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Cross-stream migration of a deformable fluid particle is investigated computationally in
a pressure-driven channel flow of a viscoelastic fluid via interface-resolved simulations.
Flow equations are solved fully coupled with the Giesekus model equations using an
Eulerian–Lagrangian method and extensive simulations are performed for a wide range
of flow parameters to reveal the effects of particle deformability, fluid elasticity, shear
thinning and fluid inertia on the particle migration dynamics. Migration rate of a
deformable particle is found to be much higher than that of a solid particle under similar
flow conditions mainly due to the free-slip condition on its surface. It is observed that the
direction of particle migration can be altered by varying shear thinning of the ambient
fluid. With a strong shear thinning, the particle migrates towards the wall while it migrates
towards the channel centre in a purely elastic fluid without shear thinning. An onset of
elastic flow instability is observed beyond a critical Weissenberg number, which in turn
causes a path instability even for a nearly spherical particle. An inertial path instability is
also observed once particle deformation exceeds a critical value. Shear thinning is found to
be suppressing the path instability in a viscoelastic fluid with a high polymer concentration
whereas it reverses its role and promotes path instability in a dilute polymer solution. It is
found that migration of a deformable particle towards the wall induces a secondary flow
with a velocity that is approximately an order of magnitude higher than the one induced
by a solid particle under similar flow conditions.
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1. Introduction

Cross-stream or lateral migration of particles in a pressure-driven flow has been an active
area of research due to its relevance in many industrial (Shannon et al. 2008; Vidic
et al. 2013) and biological (Nagrath et al. 2007) applications. The phenomenon of lateral
migration is specifically used for the manipulation of biological cells and particles in
various microfluidic applications (Xuan, Zhu & Church 2010; Amini, Lee & Di Carlo
2014). The wall-normal component of force acting on the particle is responsible for its
lateral migration and it is usually called the lift force. The lift force which is often relatively
small in magnitude plays a central role in determining the final position of an individual
particle and the particle distribution in particulate flows (Hidman et al. 2022).

The lateral motion of a particle was first investigated experimentally by Segre &
Silberberg (1961) in a tube flow. Their observation was later confirmed by many
experimental (Karnis & Mason 1966; Matas, Morris & Guazzelli 2004b) and numerical
(Feng, Hu & Joseph 1994; Yang et al. 2005) studies. The same observation was made
in rectangular channels where particles move towards or away from the channel wall in
the cross-streamwise direction (Frank et al. 2003; Del Giudice et al. 2013; Wang, Yu
& Lin 2018; Yuan et al. 2018). The situation becomes more involved when the ambient
fluid is viscoelastic as the fluid elasticity plays its role in pushing the particle towards
the centre of the channel (Seo, Kang & Lee 2014). In the case of viscoelastic fluids,
most of the existing literature is primarily focused on solid particles suspended in a
viscoelastic fluid (Villone et al. 2013). In the absence of inertia, the cross-stream migration
of a non-deformable particle is not possible to occur in a confined Newtonian fluid flow
due to the inherent reversibility of Stokes flow. However, the nonlinear characteristics of
viscoelasticity provide the required irreversibility making the lateral migration possible in
a complex fluid even with negligible inertia. The lateral migration of particles in complex
fluids and their application in manipulating the particles in various microfluidic devices
have been summarized in the review paper by D’Avino, Greco & Maffettone (2017).

In the presence of both inertia and viscoelasticity, several factors determine the
orientation of particle migration in a pressure-driven channel flow. Some of these factors
reported in numerous studies so far include shear-induced lift force (Saffman 1965),
wall-induced lift force (Shi et al. 2020), fluid elasticity (Karnis & Mason 1966; Raffiee,
Dabiri & Ardekani 2017), initial position of the particle (e.g. Villone et al. 2011), geometry
of the channel (Yu et al. 2019), the shear thinning of the ambient fluid (Li, McKinley
& Ardekani 2015) and particle rotation rate (the Magnus effect). The effects of one or
more of these factors determine the migration of a particle towards or away from the
channel wall. Moreover, the deformability of an object adds further complexity to this
phenomenon, and therefore, the complex dynamics of lateral migration of deformable
particles in viscoelastic fluids is yet to be fully explored. As a result of this migration,
some interesting secondary flow features also emerge in the vicinity of the particle. One of
them is a secondary flow which is perpendicular to the primary flow (streamwise) direction
and may have a velocity as large as the order of the particle migration velocity. However,
this secondary flow is generated in non-circular channels only by the viscoelastic fluids
having a non-zero second normal stress difference (Debbaut et al. 1997).

When a spherical particle moves with a relative velocity in a shear flow, a force is
exerted on the particle by the surrounding fluid in a direction perpendicular to its relative
motion. This force is known as the shear-induced lift force, first calculated analytically
by Saffman (1965) for a solid sphere. This force pushes the particle towards the channel
wall until it is balanced by the wall-induced lift force (Feng et al. 1994; Matas, Morris
& Guazzelli 2004a). The flow field around the particle is significantly influenced by the
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Lateral migration of a deformable particle

presence of the wall. The wall decelerates the motion of the particle in the streamwise
direction due to extra drag and repels it away from the wall if the characteristic length
of the particle is much smaller than the channel size. If the characteristic length of the
particle is comparable to the channel size, like the motion of bubbles in capillaries, the
channel walls constrain the motion of the immersed object, as explained by Michaelides
(2006).

The well-known Magnus effect (rotation-induced lift force) is another factor influencing
the migration of an object in the channel flow. For a solid particle having the no-slip
condition on its surface, the difference in the relative fluid velocity on its sides may cause it
to rotate. This shear-induced rotation generates an additional transverse pressure difference
and the resulting lift force is referred to as the ‘Magnus effect’ (Rubinow & Keller 1961).
Instead of a solid particle, if the object is deformable, the deformability induces yet another
lateral migration directed towards the channel centre (Chan & Leal 1979). Similarly, the
initial position of the particle in the channel has a direct impact on its lateral migration
as dictated by the gradient of velocity at that initial location. The size of the particle as
compared with the channel is another important variable to be considered while analysing
the lateral migration in a pressure-driven flow. It is generally characterized by the blockage
ratio (Di Carlo 2009) defined as b = d/H, where d is the particle size (e.g. diameter) and
H is the channel width. It has been observed in both experimental (Lim et al. 2014) and
numerical (Mortazavi & Tryggvason 2000) works that a deformable object with a diameter
beyond a certain limit migrates towards the channel centre due to deformation-induced lift
force while a smaller one migrates towards the wall due to inertial lift force. This feature
is used in many microfluidic devices for sorting particles of different sizes (Nam et al.
2015).

The Magnus effect, shear-induced lift force and wall-induced lift force may be referred
to as the ‘inertial effects’ as all these forces primarily originate due to fluid inertia. If
the ambient fluid is viscoelastic, the elastic effects tend to push the object towards the
centre (Seo et al. 2014) while the inertial effects tend to move it towards the channel wall.
The relative strength of inertia and elasticity determines the final equilibrium position
of a non-deformable particle in a channel. This interplay between inertia and elasticity
is quantified by the elasticity number, defined as El = Wi/Re, where Wi and Re are the
Weissenberg number and the Reynolds number, respectively. Furthermore, if the ambient
fluid exhibits a shear-thinning behaviour as well, it has been reported by Li et al. (2015) that
the shear thinning amplifies inertial effects and thus promotes particle migration towards
the wall. Hazra, Mitra & Sen (2020) experimentally studied the role of shear thinning on
the cross-stream migration of droplets in a confined shear flow for Re < 1. They observed
that larger droplets followed their original streamlines while the smaller ones migrated
towards the centre. Similarly, to predict the role of elasticity, Mukherjee & Sarkar (2014)
performed computational simulations of a viscoelastic drop in a Newtonian fluid for a
linear shear flow with negligible inertia. They found a non-monotonic impact of elasticity
on the migration velocity of the droplet.

The above-mentioned list of factors affecting the migration dynamics of a deformable
object is still not exhaustive. In the presence of surfactant contamination, the
surfactant-induced Marangoni stresses oppose the inertial lift force and can completely
alter the migration dynamics of an object. In our earlier work (Muradoglu & Tryggvason
2014; Ahmed et al. 2020b), it was observed that, in the pressure-driven channel flow of
a Newtonian fluid, clean spherical bubbles move towards the wall while the deformable
ones migrate away from it. However, even the spherical bubbles can move away from the
wall in the presence of a strong enough surfactant.
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Although there are a large number of experimental and numerical works devoted to
solid particle migration, much less attention has been paid to the combined effects of
inertia, viscoelasticity, and shear thinning on the lateral migration of a deformable fluid
particle and only a few details are available in the existing literature, which motivates the
present study. The main focus here is to explore the combined effects of fluid inertia,
viscoelasticity and particle deformability on its lateral migration in a shear-thinning
viscoelastic fluid. For this purpose, fully interface-resolved numerical simulations are
performed using an Eulerian–Lagrangian method (Tryggvason et al. 2001) for a wide
range of relevant flow parameters to explore the features of this complex flow field. In
addition to the lateral migration, the particle-induced elastic instability and its impact
on the onset of a path instability, the effect of shear thinning, and the resulting flow are
investigated computationally. The secondary flow field developed due to the second normal
stress difference in the flow is also examined and quantified.

The rest of the paper is organized as follows. The problem statement and the
computational set-up are described in the next section. The governing equations and the
numerical method are briefly described in § 3. The results are presented and discussed in
§ 4 followed by the conclusions in § 5. A grid convergence study is conducted and the
results are presented in the Appendix.

2. Problem statement and computational set-up

Microfluidic devices usually use channels with rectangular cross-sections due to their
relative ease of fabrication. If the aspect ratio of the channel is reduced, the relative
influence of channel walls on the flow field becomes more pronounced (Villone et al.
2013). The limiting case is obtained for a square-shaped cross-section, which is selected in
the present study. Figure 1(a) shows the computational domain which is a square channel
with the dimensions of H, L and H in the x, y and z directions, respectively. Periodic
boundary conditions are applied in the streamwise (y) direction whereas the other two
directions (x and z) have no-slip/no-penetration boundary conditions. The centroid of the
particle is denoted by (xb, yb, zb) and a spherical fluid particle of diameter d is initially
located at (xbi, ybi, zbi) = (0.5H, H, 0.25H) unless specified otherwise. The value of H
is set to 4d. After performing the simulations by gradually increasing the length of the
channel in the streamwise (y) direction to check the effects of periodicity, the channel
length is set to L = 4H, which is found to be sufficient to eliminate any significant effects
of periodicity.

The deformable particle is at rest initially at t = 0 and a constant pressure gradient
dp0/dy = −Uoμoπ

3/4kH2 is applied in the y-direction to drive the flow, where Uo is the
flow velocity at the centreline of the channel in the case of a fully developed single-phase
laminar flow and k is a geometric constant. For a square channel, k ≈ 0.571 (Fetecau &
Fetecau 2005). It is important to note that Uo is the centreline velocity in the channel
for the Newtonian and Oldroyd-B fluids. In a Giesekus fluid, the centreline velocity
becomes greater than Uo due to the shear-thinning effect. However, throughout this paper,
all the non-dimensional numbers are defined based on Uo corresponding to the applied
pressure gradient in the Newtonian fluid unless stated otherwise. Here, H, Uo and H/Uo
are used as the length, velocity and time scales, respectively. The stresses are normalized
by μoUo/H. The normalized non-dimensional quantities are denoted by the superscript
(∗). The blockage ratio (b = d/H) is fixed at 0.25. The density (ρo/ρi) and the viscosity
(μo/μi) ratios are set to 10 in this study where the subscripts i and o denote the dispersed
and continuous phases, respectively. These comparatively smaller ratios are used to reduce
the spatial error exacerbated by sudden jumps in material properties across the interface
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Figure 1. (a) Computational domain shown with the schematic representation of a deformable fluid particle
migrating towards the wall of the channel. The streamlines of the flow are shown above the particle in
the xz-plane once the particle reaches its equilibrium position closer to the wall. The distribution of the
second normal stress difference (N2) is shown in the xz-plane upstream of the particle at y = 3.95. (b) Eight
vortices showing the secondary flow field in the same xz-plane away from the particle at y = 3.95 are shown.
The velocity vectors are coloured by the magnitude of flow velocity in that plane. (Re = 18.9, El = 0.05,

Eo = 0, Ca = 0.01, α = 0.1.)

and enhance numerical stability, and thus relax the excessive grid resolution requirement
and time step restrictions. Tasoglu et al. (2010) and Olgac, Izbassarov & Muradoglu (2013)
have demonstrated that the results are not affected significantly for these types of flows at
higher ratios. In the present case of pressure-driven viscoelastic channel flow, although not
shown here, simulations have been performed for the density and viscosity ratios of 20,
40 and 80 as well, and the results are found to be not very sensitive to the increase in the
density ratio, i.e. the difference is less than 1 % but more sensitive to the viscosity ratio
due to a higher contribution of polymeric viscosity in a concentrated polymer solution.
It is observed that at a higher viscosity ratio, the secondary flow velocity induced by the
fluid particle once it attains its equilibrium position (as will be discussed in detail in § 4.4)
is not much affected but the lateral displacement of the fluid particle is still significantly
influenced by this higher viscosity ratio. As the viscosity ratio in the liquid–air system
of a complex fluid flow can be as high as 108 depending upon the molecular weight
and concentration of the polymer molecules, the term ‘deformable fluid particle’ is used
instead of a bubble in the present study.

In addition to the density and viscosity ratios, the flow conditions are characterized by
the following non-dimensional numbers defined as

Re = ρoUoH
μo

, Wi = λUo

H
, Eo = g�ρd2

σ
, Mo = gμ4

o

ρoσ 3 , Ca = μoUo

σ
, β = μs

μo
,

(2.1a–f )

where Re, Wi, Eo, Mo and Ca denote the Reynolds, Weissenberg, Eötvös, Morton and
capillary numbers, respectively. Note that the Morton number is not an independent
parameter. Additionally, β is the ratio of solvent viscosity to zero shear viscosity of
the viscoelastic fluid. The density difference is defined as �ρ = ρo − ρi. The particle
deformation (χ ) is quantified as

χ =
√

Imax/Imin, (2.2)

where Imax and Imin are the maximum and minimum eigenvalues of the second moment of
inertia tensor defined as

Iij = 1
Vb

∫
V
(xi − xio)(xj − xjo) dV, (2.3)
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where Vb is the volume of the particle, and xio and xjo are the coordinates of the particle
centroid in the ith and jth directions, respectively. Bunner & Tryggvason (2003) have
shown that deformation quantified by this method is approximately equal to the ratio of
the shortest to the longest axis for modestly deformed ellipsoids. However, for complex
particle shapes, this definition of deformation gives a more general measure for the particle
deformation and eliminates uncertainty in identifying the longest and the shortest axes.

3. Governing equations and numerical method

The flow and the Giesekus model equations are described here in the context of
the Eulerian–Lagrangian method that uses a one-field formulation. As discussed by
Tryggvason, Scardovelli & Zaleski (2011), Ahmed et al. (2020a), Izbassarov et al. (2021)
and Izbassarov & Muradoglu (2015), one set of governing equations can be written for the
entire multiphase computational domain. In this approach, the effect of surface tension is
taken into account by adding a distributed body force term to the momentum equations
near the interface, and the discontinuities in material properties are handled by defining an
indicator function. The Navier–Stokes equations are thus written as

ρ
∂u
∂t

+ ρ∇ · (uu) = −∇p − dp0

dy
j + ∇ · τ + ∇ · μs(∇u + ∇uT) + g (ρ − ρave)

+
∫

A
σκnδ(x − xf ) dA, (3.1)

where u, τ , p, ρ, μs are the velocity vector, polymer stress tensor, pressure, discontinuous
density and solvent viscosity fields, respectively. A constant pressure gradient −(dp0/dy)j
is applied to drive the flow where j is the unit vector in the y-direction. The buoyancy term
consists of the gravitational acceleration g and the density difference ρ − ρave, where
ρave is the average density in the computational domain. The effect of surface tension is
added as a body force term on the right-hand side of the momentum equation where σ

is the surface tension coefficient, κ is twice the mean curvature and n is a unit vector
normal to the interface. As the surface tension acts only on the interface, δ represents
a three-dimensional Dirac delta function with the arguments x and xf being a point at
which the equation is evaluated and a point at the interface, respectively. The momentum
equation is supplemented by the continuity equation

∇ · u = 0. (3.2)

It is assumed that the material properties remain constant following a fluid particle, i.e.

Dρ

Dt
= 0,

Dμs

Dt
= 0,

Dμp

Dt
= 0,

Dλ
Dt

= 0, (3.3a–d)

where D/Dt = ∂/∂t + u · ∇ is the material derivative. For a viscoelastic fluid, μp is the
polymeric viscosity and λ is the polymer relaxation time.

Using an indicator function (I), the material properties are set in the entire
computational domain as

ρ = ρoI(x, t) + ρi (1 − I(x, t)) ,

μs = μs,oI(x, t) + μs,i (1 − I(x, t)) ,

μp = μp,oI(x, t) + μp,i (1 − I(x, t)) ,

λ = λoI(x, t) + λi (1 − I(x, t)) ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.4)
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Lateral migration of a deformable particle

where the subscripts ‘i’ and ‘o’ denote the properties of the particle and the bulk fluid,
respectively. Since the fluid in the dispersed phase is Newtonian, the values of μp,i and λi
are set to zero. The indicator function is defined as

I(x, t) =
{

1, in the bulk fluid,

0, in the particle. (3.5)

Viscoelasticity of bulk liquid is modelled using the Giesekus model (Giesekus 1982).
This model is capable of capturing the elongation of individual polymer chains and the
resulting shear-thinning behaviour of the viscoelastic fluid. In the Giesekus model, the
polymer stress tensor τ evolves by

τ = μp

λ
(B − I), (3.6)

where B and I are the conformation and the identity tensors, respectively. The
conformation tensor evolves by

∂B
∂t

+ u · ∇B − ∇uT · B − B · ∇u = 1
λ

[
(1 − α)I + (2α − 1)B − αB2

]
, (3.7)

where α is the mobility factor representing the anisotropy of the hydrodynamic drag
exerted on the polymer molecules. Due to the thermodynamic considerations, α is
restricted to 0 ≤ α ≤ 0.5 (Schleiniger & Weinacht 1991). When α = 0, the Giesekus
model reduces to the Oldroyd-B model.

At high Weissenberg numbers, these highly nonlinear viscoelastic constitutive equations
become extremely stiff, which makes their numerical solution a challenging task. The
problem is overcome by using the well-known log-conformation method where an eigen
decomposition is employed to re-write the constitutive equation of the conformation tensor
in terms of its logarithm (Izbassarov & Muradoglu 2015; Izbassarov et al. 2018). The
interested readers are referred to Fattal & Kupferman (2005) for the detailed procedure.

The flow equations (3.1) and (3.2) are solved fully coupled with the Giesekus model
equation (3.6). The momentum, continuity and viscoelastic constitutive equations are
solved on a stationary staggered Eulerian grid. A QUICK scheme is used to discretize
the convective terms in the momentum equations while second-order central differences
are used for the diffusive terms. For the convective terms in the viscoelastic equations,
a fifth-order WENO-Z scheme (Borges, Carmona & Costa 2008) is used. A fast Fourier
transform (FFT)-based solver is used for the pressure Poisson equation. Since the pressure
equation is not separable due to variable density in the present multiphase flow, the
FFT-based solvers cannot be used directly. To overcome this challenge, a pressure-splitting
technique presented by Dong & Shen (2012) and Dodd & Ferrante (2014) is employed.
The fluid–fluid interface is tracked by using the Lagrangian marker points located at the
vertices of a triangular surface mesh. The marker points move with the local flow velocity
interpolated from the Eulerian grid. The surface tension is computed on the Lagrangian
grid and transferred to the Eulerian grid to be added to the momentum equation as a
body force in a conservative manner. The Lagrangian grid is restructured at every time
step to keep the surface mesh nearly uniform, smooth and comparable to the Eulerian
grid. The indicator function is computed based on the location of the interface using the
standard procedure as described by Tryggvason et al. (2011), which requires a solution of
a separable Poisson equation. The same FFT-based solver is used to compute the indicator
function. Once the indicator function is computed, the material properties are set in each
phase using (3.4), which results in a smooth transition of material properties across the
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interface. A predictor-corrector scheme is used to achieve second-order time accuracy as
described by Tryggvason et al. (2001). The details of this Eulerian–Lagrangian method can
be found in the book by Tryggvason et al. (2011) and in the review paper by Tryggvason
et al. (2001), and the treatment of the viscoelastic model equations in Izbassarov &
Muradoglu (2015) and Izbassarov et al. (2018).

4. Results and discussions

We first examine the dynamics of a nearly spherical fluid particle under similar conditions
as used by Li et al. (2015) for a solid particle, i.e. Re = 18.9, El = 0.05, Ca = 0.01, α = 0.
The main difference in the present case is the slip at the particle interface. Note that this
set of parameters is also designated as the baseline case in the present study to facilitate
direct comparison with the results obtained for a solid particle by Li et al. (2015).

A peculiar feature of a viscoelastic fluid flow is the presence of normal stress differences,
which are given by N1 = τyy − τzz and N2 = τzz − τxx in the present scenario. In the
absence of the shear-thinning effect (α = 0), the Giesekus model reduces to the Oldroyd-B
model and the second normal stress difference (N2) becomes zero. Thus, α > 0 is
an essential condition to model a viscoelastic fluid that exhibits a non-zero second
normal stress difference. The geometry of the channel also plays a significant role in the
development of these stresses. Here, N1 is found to be maximum in the highest shear region
near the walls, and its value becomes minimum in the corners and at the centre. Ho & Leal
(1976) argued that this particular distribution of N1 in a four-wall channel is the primary
reason for the accumulation of solid particles in the corner and centreline regions. When
the second normal stress difference develops in a shear-thinning viscoelastic fluid, not
only does the distribution of N1 in the channel change, but its magnitude is also reduced
due to enhanced inertial effects (Li et al. 2015). Figure 1(a) shows the distribution of
N2 in the channel cross-section when there is a strong shear-thinning effect present in
the flow, i.e. α = 0.1. Eight vortices generated due to this distribution of N2 away from
the particle are also depicted in figure 1(b). This particular distribution of N2 affects the
orientation of particle migration and the development of a secondary flow field around the
particle. An asymmetric pattern of streamlines is shown in figure 1(a) above the particle
once the particle reaches its equilibrium position near the wall. These effects on the lateral
migration of a deformable particle are explored one by one in the subsequent sections.

4.1. Dynamics of particle migration
Simulations are first performed to examine the effects of the Weissenberg number, the
capillary number, the initial position and the mobility factor on the lateral migration of a
non-buoyant particle in the channel flow at the nominal Reynolds number Re = 18.9 and
β = 0.1. Figures 2(a) and 2(b) show the evolution of particle displacement in the lateral (z)
direction and the corresponding change in the particle deformation during its migration,
respectively. In a Newtonian fluid, a nearly spherical particle slightly moves towards the
channel wall under the effects of inertia and stabilizes near the wall where wall-induced
repulsive force balances the lift force. When the ambient fluid is viscoelastic, modelled by
Oldroyd-B (α = 0), the same spherical particle moves towards the centre of the channel
under the elastic effects just like a solid particle (Li et al. 2015). It is observed that
although the overall trend of fluid particle displacement in the Oldroyd-B fluid is similar
to that of a solid particle, the fluid particle moves towards the centre of the channel at a
much higher rate as shown in figure 2(c). Compared with a solid particle, a fluid particle
experiences a smaller drag due to slip at the interface, which makes it more sensitive
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Lateral migration of a deformable particle

to the inertial and elastic effects. When the particle deformability is increased gradually
by increasing the capillary number to Ca = 0.05 and Ca = 0.1 for the same Oldroyd-B
fluid, the rate of particle migration towards the channel centre is slightly reduced. As
the particle moves towards the low shear region (towards the centre), its deformability
starts to reduce and the same effect is observed in its lateral velocity as well. The effects
on particle velocity will be discussed in detail later in § 4.5. It is interesting to observe
that, although the deformability-induced lift force is expected to push the particle towards
the centre, it acts in the opposite direction at this Reynolds number and slows down
the particle migration towards the centre of the channel. Evolution of streamwise and
wall normal velocities of the spherical and the slightly deformable particle are shown
in figure 3, where the constant contours of viscoelastic stress components of τyz and τzz
are also plotted in the insets in the yz-cutting plane. As seen, not only the wall-normal
velocity but also the streamwise velocity is reduced when the particle is made slightly
deformed by increasing the capillary number to Ca = 0.1, although the deformation is still
modest, i.e. χ ≈ 1.05. The viscoelastic stress distribution is also markedly different in both
cases. This extreme sensitivity is attributed to a similar mechanism that is responsible for
a jump discontinuity in the rise velocity of a buoyancy-driven bubble (Bothe et al. 2022).
A different manifestation of the same mechanism has also been observed in our earlier
work (Naseer et al. 2023) as well. According to the theory proposed by Bothe et al. (2022),
polymer molecules are stretched by the flow as they pass over the particle and this stored
elastic energy is released on its front/back hemisphere giving an additional pull/push to
the particle depending on the flow conditions. The transition is expected to occur when the
convective time scale is equal to the polymer relaxation time, i.e. the effective Weissenberg
number is unity. In the present scenario, the effective Weissenberg number can be defined
as Wieff = λ/(R/urel), where R is the particle radius and urel is the slip velocity. For the
nearly spherical particle, the effective Weissenberg number is computed as Wieff = 0.92
at t∗ = 5.53 which is close to the critical value of unity. As the particle is elongated in
the streamwise direction in the deformable case, the effective radius (minor axis) becomes
larger so the polymer molecules relax on the front part of the particle before reaching the
equator, which thus increases the drag and slows down the particle migration velocity.

When the shear-thinning effects are enhanced by increasing the mobility parameter (α)
in the Giesekus model, the orientation of particle migration changes due to an increase in
the relative importance of the fluid inertia. At a very small value of α = 0.01, a spherical
particle still moves towards the centre but it takes a comparatively longer time than that in
the Oldroyd-B fluid to reach its equilibrium position. Once α is increased further to 0.1,
the orientation of particle migration changes completely, i.e. instead of moving towards
the centre, it starts moving towards the wall. Again, although the trend is similar to that of
a solid particle in a shear-thinning fluid under the same parametric settings, the migration
of a fluid particle is significantly more sensitive to the shear-thinning parameter than the
corresponding solid particle. For example, while α = 0.2 is required by the solid particle
to reverse its orientation from the channel centre towards the wall (Li et al. 2015), α = 0.1
is sufficient for the fluid particle to reverse its orientation. The shear-thinning effect is
quantified by the reduction in the effective viscosity (μe) of the fluid defined as

μe/μo =
μs

(
∂v

∂z
+ ∂w

∂y

)
+ τyz

μo

(
∂v

∂z
+ ∂w

∂y

) . (4.1)
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Figure 2. (a) Evolution of fluid particle displacement in the wall-normal (z) direction under non-buoyant
conditions for different initial positions and flow conditions. (b) Corresponding change in the particle
deformation shown as the particle moves towards or away from the wall. The same plot is shown in the
inset on a log-scale. (c) Evolution of the fluid particle displacement compared with a solid particle studied by
Li et al. (2015) under similar flow conditions. (d) Reduction in the effective viscosity of the fluid due to shear
thinning quantified in a vertical cutting xz-plane away from the particle. (e) Flow velocity profiles in the same
xz-plane shown for different values of α. The distributions of the first normal stress difference (N1) around the
particle are shown in vertical cutting planes of (i), (ii) and (iii) as indicated on the left for ( f ) α = 0.01 and for
(g) α = 0.1. For panels (c–g), El = 0.05, Ca = 0.01. Additionally, Re = 18.9 for all the cases presented in this
figure.
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Figure 3. Evolution of migration velocity of a nearly spherical (Ca = 0.01) and a slightly deformed
(Ca = 0.1) fluid particle (a) in the streamwise and (b) in the wall-normal directions. The contours of
viscoelastic stress components τyz and τzz are shown in the insets around the particles in the yz-cutting plane at
t∗ = 5.53 (Re = 18.9, El = 0.05, α = 0).

The variation of the effective viscosity and the corresponding flow velocity profiles are
shown in figures 2(d) and 2(e), respectively, for α = 0, 0.01 and 0.1. As seen, for α = 0,
the effective viscosity remains constant in the channel as expected. In a shear-thinning
fluid (α > 0), the viscosity of the fluid decreases significantly in the high shear region
near the wall and becomes as low as 20 % of its value in the channel centre for α = 0.1.
As a result, the centreline flow velocity becomes approximately 2.8 times larger than that
of the non-shear-thinning fluid (figure 2e). This enhanced inertia helps the quick migration
of the particle towards the wall as seen in figure 2(a). It is observed that this shear-thinning
effect is strong enough to reverse the migration of fluid particle from the centre towards
the wall even when the initial position of the particle is shifted gradually towards the
channel centre, i.e. a low shear region (figure 2a). The shear thinning also changes the
distribution of the first normal stress difference (N1) in the channel. The distribution of
N1 is shown in three vertical cutting planes in the vicinity of the particle for α = 0.01
and α = 0.1 in figures 2( f ) and 2(g), respectively, at the same time instant t∗ = 5.71.
The higher magnitude of N1 for α = 0.01 explains why the particle is pushed towards the
channel centre. It is important to note that in the present study, as the channel aspect ratio
is fixed (square duct only) and the initial position of the fluid particle is varied along one
wall-normal direction (z) only while the initial position of the particle is fixed at x = 0.5H
in the second wall-normal direction, the equilibrium positions of the fluid particle along
the channel diagonals or in the corner regions are not observed (Yu et al. 2019).

When the elasticity number is increased to El = 0.1 by increasing the Weissenberg
number in the presence of a strong shear-thinning effect (α = 0.1) for a spherical particle
(Ca = 0.01), the viscoelastic stresses take more time to develop due to a higher relaxation
time (λ) of polymer molecules. Therefore, the enhanced inertia due to the shear thinning
quickly moves the particle towards the wall while the viscoelastic stresses are not yet fully
developed in the flow. The particle reaches its equilibrium position closer to the wall and
its deformation also increases due to a higher shear region there. However, this higher
deformability and higher elasticity are not strong enough to reverse the particle migration
back towards the channel centre. In the absence of the shear thinning (α = 0) with the
same high elasticity number, the particle quickly moves towards the centre due to relatively
lower inertia.
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When the fluid particle is made more deformable by increasing the capillary number
to Ca = 0.1 (figure 2b) in this shear-thinning fluid (α = 0.1), the deformability-induced
lift force resists the pronounced effects of shear thinning on the fluid inertia. This higher
particle deformation is sufficient enough to push the particle back towards the channel
centre. However, due to the resistance by the higher inertial force, the rate of particle
migration is much slower in this fluid than in the non-shear-thinning fluid. When the
capillary number is increased even further to Ca = 0.2, the effect is found to be more
pronounced and the rate of particle migration towards the centre of the channel is slightly
increased. The enhanced fluid inertia due to the shear-thinning effect also makes the
particle more deformable in a shear-thinning fluid due to an effective high capillary
number.

For all the simulations shown in figure 2, the nominal Reynolds number is kept constant.
It can be observed that in this non-buoyant situation, the orientation of particle migration
can be controlled with the shear-thinning effect of the viscoelastic fluid. With a strong
shear-thinning effect (α = 0.1), the particle moves towards the wall and higher elasticity
(e.g. El = 0.1) is not able to reverse its orientation. The higher particle deformability,
however, resists this shear-thinning effect on particle migration and moves it back towards
the centre. Interestingly, the particle deformation increases only by 6 % in the case of
the maximum capillary number of Ca = 0.2 in this viscoelastic fluid. However, even this
modest deformation makes a significant impact on the dynamics of particle migration and
reverses its orientation towards the centre. In the absence of shear thinning, the particle
migrates towards the centre even with a weak elastic effect or with a little deformability.

4.2. Path instability
Path instability of a freely rising bubble in a Newtonian fluid has been thoroughly studied
and well documented in the existing literature. For instance, Zenit & Magnaudet (2008)
experimentally observed that the path instability of a bubble does not depend on the
Reynolds number and it is rather governed by the aspect ratio of bubble shape, i.e. its
deformation. When the aspect ratio increases beyond χ > 2, vortices generated on the
free-slip surface of the bubble give rise to a wake instability behind the trailing edge,
forcing its path to become unstable. In the case of a viscoelastic ambient fluid, Shew &
Pinton (2006) observed that the flow structure in the wake region becomes more intense
leading to path instability even at a much lower deformability.

Simulations are first performed for Re = 100, 500 and 1000 to examine the effects of
the Reynolds number on the path instability of the deformable fluid particle in the present
pressure-driven viscoelastic flow in the absence of buoyancy. To isolate the effects of
the Reynolds number, the shear-thinning effect is eliminated by setting α = 0, and the
capillary number is fixed at Ca = 0.01 to keep the particle nearly spherical. Simulations
are repeated by keeping either the elasticity number or the Weissenberg number constant as
the Reynolds number is increased. The results are summarized in figures 4(a,c) and 4(b,d)
for the fixed elasticity number and the fixed Weissenberg number cases, respectively.
When the elasticity number is kept constant at El = 0.05 (figure 4a), the Weissenberg
number increases as the Reynolds number is increased. The particle path becomes unstable
at Re = 100 (the corresponding Wi = 5). However, the particle deformation remains
negligible due to a low value of the capillary number. The path instability observed in
this case of a nearly spherical particle at Re = 100 occurs mainly due to the onset of
an elastic flow instability caused by the curved streamlines along the particle interface.
McKinley, Pakdel & Öztekin (1996) determined a critical parameter for the onset of an
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Figure 4. Evolution of lateral migration of the fluid particle (a) at constant El = 0.05 and (b) at constant
Wi = 0.945 are shown for different values of Reynolds number. (c) Constant contours of Q-criterion at
0.001 coloured by the vorticity component (ωz) shown for Re = 500, Wi = 25 as the flow becomes elastically
unstable due to the curvature of streamlines across the particle. (d) Contours of Q-criterion plotted at the same
value of 0.001 for Re = 500, Wi = 0.945 showing a negligible presence, confirming a stable flow. This is also
confirmed by the straight streamlines across the fluid particle.

elastic instability as

M2 = λU
R

N1

|τt| ≥ M2
crit, (4.2)

where U is the flow velocity along the streamline, N1 is the first normal stress difference,
R is the radius of curvature of the streamline and τt is the total shear stress. McKinley
et al. (1996) calculated the critical value for a two-dimensional cylinder as Mcrit ≈ 6.08.
In the present scenario of a spherical fluid particle, the critical value turns out to be
Mcrit ≈ 5.59 at Re = 100. The constant contours of the Q-criterion (second invariant of
velocity gradient tensor) at 0.001 and the streamlines are also plotted around the particle
in figure 4(c) for Re = 500 to show the overall flow structure. The contours are coloured
by the magnitude of vorticity in the z-direction. The curvature of streamlines across the
particle and the contours of the Q-criterion confirm that the flow is no longer stable.
As a result, the particle path shows an oscillatory pattern around the channel centre for
Re = 100. When the Weissenberg number is increased further by increasing the Reynolds
number at the fixed value of El = 0.05, figure 4(a) shows that the particle path becomes
more irregular and unpredictable as the flow gets closer to the onset of elastic turbulence
stemming from the elastic instability. The exact mechanism behind this probable transition
is still elusive (Datta et al. 2022).

However, when the Weissenberg number is kept constant at Wi = 0.945 as Re is
increased, the particle path remains stable even for the Reynolds number as high as
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Re = 1000. As shown in figure 4(d), the streamlines remain straight across the particle
and no significant contours of Q-criterion are observed in the flow, unlike the fixed
elasticity number case. It is interesting to observe that the particle initially moves towards
the channel centreline and then reverses its direction towards the channel wall at higher
Reynolds numbers. The final position is determined by the interplay of inertial and
viscoelastic effects. The equilibrium position of the particle shifts from the channel centre
towards the wall as the Reynolds number is increased (figure 4b). At Re = 1000, the
particle reaches the wall under the influence of strong inertia, which results in an increase
in its deformation as well due to the high-shear region near the wall.

4.3. Effect of buoyancy
The buoyancy is significant in many natural processes and practical applications.
A commonly encountered situation is an upward flow where the gravity acts in the
opposite direction of the fluid flow such as in bubble column reactors and in crude oil
extraction. Simulations are next performed for a range of Eötvös numbers to examine the
effects of buoyancy in an upward flow while keeping the other parameters fixed at their
baseline values of Re = 18.9, Ca = 0.01 and El = 0.05. Note that the Morton number is
M = 4.97 × 10−6 for Eo = 1 in this viscoelastic fluid. For reference, this value is much
higher than the Morton number of 2.52 × 10−11 for an air particle in water at 20 ◦C but can
be matched by using a water–glycerin solution (Legendre, Zenit & Velez-Cordero 2012).

Simulations are performed by gradually increasing the Eötvös number from Eo = 0
(neutrally buoyant) to Eo = 1 without and with the shear-thinning effect. The case of
Eo = 0 is simulated by setting g = 0, which can be realistic only in a microgravity
environment. This condition is used here to isolate the sole effects of the other parameters
from buoyancy. The results are shown in figures 5(a,c,e,g) and 5(b,d, f,h) in terms of the
evolution of particle deformation, its three-dimensional displacement, the wake structure
behind the particle, and the pressure distribution on the particle surface for an Oldroyd-B
(α = 0) and a Giesekus (α = 0.1) fluid case, respectively. In the Oldroyd-B fluid, the
particle moves towards the channel wall without any sign of path instability at Eo = 0.25.
We note that the same particle moves towards the channel centre in the absence of
buoyancy. This change in the orientation occurs due to the additional buoyancy-induced
lift force (Lu, Biswas & Tryggvason 2006). At Eo = 0.5, the particle still migrates towards
a channel wall (interestingly not to the same wall as in the Eo = 0.25 case) but small
oscillations start to appear in its path with a regular zigzag pattern indicating the onset of a
path instability. A similar oscillatory pattern is also visible in the particle deformation (χ )
as seen in figure 5(a). When Eo is further increased to 0.75, the particle deformation also
increases and the particle path shifts from a zigzag to a helical pattern. The particle moves
laterally to eventually settle near the other side of the channel and its motion becomes
more chaotic with a significant velocity component in the wall normal (x) direction. At
Eo = 1, the particle path becomes completely unstable with a deformation parameter (χ )
exceeding 1.6 (figure 5a).

It is worth noting that the deformation parameter is only approximately χ = 1.1 when
the deformed particle undergoes path instability at Eo = 0.5 in the present setting. This
value is much smaller than the condition χ ≥ 2 required for the onset of a path instability
in the case of a freely rising bubble in a Newtonian fluid (Zenit & Magnaudet 2008). This
result confirms that the viscoelasticity facilitates the earlier onset of path instability as
also pointed out by Shew & Pinton (2006). The wake region is much more intense in the
viscoelastic fluid than in the Newtonian fluid due to the additional viscoelastic stresses,
forcing its path to become unstable at a relatively small deformation. The evolution of
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Figure 5. Evolution of particle deformation and its three-dimensional (3-D) displacement at different values
of Eötvös number are shown for (a,c) α = 0 and for (b,d) α = 0.1. For the Eo = 1 case, the constant contours
of the Q criterion at 0.05 are shown to visualize the complex flow pattern in the wake region behind the particle
for (e) α = 0 and for ( f ) α = 0.1. The contours are coloured by vorticity (ωy) in the range of ±1. For the same
Eo = 1 case, the pressure distribution on the particle surface are shown at the same times for (g) α = 0 and for
(h) α = 0.1. (Re = 18.9, Ca = 0.01, El = 0.05, β = 0.1.)

the wake region and the corresponding pressure distribution on the particle surface is
depicted for the Eo = 1 case in figures 5(e) and 5(g), respectively, to qualitatively show
the mechanism for the path instability. As seen, the structure of the wake is highly complex
and transient, and the pressure distribution changes accordingly, indicating the footprint of
the instability.
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Next, a strong shear-thinning effect is added (α = 0.1), and the simulations are repeated
for the same values of Eo by keeping the other parameters fixed at their baseline values
of Re = 18.9, El = 0.05 and Ca = 0.01. The results are summarized on the right-hand
side of figure 5. As seen in figure 5(d), the particle migrates towards a wall for all
the cases but interestingly not to the same wall. The path of the fluid particle remains
stable for Eo = 0.25 but it migrates towards the wall at a much higher rate than that for
the non-buoyant case of Eo = 0. This behaviour is attributed to the same enhanced lift
force due to the buoyancy as in the non-shear-thinning case. Some oscillations appear
in the particle trajectory for Eo = 0.5 but they are damped very quickly as the particle
stabilizes near a wall. As Eo is increased beyond Eo = 0.5, the oscillations are amplified
leading to path instability. For Eo = 0.75, the particle migrates laterally and settles near
the other wall similar to the Oldroyd-B fluid case. In this case, the particle initially follows
a helical path but, interestingly, its path is stabilized after some time (figure 5d). The
corresponding oscillatory pattern observed in the deformation also vanishes once the
particle path is stabilized (figure 5b). The stabilized particle path is also observed for
Eo = 1. The stabilization mechanism is visualized in figure 5( f ) where the evolution of
the wake structure is depicted for the Eo = 1 case. As seen, the wake behind the particle
is not symmetric initially but it later evolves into a symmetric two counter-rotating vortex
structures indicating that the path is stabilized. Two contributory factors are speculated
to be the main reason for this stabilization mechanism. First, with a decrease in fluid
viscosity in the vicinity of the particle due to the shear-thinning effect, the vortices
generated on the surface of the deformed particle are not strong enough to make the wake
region unstable. Second, due to the shear thinning of the fluid, the first normal stress
difference N1 decreases in this viscoelastic fluid, which reduces the destabilization effect
of viscoelasticity. Thus, the intense flow structures observed in the wake region in the case
of the Oldroyd-B fluid (figure 5e) are damped out in this shear-thinning fluid (figure 5f ).
Although an addition of shear thinning makes the particle path more stable, it cannot
maintain path stability indefinitely. For instance, although not shown here due to space
consideration, once the particle deformation exceeds χ > 2 at Eo = 2, the path remains
unstable even for the mobility factor as high as α = 0.1.

All the simulations have heretofore been performed for a small value of the viscosity
ratio, β = 0.1, representing highly concentrated polymer solutions. Thus, the fluid
exhibited a strong viscoelastic behaviour and the particle path remained stable only up
to Eo = 0.25 and Eo = 1 without and with the shear-thinning effect, respectively. To
examine the particle migration dynamics in dilute polymer solutions, simulations are now
performed for another extreme value of β = 0.9 without and with the shear-thinning effect.
It is important to note that β = 0.9 represents a very rare case that can be achieved only
with specially designed fluids. Figure 6(a,b) show the evolution of lateral displacement of a
particle and its deformation for the range of 2 ≤ Eo ≤ 8. We note that at the lower values
of Eo up to Eo = 2, there is not much difference observed in the particle deformation
and its equilibrium position compared with the case of Eo = 2 in figure 6(a). As Eo
increases, the difference in the equilibrium position of the particle becomes increasingly
more pronounced without and with the shear-thinning effect. For the smaller values of
Eötvös number up to Eo = 2, the shear-thinning effect does not play a dominant role
due to a lower value of particle deformation. As the contribution of polymeric viscosity
towards the total viscosity of the fluid is already very low at β = 0.9, a further decrease
in the viscosity due to shear thinning starts to show its effect only at a higher value of
particle deformation. Beyond Eo = 2 and with α = 0.1, the particle reaches the channel
centre for all the values of Eo up to Eo = 8, whereas without the shear-thinning effect,
the equilibrium position of the particles occurs slightly away from the centre depending
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Figure 6. (a) Evolution of particle displacement in the lateral (z) direction and (b) its deformation for different
values of Eötvös number. For panels (a,b), Re = 18.9, Ca = 0.01, El = 0.05, β = 0.9. For panels (c,d), Re =
47.25, Ca = 0.01, El = 0.02, β = 0.9. The shapes of the deformed fluid particles are shown in the inset of
panel (b) for α = 0 case at Eo = 2 and Eo = 8.

upon its deformation. The most interesting feature is the persistent stability of the particle
path even when the deformation exceeds 2.3 for the Eo = 8 case (figure 6b inset). Zenit &
Magnaudet (2008) have shown that for a freely rising bubble, the path becomes unstable
when the deformation value exceeds 2. They argued that for such a buoyancy-driven
bubble, path instability depends upon the bubble deformation rather than the Reynolds
number. However, Haberman & Morton (1953) and Kelley & Wu (1997) had earlier
demonstrated that the path instability of an air bubble in a viscous fluid of a Hele-Shaw
cell did depend on the Reynolds number. It is found that the criterion, χ > 2, for triggering
path instability does not apply in the present case of a pressure-driven viscoelastic channel
flow at this low Reynolds number.

To verify the dependence of path instability of the fluid particle on the Reynolds number,
simulations are next performed by increasing the Reynolds number to 47.25 while keeping
the Weissenberg number fixed at Wi = 0.945. As a result, the elasticity number is reduced
to 0.02. Simulations are repeated for α = 0 (no shear thinning) and α = 0.1 (significant
shear thinning) cases for the range of Eötvös number 1 ≤ Eo ≤ 4. Figure 6(c,d) depict
the evolution of particle displacement in the lateral direction and its deformation. As Eo
increases, the particle deformation also increases and its equilibrium position gradually
shifts away from the wall. At Eo = 3, as the fluid viscosity decreases in the vicinity of
the particle, the elastic effect becomes dominant and the particle migrates towards the
channel centre. The particle crosses the channel centre under the combined effects of
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deformation-induced lift force and the fluid elasticity, and settles at an equilibrium position
closer to the wall on the other side of the channel as the inertial effects eventually dominate
(figure 6c). However, without shear thinning, the particle migrates towards the wall as
the deformation and elasticity are not strong enough to counter high inertial lift force at
Eo = 3. Interestingly, both the particles settle at the same equilibrium position closer to
the wall but on the opposite sides of the channel.

At Eo = 4, when the particle deformation exceeds 2 and the shear-thinning effect
is present, small oscillations start to appear in its path indicating the onset of a path
instability. It shows that path instability of the fluid particle in this pressure-driven
viscoelastic flow is a function of Reynolds number as well along with the particle
deformation. It is also observed that the particle path remains stable in the absence of shear
thinning (α = 0) at the same value of Eo = 4. Interestingly, this role of shear thinning is
opposite to what was observed in the case of β = 0.1, i.e. the shear thinning damps out
the path instability at low values of β (high polymer concentration) whereas it promotes
the path instability of the particle at high β values (dilute polymer concentration). This
interesting behaviour is attributed to the local change in the effective elasticity number
(El) due to the shear-thinning effect. Ray & Zaki (2014) have shown that, for larger values
of El, there is an asymptotic limit of stabilization observed in the Oldroyd-B model. We
find that this role of elasticity number in stabilizing or destabilizing the particle path is
further dependent upon the value of β. At lower β, a decrease in the local value of El
stabilizes the particle path while, at the higher value of β, the same decrease in El is found
to be destabilizing.

4.4. Particle-induced secondary flow
The presence of the second normal stress difference (N2) and the geometry of the
square-shaped channel induces a secondary flow field in a direction perpendicular to the
primary flow. The dynamics of this secondary flow field is significantly influenced by the
presence of a fluid particle. Moreover, the orientation of particle migration also affects the
magnitude of the secondary flow velocity. The secondary flow velocity has been analysed
by varying the particle deformability (Ca), the shear thinning (α), the fluid elasticity (Wi)
and the fluid inertia (Re). Figure 7 shows complex flow patterns in vertical cutting planes
at the downstream, the centre and upstream of the particle under different flow conditions.
The upstream and downstream planes are located at +0.75 and −0.75 from the particle
centre, respectively. The velocity vectors are coloured by the magnitude of flow velocity
in the xz−plane. In an Oldroyd-B fluid, the particular distribution of N1 in the channel far
away from the particle builds up a weak secondary flow oriented towards the corners of the
channel from its centre. It generates a ‘flower-shaped’ flow pattern as shown in figure 7(a).
The presence of N2 due to the shear-thinning effect (Giesekus fluid) generates an additional
eight vortices at the corners of the channel (figure 7d). Once the particle passes through
this plane and migrates towards the centre (figure 7g,h), this flow pattern gets disturbed
but becomes symmetric again above and below the particle once the particle attains its
steady-state position. However, if the particle migrates towards a channel wall, the flow
pattern becomes highly asymmetric away from the wall resulting in a strong secondary
flow with a velocity as high as the order of particle migration velocity (figure 7k).

The quantitative comparison of secondary flow velocities is summarized in figure 8 for
different flow conditions. The z-component of flow velocity is numerically integrated in
the region ±0.75 upstream and downstream of the particle in the streamwise (y) direction
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Figure 7. Velocity vectors representing the complex flow patterns of secondary flow field in vertical
cutting planes at (a,d,g, j,m) a downstream, (b,e,h,k,n) the centre and (c, f,i,l,o) upstream of the particle.
(a–c) Re = 18.9, Ca = 0.01, El = 0.05, α = 0. (d–f ) Re = 18.9, Ca = 0.01, El = 0.05, α = 0.1. (g–i) Re =
18.9, Ca = 0.2, El = 0.05, α = 0.1. ( j–l) Re = 18.9, Ca = 0.01, El = 0.1, α = 0.1. (m–o) Re = 18.9, Ca =
0.1, El = 0.05, α = 0.
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Figure 8. Averaged secondary flow velocity under the flow conditions (a) where the fluid particle migrates
towards the channel centre and (b) where the particle migrates towards a wall at Re = 18.9. The averaged
secondary flow velocity is plotted for higher Reynolds numbers in the range 47.25 ≤ Re ≤ 1000 for (c) an
Oldroyd-B fluid and (d) a Giesekus fluid.

and the integration is performed in the entire domain [0, 1] in the z-direction, i.e.

〈uz〉y,z = 1
Ayz

∫ 1

0

∫ +0.75

−0.75
uz dz dy ∼= 1

( jmax − jmin + 1) Nz

Nz∑
k=1

jmax∑
j=jmin

(uz)jk, (4.3)

where Ayz is the area of the yz-plane, and jmin = ( yb − 0.75)Ny/L and jmax = ( yb +
0.75)Ny/L with Ny and Nz being the number of grid points in the y and z directions,
respectively. The average secondary velocity, 〈uz〉y,z, in the y and z directions is plotted
along x in figure 8 once the particle reaches its equilibrium position closer to a wall or
towards the centre of the channel. Figure 8(a,b) show the average secondary flow velocity
for Re = 18.9 while the results for higher Reynolds numbers are shown in figure 8(c,d).

At Re = 18.9, the magnitude of the secondary flow velocity remains negligible for
all the situations where the particle migrates towards the channel centre (figure 8a). In
an Oldroyd-B fluid, the particle migrates towards the centre of the channel under the
effect of elasticity, as shown in figure 2. As the particle migrates in the z-direction and
reaches the centre, the flow pattern becomes symmetric above and below the particle
(figure 7b). In a Giesekus fluid, when the shear-thinning effect is sufficient enough to
move the particle towards a wall (α = 0.1), a strong secondary flow pattern is observed
as shown in figure 8(b). When the elasticity number is increased in this shear-thinning
fluid, the maximum magnitude of the secondary flow velocity is attained. This is the
same combination of parameters for which the particle equilibrium position is closest
to the channel wall in figure 2(a). The flow pattern above the particle for this situation
is depicted in figure 7(k). When the Reynolds number is increased in an Oldroyd-B
fluid, the equilibrium position of the particle moves closer to the channel wall. When
the Weissenberg number is kept constant while increasing the Reynolds number to avoid
elastic instability, as discussed in § 4.2, the magnitude of the secondary flow velocity keeps
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increasing with the Reynolds number and becomes as high as 1 % of the maximum flow
velocity in the channel (figure 8c). A small asymmetry observed in the secondary flow
pattern for the Re = 1000 case is attributed to the slight migration of the particle in the
x-direction due to onset of an inertial path instability.

At Re = 47.25, when the shear-thinning effect is small (α = 0.01), the particle moves
towards the centre of the channel whether it is spherical (Ca = 0.01) or highly deformable
(Ca = 0.1). The secondary flow velocity remains negligible for both of these situations
(figure 8d). However, this time, the magnitude of the secondary flow velocity depends on
the particle deformability along with the fluid elasticity. When the particle deformability
is increased, the magnitude of the secondary flow velocity is reduced whereas an increase
in the fluid elasticity (Wi) further increases its magnitude. Thus, a nearly spherical particle
migrating towards the channel wall induces maximum secondary flow due to the maximum
asymmetric area of influence above. This area reduces with the particle deformability and
hence a reduction in the induced secondary flow is observed. Similarly, a higher magnitude
of viscoelastic stresses due to higher Wi generates a complex flow pattern in the direction
normal to the primary flow. This flow pattern becomes increasingly more asymmetric with
increasing Wi and as a result, the secondary flow velocity becomes as high as 3 % of the
maximum flow velocity in this square channel (figure 8d).

It can be summarized that an increase in the fluid elasticity (Wi) or inertia (Re) increases
the magnitude of the secondary flow velocity as long as the particle moves towards a wall.
If the flow conditions are such that the particle moves towards the channel centre, an
increase in the inertia or elasticity of the fluid makes negligible impact on the velocity
of the secondary flow once the particle reaches its steady-state position. However, during
the transient period while the particle is still migrating towards the centre, the inertia and
fluid elasticity do make an impact on the velocity of the secondary flow but its magnitude
during this transient period remains two orders of magnitude lower than the corresponding
cases where the particle migrates towards the wall.

It is important to note that the secondary flow velocity induced by a fluid particle is at
least an order of magnitude higher than the velocity induced by the solid particle under the
similar flow conditions as reported by Li et al. (2015). The primary reason is the higher
drag experienced by the solid particle due to the no-slip condition on its surface. This
attribute of fluid particle-induced secondary flow can be exploited in the situations where
mixing, heat transfer or other transport phenomena are of importance.

4.5. Flow start-up
It is a well-known aspect that stress waves propagate (Duarte, Miranda & Oliveira 2008)
and cause velocity fluctuations during flow build-up in a channel flow. The elasticity of
the fluid affects these fluctuations depending upon the relaxation time of its polymer
molecules. In our earlier work (Naseer et al. 2023), these velocity fluctuations were also
observed in the rise velocities of freely rising bubbles in a viscoelastic fluid. Similarly,
these velocity fluctuations affect the migration velocity of the solid particle as well during
the flow build-up (Rajagopalan, Arigo & McKinley 1996). Goyal & Derksen (2012) have
shown that a solid particle settling down during these fluctuations often rebounds after the
first oscillation. In the present study, we explore the same effects for a fluid particle in this
viscoelastic channel flow.

Figure 9(a) shows the migration velocity of the particle in the wall-normal direction (z)
under various flow conditions. The two cases are shown in the inset where the particle is
highly deformable (Ca = 0.1 and Ca = 0.2) and it takes a comparatively longer time to
reach a steady state. Figure 9(b) shows the evolution of the average streamwise component
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Figure 9. (a) Evolution of particle migration velocity in the wall-normal (z) direction during flow start-up.
(b) Evolution of average steamwise component of flow velocity in the channel.

of flow velocity in the channel for the same nine situations. In the case of a nearly
spherical particle (low Ca) migrating in an Oldroyd-B fluid (α = 0), the elastic stresses
develop quickly in the flow and take the particle towards the centre. As N1 decreases in
the low-shear region near the centre, the particle reaches its peak velocity at t∗ ≈ 4 and
then starts to decelerate while continuing its migration towards the centre. The minor
fluctuations in the particle velocity are attributed to the extension/relaxation of polymer
molecules across its surface as recently explained by Bothe et al. (2022) and verified by
Naseer et al. (2023). A minor decline in the flow velocity is observed after an initial peak
once the viscoelastic stresses are developed in the flow (figure 9b). When the particle
deformability is increased (Ca = 0.05 and Ca = 0.1), the particle starts migrating towards
the channel centre. However, due to a slight increase in its deformability, the peak velocity
of the particle migration remains lower than that of the nearly spherical particle. When
a spherical particle (Ca = 0.01) migrates in the Giesekus fluid having a very low shear
thinning (α = 0.01), migration towards the channel centre occurs primarily due to the
elastic effects and similar fluctuations are observed in the migration velocity as in the
case of Oldroyd-B fluid. As the shear thinning promotes the relative importance of fluid
inertia which acts to pull the particle back towards the wall, the peak velocity of the
particle remains lower than that in the Oldroyd-B fluid. The average flow velocity is
slightly increased in the channel due to the shear-thinning effect and the actual effective
Reynolds number becomes Reeff = 22.4. When the shear-thinning effect is high enough
(α = 0.1), the enhanced fluid inertia overcomes the elastic effects and causes the particle
to migrate towards the wall, as indicated by the opposite direction of particle velocity in
figure 9(a). The flow velocity in the channel increases further and the effective Reynolds
number reaches 51.8 with the same value of an applied pressure gradient. When the
elasticity number is increased (El = 0.1) by increasing the polymer relaxation time in this
shear-thinning viscoelastic fluid, the inertial effects still dominate and push the particle
towards a wall at a higher rate. With increased viscoelastic stresses at higher El and a
strong shear-thinning effect, the effective Reynolds number reaches 92. With the same
high elasticity number (El = 0.1) but without shear thinning (α = 0), the particle migrates
towards the centre under the elastic effects. Due to a higher Weissenberg number, the
viscoelastic stresses become comparatively stronger and the particle reaches a higher value
of its migration velocity. As there is no shear-thinning effect, the flow Reynolds number
remains at the baseline value of Re = 18.9.

Once the particle is made highly deformable (Ca = 0.1 and Ca = 0.2) and the fluid
is strongly shear thinning (α = 0.1), the ‘deformability-induced’ lift force overcomes the
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shear-thinning enhanced inertial effects and the particle moves towards the channel centre.
As the particle gets closer to the centre, its deformability starts reducing due to low shear
(as shown in figure 2b) resulting in a deceleration in its lateral migration velocity. It is
worth noting that the effective flow Reynolds number becomes Reeff = 51.8 due to a strong
shear-thinning effect in this case.

5. Conclusions

Interface-resolved numerical simulations are performed to explore the complex dynamics
of cross-stream migration of a fluid particle in a viscoelastic pressure-driven channel flow
for a wide range of flow parameters. Unlike the solid particle, the deformability of the
fluid particle, the slip condition at the interface and the particle-induced elastic flow
instability at a higher Weissenberg number add further complexity to this phenomenon.
The particle deformability (Ca), shear thinning of the ambient fluid (α), fluid elasticity
(Wi), buoyancy (Eo) and concentration of polymers (β) are varied one by one to isolate
their sole effects. The conditions for triggering a path instability of a deformable particle in
this pressure-driven viscoelastic flow are investigated and the particle-induced secondary
flow is quantified.

It is observed that the forces induced by fluid inertia push the particle towards the
wall while elasticity and deformability pull it towards the channel centre. This interplay
between fluid inertia, elasticity and particle deformability determines the orientation of
particle migration in the channel and its final equilibrium position. As shear thinning
increases the relative importance of the fluid inertia, it is found to promote migration
towards a wall. At a high Weissenberg number, elastic instability occurs due to the
curvature of streamlines across the particle. When the Reynolds number is increased while
keeping the Weissenberg number fixed at a low value, the particle path remains stable even
for the Reynolds number as high as Re = 1000.

In the case of a high polymer concentration (e.g. β = 0.1), it is found that strong
viscoelastic effects make the particle path unstable even when the particle is nearly
spherical. This path instability occurs as the flow itself becomes elastically unstable at a
higher value of Wi. In the absence of strong viscoelastic stresses (low Wi), the path of the
particle becomes unstable when its deformation becomes high due to high Eo. However,
the shear thinning acts as a stabilizing factor and can make the particle path stable even for
the particle deformation as large as χ = 2. The stabilizing role of shear thinning is reversed
at higher values of β. When the Reynolds number is small and β = 0.9, the particle
path remains stable even for the Eötvös number as large as Eo = 8 and its deformation
exceeds χ > 2.3. Thus, the path instability of a deformable particle in a viscoelastic
pressure-driven channel flow can occur when the flow itself becomes elastically unstable
at high Wi or when its deformation exceeds a threshold value under buoyant conditions. If
the path instability is triggered by the later mechanism, i.e. when the particle deformation
exceeds a critical value, the shear thinning suppresses the path instability at higher polymer
concentration (lower β) while it reverses its role and promotes the path instability at lower
polymer concentration (higher β). Furthermore, it is found that the threshold value of
particle deformation to trigger path instability is a function of Reynolds number as well in
this pressure-driven viscoelastic flow unlike the path instability of a freely rising bubble
in a Newtonian flow (Zenit & Magnaudet 2008).

It is shown that the secondary flow velocity induced by a fluid particle migrating towards
the wall is an order of magnitude higher than the one induced by a solid particle under
similar flow conditions. This behaviour is attributed to the slip condition on the particle
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Figure 10. (a) Evolution of particle displacement in the wall-normal (z) direction and (b) the average
streamwise component of flow velocity in the channel are shown at different grid resolutions. Linear
least-squares fits at different time intervals are shown in the respective insets. (Re = 18.9, El = 0.05,

Ca = 0.01, α = 0).

surface and the internal flow. For all the situations where the fluid particle migrates towards
the centre, the secondary flow velocity becomes negligible due to the symmetric flow
pattern above and below the particle when viewed in its migrating plane.

During the flow build-up in this square-shaped channel, the maximum value of flow
velocity depends upon the shear-thinning property of the fluid. The particle migration
velocity is dictated by the inertial effects and the rate at which the viscoelastic stresses are
built up in the flow.

Supplementary movie. A time-lapse movie showing the generation and growth of instabilities in the flow at
a high Weissenberg number (Re = 500, Wi = 25) due to the presence of a deformable particle can be accessed
at https://doi.org/10.1017/jfm.2024.583.
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Appendix

A comprehensive grid convergence study is performed to ascertain the numerical accuracy
of the results reported in this study. Figure 10(a) shows the evolution of particle
displacement in the wall-normal (z) direction plotted at three different grid resolutions.
Linear least-squares fits at t∗ = 1.38, 4, 6 and 8 are shown in the inset of figure 10(a) where
the approximately linear relations confirm the expected second-order spatial accuracy of
the numerical scheme. These results show that a grid resolution containing 160 × 320 ×
160 grid cells in the x, y, and z directions, respectively, is sufficient to reduce the spatial
error below 3.5 %. Therefore this grid resolution is used in all the simulations reported
in this paper. Note that, for this grid resolution, there are about 40 grid points in the x
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Lateral migration of a deformable particle

and z directions and 20 grid points in the streamwise (y) direction per particle diameter.
Figure 10(b) shows the evolution of average flow velocity in the channel and the linear
least-square fits shown in its inset confirm that the numerical error remains negligible for
this quantity even with a grid size of 80 × 160 × 80. The time step size is strictly restricted
by the stability constraints in the present explicit numerical method and the temporal error
remains negligible compared to the spatial error (Tryggvason et al. 2001, 2011). Therefore,
a temporal error convergence is not examined.
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