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A strengthening of McConnel’s theorem on
permutations over finite fields

Chi Hoi Yip

Abstract. Let p be a prime, q = pn , and D ⊂ F∗q . A celebrated result of McConnel states that if D
is a proper subgroup of F∗q , and f ∶ Fq → Fq is a function such that ( f (x) − f (y))/(x − y) ∈ D
whenever x ≠ y, then f (x) necessarily has the form ax p j

+ b. In this notes, we give a sufficient
condition on D to obtain the same conclusion on f. In particular, we show that McConnel’s theorem
extends if D has small doubling.

1 Introduction

Throughout this paper, let p be a prime. Let q = pn and Fq be the finite field with q
elements with F

∗
q = Fq/{0}.

A celebrated result of McConnel [15] states that if D is a proper subgroup of F∗q ,
and f ∶ Fq → Fq is a function such that

f (x) − f (y)
x − y

∈ D(1.1)

whenever x , y ∈ Fq with x ≠ y, then there are a, b ∈ Fq and an integer 0 ≤ j ≤ n − 1,
such that f (x) = ax p j + b for all x ∈ Fq . This result was first proved by Carlitz [7]
when q is odd and D consists of squares in F

∗
q , that is, D is the subgroup of index 2.

Carlitz’s theorem and McConnel’s theorem have various connections with finite
geometry, graph theory, and group theory; we refer to a nice survey by Jones [11,
Section 9]. In particular, they have many applications in finite geometry; see, for
example, [5, 12]. We also refer to variations of McConnel’s theorem in [6, 10, 13] via
tools from group theory.

One may wonder, if the assumption that D is a multiplicative subgroup plays an
important role in McConnel’s theorem and if it is possible to weaken this assumption.
Inspired by this natural question, in this paper, we find a sufficient condition on D so
that if condition (1.1) holds for a function f ∶ Fq → Fq , then f necessarily has the form
f (x) = ax p j + b. In particular, our main result (Theorem 1.2) strengthens McConnel’s
theorem.

Before stating our results, we introduce some motivations and backgrounds from
the theory of directions and their applications. Let AG(2, q) denote the affine Galois
plane over the finite field Fq . Let U be a subset of points in AG(2, q); we use Cartesian
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coordinates in AG(2, q) so that U = {(x i , y i) ∶ 1 ≤ i ≤ ∣U ∣}. The set of directions
determined by U ⊂ AG(2, q) is

DU = {
y j − y i

x j − x i
∶ 1 ≤ i < j ≤ ∣U ∣} ⊂ Fq ∪ {∞},

where ∞ is the vertical direction. If f ∶ Fq → Fq is a function, we can naturally
consider its graph U( f ) = {(x , f (x)) ∶ x ∈ Fq} and the set of directions determined
by f is D f ∶=DU( f ). Indeed, D f precisely computes the set of slopes of tangent lines
joining two points on U( f ). Using this terminology, condition (1.1) is equivalent to
D f ⊂ D.

The following well-known result is due to Blokhuis, Ball, Brouwer, Storme, and
Szőnyi [3, 4].

Theorem 1.1 Let p be a prime and let q = pn . Let f ∶ Fq → Fq be a function such
that f (0) = 0. If ∣D f ∣ ≤ q+1

2 , then f is a linearized polynomial, that is, there are
α0 , α1 , . . . , αn−1 ∈ Fq , such that

f (x) =
n−1
∑
j=0

α jx p j
, ∀x ∈ Fq .

In particular, when q = p is a prime, Theorem 1.1 implies McConnel’s theorem; this
was first observed by Lovász and Schrijver [14]. We remark that when q = p is a prime,
Müller [16] showed a stronger result, namely, if D is a non-empty proper subset of
F
∗
p such that f (x) − f (y) ∈ D whenever x − y ∈ D, then there are a, b ∈ Fp such that

f (x) = ax + b for all x ∈ Fp . For a general prime power q, Theorem 1.1 does not imply
McConnel’s theorem directly. However, using the idea of directions, Muzychuk [17]
provided a self-contained proof of McConnel’s theorem.

While Theorem 1.1 is already quite powerful, in many applications, if some extra
information on D f is given, it is desirable to obtain a stronger conclusion, namely,
f (x) is of the form ax p j + b for some j, or even f (x) must have the form ax + b.
As an illustration, we mention two recent works in applying a stronger version of
Theorem 1.1 to prove analogs of the Erdős–Ko–Rado (EKR) theorem in the finite field
setting [1, 2]. Asgarli and Yip [2] proved the EKR theorem for a family of pseudo-
Paley graphs of square order, and their main result roughly states that if D f arises
from a Cayley graph with “nice multiplicative properties” on its connection set, then
f (x) has the form ax + b; see [19] for more discussions. As another example, very
recently, Aguglia, Csajbók, and Weiner proved several EKR theorems for polynomials
over finite fields [1]. Again, one key ingredient in their proof is a strengthening of
Theorem 1.1. In [1, Theorem 2.2], they showed that if D f is a proper Fp-subspace of
Fq , then f (x) has the form ax + b; in [1, Theorem 2.13] (see also [9]), they showed
that if D f /{0} is a subset of a coset of K, where K is the subgroup of F∗q with index 2,
then f (x) has the form ax p j + b for some j.

Inspired by the connection above between the theory of directions and McConnel’s
theorem, we establish the following result.
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Theorem 1.2 Let p be a prime. Let q = pn and D ⊂ F∗q . Suppose f ∶ Fq → Fq is a
function such that

f (x) − f (y)
x − y

∈ D

whenever x , y ∈ Fq with x ≠ y. If

∣DD−1D−1∣ ≤ q + 1
2

,(1.2)

then there are a, b ∈ Fq and an integer 0 ≤ j ≤ n − 1, such that f (x) = ax p j + b for all
x ∈ Fq . In particular, if c > 0 is a real number such that ∣DD∣ ≤ c∣D∣, and c3∣D∣ ≤ q+1

2 ,
then the same conclusion holds.

If D is a proper subgroup of F∗q , then clearly DD−1D−1 = D and thus Theorem 1.2
recovers McConnel’s theorem. Indeed, in this case, the doubling constant of D is
simply ∣DD∣/∣D∣ = 1. Our result shows that if the doubling constant ∣DD∣/∣D∣ of D
is small, and ∣D∣ is not too large, then the analog of McConnel’s theorem still holds.
There are many ways to construct a set D ⊂ F∗q with small doubling. For example, we
can set D = K ∪ E, where K is a subgroup of F∗q , and E is an arbitrary subset of F∗q
such that ∣E∣ is small; alternatively, D can be taken to be the union of some cosets of a
fixed subgroup K of F∗q .

For a linearized polynomial f (x), note that D f = Im( f (x)/x). We refer to [8]
and references therein on the study of Im( f (x)/x) for linearized polynomials f. In
particular, it is an open question to determine all the possible sizes of Im( f (x)/x)
among linearized polynomials f [8, Section 6]. Theorem 1.2 implies the following
corollary, which partially addresses this question. It states that if D is such an image
set and D satisfies inequality (1.2), then D is necessarily a coset of a subgroup of F∗q
with a restricted index.

Corollary 1.3 Let p be a prime and let q = pn . If D ⊂ F∗q and ∣DD−1D−1∣ ≤ q+1
2 , then

D =D f for some function f ∶ Fq → Fq with f (0) = 0 if and only if D = aK, where a ∈
F
∗
q and K is a subgroup of F∗q with index pr − 1, where r is a divisor of n.

Notations. We follow standard notations for arithmetic operations among sets.
Given two sets A and B, we write AB = {ab ∶ a ∈ A, b ∈ B}, A−1 = {a−1 ∶ a ∈ A}.

2 Proofs

We start by proving Theorem 1.2. Our proof is inspired by several arguments used in
[14, 17].

Proof (Proof of Theorem 1.2) Without loss of generality, by replacing the function
f (x) with f (x) − f (0), we may assume that f (0) = 0. Since ∣D f ∣ ≤ q+1

2 , Theorem 1.1
implies that f is linearized. Let g(x) = 1/ f (x−1) for x ∈ Fq/{0} and set g(0) = 0. We
claim that g is also linearized.
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Let x , y ∈ F∗q with x ≠ y. Then,

g(x) − g(y)
x − y

=
1

f (x−1)
− 1

f (y−1)

x − y
= f (y−1) − f (x−1)
(x − y) f (x−1) f (y−1) =

f (y−1 − x−1)
(x − y) f (x−1) f (y−1)

since f is linearized. It follows that

g(x) − g(y)
x − y

=
f ( x−y

x y )
(x − y) f (x−1) f (y−1) =

f ( x−y
x y )

x−y
x y

⋅ x−1

f (x−1) ⋅
y−1

f (y−1) ∈ DD−1D−1 .

On the other hand, if x ∈ F∗q , then

g(x) − g(0)
x − 0

= g(x)
x
= 1

x f (x−1) =
x−1

f (x−1) ∈ D−1 .

We conclude that

Dg ⊂ DD−1D−1 ∪ D−1 = DD−1D−1 .

Then inequality (1.2) implies that ∣Dg ∣ ≤ q+1
2 , and Theorem 1.1 implies that g is also

linearized.
Since f and g are both linearized, we can find α0 , β0 , . . . , αn−1 , βn−1 ∈ Fq , such that

f (x) =
n−1
∑
j=0

α jx p j
, and g(x) =

n−1
∑
j=0

β jx p j
, ∀x ∈ Fq .

By the definition of g, we have f (x−1)g(x) = 1 for each x ∈ F∗q , and thus (x pn−1
f (x−1))

(g(x)/x) = x pn−1−1 for all x ∈ F∗q . Equivalently,

h(x) ∶= (
n−1
∑
j=0

α jx pn−1−p j
)(

n−1
∑
j=0

β jx p j−1) = x pn−1−1(2.1)

holds for all x ∈ F∗q . Note that h(x) − x pn−1−1 is a polynomial with degree at most
2(pn−1 − 1) ≤ pn − 1 = q − 1, and h(x) − x pn−1−1 vanishes on F

∗
q . It follows that there is

a constant C ∈ Fq , such that h(x) − x pn−1−1 = C(xq−1 − 1) as polynomials. By setting
x = 0, we get C = 0. Therefore, h(x) = x pn−1−1 as polynomials. In particular, g(x) is a
factor of x pn−1

. Thus, there are γ ∈ F∗q and 0 ≤ j ≤ n − 1 such that g(x) = γx p j
for all

x ∈ Fq , and it follows that f (x) = γ−1x p j
for all x ∈ Fq , as required.

Finally, assume that ∣DD∣ ≤ c∣D∣, and c3∣D∣ ≤ q+1
2 . Then the Plünnecke–Ruzsa

inequality (see, for example, [18, Theorem 1.2]) implies that

∣DD−1D−1∣ ≤ c3∣D∣ ≤ q + 1
2

,

and thus the same conclusion holds. ∎

Now we use Theorem 1.2 to deduce Corollary 1.3.
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Proof (Proof of Corollary 1.3) Assume that f ∶ Fq → Fq is a function such that
f (0) = 0 and D f = D. Since D ⊂ F∗q and ∣DD−1D−1∣ ≤ q+1

2 , Theorem 1.2 implies that
there exist a ∈ F∗q and an integer 0 ≤ j ≤ n − 1, such that f (x) = ax p j

for all x ∈ Fq .
Therefore, D =D f = {ax p j−1 ∶ x ∈ F∗q}. Note that

gcd(p j − 1, q − 1) = gcd(p j − 1, pn − 1) = pgcd( j,n) − 1.

It follows that

D = {ax pgcd( j,n)−1 ∶ x ∈ F∗q} = aK ,

where K is the subgroup of F∗q with index pgcd( j,n) − 1.
Conversely, let r be a divisor of n and a ∈ F∗q . Let f (x) = ax pr

for all x ∈ Fq . Then
we have D f = {ax pr−1 ∶ x ∈ F∗q} = aK, where K is the subgroup of F∗q with index
pr − 1. ∎
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