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Abstract

For positive integers t1, . . . , tk, let p̃(n, t1, t2, . . . , tk) (respectively p(n, t1, t2, . . . , tk)) be the number of
partitions of n such that, if m is the smallest part, then each of m + t1,m + t1 + t2, . . . ,m + t1 + t2 + · · · + tk−1
appears as a part and the largest part is at most (respectively equal to) m + t1 + t2 + · · · + tk. Andrews
et al. [‘Partitions with fixed differences between largest and smallest parts’, Proc. Amer. Math. Soc.
143 (2015), 4283–4289] found an explicit formula for the generating function of p(n, t1, t2, . . . , tk). We
establish a q-series identity from which the formulae for the generating functions of p̃(n, t1, t2, . . . , tk) and
p(n, t1, t2, . . . , tk) can be obtained.

2010 Mathematics subject classification: primary 11P84; secondary 05A17.

Keywords and phrases: partition, difference between largest and smallest parts, q-binomial theorem.

1. Introduction
A partition of a positive integer n is a weakly decreasing sequence of positive integers
whose sum is n. Let p(n, t) be the number of partitions of n with difference t between
its largest and smallest parts. Andrews et al. [2] established the following formula for
the generating function of p(n, t) for t > 1:
∞∑

n=1

p(n, t)qn =
qt−1(1 − q)

(1 − qt)(1 − qt−1)
−

qt−1(1 − q)
(1 − qt)(1 − qt−1)(q; q)t

+
qt

(1 − qt−1)(q; q)t
. (1.1)

Here and in the rest of paper, we will adopt the usual q-series notation:

(a; q)0 = 1,

(a; q)n =

n∏
k=1

(1 − aqk−1), n ∈ N,

(a; q)∞ =

∞∏
k=1

(1 − aqk−1).
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In [2], Andrews et al. also generalised (1.1) by considering partitions with specified
distances. Define p(n, t1, t2, . . . , tk) to be the number of partitions of n such that, if m
is the smallest part, then each of m + t1,m + t1 + t2, . . . ,m + t1 + t2 + · · · + tk−1 appears
as a part and the largest part is m + t1 + t2 + · · · + tk, where ti ≥ 1 for 1 ≤ i ≤ k. Let
Pt1,t2,...,tk (q) denote the generating function of p(n, t1, t2, . . . , tk). Andrews et al. proved
the following theorem by using Heine’s transformation.

Theorem 1.1 (Andrews et al. [2]). For t = t1 + t2 + · · · + tk > k,

Pt1,t2,...,tk (q) =

(−1)kqT−(k+1
2 )

( k∑
j=0

[
t
j

]
(−1) jq( j+1

2 ) − (q; q)t

)
[
t − 1

k

]
(1 − qt)(q; q)t

,

where T := kt1 + (k − 1)t2 + · · · + 2tk−1 + tk and[
A
B

]
:=

(q; q)A

(q; q)B(q; q)A−B
for 0 ≤ B ≤ A.

Later, Breuer and Kronholm [3] studied the number p̃(n, t) of partitions of n with
the difference between largest and smallest parts bounded by t and obtained∑

n≥1

p̃(n, t)qn =
1

1 − qt

( 1
(q; q)t

− 1
)
. (1.2)

Chapman [4] gave another proof of (1.2) by using elementary q-series manipulation,
involving no results deeper than the q-binomial theorem. Overpartitions with bounded
differences between largest and smallest parts have also been examined (see [6, 7]).
Chern [5] established an interesting identity which includes (1.1) and the results in
[6, 7] as special cases.

Chapman [4] asked for an elementary proof of Theorem 1.1 and that is the goal
of this paper. To this end, we consider the function p̃(n, t1, t2, . . . , tk) counting
the number of partitions of n such that, if m is the smallest part, then each of
m + t1,m + t1 + t2, . . . ,m + t1 + t2 + · · · + tk−1 appears as a part and the largest part
is not greater than m + t1 + t2 + · · · + tk. We will establish the following formula for
the generating function P̃t1,t2,...,tk (q) of p̃(n, t1, t2, . . . , tk).

Theorem 1.2. For t = t1 + t2 + · · · + tk > k,

P̃t1,t2,...,tk (q) =

(−1)k+1qTk−1−(k
2)
( k−1∑

j=0

[
t
j

]
(−1) jq( j+1

2 ) − (q; q)t

)
[
t − 1
k − 1

]
(1 − qt)(q; q)t

,

where Tk := kt1 + (k − 1)t2 + · · · + 2tk−1 + tk.
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2. Proof of Theorem 1.2

We first establish the following identity, which is useful for our proofs.

Lemma 2.1. We have

∞∑
r=k

qr

1 − qr

[
t + r − k

t

]
=

(−1)k+1q−(
k
2)

(q; q)t(1 − qt)
[
t − 1
k − 1

] ( k−1∑
j=0

(−1) jq j( j+1)/2
[
t
j

]
− (q; q)t

)
. (2.1)

Proof. We first observe that we can rewrite the left-hand side of (2.1) in the form

∞∑
r=k

qr

1 − qr

[
t + r − k

t

]
=

∞∑
r=k

qr

1 − qr

(qt+1; q)r−k

(q; q)r−k

=
1

(qt−k+1; q)k

∞∑
r=k

qr(qt−k+1; q)r

(q; q)r
(qr−k+1; q)k−1. (2.2)

Define

S :=
∞∑

r=k

qr(qt−k+1; q)r

(q; q)r
(qr−k+1; q)k−1.

Since (qr−k+1; q)k−1 = 0 for 1 ≤ r < k, we can take the summation in the definition of S
from r = 1 to∞. Applying the identity

(−qz; q)n =

n∑
j=0

q(n− j)(n− j+1)/2zn− j
[
n
j

]
(2.3)

from [1, Theorem 3.3],

S =

∞∑
r=1

qr(qt−k+1; q)r

(q; q)r

k−1∑
j=0

q(k−1− j)(k− j)/2(−qr−k)k−1− j
[
k − 1

j

]

= (−1)k+1q−(
k
2)

k−1∑
j=0

(−1) jq j( j+1)/2
[
k − 1

j

] ∞∑
r=1

(qt−k+1; q)r

(q; q)r
(qk− j)r.

By the q-binomial theorem [1, Theorem 2.1],

S = (−1)k+1q−(
k
2)

k−1∑
j=0

(−1) jq j( j+1)/2
[
k − 1

j

] ( (qt− j+1; q)∞
(qk− j; q)∞

− 1
)

= (−1)k+1q−(
k
2)

k−1∑
j=0

(−1) jq j( j+1)/2
[
k − 1

j

] ( (q; q)k− j−1

(q; q)t− j
− 1

)
.
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Applying (2.3) again,

S = (−1)k+1q−(
k
2)
( k−1∑

j=0

(−1) jq j( j+1)/2
[
k − 1

j

]
(q; q)k− j−1

(q; q)t− j
− (q; q)k−1

)

= (−1)k+1q−(
k
2)(q; q)k−1

( k−1∑
j=0

(−1) jq j( j+1)/2 1
(q; q) j(q; q)t− j

− 1
)
.

From (2.2),

∞∑
r=k

qr

1 − qr

[
t + r − k

t

]
=

(−1)k+1q−(
k
2)(q; q)k−1

(qt−k+1; q)k

( k−1∑
j=0

(−1) jq j( j+1)/2 1
(q; q) j(q; q)t− j

− 1
)
,

which is easily seen to be equivalent to (2.1). �

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Let P̃t1,t2,...,tk ,m,r be the set of partitions with the restriction that
for each λ ∈ P̃t1,t2,...,tk ,m,r, there are r parts in λ with smallest part m, largest part ≤ m + t
and m + t1,m + t1 + t2, . . . ,m + t1 + · · · + tk−1 appear as parts in λ. Then

P̃t1,t2,...,tk (q) =

∞∑
m=1

∑
r≥k

∑
λ∈P̃t1 ,t2 ,...,tk ,m,r

q|λ|,

where |λ| denotes the sum of the parts in λ. For λ ∈ P̃t1,t2,...,tk ,m,r, delete the k parts
m,m + t1, . . . ,m + t1 + · · · + tk−1 and reduce the remaining parts by m. This gives a
partition µ with largest part ≤ t and with at most r − k parts. From [1, Theorem 3.1],
the generating function of such partitions is given by the q-binomial coefficient

[t+r−k
t

]
.

Hence, ∑
λ∈P̃t1 ,t2 ,...,tk ,m,r

q|λ| = qrmq(k−1)t1+(k−2)t2+···+tk−1

[
t + r − k

t

]

and

P̃t1,t2,...,tk (q) =

∞∑
m=1

∑
r≥k

qrmq(k−1)t1+(k−2)t2+···+tk−1

[
t + r − k

t

]

= qTk−1

∞∑
r=k

qr

1 − qr

[
t + r − k

t

]
.

By Lemma 2.1, we get the desired result. �

To end this paper, we present another proof of Theorem 1.1.
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Proof of Theorem 1.1. Let Pt1,t2,...,tk ,m,r be the partitions in P̃t1,t2,...,tk ,m,r with the
additional condition that the largest part is m + t. Then it is not hard to see that∑

λ∈Pt1 ,t2 ,...,tk ,m,r

q|λ| = qrmqTk

[
t + r − k − 1

t

]
.

Hence,

Pt1,t2,...,tk (q) =

∞∑
m=1

∞∑
r=k+1

qrmqTk

[
t + r − k − 1

t

]
= qTk

∞∑
r=k+1

qr

1 − qr

[
t + r − k − 1

t

]
.

By Lemma 2.1,

Pt1,t2,...,tk (q) =
(−1)kqTk−(k+1

2 )

(q; q)t(1 − qt)
[
t − 1

k

] ( k∑
j=0

(−1) jq j( j+1)/2
[
t
j

]
− (q; q)t

)
.

This completes the proof. �
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