of Monte Carlo simulations. Moreno and Navas (2003) and
Stentoft (2004) consider the LSMC for different basis functions and deduce that the algorithm converges
for American put options. This technique is also used for the valuation of insurance liabilities. For
instance, Bacinello et al. (2009, 2010) price a unit linked contract embedding American options.

The LSMC is useful not only for pricing but also for managing risks. Bauer et al. (2012) adapt
the LSMC method for computing the required risk capital in the Solvency II framework. Pelsser and
Schweizer (2016) compare LSMC and portfolio replication for the modeling of life insurance liabilities.
Floryszczak et al. (2016) confirm that using the LSMC method is relevant for Solvency II computations
at the level of a company. In the insurance sector, the LSMC has become a standard. For instance, case
studies from the industry are in Hörig and Leitschkis (2012) or Hörig et al. (2014).

More recently, the standard least squares regression has been replaced by a neural network approxi-
mation. Becker et al. (2020) use this for pricing and hedging American-style options with deep learning.
Lapeyre and Lelong (2021) develop a similar approach for Bermudan option pricing. In insurance,
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Hejazi and Jackson (2017) propose a neural network approach to evaluate the capital requirement of
a portfolio of variable annuities. Cheridito et al. (2020) benchmark this approach to results of Bauer
(2012).

The LSMC method relies on a global regression model that predicts responses based on risk factors.
In its traditional form, the regression function is approximated using either a polynomial or a combi-
nation of basis functions, as discussed in Ha and Bauer (2022, Section 4). However, when there is a
non-linear relationship between responses and factors, using a high-order polynomial or a large number
of basis functions increases the risk of overfitting. For a discussion on the robustness of this approach, we
refer to Moreno and Navas (2003). An efficient alternative is to employ a neural regression, as proposed
by Cheridito et al. (2020). Nevertheless, determining the optimal network architecture is a challeng-
ing task, and the lack of interpretability of the model is highlighted by Molnar (2023, Section 3). The
main contribution of this article is to propose an alternative approach based on local regressions. In
the first stage, we partition the responses into clusters using the K-means algorithm and then perform
local regressions on the corresponding risk factors within each cluster. In the second stage, we employ
a logistic regression model to estimate the probability that a combination of risk factors results in a
response within each cluster. By weighting the local models using these probabilities, we obtain a global
regression function. Through two case studies, we demonstrate that this local least squares Monte Carlo
(LLSMC) method outperforms LSMC and offers a higher level of interpretability. The first case study
examines the risk analysis of butterfly and bull trap options within a Heston stochastic volatility model. In
the second case study, we consider a participating life insurance scenario and compare the risk measures
computed using LLSMC and the standard LSMC approach.

The outline of the article is as follows. Section 2 reviews the LSMC method applied to risk manage-
ment. The next section introduces the LLSMC method and motivates the reasons for segmenting the data
set based on responses instead of risk factors. Section 4 compares the capacity of LLSMC and LSMC
to replicate butterfly and bull trap options in a stochastic volatility model. In Section 5, we compare risk
measures computed by local and non-local LSMC for a participating life pure endowment. Proofs and
additional numerical illustrations are provided in the Online Supplementary Materials.

2. LSMC method for risk management
2.1. Model framework
We consider a probability space �, endowed with a probability measure P, in which are defined m
Markov square-integrable processes, noted X t =

(
X(1)

t , ..., X(m)
t

)
t≥0

, with bounded variances. These pro-
cesses are the risk factors driving the value of financial assets and derivatives, managed by a financial
institution. Their natural filtration is denoted by F = (Ft)t≥0. If risk factors are Markov, the total asset
value is a function of time and risk factors denoted by A(t, X t). P is called the real or historical measure
in rest of this article. Under the assumption of absence of arbitrage, there exists at least one equivalent
risk neutral measure, denoted by Q, using the cash account (Bt)t≥0 as numeraire. Random asset cash
flows are paid at time (tk)k=0,...,d and denoted by CA

k . Therefore at time t ≤ td, A(t, X t) can be developed as
follows:

A(t, X t) = a (X t) +EQ

(
d∑

k=0

Bt

Btk

CA
k 1{tk≥t}|X t

)
, (2.1)

where a (X t) is directly determined by the value of underlying risk factors. By construction, A(t, X t) is
Ft−adapted. We assume that A(t, X t) is square integrable and has therefore a finite variance.

We consider a risk measure denoted by ρ( · ). For risk management, we aim to calculate ρ(A(t, X t)). In
applications, we mainly consider the value at risk (VaR) and the expected shortfall (ES). For a confidence
level α ∈ (0, 1), the VaR and ES for a continuous distribution of A(t, ·) are defined as

VaRα = max {x ∈R : P (A(t, X t) ≤ x) ≤ α} , (2.2)

ESα = 1

α

∫ α

0

VaRγ dγ . (2.3)
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Figure 1. Simulations in simulations versus least squares Monte Carlo.

The ES also admits an equivalent representation (see McNeil et al., 2015, Proposition 8.13, p. 283) that
is used later for estimation:

ESα = EP (A(t, X t) | A(t, X t) ≤ VaRα) (2.4)

= 1

α
EP
(
A(t, X t) 1{A(t,Xt)≤VaRα }

)
+VaRα

1

α
(1 − P (A(t, X t) ≤ VaRα)) .

We draw the attention of the reader on the fact that VaR and ES are valued under the real measure.
Computing the risk neutral expectation (2.1) is a challenging task because closed-form expressions
are usually not available. A solution consists in evaluating A(t, X t) by simulations in simulations. This
framework is illustrated in the left plot of Figure 1. For each primary simulated sample path of risk
factors (under P), we perform secondary simulations (under Q). The value of A(t, X t) is next obtained
by averaging the sums of discounted cash flows of secondary scenarios. This approach is nevertheless
too computing intensive for being carried out with success. In practice, we rely on the method of LSMC
to keep the computational time under control.

2.2. LSMC algorithm
We briefly review the LSMC method. We denote by

Y(t) =
d∑

k=0

Bt

Btk

CA
k 1{tk≥t} ,

the random variable that is Ftd -adapted and such that A(t, X t) = a (X t) +EQ (Y(t) | X t). This variable is
called the “response” for a given set of risk factors at time t. The LSMC method is based on property
that the conditional expectation of a random variable Y (t) given a random vector X t minimizes the mean
squared distance between Y (t) and h(X t), where h( · ) is a Borel measurable function. In practice, it means
that we only need a single (or a few) secondary simulations under Q, as illustrated on the right plot of
Figure 1. The theoretical foundation of the LSMC approach is briefly recalled in the next proposition
which uses the fact that X t is also Ftd -adapted since Ft ⊂Ftd .

Proposition 2.1. Let Y(t) be a square-integrable random variable on R and Xt an m-dimensional ran-
dom vector, both Ftd -adapted. The conditional expectation EQ (Y(t) | Xt) is equal to h(Xt) ∈B(Rm, R),
where B(Rm, R) is the set of Borel measurable functions from Rm →R, such that

h (Xt) = arg min
h∈B(Rm ,R)

EQ
(
(h (Xt) − Y(t))2

)
. (2.5)
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The proof of this result is reminded in Appendix A. In many real-world applications, there is no
closed-form expression for the function h(Xt), but risk factors can be simulated under the P measure.
Longstaff and Schwartz (2001) assume that the unknown function h( · ) belongs to the L2-space of
square-integrable functions. Since L2 is a Hilbert space, it admits a countable orthornormal basis. The
function h( · ) may then be represented as a combination of basis functions. If m = 1, one common choice
is the set of weighted Laguerre polynomials. In higher dimension, basis functions are usually replaced
by polynomials of risk factors. In practice, the LSMC algorithm consists in simulating a sample denoted
by

S = {(x1, y1), ..., (xn, yn)} , (2.6)

of n realizations of (X t, Y(t)) and in regressing responses on risk factors. We recall that X t is simulated
up to time t under the real measure P while the response Y (t) is obtained by simulations from t up
to td, under the risk neutral measure Q. Let us denote by Ph the set of polynomials ĥ(x) of degree dh

approximating h(x). It is estimated by least squares minimization:

ĥ(.) = arg min
ĥ∈Ph

( ∑
(xi ,yi)∈S

(
yi − ĥ(xi)

)2

)
. (2.7)

Let us denote by

z =
((

x j1
i1 x j2

i2 ...x jh
ih

) j1,...,jh∈N,j1+...+jh≤dh

i1,...,ih∈{1,...,m}

)
, (2.8)

the vector of powers of risk factors up to order dh ∈N. We define ĥ(x) = z�β as a polynomial of order
dh where βk is a real vector of same dimension as z. The sample of powers of risk factors is {z1, ..., zn}.
Let us respectively denote by Z and y the matrix Z = (z�

j

)
j∈S and the vector y = (yj

)
j∈S . Using standard

arguments, the polynomial coefficients minimizing (2.7) are β̂ = (Z�Z
)−1

Z�y.
Let us next denote by âi = a(xi) + ĥ(xi) ≈ A(t, xi) the approximation of the value of total assets for a

given vector of risk factors X t = xi. The ordered sample of (̂ai)i=1,...,n is denoted by
(̂
a(i)

)
i=1,...,n

and is such
that

â(1) ≤ â(2) ≤ .... ≤ â(n).

We define j(α) as the indices of the α-quantile of
(̂
a(i)

)
i=1,...,n

:

j(α) = max

{
k ∈ {1, ..., n} :

k

n
≤ α

}
. (2.9)

The estimate of VaRα is the α- quantile of
(̂
a(i)

)
i=1,...,n

:

V̂aRα = â(j(α)).

From Equation (2.4), the ESα estimator is computed as follows:

ÊSα = 1

α

j(α)−1∑
i=1

â(i)

n
+ â(j(α))

(
1 − j(α) − 1

α n

)
.

A critical step in the LSMC procedure is the choice of the function ĥ(X t) that approximates the unknown
conditional expectation, h(Xt). This requires to test multiple candidate regressors and to carefully mon-
itor potential overfit of the data set. In the next section, we propose a new approach based on local
regressions.
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Figure 2. Graphical illustration of the LLSMC algorithm.

3. The LLSMC
3.1. General principles
As described above, it is a common practice to fit a global polynomial regression predicting responses
(yi)i=1,...,n as a function of risk factors (xi)i=1,...n. In this article, we opt for an alternative approach based
on local regressions. The method is based on a finite partitioning (Yk)k=1,...,K of the domain of Y (t) (here
dom(Y(t)) =R). Let us define

hk(x) = EQ (Y(t) | X t = x , Y(t) ∈Yk) , k = 1, ..., K, (3.1)

the conditional expectation of responses, knowing that X t = x and Y(t) ∈Yk. Using standard properties
of the conditional expectation, we can rewrite the function h(x) as a weighted sum of hk(.):

h(x) =EQ (Y(t) | X t = x) (3.2)

=
K∑

k=1

Q (Y(t) ∈Yk | X t = x) hk(x).

Based on this decomposition, we approximate the K unknown functions hk( · ) by polynomial regressions
ĥk( · ) of Y(t) ∈Yk on risk factors. In a second step, we use a multinomial logistic regression to estimate
the probabilities Q (Y(t) ∈Yk | X t) for k = 1, ..., K. Figure 2 provides a graphical representation of the
LLSMC algorithm when K = 3. Once the model is fitted, the estimated asset value â, for a vector of
risk factors x at time t, is determined in two steps. First, we calculate the probabilities that responses
belong to clusters (Yk)k=1,...,K , conditionally to Xt = x. Next, we compute ĥk(x) which approximates the
conditional expectations of responses within clusters, as defined in Equation (3.1). Finally, the estimated
asset value is the sum of the function a(x) and of ĥk(x) weighted by probabilities Q (Y(t) ∈Yk | X t).

In practice, the simulated sample, S defined in Equation (2.6), is the union of sampled risk factors,
noted X , and of corresponding responses Y . In a first stage, we partition the sample data set S = (X , Y)
into K << n subsets, denoted by (Sk)k=1,...K :

Sk = (Xk, Yk) , k = 1, ..., K ,

here (Yk)k=1,...,k is a partition of Y and (Xk)k=1,...,K is the sample set of corresponding simulated risk
factors. In this article, we use the K-means for partitioning Y in K clusters (Yk)k=1,...,K . As detailed in the
next subsection, this heuristic algorithm computes a partition which reduces the within groups sum of
squared errors or intraclass inertia.

3.2. The clustering algorithm
The K-means algorithm (see MacQueen, 1967 or Jain, 2010) is based on the concept of centroids that
are the center of gravity of a cluster of objects. The coordinates of the uth centroid are denoted cu ∈R,
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u = 1, ..., K. If d(·, ·) is the Euclidian distance, we define the clusters Yk for k = 1, ..., K as follows:

Yk = {yi : d(yi, ck) ≤ d(yi, cj) ∀j ∈ {1, ..., K}} k = 1, ..., K. (3.3)

By extension, the joint cluster Sk of risk factors and responses is

Sk = {(xi, yi) : d(yi, ck) ≤ d(yi, cj) ∀j ∈ {1, ..., K}} k = 1, ..., K. (3.4)

The center of gravity of Yk is denoted by gk = 1
|Yk |
∑

yi∈Yk
yi and the center of gravity of all responses is

g = 1
n

∑n
i=1 gi. The global inertia is IY = 1

n

∑n
i=1 d (yi, g)

2 and the interclass inertia Ic is the inertia of the
cloud of centers of gravity:

Ic =
K∑

k=1

|Yk|
n

d (gk, g)
2 .

The intraclass inertia Ia is the sum of clusters inertia, weighted by their size:

Ia = 1

n

K∑
k=1

∑
yi∈Yk

d (yi, gk)
2 .

According to the König–Huyghens theorem, the global inertia is the sum of the intraclass and interclass
inertia: IY = Ic + Ia. We seek for a partition of Y minimizing the intraclass inertia Ia in order to have
homogeneous clusters on average. This is equivalent to determine the partition maximizing the interclass
inertia, Ic. Finding the partition that minimizes the intraclass inertia cannot be solved numerically in
polynomial time (NP-hard problem, see Mahajan et al., 2012) but efficient heuristic procedures exist.
The most common method uses an iterative refinement technique called the K-means which is detailed
in Algorithm 2, provided in Appendix B. Given an initial set of K random centroids c1(0),. . .,cK(0), we
construct a partition {Y1(0), . . . , YK(0)} of responses. Next, we replace the K random centroids by the K
centers of gravity (cu(1))u=1,...,K = (cu(0))u=1,...,K of these classes and we iterate till convergence. At each
iteration, we can prove that the intraclass inertia is reduced but we do not have any warranty that the
partition found by this way is a global solution. Nevertheless, this risk is limited in our approach because
we cluster unidimensional data (yi=1...n ∈R+). As dimensionality increases, the distance to the nearest
neighbor approaches the distance to the farthest neighbor but for one dimension data, K-means is highly
efficient as discussed in Beyer et al. (1999). In numerical illustrations, we use an improved version of the
algorithm, the K-means++ of Arthur and Vassilvitskii (2007). This enhances the quality of the resulting
clusters by providing initial centroids that are well spread out across the data space. The initial centroids
are selected in a probabilistic manner based on their distance from already chosen centroids. In practice,
this procedure is repeated several times (20 times in this article) and we keep the partition with the
lowest intraclass inertia. Notice that there exists a large variety of clustering methods (Gaussian mixture
model (GMM), DBscan, spectral K-means, etc.) that are substitutable to the K-means. The impact is
nevertheless limited given that we cluster unidimensional data. In the first case study, we have indeed
replaced the K-means algorithm by the GMM and have not observed any significant differences.

3.3. Local regressions
After having found a partition of S in Sk = (Xk, Yk) , k = 1, ..., K ,we approximate functions (hk)k=1,...,K

by K polynomials of order dh, denoted by
(̂
hk( · )

)
k=1,...,K

. Let us recall that z as defined in Equation (2.8)
is the vector of powers of risk factors up to dh ∈N. We assume that ĥk(x) = z�βk is a polynomial of
order dh where βk is a real vector of dimension equal to the one of z. In a similar manner to LSMC, the(̂
hk( · )

)
k=1,...,K

are estimated by least squares minimization over the set Ph of polynomials of degree dh:

βk = arg min
ĥk∈Ph

( ∑
(xi ,yi)∈Sk

(
yi − ĥk(xi)

)2

)
. (3.5)
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Algorithm 1 : Summary of the LLSMC estimation procedure.
Generation of S = (X , Y):

n simulations of risk factors, X = (xi=1,...,n), at time t, under P.
Simulations of corresponding responses Y = (yi=1,...,n) under Q.

Clustering of S into Sk = (Xk, Yk) for k = 1, ..., K:
Partitioning of Y , into Yk=1,...,K with the K-means algorithm.
(Xk)k=1,...,K , subsets of corresponding risk factors.

Local regression step:
Fit of polynomial ĥk(x) regressing Yk on Xk, for k = 1, ..., K.

Logistic regression step:
Fit of polynomial γ̂k(x) for k = 2, ..., K with
Q (Y(t) ∈Yk | X t = x) = e−γ̂ k (x)

1+∑K
j=2 e−γ̂ j(x) .

Asset valuation:
âi = a(xi) +∑K

j=1 Q (Y(t) ∈Yk | X t = xi) ĥk(xi).

The sample of powers of risk factors is again {z1, ..., zn} and we denote by Zk and yk the matrix
Zk = (z�

j

)
j∈Sk

and the vector yk = (yj

)
j∈Sk

for k = 1, ..., K. Using standard arguments, the polynomial

coefficients minimizing (3.5) are β̂k = (Z�
k Zk

)−1
Z�

k yk.
Nevertheless, this model is useless for predicting the response for a vector x that is not in the training

data set. For x /∈ S , the expected response should be

ĥ(x) =
K∑

k=1

Q (Y(t) ∈Yk | X t = x) ĥk(x) , (3.6)

where Q (Y(t) ∈Yk | X t = x) is the unknown probability that the response for x is in the kth cluster. We
estimate these probabilities with a multinomial logistic regression. In this framework, we assume that
conditional probabilities are the following functions:

Q (Y(t) ∈Yk | X t = x) =
⎧⎨⎩

e−γ̂ k (x)

1+∑K
j=2 e−γ̂ j(x) k = 2, ..., K ,

1

1+∑K
j=2 e−γ̂ j(x) k = 1 ,

(3.7)

where γ̂k(x) is a polynomial of risk factors approximating the unknown exact function γk(x). If Pγ is the
set of admissible polynomial functions of order dγ ∈N, the (γ̂k( · ))k=2,...,K are estimated by log-likelihood
maximization. We denote by

w =
((

x j1
i1 x j2

i2 ...x jh
ih

)j1,...,jh∈N,j1+...+jh≤dγ

i1,...,ih∈{1,...,m}

)
the vector of powers of risk factors up to dγ ∈N. We assume that γ̂k(x) = w�ζ k is a polynomial of order
dγ where ζ k is a real vector of same dimension as w. The log-likelihood is defined by

L ((γk)k=2,...,K

) =
n∑

i=1

log

(
K∑

k=2

1{yi∈Yk}e
−γ k(xi)

1 +∑K
j=2 e−γ j(xi)

+ 1{yi∈Y1}
1 +∑K

j=2 e−γ j(x)

)
,

and
(
ζ k

)
k=2,...,K

= arg maxγk∈Pγ
L ((γk)k=2,...,K

)
. The full procedure to fit the LLSMC is summarized into

Algorithm 1. We first simulate S = (X , Y) and create clusters on which we fit local polynomial regres-
sors by least squares minimization. Next, we estimate conditional probabilities (3.7) and compute asset
values.

In a similar manner to Cheridito et al. (2020), we can replace the polynomial functions γ̂k(x) by neural
networks or by any other machine learning regressor.
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At this stage, we have not discussed yet the convergence of the LLSMC. The framework is based on
the Equality (3.2) that is true whatever the number of clusters. The question of convergence arises from
the approximations of Q (Y(t) ∈Yk | x) = e−γk (x)

1+∑K
j=2 e−γj(x) and hk(x) by a logistic and polynomial regressions.

If functions γk(x) and hk(x) are C∞, the Taylor’s theorem ensures the (local) convergence when the
polynomial orders dh and dγ → ∞.

If a set of L2-orthogonal basis functions
(
ej(x)

)
j∈N from Rp to R is well defined, an alternative is to

approximate hk(x) and γk(x) by a finite combination of m basis functions:

ĥk(x) =
m∑

j=1

αk,jej(x) , γk(x) =
m∑

j=1

βk,jej(x) ,

for k = 1, ..., K. In this case, the convergence is guaranteed when m → ∞. Nevertheless, finding such an
orthogonal basis function

(
ej(x)

)
j∈N is a challenging task and we refer the reader to Ha and Bauer (2022)

for details. This motivate us to opt for polynomial approximations.

3.4. Measures of goodness of fit
We have not discussed yet how to optimize the number of clusters K and the polynomial orders, dh, dγ .
In practice, we check four indicators of goodness of fit. We first compare the R2 for different settings.
The R2 is the percentage of variance of responses explained by the model:

R2 = 1 −
∑n

i=1

(
yi − ĥ(xi)

)2∑n
i=1 (yi − ȳ)2 , (3.8)

where ȳ = 1
n

∑n
i=1 yi. In LSMC regression, responses y are by construction noised estimates of

EQ (Y(t) | x) , and therefore, the R2 is by nature small. We assess the fit of local regressions by

R2
loc = 1 −

∑K
k=1

∑
(xi ,yi)∈Sk

(
yi − ĥk(xi)

)2∑n
i=1 (yi − ȳ)2 . (3.9)

Contrary to R2, we may expect a R2
loc close to 1 and should exclude any models with a low R2

loc. The R2

and R2
loc both increase with the complexity of the model, measured by the number of its parameters. For

this reason, we also compute a second indicator of goodness of fit which is the mean squared error of
residuals:

MSE =
∑n

i=1

(
yi − ĥ(x)

)2

n − p
, (3.10)

where p is the number of regression parameters. This criterion tends to penalize models with a large
number of parameters. To detect abnormal prices, we calculate the sum of squared errors between exact
values of A(t, x) and their LLSMC estimates, h(x) over a small sample of risk factors. We call this
sample the validation set and denote it by V . Depending upon the nature of assets, the exact values
of A(t, xt) are computed by performing a sufficient number of secondary simulations or by any other
suitable numerical method. This step being computationally intensive, the size of the validation set, must
be limited but should contain sufficiently diversified combinations of risk factors. A simple approach
consists in combining quantiles of risk factors. Let us detail this approach. We denote by

(
x(k)

(i)

)
i=1,...,n

the
ordered sample

(
x(k)

i

)
i=1,...,n

of the kth risk factor:

x(k)
(1) ≤ x(k)

(2) ≤ ... ≤ x(k)
(n).

We select a small number of q ∈N quantiles
(
x(k)

j(α1), ..., x(k)
j(αq)

)
where (αi)i=1,...,q are probabilities and j(αi)

is the quantile index such as defined in Equation (2.9). We repeat this operation for each k = 1, ..., m.
The validation set V contains all the combination of quantiles and its total size is |V| = qm. The MSE on
the validation sample is
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Figure 3. Illustration of the Simpson’s paradox.

MSE(V) = 1

|V|
∑
x∈V

(
A(t, x) − ĥ(x)

)2
. (3.11)

If the dimension of |V| is too large, we can select randomly a subset of V . Besides the analysis of
these indicators of goodness of fit, it is recommended to plot the function ĥ(x) to detect unexpected
tail behaviors. If the asset value is computable in a large number of scenarios, we can appraise the
goodness of fit by divergence measures (e.g. Kullback–Leibler) between distributions of A(t, x) and
ĥ(x), approached by simulations of x. Nevertheless, this approach is in most of cases computationally
intensive.

3.5. Simpson’s paradox
It may appear counterintuitive to partition the data set using responses instead of risk factors. Two
reasons motivate this choice. First, local regressions based on hard clustering of risk factors produce
discontinuities in predictions, EQ (Y(t) | X t), on borders of clusters, even in a market in which all risk
factors are continuous. This is clearly an undesirable feature for a model designed for risk management.
Second, this prevents to observe the Simpson’s paradox (Simpson, 1951). This is a phenomenon in
probability and statistics in which a trend appears in several groups of data but disappears or reverses
when the groups are combined. This paradox is illustrated in Figure 3 which compares local versus global
linear regressions. Regressions on clusters of x detect misleading local increasing trends, whereas the
slope of the global model is negative. We provide a financial illustration of the Simpson’s paradox in
the first case study.

4. Application to options management in the Heston model
In this first example, we consider a financial market composed of cash and stocks with stochastic volatil-
ity. We choose this model, proposed by Heston (1993), because it is possible to benchmark LSMC and
LLSMC approximated option prices to accurate ones computed by discrete Fourier transform (DFT).

4.1. The Heston model
In the Heston model, the cash account earns a constant risk free rate r. The stock price, noted (St)t≥0, is
ruled by a geometric Brownian diffusion with a stochastic variance, (Vt)t≥0:
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Table 1. Parameters of the Heston stochastic
volatility model and of the payoff.

Parameters
μ 0.1232 r 0.02
κ 0.7171 ρ -0.5390
γ 0.1016 σ 0.4234
S0 100 E1 100
E2 108 E3 116
t 1 year T 2 years

{
dSt = μ St dt + St

√
Vt

(
ρdWv

t + √
1 − ρ2dWs

t

)
,

dVt = κ (γ − Vt) dt + σ
√

VtdWv
t .

(4.1)

where
(
Ws

t

)
t≥0

and
(
Wv

t

)
t≥0

are independent Brownian motions defined on the real probability space
(�, F , P). μ ∈R is the expected instantaneous stock return and ρ ∈ (−1, 1) is the correlation between
the price and volatility. The variance reverts with a speed κ > 0 to a mean reversion level γ > 0. The
volatility of the variance is a multiple σ ∈R+ of the square root of variance.

For the sake of simplicity, we assume that the variance has the same dynamics under P and Q (this
assumption may be relaxed without any impact on our analysis), whereas the drift of the stock price is
replaced by the risk free rate under Q.

There is no analytical formula for option prices in the Heston model. Nevertheless, the characteristic
function of log-returns admits a closed-form expression and we can calculate their probability density
function (pdf) by DFT. European options are then valued by computing the expected discounted payoff
with this pdf. Prices obtained by DFT are compared to these obtained with LSMC and LLSMC methods.
Details about the pricing method are available in the Online Supplementary Materials.

4.2. Butterfly options
In order to apply the LSMC to the Heston model, we consider as risk factors the normed stock price and
volatility:

X t: =
⎛⎝St −EP

0 (St)√
VP

0 (St)
,

√
Vt −EP

0

(√
Vt

)√
VP

0

(√
Vt

)
⎞⎠ .

In practice, expectations and variances of St and
√

Vt are estimated by empirical averages and variances
of the simulated sample. We consider a European butterfly option of maturity T and strikes E1, E2, and
E3. The payoff of this option is

H(ST) = (ST − E1)+ − 2 (ST − E2)+ + (ST − E3)+ ,

and its price A(t, X t), at time t ≤ T , is equal to the Q−expected discounted payoff, A(t, X t) =
EQ
(
e−r(T−t)H(ST) |Ft

)
. We choose this derivative because its payoff presents three inflection points and

is not an invertible function with respect to stock prices. As we will see, the price of such an option is
difficult to replicate with the LSMC. We will next consider a bull trap option which has an increasing
payoff. Table 1 reports model and payoff parameters. The Heston model is fitted to the time series of the
S&P 500 from 31/1/2001 to 31/1/2020 by Bayesian log-likelihood maximization (for details on the esti-
mation procedure, see Hainaut, 2022, p. 75). We perform 10,000 primary simulations of St and Vt under
P up to t = 1 year. For each primary simulation, we simulate a single secondary sample path under Q up
to T = 2 years. We consider 350 steps of time per year and responses are equal to Y(t) = e−r(T−t)H(ST).
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Table 2. R2, MSE, MSE(V), and runtimes of regressions of Yt on Xt

in the LSMC model. d.f. is the number of parameters.

dh R2
√

MSE(V)
√

MSE d.f. Time (s)
2 0.0397 0.36 2.10 6 1.95
3 0.0451 0.57 2.10 10 1.65
4 0.0499 1.07 2.09 15 1.39
5 0.0522 2.39 2.09 21 2.00
6 0.0536 1.93 2.09 28 1.71
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Figure 4. Simulated responses Y(t) = e−r(T−t)H(ST) versus stock prices, St, and volatilities,
√

Vt. The
red points are the predictions h(Xt) from the LSMC with a second-order polynomials regression.

4.3. Numerical analysis of LSMC and LLSMC
The upper and lower plots of Figure 4 depict the simulated responses plotted against stock prices and
volatilities. The red points represent the LSMC estimates of butterfly option prices 1 year ahead, using
a second-order polynomial of risk factors. These graphs expose a limitation of the conventional LSMC
approach: it is unable to predict a positive option price for extremely high and low values of stock prices.
This issue is particularly significant when using LSMC for computing risk measures.

Table 2 reports the R2, the MSE, and MSE(V) of the LSMC, such as defined by Equations (3.8),
(3.10), and (3.11). The validation set counts 100 pairs of risk factors. We consider q = 10 empirical
quantiles of stock prices and volatilities for probabilities from 1% to 5% and from 95% to 99% by step
of 1%. This choice is motivated by the observation that extreme values of risk factors tend to produce
extremely high and low option prices. The exact prices of butterfly options in these 100 scenarios are
computed by DFT.

In Table 2, butterfly prices are approached by polynomial regressions of order dh from 2 to 6. As
expected, R2s are tiny since responses are noised estimates of EQ (Y(t) | x). The R2s also increase with
the complexity of the model. The MSE on the training set is nearly constant whatever the polynomial
order, whereas the lowest MSE(V) on the validation set is achieved with an order 2 polynomial. The
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Table 3. R2, MSE, MSE(V), R2
loc, and runtimes for the LLSMC model.

d.f. is the number of parameters.

K dγ dh R2
√

MSE(V)
√

MSE d.f. R2
loc Time (s)

3 2 3 0.0526 0.19 2.09 42 0.95 4.66
2 2 3 0.0525 0.20 2.09 26 0.87 4.48
5 2 3 0.0527 0.20 2.10 74 0.98 5.14
6 2 4 0.0524 0.20 2.10 120 0.99 5.59
2 2 2 0.0521 0.21 2.09 18 0.87 5.75
3 2 2 0.0524 0.21 2.09 30 0.95 4.28
4 2 2 0.0525 0.21 2.09 42 0.98 4.40
5 2 2 0.0525 0.21 2.10 54 0.98 5.05
5 2 4 0.0527 0.21 2.10 99 0.99 4.87
6 2 2 0.0525 0.22 2.10 66 0.99 5.50

LSMC is estimated in less than 2 s.1 We next analyze the tail behavior of these approximations. This is
done by plotting the function ĥ(x). We will come back on this point later and focus first on the LLSMC.

Table 3 presents the statistics of goodness of fit for the LLSMC model. The number of clusters, K ,
varies from 2 to 6. We test polynomials of degrees dh from 2 to 4 and dγ equal to 1 and 2. Models
are sorted by increasing MSE(V)s and we report statistics of the 10 first best models according to this
criterion.

The optimal goodness of fit is achieved by using three clusters, applying cubic regression to each
cluster, and utilizing a second-order polynomial for the multinomial logistic regression. Upon comparing
the results with the LSMC figures in Table 2, it is evident that the LLSMC method significantly reduces
the mean squared error MSE(V) on the validation data set, while the MSEs on the training set remain
comparable. This indicates that the LLSMC model better replicates extremely high and low option
prices. It is worth noting that the LLSMC- LLSMC- and LSMC-R2 values are comparable. The runtime
for the LLSMC method ranges from 4.28 to 5.59 s.

We provide in the Online Supplementary Materials the goodness of fit statistics and runtimes for the
LSMC and LLSMC, computed with 100,000 simulations instead of 10,000. A comparison with Tables 2
and 3 does not reveal any significant increases of MSE and R2. This validates our choice to limit the
number of scenarios to 10,000.

We compare the LSMC and the LLSMC with hyperparameters K = 3, dγ = 2, dh = 3 (denoted by
LLSMC 3-2-3) as this setting leads to a low MSE(V) and a high R2

loc. The upper plot of Figure 5 shows
the segmentation of responses in 3 clusters with the K-means algorithm. The mid and lower plots show
the responses and local predictions ĥk(X t) (red points) on clusters, with respect to stock prices and
volatilities. In contrast to the LSMC approach, the LLSMC method does not produce significant negative
responses.

Figure 6 compares LSMC and LLSMC butterfly options for stock prices St ranging from 68 to 139,
the 1% and 99% percentiles of simulated stock prices and

√
Vt ∈ {7%, 14%, 23%}, and the 1%, 50%,

and 99% quantiles of simulated volatilities. Exact option prices are computed by DFT with umax = 2
and M = 28 steps of discretization. The middle plot illustrates the option prices under standard market
conditions, while the right and left plots represent extreme volatility conditions. We observe that LSMC
models of order 2 or 4 produce negative prices in the tails. To evaluate the overall accuracy of methods in
these three scenarios of volatility, we provide in Table 4 the average pricing errors. This table confirms
that the LLSMC globally outperforms LSMC. Tables 5 and 6 present the VaRs and TVaRs of the butterfly
option for various quantiles. The LSMC models yield negative values for the lowest percentiles, whereas
the LLSMC provides slightly lower VaRs and TVaRs than the LSMC of orders 3–6 for the highest
percentiles. It would be interesting to compare these results to VaRs and TVaRs based on exact prices

1Computations are performed on a laptop with a AMD Ryzen 7 processor and 16 Gb of RAM.
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Figure 5. Upper plot: a-priori segmentation of responses in three clusters. Mid and lower plots:
responses (blue points) and local regressions (red points) with respect to stock prices and volatilities.
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Figure 6. Butterfly options for St ranging from 68 to 139 and volatilities
√

Vt ∈ {7%, 14%, 23%}.
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Table 4. Average pricing errors for the three cases presented in
Figure 5.

√
Vt = 7%

√
Vt = 14%

√
Vt = 23%

LLSMC, 3-2-3 0.32 0.11 0.18
LSMC, order 2 0.54 0.23 0.22
LSMC, order 3 0.61 0.32 0.33
LSMC, order 4 0.75 0.21 0.93
LSMC, order 5 2.34 0.1 1.32
LSMC, order 6 1.09 0.07 1.87

Table 5. VaR 1 year, LSMC model, and LLSMC.

0.05% 0.1% 1% 5% 95% 99% 99.9% 99.95%
LLSMC, 3-2-3 −0.08 −0.06 0.01 0.16 1.66 1.71 1.76 1.76
LSMC, dh =2 −2.20 −1.92 −0.58 0.22 1.47 1.54 1.60 1.61
LSMC, dh =3 −2.00 −1.51 −0.57 0.10 1.56 1.70 1.86 1.90
LSMC, dh =4 −0.85 −0.78 −0.33 0.01 1.61 1.75 1.93 2.01
LSMC, dh =5 −0.60 −0.53 −0.24 0.00 1.66 1.83 2.02 2.07
LSMC, dh =6 −0.15 −0.11 −0.02 0.17 1.71 1.87 2.07 2.13

Table 6. Expected shortfall, 1 year, LSMC model, and LLSMC.

0.05% 0.1% 1% 5% 95% 99% 99.9% 99.95%
LLSMC, 3-2-3 −0.10 −0.09 −0.03 0.06 1.69 1.73 1.77 1.77
LSMC, dh =2 −2.87 −2.51 −1.18 −0.29 1.51 1.57 1.62 1.64
LSMC, dh =3 −2.60 −2.18 −1.05 −0.35 1.64 1.78 1.95 2.02
LSMC, dh =4 −1.08 −0.95 −0.5 −0.23 1.70 1.85 2.17 2.37
LSMC, dh =5 −0.71 −0.64 −0.35 −0.16 1.76 1.92 2.10 2.17
LSMC, dh =6 −0.77 −0.45 −0.08 0.05 1.81 1.97 2.22 2.33

computed by DFT. Unfortunately, the valuation by DFT of 10,000 butterfly options is computationally
intensive. Nonetheless, such a comparison is feasible in the second case (Section 5).

We provide a detailed explanation of how the LLSMC 3-2-3 method operates, using Figure 7. The
left plot shows the local regression functions ĥk(x), for various stock prices St and a volatility of 14%.
The middle plot depicts the probabilities that a pair of risk factors leads to a response belonging to
the kth cluster. The first cluster explains the left and right tails of butterfly option prices. When St is
below 80 or above 130, the response is assigned to cluster 1 with a probability exceeding 90% and the
correspond function ĥ3(x) is nearly flat and close to zero. The probabilities of belonging to clusters 2
and 3 are relatively similar and exceed 5% for St ∈ [80, 130]. The right plot displays the products of
the regression and probabilities functions. According to Equation (3.6), the estimated option price is
obtained by summing of these three terms.

4.4. Bull trap options
We have considered a butterfly option because its payoff is not strictly increasing or decreasing function
of ST . In this paragraph, we check that the LLSMC still outperforms the LSMC for increasing payoffs.
We consider a long and a short position in call options of maturity T and strikes E1, E2. The total payoff
of this bull trap option is equal to
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Table 7. Average pricing errors, bull trap portfolio.
√

Vt = 7%
√

Vt = 14%
√

Vt = 23%
LLSMC, 3-2-1 0.21 0.13 0.58
LSMC, order 2 1.59 0.94 0.53
LSMC, order 3 1.59 0.53 1.40
LSMC, order 4 2.24 0.32 0.98
LSMC, order 5 2.54 0.18 3.38
LSMC, order 6 1.16 0.25 3.00
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Figure 7. Plots of regression functions hk(x) for k = 1, ..., K, probabilities Q (Y(t) ∈Yk | Xt = x) , and
their products, for

√
Vt = 14%.

H(ST) = (ST − E1)+ − (ST − E2)+ .

We use the same parameters of Table 1, except that we set strikes to E1 = 100, E2 = 110. We compare
the LSMC and the LLSMC with hyperparameters K = 3,dγ = 2, dh = 1. Figure 7 compares LSMC and
LLSMC bull trap options for stock prices St ranging from 68 to 139, and

√
Vt ∈ {7%, 14%, 23%}. Table 7

presents the average pricing errors in the three scenarios. These results provide confirmation that the
LLSMC method achieves a higher level of overall accuracy compared to the LSMC method.

4.5. Partitioning of risk factors and the Simpson’s paradox
To conclude this section, we illustrate the Simpson’s paradox in butterfly option pricing. For this
purpose, we divide the sample S into K << n subsets (Sk)k=1,...K :

Sk = (Xk, Yk) , k = 1, ..., K ,

where the partition is based on the pooling of risk factors. Each cluster is defined by a centroid ck ∈Rm

of dimension m such that

Sk = {(xi, yi) : d(xi, ck) ≤ d(xi, cj) ∀j ∈ {1, ..., K}} k = 1, ..., K.

We use the K-means algorithm to find the partition of S in Sk = (Xk, Yk) , k = 1, ..., K. The conditional
expectation of responses is approached by a piecewise function

ĥ(x) =
K∑

k=1

1{x∈Sk }̂hk(x) ,
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Table 8. R2, MSE, MSE(V), and R2
loc for the X -LLSMC model. d.f.

is the number of parameters.

K dh R2
√

MSE(V)
√

MSE d.f.
4 1 0.0501 0.27 2.09 12
5 1 0.0523 0.39 2.09 15
6 1 0.052 0.46 2.09 18
4 2 0.0524 0.55 2.09 24
5 2 0.0549 0.63 2.09 30
4 3 0.0546 0.64 2.09 40
2 2 0.0479 0.73 2.1 12
3 1 0.0429 0.75 2.1 9
6 2 0.0558 0.94 2.09 36
3 4 0.0565 0.97 2.09 45
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Figure 8. Bull trap options for St ranging from 68 to 139 and volatilities
√

Vt ∈ {7%, 14%, 23%}.

where ĥk ∈Ph is the set of polynomials of order dh. As for a LLSMC regression, the ĥk are estimated by
least squares minimization (Equation (2.4)). This variant of local model is denoted by X -LLSMC.

Table 8 provides statistics of goodness of fit for models with K ranging from 2 to 6 and dh from 1
to 4. Models are sorted in ascending order of MSE(V)s and the table displays statistics of the 10 best
models according to this criterion. Compared to Table 3, the X -LLSMC 4-1 achieves a similar accuracy
with less parameters. If we restrict our analysis to a comparison of goodness of fit statistics, both the
X -LLSMC and LLSMC methods appear to be equivalent for computing VaR or TVaR. Plotting the X -
LLSMC regression function leads to another conclusion. Figures 8 and 9 compares X -LLSMC 4-1 and
DFT Butterfly prices for St ranging from 68 to 139, and

√
Vt ∈ {7%, 14%, 23%}. We observe that local

regressions based on clusters of risk factors produce discontinuities in predicted responses on borders
of clusters. Second, we identify local trends not relevant to the global slope of price curves. These two
elements disqualify the X -LLSMC for risk management purposes.
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Figure 9. Butterfly options for St ranging from 68 to 139 and volatilities
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Vt ∈ {7%, 14%, 23%}.
5. Application to life insurance management
In this second example, we evaluate the performances of LSMC and LLSMC in assessing the risk of a
participating pure endowment. The following subsection provides a brief overview of the characteristics
of this product in a market with three risk factors. Since the contract has a closed-form valuation formula,
we will compare the approximate VaRs and TVaRs obtained from LSMC and LLSMC with the exact
values.

5.1. A participating pure endowment
We consider a joint life insurance and financial market. The stock price indices, the interest rate, and the
force of mortality are, respectively, denoted by (St)t≥0, (rt)t≥0, and (μx+t)t≥0. These processes are defined
on a probability space (�, F , P) by the following dynamics:⎛⎝ dSt

drt

dμx+t

⎞⎠ =
⎛⎝ μ St

κr (γr(t) − rt)

κμ (γx(t) − μx+t)

⎞⎠ dt +
⎛⎝StσS 0 0

0 σr 0
0 0 σx(t)

⎞⎠	

⎛⎝dW (1)
t

dW (2)
t

dW (3)
t

⎞⎠ . (5.1)

(
W (1)

t , W (2)
t , W (3)

t

)
t≥0

are independent Brownian motions. μ, κr, κμ, σS, and σr belong to R+, whereas
γr(t), γx(t), and σx(t) are positive functions of time. γr(t) and γx(t) are fitted to term structures of interest
and mortality rates. The initial age of the insured is denoted by x ∈ [0, xmax), xmax > 0. Furthermore, we
assume that the standard deviation of mortality is related to age through the relation σx(t) = αeβ(x+t).
Details about γx(t) and σx(t) are provided in the Online Supplementary Materials. The matrix 	 is the
(upper) Cholesky decomposition of the correlation matrix and is such that

	 =
⎛⎝ εSS εSr εSμ

0 εrr εrμ

0 0 1

⎞⎠ ,

⎛⎝ 1 ρSr ρSμ

ρSr 1 ρrμ

ρSμ ρrμ 1

⎞⎠= 		� ,

where ρSr, ρSμ and ρrμ ∈ (−1, 1). This model incorporates the correlation between financial and mortality
shocks, which can be relevant in the context of events such as a pandemic like Covid-19. It is worth noting
that Ha and Bauer (2022) have also explored a similar framework, although our model differs in terms of
mortality dynamics, where we incorporate mean reversion with age-dependent volatility. Additionally,
our focus is on benchmarking the LLSMC algorithm using a participating pure endowment contract, for
which we derive a closed-form expression for its price. The contract which is subscribed by an individual

https://doi.org/10.1017/asb.2023.25 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.25


506 Donatien Hainaut and Adnane Akbaraly

of age x guarantees a payout at the expiry date (T ) equal to the maximum between a capital CT and the
stock indices ST , in the event of survival. However, the benefit is upper bounded by CM. If we denote by
τ ∈R+ the random time of insured’s death, the value of such a policy is equal to the expected discounted
cash flows under the chosen risk neutral measure:

Vt =EQ

(
e− ∫ T

t rsds1{τ≥T}
(
CT + (ST − CT)+ − (ST − CM)+

) |Ft

)
(5.2)

= 1{τ≥t}CTE
Q

(
e− ∫ T

t (rs+μx+s)ds |Ft

)
+1{τ≥t}E

Q

(
e− ∫ T

t (rs+μx+s)ds
(
(ST − CT)+

) |Ft

)
−1{τ≥t}E

Q

(
e− ∫ T

t (rs+μx+s)ds
(
(ST − CM)+

) |Ft

)
.

For the sake of simplicity, we assume that the dynamics of rt and μx+t are similar under P and Q (this
assumption may be relaxed without impact on our conclusions). The instantaneous return of the stock
indices is rt under Q. The zero-coupon bond, the survival probabilities, and the pure endowment2 are,
respectively, defined by the following expectations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

P(t, T) =EQ

(
e− ∫ T

t rsds|Ft

)
,

Tpx+t =EQ

(
e− ∫ T

t μx+sds |Ft

)
,

TEt = 1{τ≥t}EQ

(
e− ∫ T

t (rs+μx+s)ds |Ft

)
.

The model being affine, we can easily derive the closed-form expressions of these products. In the
remainder of this article, we adopt the following notation:

By(t, T) = 1 − e−y(T−t)

y
,

where y ∈R+ is a positive parameter. We also need the following integrals of By(., .):{∫ T

t
Bκr (u, T)du = 1

κr

(
(T − t) − Bκr (t, T)

)
,∫ T

t
σx(u)Bκμ

(u, T)du = αeβ(x+T)

κμ

(
Bβ(t, T) − Bβ+κμ

(t, T)
)

,

and the integrals of cross-product of Bκr (., T) and σx(.)Bμ(., T):

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫ T

t
Bκr (u, T)2du = 1

κ2
r

(
(T − t) − Bκr (t, T) − 1

2
κrBκr (t, T)2

)
,∫ T

t

(
σx(u)Bκμ

(u, T)
)2

du = α2e2β(x+T)

κ2
μ

(
B2β(t, T) − 2B2β+κμ

(t, T)

+B2(β+κμ)(t, T)
)

,∫ T

t
σx(u)Bκμ

(u, T)Bκr (u, T)du = αeβ(x+T)

κμκr

(
Bβ(t, T) − Bκμ+β(t, T)

−Bκr+β(t, T) + Bκμ+κr+β(t, T)
)

.

In order to match the initial yield curve of zero-coupon bonds, the function γr(T) satisfies the following
relationship:

γr(T) = − 1

κr

∂2
T ln P(0, T) − ∂T ln P(0, T) + σ 2

r

2κ2
r

(
1 − e−2κrT

)
,

where −∂T ln P(0, T) is the instantaneous forward rate. For a given initial mortality curve Tpx, the
function γx(u) is such that

γx(T) = − 1

κμ

∂2
T ln Tpx − ∂T ln Tpx + α2e2βx

2κμ(κμ + β)

(
e2βT − e−2κμT

)
.

2The pure endowment pays one monetary unit at time T if the individual is alive.
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Bond prices, survival probabilities, and endowments admit closed-form expressions presented in the
next proposition.

Proposition 5.1. The price at time t ≤ T of a discount bond of maturity T is linked to the initial interest
rate curve at time t = 0 by the relation

P(t, T) = exp

(
−rtBκr (t, T) − (∂t ln P(0, t)) Bκr (t, T) + ln

P(0, T)

P(0, t)

)
(5.3)

× exp

(
− σ 2

r

4κr

((
1 − e−2κr t

)
Bκr (t, T)2

))
.

In a similar manner, we can show that, when alive at age x + t, the survival probability up to time T
depends on the initial survival term structure as follows:

Tpx+t = exp

(
−μx+tBκμ

(t, T) − (∂t ln tpx) Bκμ
(t, T) + ln Tpx

tpx

)
× (5.4)

exp

(
α2e2β(x+T)

2κ2
μ

(
B2β(t, T) − 2B2β+κμ

(t, T) + B2β+2κμ
(t, T)

))×

exp

(
α2e2βx

2κμ(κμ + β)

(
e2βTB2β+κμ

(t, T) − e2βTB2β(t, T)
))×

exp

(
α2e2βx

2κμ(κμ + β)

(
e−2κμtB2κμ

(t, T) − e−κμ(T+t)Bκμ
(t, T)

))
,

whereas the pure endowment contracts are valued by:

TEt = 1{τ≥t} Tpx+t P(t, T) × (5.5)

exp

(
σrεrμαeβ(x+T)

κμκr

(
Bβ(t, T) − Bκμ+β(t, T) − Bκr+β(t, T) + Bκμ+κr+β(t, T)

))
.

The sketch of the proof is provided in the Online Supplementary Materials. In order to obtain a closed-
form expression of the saving contract (5.2), we perform a change of measure using as Radon–Nikodym
derivative:

dF

dQ

∣∣∣∣
T

=EQ

(
dF
dQ

|FT

)
= e− ∫ T

0 (rs+μx+s)ds

EQ

(
e− ∫ T

0 (rs+μx+s)ds|F0

) . (5.6)

Taking advantage the log-normality of ST under the F-measure, we can derive a closed-form expression
for the call options embedded in the benefits, such as defined in Equation (5.2).

Proposition 5.2. The log-return under the F-measure is log-normal

ln (ST/St) ∼ N(
(
μF(t, T), vF(t, T)2

)
with a mean and variance, respectively, given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μF(t, T) = − σ 2
r
2

∫ T

t
Bκr (u, T)2du − σrεrμ

∫ T

t
σx(u)Bκr (u, T)Bκμ

(u, T)du

− σ 2
S (T−t)

2
− σSσr

(
εSrεrr + εSμεrμ

) ∫ T

t
Bκr (u, T)du

−σSεSμ

∫ T

t
σx(u)Bκμ

(u, T)du ,

vF(t, T)2 = σ 2
S (T − t) + σ 2

r

∫ T

t
Bκr (u, T)2du

+2σSσr

(
εSrεrr + εSμεrμ

) ∫ T

t
Bκr (u, T)du.

(5.7)

If we adopt the following notations: {
d2(t, T) = ln

(
C

St/P(t,T)

)
−μF(t,T)

vF(t,T)
,

d1(t, T) = d2 − vF(t, T),
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Table 9. Model parameters and features of the contract.

Parameters
μ 0.04642 σS 0.18470
κr 0.20482 σr 0.00774
ρSr −0.03957 r0 0.0235
α 8.5277e-7 β 0.11094
κμ 0.83925 μ0 3.325e-03
ρS μ −0.05000 ρrμ 0.00000
t 5 years T 10 years
S0 100 CT 100
x 50 CM 100(1 + 3%)10

the embedded call options in the participating pure endowment (5.2) are valued by:

1{τ≥t}E
Q

(
e− ∫ T

t (rs+μx+s)ds
(
(ST − C)+

) |Ft

)
(5.8)

=T Et

⎡⎣SteμF(t,T)+ vF(t,T)2

2

P(t, T)

 (−d1(t, T)) − CT 
 (−d2(t, T))

⎤⎦ .

We refer to the Online Supplementary Materials for a proof of this result. The exact value of the pure
endowment is obtained by combining Equations (5.5) and (5.8). This allows us to compare LSMC and
LLSMC approximated values to exact prices in the next subsection.

5.2. Numerical analysis
We fit a Nelson–Siegel model to the Belgian state yield curve3 on the 23/11/22. Initial survival probabili-
ties are described by a Makeham’s model adjusted to male Belgian mortality rates.4 Details are provided
in the Online Supplementary Materials. Other market parameters are estimated from time series of the
Belgian stock index BEL 20 and of the 1 year Belgian state yield from the 26/11/10 to the 23/11/22. The
correlations ρS μ and ρr μ are set to -5% and 0%. Parameter estimates are reported in Table 1.

The three risk factors are the normed stock price, normed short rate, and normed mortality rate at the
end of the time horizon of primary simulations, noted t:

X t: =
⎛⎝St −EP

0 (St)√
VP

0 (St)
,
√

rt −EP
0 (rt)√

VP
0

(√
rt

) ,
√

μx+t −EP
0 (μx+t)√

VP
0

(√
μx+t

)
⎞⎠ .

Expectations and variances are approached by empirical averages and variances of the simulated sam-
ple. The contract features are reported in Table 1. We simulate 10,000 primary scenarios and a single
secondary response per scenario,

Y(t) = e− ∫ T
t rs+μsds

(
CT + (ST − CT)+ − (ST − CM)+

)
.

We work with 350 steps of time per year. We also calculate the exact value of the contract in each
scenario using the analytical formulas from previous section.

The plots of Figure 10 show responses versus stock prices, interest, and mortality rates. The red dots
correspond to LSMC estimates of the endowment 1 year ahead, with a second-order polynomial of risk
factors.

3Source: national bank of Belgium (www.nbb.be).
4Source: Human mortality database (www.mortality.org).
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Table 10. R2, MSE, MSE(V), and runtimes of regressions of Yt on Xt in the
LSMC model.

√
EMSE is the MSE valued with analytical prices. d.f. is the

number of parameters.

dh R2
√

MSE(V)
√

MSE
√

EMSE d.f. Time (s)
2 0.3815 1.98 11.48 1.14 10 12.83
3 0.3874 2.09 11.35 0.97 20 11.58
4 0.3864 2.14 11.29 0.96 35 11.42
5 0.3875 2.90 11.40 0.80 56 11.56
6 0.3955 3.93 11.25 0.91 84 11.58
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Figure 10. Simulated responses Y(t) = versus stock prices St, rt and μx + t. The red dots are the
predictions h(Xt) from the LSMC with a second-order polynomials regression.

Table 10 reports the R2, the MSE, and MSE(V) of the LSMC, such as defined by Equations (3.8),
(3.10), and (3.11). The validation set counts 1000 triplets of risk factors. We consider combinations of
q = 10 empirical quantiles of risk factors for probabilities from 1 to 5% and from 95 to 99% by step of
1%. We also calculate the exact MSE between model and analytical prices of the endowment, denoted
by EMSE.

Table 10 provides statistics about LSMC polynomial regressions of order dh from 2 to 6. The R2s
slightly increase with the complexity of the model. The MSE(V) on the validation set is minimized by a
polynomial of second degree. The LSMC is estimated in 12 s. Table 3 presents the statistics of goodness
of fit for the LLSMC model. The number of clusters, K , varies from 2 to 5. We test polynomials of
degrees dh from 1 to 3 and dγ equal to 1 and 3. Models are sorted by increasing MSE(V)s and we report
statistics of the 10 first best models according to this criterion. The optimal goodness of fit is achieved
by using 5–3 clusters, a square or cubic regression on each cluster, and a cubic multinomial logistic
regression. Compared to the LSMC, the LLSMC reduces the MSE(V) and the EMSE by more than half,
whereas MSE on the training set remains comparable. This indicates that the LLSMC model provides a
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Table 11. R2, MSE, MSE(V), R2
loc, and runtimes for the LLSMC model.√

MSE, exact is the MSE valued with analytical prices. d.f. is the number
of parameters.

K dγ dh R2
√

MSE(V)
√

MSE
√

EMSE d.f. R2
loc Time (s)

5 3 2 0.3952 0.65 11.28 0.47 130 0.97 76.44
4 3 3 0.3952 0.69 11.28 0.41 140 0.96 46.72
3 3 2 0.3952 0.76 11.25 0.37 70 0.93 71.14
4 3 2 0.3952 0.77 11.26 0.41 100 0.95 59.80
5 2 2 0.3918 0.79 11.29 0.70 90 0.97 68.32
5 3 3 0.3953 0.81 11.31 0.47 180 0.97 68.00
2 3 2 0.3946 0.84 11.23 0.37 40 0.88 72.97
5 3 1 0.3949 0.86 11.26 0.49 100 0.97 78.56
4 2 3 0.3923 0.87 11.30 0.71 110 0.96 55.33
4 2 2 0.3923 0.88 11.27 0.71 70 0.95 68.57
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Figure 11. Endowment prices for St ranging from 40 to 310, rt ∈ {−0.16%, 2.47%, 5.13%} and
μx+t = 0.0017.

better fit. The computational times range from 47 to 79 s depending on the model setting. We provide in
the Online Supplementary Materials the goodness of fit statistics and runtimes for LSMC and LLSMC,
computed with 100,000 simulations instead of 10,000. We do not observe significant differences in MSE
and R2. This validates our choice to set the number of scenarios to 10,000.

We next compare the LSMC of order 3 and the LLSMC with hyperparameters K = 5, dγ = 3, dh = 2
as this setting leads to a low MSE(V) and a high R2

loc. Figure 6 compares LSMC and LLSMC endowment
values for stock prices St ranging from 43 to 302, the 1% and 99% percentiles of simulated stock prices
over 5 years and rt ∈ {−0.16%, 2.47%, 5.13%}, and the 1%, 50%, and 99% quantiles of simulated interest
rates. The mortality rate is set to its average μx+t = 0.0017. LSMC and LLSMC both achieve a good
accuracy in these three cases. Nevertheless, pricing errors of the LLSMC, reported in Table 12, are
slightly lower on average than those of the LSMC when rt ∈ {−0.16%, 2.47%}. In particular, the LLSMC
better fits extremely low values. This will be confirmed by the comparison of VaRs and TVaRs.

Figure 12 displays VaRs and TVaRs computed with the LLSMC 5-3-2, the LSMC of order 3, and
analytical values. Tables 13 and 14 report the relative spread between VaR/TVaRs computed with
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Table 12. Average pricing errors for the three cases presented in
Figure 11.

rt =-0.16% rt =2.47% rt =5.13%
LLSMC, 5-3-2 0.9441 0.3353 0.7314
LSMC, order 3 1.2602 0.8872 0.7606

Table 13. VaR 5 years, LSMC model, and LLSMC.

Relative errors in %
VaR 0.1% 1% 2% 3% 97% 98% 99% 99.9%
LLSMC 5-3-2 0.73 0.28 0.25 0.09 −0.35 −0.43 −0.51 −0.6
LLSMC 4-3-3 0.35 0.44 0.32 0.12 −0.19 −0.2 −0.27 −0.64
LLSMC 3-3-2 1.32 1.11 0.85 0.76 −0.09 −0.11 −0.22 −0.57
LSMC dh =2 −0.99 −0.29 0.23 0.59 0.94 1.21 0.98 1.64
LSMC, dh =3 −3.26 −2.82 −1.28 −1.01 −0.01 −0.02 −0.03 -0.44

Table 14. Expected shortfall, 5 years, LSMC model, and LLSMC.

Relative errors in %
Tail VaR 0.1% 1% 2% 3% 97% 98% 99% 99.9%
LLSMC 5-3-2 0.37 0.54 0.5 0.38 −0.41 −0.44 −0.49 −0.6
LLSMC 4-3-3 −0.19 0.45 0.49 0.39 −0.22 −0.28 −0.39 −1.37
LLSMC 3-3-2 2.13 1.45 1.26 1.14 −0.19 −0.24 −0.32 −0.51
LSMC dh =2 −8.41 −1.16 −0.6 −0.21 1.19 1.21 1.23 1.62
LSMC, dh =3 −3.54 −2.88 −2.42 −1.96 0.05 0.05 0.11 0.06
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Figure 12. Lower/upper VaRs and TVaRs, LLSMC 5-3-2, LSMC of order 3.
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approximated and exact analytical prices. These results emphasize that LLSMC provides a more accurate
estimate of VaR/TVaRs. In particular, the LSMC’s inability to closely replicate extreme values results
in a significant divergence of TVaR for very low or high confidence levels.

6. Conclusions
This article proposes a straightforward and powerful extension of the LSMC method for risk manage-
ment by incorporating local and logistic regressions. The novelty of our approach lies in segmenting
the data set based on responses rather than risk factors. We then employ polynomial regressions(̂
hk( · )

)
k=1,...,K

for each cluster. For a given vector of risk factors x, ĥk(x) approximates the market value of
future cash flows when the corresponding responses belong to the kth cluster. The unconditional value
of future cash flows is obtained by summing ĥk(x), weighted by probabilities of cluster membership
estimated through a multinomial logistic regression.

We validate the LLSMC method through two case studies. In both cases, numerical experiments
demonstrate that LLSMC achieves superior accuracy compared to LSMC across a broader range of
scenarios. We also observe that LLSMC yields fewer erratic prices for lower and upper quantiles of
risk factors. This confirms that LLSMC is better suited for computing risk measures such as VaR
and tail value at risk (Tail VaR) compared to LSMC. Furthermore, LLSMC provides a higher level
of interpretability. We also compare LLSMC to a local method that relies on partitioning risk factors
(X -LLSMC). Our findings reveal that this approach suffers from Simpson’s paradox, where X -LLSMC
prices exhibit local trends that are not relevant in the global context.

This work opens avenues for further research. First, the LLSMC algorithm is likely to be more
efficient than LSMC for estimating the solvency capital requirement within the Solvency II frame-
work. Second, we can consider replacing local polynomial approximations with local machine learning
regressions. This hybrid procedure would be particularly suitable for managing a large number of risk
factors. Finally, LLSMC can be adapted to price American options by discretizing the time horizon and
estimating backward local regressions at each time step.
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Appendix A

Proof of Proposition 2.1. Let us denote by νX,Y(x, y) the joint probability density function (pdf) of
(Xt, Y(t)) and by νX(x), νY(y) the marginal pdfs. According to the Bayes’ rule, the conditional density of
Y(t)|Xt is such that

νX,Y(x, y) = νY|X(y|x)νX(x)

and the expectation in (2.5) may be rewritten as

EQ
(
(h(Xt) − Y(t))2

)=∫
dom(X)

∫
dom(Y)

(h(x) − y)2
νY|X(y|x)dy νX(x) dx.

The function h(Xt) minimizes (2.5) if and only if

h(x) = arg min
∫

dom(Y)

(h(x) − y)2
νY|X(y|x)dy ,

which is achieved for h(x) =EQ (Y(t)|Xt = x).
end
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Appendix B

Algorithm 2 : Algorithm for K-means clustering.
Initialization:

Randomly set up initial positions of centroids c1(0),. . .,cK(0).
Main procedure:

For e = 0 to maximum epoch, emax

Assignment step:
For i = 1 to n

(1) Assign (xi, yi) to a cluster Sk(e) and yi to Yk(e) where k ∈ {1, ..., K}
Sk(e) = {(xi, yi) : d(yi, ck(e)) ≤ d(yi, cj(e)) ∀j ∈ {1, ..., K}} ,
Yk(e) = {yi : d(yi, ck(e)) ≤ d(yi, cj(e)) ∀j ∈ {1, ..., K}}.

End loop on data set, i.
Update step:
For k = 1 to K

(2) set the new centroids ck(e + 1) to the center of gravity of Yk(e)

ck(e + 1) = 1

|Yk(e)|
∑

yi∈Yk(e)

yi.

End loop on centroids, k.
(3) Update the intraclass inertia :

Ia(e + 1) = 1

n

K∑
k=1

∑
yi∈Yk(e)

d(xi, ck(e + 1)).

End loop on epochs e
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