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Abstract
Text style transfer (TST) aims at automatically changing a text’s stylistic features, such as formality, sen-
timent, authorial style, humor, and complexity, while still trying to preserve its content. Although the
scientific community has investigated TST since the 1980s, it has recently regained attention by adopting
deep unsupervised strategies to address the challenge of training without parallel data. In this manuscript,
we investigate how relying on sequence-to-sequence pretraining models affects the performance of TST
when the pretraining step leverages pairs of paraphrase data. Furthermore, we propose a new technique
to enhance the sequence-to-sequence model by distilling knowledge from masked language models. We
evaluate our proposals on three unsupervised style transfer tasks with widely used benchmarks: author
imitation, formality transfer, and polarity swap. The evaluation relies on quantitative and qualitative anal-
yses and comparisons with the results of state-of-the-artmodels. For the author imitation and the formality
transfer task, we show that using the proposed techniques improves all measuredmetrics and leads to state-
of-the-art (SOTA) results in content preservation and an overall score in the author imitation domain. In
the formality transfer domain, we paired with the SOTAmethod in the style control metric. Regarding the
polarity swap domain, we show that the knowledge distillation component improves all measured metrics.
The paraphrase pretraining increases content preservation at the expense of harming style control. Based
on the results reached in these domains, we also discuss in the manuscript if the tasks we address have the
same nature and should be equally treated as TST tasks.

Keywords: Evaluation; Machine learning; Natural language generation; Style transfer

1. Introduction
Natural language generation (NLG) (Gatt and Krahmer 2018) is a subfield of natural language
processing aiming to enable computers the ability to write correct, coherent, and appealing texts.
NLG includes popular tasks like machine translation (Bahdanau, Cho, and Bengio 2015), summa-
rization (Rush, Chopra, and Weston 2015), and dialogue response generation (Yarats and Lewis
2018).

An increasingly prominent task in NLG is text style transfer (TST). TST aims at transferring
a sentence from one style to another without appreciably changing the content (Hu et al. 2022;
Jin et al. 2022). TST encompasses several sub-tasks, including sentiment transfer, news rewriting,
storytelling, text simplification, and writing assistants, among others. For example, author imita-
tion (Xu et al. 2012) is the task of paraphrasing a sentence to fit another author’s style. Automatic
poetry generation (Ghazvininejad et al. 2016) applies style transfer to create poetry in different
fashions.
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TST inherits the challenges of NLG, namely the lack of parallel training corpora and reliable
evaluation metrics (Reiter and Belz 2009; Gatt and Krahmer 2018). Since parallel examples from
each domain style are usually unavailable, most style transfer works focus on the unsupervised
configuration (Han, Wu, and Niu 2017; He et al. 2020; Malmi, Severyn, and Rothe 2020a). Our
work also follows the unsupervised style transfer setting, learning from non-parallel data only.

Most previous models that address the style transfer problem adopt the sequence-to-sequence
encoder-decoder framework (Shen et al. 2017; Hu et al. 2017; Fu et al. 2018). The encoder aims
at extracting a style-independent latent representation while the decoder generates the text con-
ditioned on the disentangled latent representation plus a style attribute. This family of methods
learns how to disentangle the content and style in the latent space. Disengaging the content from
the style means that it is impossible to recover the style from the content. Nevertheless, Lample
et al. (2019) show that disentanglement is hard to do, difficult to judge the quality, and particu-
larly unnecessary. Thus, following previous work (Lample et al. 2019; Dai et al. 2019), we make
no assumptions about the disentangled latent representations of the input sentences.

We rely on transformer (Vaswani et al. 2017) as our base neural sequence-to-sequence
(Seq2Seq) architecture. The transformer is a deep neural network that has succeeded in many
NLP tasks, particularly when it allies with pretrained masked language models (MLM), such as
BERT (Devlin et al. 2019). However, using MLM in text generation tasks is less prevalent. This is
because models like BERT focus on encoding bidirectional representations through the masked
language modeling task, while text generation better fits an auto-regressive decoding process.

We explore training the Seq2Seq model with two procedures. One approach trains it from
scratch with the dataset itself, and the other pretrains the model using available paraphrased data
before presenting it to the dataset examples. We show that pretraining a Seq2Seq model on a
massive paraphrase data benefits TST tasks, mainly the ones that can be considered rewriting
tasks. Furthermore, we investigate if we can leverage masked language models to benefit the style
transfer task, even though their use is less widespread than auto-regressive models for language
generation-based tasks. Notably, we want to investigate if TST with a masked language model can
output texts with the desired style while still preserving the input text main topic or theme. The
investigation considers the following research questions:

RQ1: Does extracting knowledge from a Masked Language Model improve the performance of
Seq2Seq models in the style transfer task and consequently generate high-quality texts?

RQ2:What is the impact of pretraining the Seq2Seq model on paraphrase data to the style transfer
task?

To answer the research questions, we build our model upon the neural architecture block pro-
posed in Dai et al. (2019). We leverage their transformer neural network and training strategies.
Our adopted transformer network is similar to the original one (Vaswani et al. 2017), except
for an additional style embedding inserted into the encoder as the first embedding component.
Regarding the training techniques, we inherited the adversarial training and the back-translation
techniques of Dai et al. (2019). Nevertheless, we formulate the main cost function to extract
knowledge from a MLM.

To show we can take advantage of an MLM to improve the performance of the style trans-
fer task, we try to distill the knowledge of a pretrained MLM to leverage its learned bidirectional
representations. We modify the training objective by transferring the knowledge it contains to
the Seq2Seq model. We hypothesize that the predictive power of an MLM improves the per-
formance of TST. As our model uses both Transformers and a MLM for training, we call it
MATTES (MAsked Transformer for TExt Style transfer).a Furthermore, to evaluate if pretraining
the Seq2Seq model benefits the TST task, we select a large-scale collection of diverse paraphrase

aThe source code is available at https://github.com/MeLLL-UFF/mattes.
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data, namely, the PARABANK 2 dataset (Hu et al. 2019). For comparison, we experimented
training from scratch with the dataset examples and starting from the pretrained model.

For evaluating the proposed model and learning strategies, we select the author imitation (Xu
et al. 2012), formality transfer (Rao and Tetreault 2018), and the polarity swap (Li et al. 2018)
tasks, all in English, given the availability of benchmark datasets. The first task aims at paraphras-
ing a sentence in an author’s style. The second task consists of rewriting a formal sentence into its
informal counterpart and vice-versa. The remaining task, also known as sentiment transfer, aims
at reversing the sentiment of a text from positive to negative and vice-versa, preserving the overall
theme. These tasks are usually gathered in the literature under the general style transfer label and
addressed with the same methods. However, they have critical differences: author imitation and
formality transfer imply rephrasing a sentence to match the desired target style without changing
its meaning. On the other hand, polarity swap aims to change a text with positive polarity into a
text with negative polarity (or vice-versa). In this case, while the general topic must be preserved,
the meaning is not maintained (e.g., turning “I had a bad experience” into “I had a great experi-
ence”). In this sense, author imitation and formality transfer can be seen much more as rewriting
than polarity swap. This way, it is possible to consider them similar to the broader objective of
paraphrasing. In this manuscript, we also address these tasks similarly, but this is to investigate
how their different nature affects the models, task modeling, and evaluation.

Regarding task evaluation, the literature commonly assesses the performance of TST on style
strength and content preservation. To verify that the generated text agrees with the desired style,
we train a classifier using texts of both styles, with style as the class, and measure its accuracy.
To measure content preservation, the most important feature a style transfer model should pos-
sess, three metrics were used: BLEU (Papineni et al. 2002), semantic similarity (SIM) (Wieting
et al. 2019), and BARTScore (Yuan, Neubig, and Liu 2021). The results pointed out that using a
pretrained Seq2Seq as starting point and using a pretrained MLM throughout the main training
of the model improves the quality of the generated texts. We show that the former is extremely
helpful for rewriting tasks while the latter is more task agnostic oriented but slightly impacts the
performance.

The contributions of this paper are:

1. A novel unsupervised training method that distills knowledge from a pretrained MLM. To
our knowledge, this is the first study that uses an MLM within the training objective on
the style transfer task. We show that extracting the rich bidirectional representations of an
MLM benefits the TST task.

2. An evaluation of two training strategies of the Seq2Seq model. We show that rewrit-
ing tasks, such as author imitation and formality transfer, benefit from a Seq2seq model
pretrained with paraphrase data.

3. In the experiments with author imitation and formality transfer, we achieve state-of-the-art
results when pretraining the Seq2Seqmodel with paraphrase data and using our distillation
training technique.

The rest of the manuscript is organized as follows. Section 2 briefly describes basic concepts
related to our proposal. Section 3 reviews related work to highlight howMATTES is placed within
the literature on the theme. Next, we state the problem tackled here and present our approach in
Section 4. Section 5 devises the experiments, and Section 6 concludes the manuscript and points
out future directions.

2. Key concepts
This section reviews essential concepts that form the architectural backbone of our proposal.
We describe the general paradigm widely used to handle NLP tasks that demand transforming
a sequence of tokens into another sequence. Next, we review the Transformer architecture, which
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relies on the attention mechanism to enhance the sequence generation. Finally, we discuss the
autoregressive and MLMs, as we rely on the latter to build MATTES.

2.1 Sequence-to-sequencemodels with the transformer architecture
Sequence-to-Sequence (Seq2Seq) models are frameworks based on deep learning to address tasks
that require obtaining a sequence of values as output from a sequence of input values (Sutskever,
Vinyals, and Le 2014). At a high level, a Seq2Seq model comprises two neural networks, one
encoding the input and the other decoding the encoded representation to produce the output.

Early models included recurrent neural networks as the encoder and decoder components. In
this case, the encoder’s role is to read the input sequence X =< x1, . . . , xn >, where xi is a token,
and generate a fixed-dimension vectorC representing the context. Then, the decoder generates the
output sequence Y =< y1, . . . , ym >, starting from the context vector C. However, compressing
a variable-length sequence into a single context vector is challenging, especially when the input
sequence is long. Thus, Seq2Seqmodels with vanilla recurrent networks fail to capture long textual
dependencies due to the information bottleneck when relying on a single context vector.

The attention mechanism emerged to address the information bottleneck problem of seq2seq
recurrent neural networks (Bahdanau et al. 2015). Instead of using only one context vector at the
end of the encoding process, the attention vector provides the decoding network with a full view of
the input sequence at every step of the decoding process. Thus, in the output generation process,
the decoder can decide which tokens are important at any given time.

Using only attention mechanisms and dismissing recurrent and convolutional components,
Vaswani et al. (2017) created an architecture named Transformer, which was successful in numer-
ous NLP tasks (Radford et al. 2018; Devlin et al. 2019). The Transformer architecture follows the
Seq2Seq paradigm comprising an encoder–decoder architecture. The encoder consists of six iden-
tical encoding layers. Each comprises amultihead self-attentionmechanism, residual connections,
an add-norm mechanism, and a feed-forward network. The decoder also consists of six identical
layers similar to the encoding layers. However, the decoder gets two inputs and applies the atten-
tion twice, where, in one of them, the input is masked. This prevents the token in a certain position
from having access to tokens after it during the generation process. Also, the final decoder layer
has a size equal to the number of words in the vocabulary.

2.2 Autorregressive andmasked languagemodels
Language models compute the probability of the occurrence of a token given a context.
Autoregressive language models compute the probability of occurrence of a token, given the
previous tokens in the sequence. Thus, given a sequence x= (x1, x2, . . . , xm), an autoregressive
language model calculates the probability p(xt|x<t). The probability of a sequence of m tokens
x1, x2, . . . , xm is given by P(x1, x2, . . . , xm). Since it is computationally expensive to enumerate all
possible combinations of tokens that come before a token, P(x1, x2, . . . , xm) is usually conditioned
to a window of n previous tokens instead of all the previous ones. In these cases,

P(x1, x2, . . . , xm)=
m∏

i=1
P(xi|x1, . . . , xi−1)≈

m∏

i=1
P(xi|xi−n, . . . , xi−1) (1)

Pretraining neural language models using self-supervision from a large volume of texts has
been highly effective in improving the performance of various NLP tasks (Peters et al. 2018;
Radford et al. 2018; Howard and Ruder 2018; Devlin et al. 2019). The pretrained language models
can be later adjusted with fine-tuning to handle specific downstream tasks or domains.

Different self-supervised goals were explored in the literature to pretrain a language model,
including autoregressive and MLM strategies (Yang et al. 2019, Devlin et al. 2019; Yang et al.
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2019; Lan et al. 2020; Lan et al. 2020). An autoregressive language model, given a sequence
x= (x1, x2, . . . , xm), factors the probability into a left-to-right product p(x)= ∏T

t=1 p(xt|x<t) or
from right-to-left p(x)= ∏1

t=T p(xt|x>t). The problem with these models is unidirectionality
since, during training, a token can only be aware of the tokens to its left or right. Many works point
out that it is fundamental for several tasks to obtain bidirectional representations incorporating
the context of both the left and the right (Devlin et al. 2019).

Devlin et al. (2019) introduced the task of masked language modeling (MLM) with BERT,
a transformer-encoder. MLM consists of replacing a percentage (in the original work, 15%) of
the sequence tokens with a token [MASK] and then predicting those masked tokens. In BERT
(Devlin et al. 2019), the probability distribution of the masked tokens regards both the left and
right contexts of the sentence.

2.2.1 ALBERT: A lite version of BERT
Overall, increasing the size of a pretrained neural language model positively impacts subsequent
tasks. However, growing the model becomes unfeasible at some point due to GPU/TPU mem-
ory limitations and huge training time. ALBERT (Lan et al. 2020) addressed these problems
with two techniques for reducing parameters. This manuscript relies on an ALBERT model to
extract knowledge from its rich contextualized representations. Although any other MLM model
could have been selected, we adopt ALBERT because it uses fewer computational resources when
compared to a BERT of the same size.

The architectural skeleton of ALBERT is similar to BERT, which means that it uses a trans-
former encoder with GELU activation function (Hendrycks and Gimpel 2016). ALBERT makes
three main contributions to BERT design choices, as follows. Following BERT notation, E is the
size of the vocabulary vector representations, L is the number of encoder layers, and H is the
hidden layers’ representation size.

Parameter factorization. BERT ties E to the size of the hidden states representation H, that is,
E=H, which is not efficient, both for modeling and practical reasons. From a modeling point of
view, the learned representations for vocabulary tokens are context-independent, while the hidden
layers of learned representations are context-dependent. As the representational power of BERT
lies in the possibility of obtaining rich contextualized representations from non-contextualized
representations, untying E from H is a more efficient use of model parameters. From a practical
point of view, as in most NLP tasks, the vocabulary size V is usually large; if E=H, increasing
H increases the representation matrix of vocabulary tokens, which is of length V × E. This can
result in a model with billions of parameters, many of which are sparsely updated during training.
Thus, ALBERT decomposes the matrix of vocabulary representations into two smaller matrices,
reducing the parameters from O(V ×H) to O(V × E+ E×H). This is a significant reduction
when H � E.

Shared parameters between layers. ALBERT has a scheme for sharing parameters between lay-
ers to improve handling parameters efficiently. Although it is possible to share the parameters
between the layers partially, the default configuration shares all the parameters, both neural net-
work and attention parameters. With this, it is possible to increase the depth without increasing
the number of parameters.

Coherence component between sentences in the loss function. BERT has an extra component in
the loss function besides predicting the masked tokens, called next-sentence prediction (NSP).
During training, NSP learns whether two sentences appear consecutively in the original text.
Arguing that this component is not practical as a task when compared to the MLM task, Lan
et al. (2020) proposed a component called sentence-order prediction (SOP). This component uses
as a positive example two consecutive text segments from the same document (such as BERT).
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As a negative example, the same two segments, but with the order changed. The results indicated
that ALBERT improved performance in subsequent tasks that involved coding more than one
sentence.

Although masked pretrained models, such as BERT and ALBERT, benefit several NLP tasks,
they fit less text generation tasks since they are transformer encoders, and decoders are more suit-
able to generate texts. However, it is common when writing a text that words that appeared before
can be changed after writing a later sequence, giving an intuitive idea of context and bidirection-
ality. In order to make use of rich bidirectional representations from a MLM, MATTES distills
knowledge from ALBERT to benefit the TST task.

3. Literature review and related work
TST aims to automatically change stylistic features, such as formality, sentiment, author style,
humor, and complexity, while trying to preserve the content. This manuscript focuses on unsu-
pervised TST, given that creating a parallel corpus of texts with different styles is challenging and
requires much human effort. In this scenario, the approaches differ in investigating how to dis-
entangle style and content or not disentangling them at all (Hu et al. 2022). Lample et al. (2019)
argued that it is difficult to judge whether content and style representations obtained are disentan-
gled and that disentanglement is not necessary for the TST task either. Recent studies, including
this manuscript, explore the TST task without disentangling content and style. Next, we elicit
works that explicitly decouple the content from the style, try to detach them implicitly using latent
variables, or do not rely on disentanglement strategies to position our work within the current TST
literature.

3.1 Explicit disentanglement
Models following this strategy generate texts through direct replacement of keywords associ-
ated with the style (Li et al. 2018; Xu et al. 2018; Zhang et al. 2018a; Sudhakar, Upadhyay, and
Maheswaran 2019; Wu et al. 2019a, 2019b; Malmi, Severyn, and Rothe 2020b).

The methodDelete, Retrieve, Generate (Li et al. 2018) explicitly replaces keywords in a text with
words of the target style. First, it removes the words that best represent the original style. Then,
it fetches the text most similar to the input from the target corpus. Next, it extracts the words
most closely associated with the target style from the returned text and combines them with the
sentence acquired in the first step to generate the output text using a sequence-to-sequence neural
network model. Sudhakar et al. (2019) extended the model Delete, Retrieve, Generate to improve
the Delete step using a transformer (Vaswani et al. 2017). The method POINT-THEN-OPERATE
(Wu et al. 2019) also changes the input sentence but relies on hierarchical reinforcement learning.
One RL agent points out the positions that should be edited in the sentence, and another RL agent
changes it.

Zhang et al. (2018a) adopted a keyword substitution technique similar to Delete, Retrieve,
Generate to transfer sentiment in texts. Also focusing on sentiment transfer, Xu et al. (2018) devel-
oped a model with a neutralization and an emotionalization components. The former extracts
semantic information without emotional content, while the latter adds sentiment content to the
neutralized positions.

TheMask and Infill method (Wu et al. 2019b) works in two stages. First, it masks words asso-
ciated with the style using frequency rates. Next, it fills the masked positions with the target style
using a pretrained MLM. Malmi et al. (2020b) also used a pretrained MLM to remove snippets
and generate the replacement snippets. Although these works rely on MLMs, they differ from
our proposal as they use language models only to predict tokens to replace previously removed
ones.
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3.2 Implicit disentanglement
Models focusing on implicit disentanglement detach content and style from the original sentence
but do not explicitly alter the original sentence. They learn latent content and style representations
for a given text to separate content from style. Then, the content representation is combined with
the target style representation to generate the text in the target style.

Most recent solutions leverage adversarial learning (Hu et al. 2017; Shen et al. 2017; Fu et al.
2018; Zhao et al. 2018b; Chen et al. 2018; Logeswaran, Lee, and Bengio 2018; Lai et al. 2019;
John et al. 2019; Yin et al. 2019) to obtain style-agnostic representations of the sentence content.
After learning the latent content representation, the decoder receives as input that representation
along with the label of the desired style to generate a variation of the input text with the desired
style. Yang et al. (2018) followed that strategy and used two language models, one for each stylistic
domain. Themodel minimizes the perplexity of sentences generated according to these pretrained
language models.

Other techniques separate content from the style by artificially generating parallel data via
back-translation, then converting them back to the original domain, forcing them to be the
same as the input. Besides addressing the lack of parallel data, such a strategy can normalize
the input sentence by stripping away information that is predictive of its original style. With
back-translation, one-direction outputs and inputs can be used as pairs to train the model of the
opposite transfer direction. Prabhumoye et al. (2018) used an English-French neural translation
model to rephrase the sentence and remove the stylistic properties of the text. The English sen-
tence is initially translated into French. The French text is then translated back to English using a
French-English neural model. Finally, this style-independent latent representation learned is used
to generate texts in a different style using a multiple-decoder approach. Zhang et al. (2018b) fol-
lowed back-translation first to create pseudo-parallel data. Then, those data initialize an iterative
back-translation pipeline to train two style transfer systems based on neural translation models.
Krishna et al. (2020) used a paraphrasing model to create pseudo-parallel data and then trained
style-specific inverse paraphrase models that convert these paraphrased sentences back into the
original stylized sentence. Despite adopting back-translation, our proposal does not expect that
the model output is deprived of style information. On the contrary, during training, we try to
control the style of the generated output.

Some disentanglement strategies explore learning a style attribute to control the generation of
texts in different styles. The method presented in (Hu et al. 2017) induces a model that uses a vari-
ational autoencoder (VAE) to learn latent representations of sentences. These representations are
composed of unstructured variables (content) z and structured variables (style) c that aim to rep-
resent salient and independent features of the sentence semantics. Finally, z and c are inserted into
a decoder to generate text in the desired style. Tian et al. (2018) extended this approach, adding
constraints to preserve style-independent content, using Part-of-speech categories and a content-
conditioned language model. Zhao, Kim, Zhang, Rush and LeCun (2018) proposed a regularized
adversarial autoencoder that expands the use of adversarial autoencoders to discrete sequences.
Park et al. (2019) relied on adversarial training and VAE to expand previous methods to generate
paraphrases guided by a target style.

3.3 Non-disentanglement approaches
Although the models included in this category do not assume the need to disentangle content and
style from input sentences, they also rely on controlled generation, adversarial learning, reinforce-
ment learning, back-translation, and probabilistic models, similar to some models in the previous
categories.
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Jain et al. (2019) proposed a framework for controlled natural language transformation that
consists of an encoder–decoder neural network reinforced by transformations carried out through
auxiliary modules. Zhang, Ding, and Soricut (2018) devised the SHAPED method with an archi-
tecture that has shared parameters updated from all training examples and not-shared parameters
updated with only examples from their respective distributions. Zhou et al. (2020) proposed a
Seq2Seq model that dynamically evaluates the relevance of each output word for the target style.
Lample et al. (2019) also used the strategy of learning attribute representations to control text
generation. They demonstrated that it is difficult to prove that the style is separated from the
disentangled content representation and that performing this disentanglement is unnecessary for
the TST task to succeed. Dai et al. (2019) proposed a transformer-based architecture with trainable
style vectors. Our proposal follows this architecture, but it differs in the training strategy since it
alters the loss function of the generating network to extract knowledge from a MLM.

The methods presented in Mueller, Gifford, and Jaakkola (2017); Wang, Hua, andWan (2019);
Liu et al. (2020); Xu, Cheung, and Cao (2020) have in common the fact that they manipulate the
hidden representations obtained from the input sentence to generate texts in the desired style.
The method proposed in Mueller et al. (2017) comprises a recurrent VAE and an output predic-
tor neural network. By imposing boundary conditions during optimization and using the VAE
decoder to generate the revised sentences, the method ensures that the transformation is sim-
ilar to the original sentence, is associated with better outputs, and looks natural. The method
devised in Liu et al. (2020) has three components: (1) a VAE, which has an encoder that maps
the sentence to a smooth continuous vector space and a decoder that maps back the continuous
representation to a sentence; (2) attribute predictors, which use the continuous representation
obtained by the VAE as input and predict the attributes of the output sentence; and (3) content
predictors of a Bag-of-word (BoW) variable for the output sentence. The method proposed in
Wang et al. (2019) comprises an autoencoder based on Transformers to learn a hidden input
representation. Next, the task becomes an optimization problem that edits the obtained hidden
representation according to the target attribute. VAE is also the core of the method proposed in
Xu et al. (2020) to control text generation. The method proposed in He et al. (2020) addresses
the TST task with unsupervised learning, formulating it as a probabilistic deep generative model,
where the optimization objective arises naturally, without the need to create artificial custom
objectives.

Gong et al. (2019) leveraged reinforcement learning with a generator and an evaluator net-
work. The evaluator is an adversarially trained style discriminator with semantic and syntactic
constraints punctuating the sentence generated by style, content preservation, and fluency. The
method proposed in Luo et al. (2019) also uses reinforcement learning and considers the prob-
lem of transferring style from one domain to another as a dual task. To this end, two rewards are
modeled based on this framework to reflect style control and content preservation.

Lai et al. (2021) created a three-step procedure on top of the large pretrained seq2seq model
BART (Lewis et al. 2020). First, they further pretrain the BART model on an existing collection of
generic paraphrases and synthetic pairs created using a general-purpose lexical resource. Second,
they use iterative back-translation with several reward strategies to train two models simultane-
ously, each in a transfer direction. Third, using their best systems from the previous step, they
create a static resource of parallel data. These pairs are used to fine-tune the original BART with
all reward strategies in a supervised way. As this model, ours also has a preliminary pretraining
phase on the same paraphrase data. Nevertheless, our main training procedure differs, relying
mostly on adversarial and distillation techniques for style control.

Table 1 exhibits different features of some works from the last 5 years that, like MATTES, do
not follow any disentanglement strategy to decouple content from style in the unsupervised TST
task.
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Table 1. Non-disentaglemet publications according to model characteristics

Model features

Multiple Adversarial Pre-trained Pre-trained Human

Model styles Back-translation training LM MLM Transformers-based VAE evaluation

Mueller et al. (2017) X
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lample et al. (2019) X X X


Dai et al. (2019) X X X X


Jain et al. (2019) X X


Wang et al. (2019) X X


Gong et al. (2019) X X X


Luo et al. (2019) X


Zhou et al. (2020) X X


Liu et al. (2020) X X X


Xu et al. (2020) X


He et al. (2020) X X X


Krishna et al. (2020) X X X X


Kim and Sohn (2020) X


Yi et al. (2020) X X


Chen et al. (2021) X X X X


Goyal et al. (2021) X X X X


Liu, Neubig, and Wieting (2021) X X X X


MATTES X X X X X
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4. MATTES: Masked transformer for text style transfer
This Section presents MATTES, our proposed approach that distills knowledge from aMLM aim-
ing at improving the quality of the text generated by a Seq2Seq model for the TST task. The MLM
adopted here is ALBERT (Lan et al. 2020), a lighter version of the popular BERT that still gets
better or competitive results but relies on parameter reduction techniques to improve training
efficiency and reduce memory costs.

MATTES follows the architecture established in Dai et al. (2019), which in turn uses an
adversarial training framework (Radford, Metz, and Chintala 2016). Training adopts two neu-
ral networks. One is a discriminator network operating only during training. The discriminator
is a style classifier aiming at making the model learn to differentiate the original and the recon-
structed sentences from the translated sentences. The other neural network is the text generator. It
comprises an encoder and a decoder, based on a transformer architecture. The generator network
receives as input a sentence X and a target output style stgt and produces a sentence Y in the target
style, making the proposed model a mapping function Y = fθ (X, stgt). The final model learned by
MATTES and used for inference is the generator network, while the discriminator network is used
only during training.

Before going into further details about the specific components of MATTES, Section 4.1 for-
malizes how we investigate the textual style transfer task in this manuscript. Afterward, the main
paradigms that constitute the proposed method are presented: Section 4.2 presents the Seq2Seq
learning component, and Section 4.3 devises the MLM and the knowledge distillation method
that extracts knowledge from the MLM. Finally, Section 4.4 describes the adversarial learning
algorithm proposed here and gives additional details about the model architecture and design
choices.

4.1 Problem formulation
This manuscript assumes the styles as elements of a set S. For example, S= {positive, negative}
for the polarity swap task, where the text style can be positive or negative. For training the model,
there is a set of sentencesD= {(X1, s1), . . . , (Xk, sk)} labeled with their style, that is,Xi is a sentence
and si ∈ S is the style attribute of the sentence. From D, we extract a set of style sentences Ds =
{X:(X, s) ∈D}, which represent all the sentences of D with attribute s. In the polarity swap task, it
would be all sentences with attribute positive, for example. All sequences in the same dataset Di
share specific characteristics related to the style of the sequences.

The goal of the textual style transfer learning task tackled in this manuscript is to build a model
that receives as input a sentence X and a target style stgt, where X is a sentence with style ssrc �= stgt,
and produces a sentence Y that preserves as much as possible the content of X while incorpo-
rating the style stgt. MATTES addresses the problem of style transfer with unsupervised machine
learning. Thus, the only data available for training are the sequences X and their style source ssrc.
MATTES do not have access to a template sentence X∗, which would be the conversion of X to the
target style stgt.

When we adopt the strategy of pretraining the Seq2Seq model, there is another style element
in the set S that we call the paraphrase style. For the polarity swap task, S would be S = {positive,
negative, paraphrase}, for example. This new style is not part of the domain dataset, and it only
exists to make it possible to start from the pretrained model in the overall training.

4.2 Sequence-to-sequencemodel
This section describes the sequence-to-sequence architecture and how it is pretrained on a large
amount of generic data to improve the model.
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4.2.1 Sequence-to-sequence learning architecture
As usual, we adopt the Seq2Seq encoder–decoder paradigm to solve the TST task. Formally,
during learning, the model trains to generate an output sequence Y = (y1, . . . , yN) of length N,
conditioned on the input sequence X = (x1, . . . , xM) of length M, where xi ∈ X and yi ∈ Y are
tokens. The encoder–decoder neural network achieves the goal of generating the output sequence
by learning a conditional probability distribution Pθ (Y|X), by minimizing the cross entropy loss
function L(θ)

L(θ)= − log Pθ (Y|X)= −
N∑

t=1
log Pθ (yt|y1:t−1, X) (2)

where θ are the model parameters.
Following (Dai et al. 2019), in this manuscript, the Transformer (Vaswani et al. 2017) archi-

tecture is adopted as the Seq2Seq model. During the training and inference process, in addition
to the embeddings of the input sentence X, the model also receives as input an embedding of the
target style. Hence, the input embeddings passed to the encoder are the target style embedding
followed by the embeddings of the input sentence, which is the sum of the token embeddings
and the positional embeddings, following the Transformer architecture. Thus, the method aims
to learn a model that represents a probability distribution conditioned not only on X but also on
the desired target style stgt. Thus, Equation (2) is modified to meet this characteristic, giving rise
to the loss function

L(θ)= − log Pθ (Y|X, stgt)= −
N∑

t=1
log Pθ

(
yt|y1:t−1, X, stgt

)
(3)

4.2.2 Sequence-to-sequence pre-training
Pretraining and fine-tuning are usually adopted when target tasks have few examples available
(Radford et al. 2018; Devlin et al. 2019). Several pretraining approaches adopt MLM, a kind of
denoising auto-encoder trained to reconstruct the text where some random words have been
masked. This kind of pretraining has mainly improved the performance of natural language
understanding tasks, which can be justified by the fact that MLMs are composed only of a bidi-
rectional encoder, while generation tasks adopt a left-to-right decoder. In this sense, the model
BART (Lewis et al. 2020) combined bidirectional and auto-regressive transformers to show that
sequence-to-sequence pretraining can benefit downstream language generation tasks.

Following this rationale, we pretrain our Seq2Seq model in a large collection of paraphrase
pairs (Hu et al. 2019). With that, we expect the model to learn the primary task of rewriting,
allowing the generation of pseudo-parallel data and, consequently, handling the style transfer in a
supervised fashion. We added another style embedding inside our style embedding layer to adapt
this technique to our training framework. This way, besides the actual styles of the sentences, there
is an additional one that we refer to as spara. It is the only style inserted into the model during the
pretraining phase. During this phase, we minimize the following loss function

L(θ)= − log Pθ (Y|X, spara)= −
N∑

t=1
log Pθ

(
yt|y1:t−1, X, spara

)
(4)

4.3 Knowledge distillation
This section starts by describing the MLM adopted in this manuscript. Next, it devised the
knowledge distillation strategy proposed here to leverage the MLM.

https://doi.org/10.1017/S1351324923000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000323


984 A. Scalercio and A. Paes

4.3.1 Masked languagemodel
One of the main contributions of this manuscript is to introduce the ability to transfer knowl-
edge contained in the rich bidirectional contextualized representations provided by a MLM to a
Seq2Seq model. MATTES adopts ALBERT (Lan et al. 2020) as the MLM, whose architecture is
similar to the popular BERT model (Devlin et al. 2019) but has fewer parameters.

From the language model learned by ALBERT, one can obtain the probability distribution of
the masked tokens according to

Pφ(Xm|Xu)= Pφ(xm1 , . . . , x
m
l |Xu) (5)

where xm∗ ∈ Xm are the masked tokens, l is the number of masked tokens in X, Xu are the
unmasked tokens, and φ are ALBERT parameters.

Before training the main model, we fine-tuned ALBERT with the available training dataset.
Although ALBERT is prepared to handle a couple of sentences as inputs, given the problem def-
inition, only one sentence is required. This is true either when fine-tuning or when training the
main Seq2Seq model. Because of that, MATTES does not adopt ALBERT Sentence-order pre-
diction loss component during the fine-tuning. When training the main TST model, ALBERT
parameters do not change. As the next section explains, MATTES uses the probability distribu-
tion provided by ALBERT for each token of the input sentence as a label for training the model
in one of the components of the loss function. Thus, instead of forcing the model to generate a
probability distribution with the entire probability mass in a single token, the model is forced to
have a smoother probability distribution, injecting probability mass into several tokens.

4.3.2 Knowledge distillation from themasked languagemodel
This section details how we introduce the knowledge distillation strategy into the model loss
function. To preserve the content of the original message, several previous TST methods adopt
a back-translation (BT) strategy (Lample et al. 2019; Dai et al. 2019; He et al. 2020; Lai et al. 2021),
proposed in Sennrich, Haddow, and Birch (2016) for the machine translation task. BT generates
pseudo-parallel sequences for training when no parallel sentences are available in the examples,
thus generating latent parallel data. Thus, in the context of the TST task, pairs of sentences are
created to train the model by automatically converting sentences from the training set to another
style.

During training, the BT component takes a sentence X and its style s as input and converts it to
a target style target ŝ �= s, generating the sentence Ŷ = fθ (X, ŝ). After that, the generated sentence
Ŷ is passed as input to the model along with the original style s, and the network is trained to learn
to predict the original input sentence X. The input sentence is first converted to the target style
and then converted back to its original style.

The method proposed in Dai et al. (2019) adopts the back-translation strategy to learn a TST
model, minimizing the negative value of the logarithm of the probability that the generated
sentence is equal to the original sentence with

LBT(θ)= − log Pθ (Y = X|fθ (X, ŝ), s) (6)

where fθ (X, ŝ) indicates the converted sentence and s is the original input style.
Sequence-to-sequence models are normally trained from left to right. Thus, when generating

each token to compose the sentence, the vocabulary probability distribution is conditioned only
to the previous tokens in the sentence. This is to avoid each token seeing itself and the others after
it. However, such an approach has the disadvantage of estimating the probability distribution only
with the left context.

MATTES uses a configuration calledmasked transformer during training to overcome this lim-
itation and generate a distribution that includes bidirectional information. The adoption of this
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architecture in the style transfer task comes from the observation that the probability distribu-
tion of a masked token xmt given by an MLM contains both past and future context information.
Thus, as no sentence pairs are available to perform supervised training, the central idea is to
force MATTES to generate a distribution provided by ALBERT for each token. By doing that,
MATTES smooths the probability curve and spreads probability mass over more tokens. Such
additional information can improve the quality of the generated texts and, in particular, the style
control of the model. Thus, during the optimization of the loss function component related to the
back-translation (Equation 6), the target is no longer the distribution in which the entire proba-
bility mass is in a single token. Instead, it becomes the probability distribution given by the MLM
Pφ(xmt |Xu) (Equation 5), for each token xt of the sentence input. The distribution provided by the
MLM becomes a softer target for text generation during training, moving the model away from
learning a more abrupt and unreal distribution, where the entire probability mass is in a single
token.

Another point that MATTES leverages with MLM is the use of a knowledge distillation scheme
(Hinton, Vinyals, andDean 2015). Distilling consists of extracting the knowledge contained in one
model through a specific training technique. This technique is commonly used to transfer infor-
mation from a large, already trained model, a teacher, to a smaller model, a student, better suited
for production. In such a scheme, the student uses the teacher’s output values as the goal, instead
of relying on the training set labels. The distillation process controls better the optimization and
regularization of the training process (Phuong and Lampert 2019).

Several previous distillation methods train both the teacher and the student in the same task,
aiming at model compression (Hinton et al. 2015; Sun et al. 2019). Here, we have a different
goal, as we use distillation to take advantage of pretrained bidirectional representations generated
through a MLM. Thus, ALBERT provides smoother labels to be used as targets during training
in the knowledge distillation component of the Seq2Seq loss function, inspired by the method
proposed in Chen et al. (2020), to improve the quality of the generated text.

MATTES benefits from the distillation scheme by making the MLM assume the teacher’s role,
while the unsupervised Seq2Seq model behaves like the student. Equation (7) shows how we adapt
the back-translation component to be a bidirectional knowledge distillation component:

Lbidi(θ)= −
N∑

t=1

∑

w∈V
Pφ(xt =w|Xu)·

· log Pθ (yt =w|y1:t−1, fθ (X, ŝ, s))

(7)

where Pφ(xt) is the soft target provided by the MLM with learned parameters φ, N is the sentence
length, and V denotes the vocabulary. Note that the parameters of the MLM are fixed during
the training process. Figure 1 illustrates the learning process, where the objective is to make the
probability distribution of the word Pθ (yt), provided by the student, be closer to the distribution
provided by the teacher, Pφ(xt).

MATTES is trained with an adapted back-translation method that implements a knowledge
distillation procedure:

LKD(θ)= αLbidi(θ)+ (1− α)LBT(θ) (8)

where α is a hyperparameter to adjust the relative importance of the soft targets provided by the
MLM and the original targets.

With the introduction of the new loss function term, the distribution is forced to become
smoother during training. When the traditional one-hot representations are used as a target dur-
ing training, the model is forced to generate the correct token. All other tokens do not matter
to the model, treating equally tokens that would be more likely to occur and tokens with almost
zero chance of occurring. In this way, by relying on a smoother distribution, the model increases
its potential to generate more fluent sentences as the probability spreads over more tokens. Also,
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Figure 1. Training illustration when the model is predicting the token y3 using an MLM. Pθ is the student distribution, while
Pφ is the teacher soft distribution provided by the MLM.

a smoother distribution avoids token generation entirely out of context and better controls the
desired style.

4.4 Learning algorithm
Training the model proposed here follows the algorithm defined in Dai et al. (2019). Both the
discriminator and the generator networks are trained adversarially. First, we describe how to train
the discriminator network and then the generator, where the masked transformer proposed in this
manuscript is inserted.

4.4.1 Learning the discriminator network
The discriminator neural network is a multiclass classifier with K + 1 classes. K classes are associ-
ated withK different styles, and the remaining class refers to the converted sentences generated by
the masked Transformer. The discriminator network is trained to distinguish the original and the
reconstructed sentences from the translated sentences. It means the classifier is trained to clas-
sify a sentence X with style s and its reconstructed sentence Y , as belonging to the class s, and
the translated Ŷ as belonging to the class of translated sentences. Accordingly, its loss function is
defined as

Ldiscriminator(ρ)= − log Pρ(c|X) (9)

where ρ are the parameters of the discriminator network, c is the stylistic domain of the sample
that can assume K + 1 categories. The parameters θ of the generator network are not updated
when training the discriminator.

4.4.2 Learning the generator network
A reconstruction component, a knowledge distillation component, and an adversarial component
compose the final loss function of the masked transformer, as follows.

Input sentence reconstruction component. When the model receives as input a sentence X along
with its style s, the model must be able to reconstruct the original sentence. The following
reconstruction component is added to the loss function to make the model achieve this ability:

Lself(θ)= − log Pθ (Y = X|X, s) (10)
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During training, Lself is optimized in the traditional way, that is, from left to right, masking
the future context, according to Equation (3). Despite being possible, this component does not
adopt the technique of knowledge distillation as we would like to isolate the distillation to a single
component and verify its benefit.

Knowledge distillation component. To extract knowledge from a pretrained MLM to improve
the transductive process of converting a sentence from one style to another, we introduce the
following knowledge distillation component

LKD(θ)= αLbidi(θ)+ (1− α)LBT(θ) (11)

where LBT is as Equation (6) and Lbidi is defined as Equation (7). With this, we expect to
smooth the probability distribution of the style converter model, producing more fluent sentences
resembling the target domain texts.

During training, to generate the knowledge distillation component (Equation 11) of our cost
function, the translated sentence style ŝ inserted into the generator network to obtain Ŷ depends
on whether we are training from scratch or using the generator network already pretrained on
paraphrase data. In the former case, as we do not have the style spara, we convert it to the other
existing style. On the latter, Ŷ is created according to the paraphrase style spara. In both approaches,
Ŷ is inserted back into the network along with the original style s to generate our final probability
distribution Pθ . This architectural modification unlocks our model to handle multiple styles at
once. This way, regardless of the number of style domains, during training, we translate to spara
and then back to ssrc. In inference time, we first translate to spara and then to stgt. Translating to
the paraphrase style can be thought of as normalizing the input sentence, striping out stylistic
information regarding the source style.

Adversarial component. When adopting the training from scratch approach, if the model is only
trained with the sentence reconstruction and knowledge distillation components, it could quickly
converge to learn to copy the input sentence, that is, stick to learning the identity function. Thus,
to avoid this problematic and unwanted behavior, an adversarial component is added to the cost
function to encourage texts converted to style ŝ, different from the input sentence style s, to get
closer to texts from the style ŝ.

In the scenario with the presence of paraphrase style, the adversarial component tries to modify
the generator such that the generated paraphrase sentence Ŷ is pushed to become similar to other
existing styles of the training set, as long as they are different from ssrc.

Generalizing for both approaches, the converted sentence Ŷ is inserted into the discriminator
neural network and, during training, the probability of the generated sentence being of the style
stgt, such that stgt �= ssrc and stgt �= spara, is maximized through optimization of the loss function
defined in Equation 12. The ρ parameters of the discriminator network are not updated when
training the generator network.

Ladversarial(ρ)= − log Pρ(c= stgt|fθ (X, ŝ)) (12)

These three loss functions are merged, and the overall objective for the generator network
becomes:

a1Lself(θ)+ a2LKD(θ)+Ladversarial(ρ) (13)

where a1 and a2 are hyperparameters to adjust each component’s importance in the loss function
of the generator network.
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Figure 2. Adversarial training illustration. G denotes the generator network, while D denotes the discriminator network.

4.4.3 Adversarial training
Generative adversarial networks (GANs) (Goodfellow et al. 2014) are differentiable generator neu-
ral networks based on a game theory scenario where a generator network must compete against
an opponent. The generator network produces samples x= g(z;θ (g)). The discriminator network’s
adversary aims to distinguish between samples from the training set and the generator network.
Thus, during training, the discriminator learns to classify samples as real or artificially generated
by the generator network. Simultaneously, the generator network tries to trick the discrimina-
tor and produces samples that look like they are coming from the probability distribution of the
dataset. At convergence, the generator samples will be indistinguishable from the actual training
set samples, and the discriminator network can be dropped.

In the context of this manuscript, the adversarial strategy can be better understood according to
the approach adopted. When training from scratch, it aims at converting texts to the desired style
without incurring the failure to copy the input text. When training from a pretrained paraphrase
model, the adversarial technique tries to push the generated paraphrases toward different styles
stgt, such that stgt �= ssrc and stgt �= spara. The general training procedure consists of, repeatedly,
performing nd discriminator training steps, minimizing Ldiscriminator(ρ), followed by nf genera-
tor network training steps, minimizing a1Lself(θ)+ a2LKD(θ)+Ladversarial(ρ), until convergence.
During the discriminator training steps, only the ρ parameters of the discriminator network are
updated. Analogously, during the generator network training steps, only the parameters θ of the
masked transformer are updated. Figure 2 illustrates the adversarial training adopted byMATTES.

When back-translating during training (Figure 1), MATTES do not generate the transformed
sentence Ŷ through sampling or greedy decoding from the transductive probability distribution
provided by the generator network. This decision is because propagating the gradients backward
through discrete stochastic operations is not differentiable, typically requiring techniques such
as REINFORCE (Williams 1992) or Gumbel-Softmax distribution approximation (Jang, Gu, and
Poole 2017), which suffer from high variance (He et al. 2020). To overcome this difficulty, the soft-
max distribution generated by the MATTES decoder is inserted again into the MATTES encoder,
along with the original sentence style, as in Dai et al. (2019). This configuration makes it possible
to directly propagate the gradients from the discriminator and generator networks to the reverse
model that generated the target style translated sentences.

Overall, the MATTES architectural scheme includes a four-layer transformer architecture with
four attention heads in each layer, for both the encoder and the decoder, and the discrimina-
tor network, as in Dai et al. (2019). The vector representations of tokens, hidden states, and token
position in the sentence have 256 dimensions.When training from scratch, we have a style embed-
ding layer with two 256-dimensional vectors representing the stylistic domains. When starting
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from the pretrained Seq2seq, we have three vectors as we append the paraphrase style to the set
of styles. The target style vector is inserted into the encoder along with the embeddings of each
token of the sentence.

In the experiments, we do not include the start sentence token, only the end sequence token.
During training, we replaced this token embedding with the style embedding as the first input
embedding of the sequence. Thus, the vectors representing the styles are also trained and are part
of the model.

This section described a machine learning method that addresses the unsupervised TST task
using a Seq2Seq model pretrained in a large amount of paraphrase data and anMLM inserted into
the training process with a knowledge distillation configuration. The Seq2Seq pretraining phase
allows the model to create synthetically generated paraphrase pairs on-the-fly during training to
help the transduction process. The distillation schema aims to extract knowledge from the MLM
and enrich the text-generated quality. To verify if the proposedmethod improves the performance
of TST, we conduct an experimental evaluation in the next section.

5. Experiments
We evaluated MATTES on three different style transfer tasks in the English language: author
imitation, formality transfer, and polarity swap. This section presents the experimental method-
ology adopted to carry out the experiments, the quantitative results from five automated metrics,
qualitative analyses, human evaluations, comparisons with related work, and ablation studies.

5.1 Experimental methodology
Here, we describe the datasets of the style transfer tasks, the models whose results we compare,
the assessment metrics, and model training details.

5.1.1 Datasets and tasks
MATTES was evaluated in three transfer style tasks in the English language: author imitation,
formality transfer, and polarity swap. The author imitation task consists of converting the style
of a sentence to the style of a particular author. The aim is to generate a paraphrase of the original
sentence but with a different textual style. To verify the ability of MATTES to perform this task,
we rely on a set of 21,000 (twenty-one thousand) sentences from William Shakespeare’s plays,
transcribed into modern English. As they are translations from English into English, this dataset
is also an intra-linguistic translation. The author imitation task can be considered an adaptation,
where a text is modified within the language. In this case, it is a sum of two processes: a temporal
and a linguistic adaptation. This dataset was curated in Xu et al. (2012) and previously used in
unsupervised textual style transfer jobs (He et al. 2020; Krishna et al. 2020). The dataset is divided
into training, validation, and testing sets. We adopt s1 to denote modern English and D1 for the
dataset referring to this style. In contrast, s2 denotes Shakesperian English, and D2 denotes the
domain of the sentences in Shakesperian English.We evaluateMATTES both to transfer sentences
from s1 to s2 and from s2 to s1. Although sentence pairs exist, they are not used in pairs during
training but only to evaluate results.

In the formality transfer task, our goal is to change the formality of the sentence while pre-
serving its meaning. For this task, we adopted the GYAFC corpus (Rao and Tetreault 2018), which
contains formal and informal sentences from two domains: Entertainment & Music (E&M) and
Family & Relationships (F&R). For every sentence from validation and test sets, there are four
human-written references. In the experiments, we use the most commonly used F&R domain.
The dataset contains 51,967 training examples in each formal and informal class. The test set has
2351 examples. We denote the formal style as s1 and its domain as D1, while the informal style is
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denoted by s2 and its domain isD2. MATTES is evaluated both to transfer sentences from s1 to s2
and from s2 to s1.

The polarity swap task consists of converting the sentence to a different sentiment, preserving
its general theme. In this task, we rely on the YELP dataset, collected in Shen et al. (2017), which
includes establishment evaluations performed within the YELP application. The dataset contains
250,000 negative sentences and 380,000 positive sentences. To quantitatively assess the general-
ization skills of the transfer models, we rely on a test set with 1000 parallel sentences annotated by
humans, introduced in Li et al. (2018). We denote the positive sentiment style as s1 and its domain
as D1, while the negative sentiment style is denoted by s2 and its domain is D2. Again, MATTES
is evaluated both to transfer sentences from s1 to s2 and from s2 to s1.

Although these tasks have been handled indiscriminately as TST tasks, they have crucial dif-
ferences that might indicate they should be treated differently during modeling and evaluation.
More specifically, in polarity swap, the content is not strictly preserved (the message is actually
the opposite). The important is to preserve the overall topic. In author imitation and formality
transfer, instead, the “translation” happens more at the style level, and content must remain the
same. In YELP, we can see that words related to the theme are intended to be retained, while
polarity words are expected to be modified or replaced. On the contrary, in author imitation and
formality transfer, the modifications happen at the stylistic level, affecting even noun phrases,
but the essential message should be conserved. Since these two tasks can be seen much more as
a rewriting task than the polarity swap, we expect the paraphrase pretraining strategy to benefit
them more.

5.1.2 Baselines
We compareMATTES to recent models that made available the transferred test suite sentences. In
the author imitation task, the results were compared with the Deep Latent Sequence (DLSM) (He
et al. 2020) and STRAP (Krishna et al. 2020) models, which showed relevant results in the metrics
of content preservation. As the Style Transformer (Dai et al. 2019)model did not perform this task,
we built an in-house implementation of this model so that its output samples could be compared
with MATTES. Regarding the polarity swap task, we compare MATTES with the results of other
models that obtained state-of-the-art (SOA) results for this task, including again the DLSM (He
et al. 2020) and Style Transformer (Dai et al. 2019), in addition to the model proposed in Lai et al.
(2021) and also the RETRIEVEONLY, RULE-BASED, and DELETEANDRETRIVEmodels, which
obtained the best results in the experiments published in Li et al. (2018). For the formality transfer
task, we also compared with the SOTA models that made their outputs available (Luo et al. 2019;
Yi et al. 2020; Lai et al. 2021).

5.1.3 Metrics for quantitative evaluation
Developing reliable automatic evaluation metrics for NLG tasks that reflect human judgment
accordingly is still an open research field. However, automatic evaluation is cheaper and faster
to run than human evaluation. Thus, first, we gather the most used automatic evaluation metrics
from the literature (Yang et al. 2018; Lample et al. 2019; He et al. 2020) focusing on two dimensions
that effective textual transfer style systems must preserve.

Considering that content preservation is the most desired feature to style transfer, three dis-
tinct metrics were used to evaluate the models according to this dimension: BLEU (Papineni et al.
2002), BartScore (Yuan et al. 2021) and semantic similarity (SIM) (Wieting et al. 2019). The val-
ues of the three metrics are calculated using the sentence generated by the model and a previously
annotated reference sentence. For the polarity swap task, as we only have annotated sentences
for the test set, during the evaluation part of the training, we use the input as the reference for
calculating the metrics.

https://doi.org/10.1017/S1351324923000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000323


Natural Language Engineering 991

BLEU (Bilingual Evaluation Understudy Score) is a fast and inexpensive metric widely used in
NLP tasks, initially proposed for machine translation. BLEU is widely used in many languages and
correlates well with human judgments. Although BLEU is traditionally used for inter-linguistic
translation, it was adopted in this study to evaluate the adaptations of Shakespeare’s texts, which
consist of an intra-linguistic translation task. In the experiments, BLEU was calculated using the
NLTK (Bird 2006) package. BLEU is calculated as

pn = #n-grams in the candidate found in the reference
#n-grams in the candidate

BP= emin (0,1− r
c )

BLEU= BP×
k∏

i=1
pwn
n (14)

where c is the length of the translated candidate sentence, r is the length of the reference sen-
tence, BP is a term that penalizes the difference between the length of the candidate and reference
sentences, k is the maximum n-gram one wants to evaluate, and pn is the precision score for the
grams of length n. According to the values proposed in Papineni et al. (2002), we adopt k= 4 and
uniform weights wn = 1/N.

Wieting et al. (2019) introduced a metric called SIM to measure semantic similarity between
sentences. SIM aims to overcome the limitations of the BLEU metric and avoid giving partial
credit and penalizing semantically correct candidates when they differ lexically from the reference
sentence. For that, a coding model g that tries to maximize the similarity of pairs of sentences
present in a dataset of paraphrases (Wieting andGimpel 2018) was trained. The g encoder averages
the vector representations of each sentence token to create a vector representation of the sentence.
The similarity between a pair of sentences < X, X̂ > is obtained by encoding the two sentences
with g and then calculating the cosine similarity of the two representations:

SIM= cos (g(X), g(X̂)) (15)

BARTScore (Yuan et al. 2021) is a recently proposed metric tailored for generation tasks. It
evaluates generated text from different perspectives, for example, informativeness and fluency.
Although simple, BARTScore has been shown to correlate better with human judgments in dif-
ferent generation tasks and achieved the best performance on 16 of 22 settings against existing
top-scoring metrics. Mathematically, BARTScore is the log probability of one text y given another
text x.

BARTScore= 1
N

N∑

t=1
log p(yt|y1:t−1, x, θ) (16)

Regarding attribute control, following previous work (Shen et al. 2017; Yang et al. 2018; Luo
et al. 2019; He et al. 2020; Lai et al. 2021), we train a neural convolutional classifier (Kim 2014)
to measure the extent to which the style is controlled. We train one classifier for each task to
determine the stylistic domain to which a sentence belongs. The style control metric for each task
is the accuracy this classifier gives to the generated sentences. The training set used to train the
classifiers is the same one used during ourmain training. The classifiers have an accuracy of 82.7%,
85.1%, and 97.1% on the validation sets of Shakespeare, GYAFC and YELP, respectively. On the
test sets, the values are 81.4%, 86.2%, and 97.0%, respectively.

Finally, as the overall score for model selection and for comparison to previous work (Luo et al.
2019; Lai et al. 2021), we compute the harmonic mean (HM) of style accuracy and BLEU.

To select our best model, we settled thresholds for the style accuracy, and the model with the
highest harmonic mean (HM) was selected to run on the test set. Since it is necessary to provide
a greater weight to the content preservation metric, the HM suits well for our case. The threshold
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is necessary to avoid selecting models with a high degree of input copying, achieving a high har-
monic mean even with a shallow style accuracy, and failing to control the desired style. For author
imitation, we empirically established 66.6% accuracy, which is a bottom limit for style control,
considering each transfer direction. For formality transfer and polarity swap, this limit was set
to 70%.

5.1.4 Human evaluation
As the automatic metrics only give us shallow perceptions of the quality of the translated sen-
tences, we compare the transfer quality across state-of-the-art models and ours by a small-scale
human study. We conduct a human evaluation on the test set of both the YELP dataset and the
GYAFC corpus.We left the Shapespeare domain out since it is more difficult for non-native speak-
ers and non-experts to evaluate. For each dataset, we randomly select 48 samples for the human
evaluation (24 for each style attribute). Each sample contains the transformed sentences generated
by different models given the same source sentence. Annotators were asked to rate each output
on three criteria on a Likert scale from 1 to 5: style control, content preservation, and an overall
quality score. The annotators also rate human references for each dataset.

5.1.5 Hyperparameters and training details
During the experiments, some combinations of hyperparameters were evaluated according to the
performance of MATTES in the validation set. The term α in the loss function of the knowl-
edge distillation component (Equation 11) varied within the values {0.1, 0.5, 0.65}. The knowledge
distillation temperature TKD also varied by {1, 5, 10}. Values for the number of steps of the
discriminator nd and the number of steps of the generator nf were also experimented. The
tuple (nd, nf ) varied with the values {(7.5), (9.5), (10.5)}. The contribution of each component
to the MATTES loss function (Equations 10, 11, and 12) also varied ( a1Lself(θ)+ a2LKD(θ)+
Ladversarial(ρ)). As Dai et al. (2019), it was concluded that executing random dropout on the input
sentence tokens during the sentence reconstruction step positively impacts the model results. The
dropout rate varied in {0.2, 0.3, 0.4}.

We perform all the experiments using the Python programming language with the PyTorch
(Paszke et al. 2017) framework. The ALBERT implementation uses the HuggingFace transformers
(Wolf et al. 2020) framework. Before the main MATTES training, for each task performed, we
selected the available model albert-large-v2, and fine-tuned two ALBERT models, one for each
stylistic domain, using only the traditional MLM task. In this adaptive domain pretraining step,
as in Gururangan et al. (2020), we train each ALBERT model for 100 epochs, using the AdamW
with ε equal to 1e−6, linear learning rate with a warm-up, and maximum learning rate of 1e−5.
ALBERT does not use dropout or regularization during training. Training took place on four
NVIDIA P100 GPUs with a training batch of eight examples per GPU. After fine-tuning ALBERT
in each stylistic domain, the logitsb were extracted for each token of each sentence in the training
set. Following Chen et al. (2020), for saving computational resources, only the top-8 logits were
considered to be used as labels during the main MATTES training.

To take advantage of available generic data, we pre-trained our Seq2seq model on pairs of
paraphrase (Hu et al. 2019) and used the trained model as starting point for the main adversarial
training. The training details followed Vaswani et al. (2017). We trained the model for 300,000
steps, using the Adam optimizer (Kingma and Ba 2015) with β1 = 0.9, β2 = 0.98 and ε = 1e−9.
Each training step took about 0.12 seconds, and the whole pre-training was about 20 hours on
a single P100 GPU. We apply dropout with a rate of Pdropout = 0.1. As in Vaswani et al. (2017),
we varied the learning rate throughout training, increasing the learning rate linearly for the first
4000 steps and decreasing it proportionally to the inverse square root of the step number. From

b Logits are the non-normalized representations provided by ALBERT before going through the Softmax layer.
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the complete PARABANK 2 (Hu et al. 2019) containing 19.7M pairs of paraphrases, we filtered
out pairs in which at least one of the sentences had less than six words or more than 50 words.
We split the remaining pairs into training and validation sets. Our final paraphrase training set
reached 11.4M pairs, and the validation set 2.8M.

All primary training experiments were run on Tesla P100-SXM2 GPUs using the Ubuntu oper-
ating system on amachine with an Intel(R) Xeon(R) CPUE5-2698 v4. On average, the Yelp dataset
takes 30 hours with a training batch of 192, the GYAFC corpus takes 15 hours with a training batch
of 128, while the Shakespeare dataset takes 15 hours with a training batch of 64. This time drops
by approximately half when starting from the pretrained Seq2Seq model.

5.2 Results
The results include the values obtained using quantitative metrics, a statistical test, a human
evaluation, and ablation studies. We also perform a qualitative analysis.

5.2.1 Quantitative results
Table 2 shows the results using the automatic metrics. In the YELP dataset, the best models dis-
played in Li et al. (2018) were compared and complemented with Yi et al. (2020), He et al. (2020),
Dai et al. (2019), and Lai et al. (2021). In the Shakespeare dataset, MATTES results were com-
pared to the results of He et al. (2020) and Krishna et al. (2020). In addition, the results were also
compared with our implementation of the style transformer (Dai et al. 2019) model in the author
imitation task, as the original work did not include this task. This implementation is similar to
MATTES but uses the traditional back-translation component in the loss function rather than the
knowledge distillation component. In the GYAFC corpus, MATTES results were compared to the
results of Luo et al. (2019), Yi et al. (2020), and Lai et al. (2021), the state-of-the-art model. We
also compared it with our implementation of the style transformer (Dai et al. 2019) model.

In Shakespeare’s dataset, MATTES surpassed all previous approaches regarding all content
preservation metrics. It also achieved the best overall performance (HM) on this task. The Deep
Latent Sequence Model (DLSM) (He et al. 2020) has the best style control metric, however, at the
expense of low values in the content preservation metrics. On the other hand, we can increase the
style accuracy threshold if we desire more control over the style. In Appendix D, we show models
selected using a higher threshold.

In the YELP dataset, MATTES achieved the second-highest results for all the content preser-
vation metrics and the overall score, staying very close to the best model. Nevertheless, the style
control metric was the worst among all the compared models.

In the GYAFC corpus, MATTES achieves the highest value for style control. As in YELP, it
achieves the second-highest results for all the content preservation metrics and the overall score.
As we can see in Section 5.2.3, the style control result is mainly due to the knowledge distillation
technique.

By examining the results, we can see that our full model is quite effective in preserving the
content of the input while keeping a reasonable style accuracy in all tasks. In the author imitation
task and in the formality transfer task, our approach achieved new state-of-the-art results in terms
of content preservation and style control, respectively. In Section 5.2.3, we evaluate the impact
of our proposed training strategy; specifically, we want to quantify the impact of the Seq2Seq
pretraining phase and the knowledge distillation training technique.

Statistical significance analysis. We conducted statistical tests to compare the BARTScore and
SIMmetrics achieved byMATTES and the other twomodels that obtained the best content preser-
vation metrics. We left out BLEU since it is a more limited metric that measures lexical matching
only. We denote H0 as the null hypothesis and H1 as the alternative hypothesis to be tested. The
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Table 2. Results with automatic evaluationmetrics. BScore stands for BARTScore, and HM is the harmonicmean of BLEU and
accuracy. The best results are in bold.

Task Model Acc.↑ BLEU↑ SIM↑ BScore↑ HM↑

Polarity swap Rule-based (Li et al. 2018) 85.6 15.57 53.4 −3.407 0.263

DeleteAndRetrieve (Li et al.
2018)

89.1 12.05 48.5 −3.690 0.212

Deep Latent Sequence (He
et al. 2020)

84.4 16.59 48.8 −3.515 0.277

Style Transformer (Dai et al.
2019)

84.6 21.86 60.9 −2.975 0.348

StyIns (Yi et al. 2020) 93.4 18.7 56.6 −3.159 0.312

Generic (Lai et al. 2021) 89.5 24.19 65.4 −2.824 0.381

MATTES (ours) 75.5 23.65 64.6 −2.838 0.360

Author imitation DLSM (He et al. 2020) 80.3 9.05 43.4 −4.432 0.163

STRAP (Krishna et al. 2020) 70.0 8.27 56.4 −4.063 0.148

Style transformer 61.4 11.29 52.8 −3.688 0.191

MATTES (ours) 69.5 14.49 58.9 −3.373 0.240

Formality transfer DualRL (Luo et al. 2019) 64.7 24.0 53.9 −2.639 0.350

StyIns (Yi et al. 2020) 74.6 29.2 63.8 −2.216 0.419

Style Transformer 78.0 33.0 60.0 −2.352 0.464

Generic (Lai et al. 2021) 87.0 51.1 71.6 −1.931 0.644

MATTES (ours) 87.8 39.8 64.0 −2.130 0.547

significance level α = 0.05 was adopted, and we assume that the random variables B̄ and S̄, which
correspond, respectively, to the population mean of BARTScore and SIM, have a normal distribu-
tion for each model. The tests were based on the sample means of the two metrics in the test set.
Under the null hypothesis, the p-value is the probability of obtaining a statistic equal to or more
extreme than that observed in a sample. Thus, when a p-value smaller than the significance level
is obtained, this indicates an unlikely event, indicating rejection of H0.

The results of the statistical tests in Table 3 reinforced the results of Table 2. In the author imita-
tion task, MATTES outperformed the other baseline models on both metrics. In the polarity swap,
MATTES outperforms the Style Transformer Model on both metrics. When comparing with the
SOTA model (Lai et al. 2021), for a confidence interval of 95%, it is not possible to affirm the
superiority of any model regarding both metrics. In the formality transfer task, Lai et al. (2021) is
statistically superior in bothmetrics, andMATTES confirms the superiority over the style instance
model only for the BARTScore metric.

5.2.2 Human evaluation results
Due to the limitations of automatic metrics, we also conduct human evaluations on YELP and
GYAFC datasets. Table 4 shows the evaluation of the style transfer accuracy, content preservation,
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Table 3. T-test over the mean population for BARTSore and SIMmetric on the test set

Task t-test H_0 H_1 Result p-value

Polarity swap MATTES-GEN B̄GEN = B̄MATTES B̄GEN > B̄MATTES Accept H0 p= 0.38
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MATTES-STYLE B̄MATTES = B̄STYLE B̄MATTES > B̄STYLE Reject H0 p= 0.002

Author imitation MATTES-STRAP B̄MATTES = B̄STRAP B̄MATTES > B̄STRAP Reject H0 p< 10−3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MATTES-STYLE B̄MATTES = B̄STYLE B̄MATTES > B̄STYLE Reject H0 p< 10−3

Formality transfer MATTES-GEN B̄GEN = B̄MATTES B̄GEN > B̄MATTES Reject H0 p< 10−3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MATTES-STYINS B̄MATTES = B̄STYIN B̄MATTES > B̄STYIN Reject H0 p= 0.002

Polarity swap MATTES-GEN S̄GEN = S̄MATTES S̄GEN > S̄MATTES Accept H0 p= 0.22
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MATTES-STYLE S̄MATTES = S̄STYLE S̄MATTES > S̄STYLE Reject H0 p< 10−3

Author imitation MATTES-STRAP S̄MATTES = S̄STRAP S̄MATTES > S̄STRAP Reject H0 p< 10−3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MATTES-STYLE S̄MATTES = S̄STYLE S̄MATTES > S̄STYLE Reject H0 p< 10−3

Formality transfer MATTES-GEN S̄GEN = S̄MATTES S̄GEN > S̄MATTES Reject H0 p< 10−3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MATTES-STYINS S̄MATTES = S̄STYIN S̄MATTES > S̄STYIN Accept H0 p= 0.52

Table 4. Results from the human evaluation on Yelp and GYAFC datasets. The best results are in bold.

Task Model Style↑ Content↑ Quality score↑

Polarity swap Style Transformer (Dai et al. 2019) 3.6 3.2 3.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Generic (Lai et al. 2021) 4.1 3.6 3.9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MATTES (ours) 3.4 3.5 3.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Human 4.2 3.4 4.0

Formality transfer DualRL (Luo et al. 2019) 2.6 2.4 2.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Generic (Lai et al. 2021) 3.7 4.3 3.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MATTES (ours) 3.5 3.6 3.6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Human 4.0 3.8 3.8

and an overall quality score obtained by MATTES and the compared models. All three aspects
are rated with a range of 1–5. The results are in line with our automatic evaluations and add
confidence to the efficacy of our proposed techniques in achieving style transfer across multiple
dimensions. Our scores are around the state-of-the-art values regarding both style control and
content preservation in the formality transfer and polarity swap tasks, respectively. Additionally,
it is worth mentioning the high scores achieved by the baseline Lai et al. (2021), mainly for the
content preservation metric, in some cases even surpassing the scores reached by the references
which are sentences created by humans.

5.2.3 Ablation studies
In this section, we measure the individual impact of the pretraining phase and the model training
components. We also show how the content preservation metrics correlate between them.

https://doi.org/10.1017/S1351324923000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000323


996 A. Scalercio and A. Paes

Table 5. Evaluation results for the ablation study. Acc. stands for accuracy, BScore for BARTScore, and HM for
the harmonic mean between BLEU and accuracy

Task Model Acc.↑ BLEU↑ SIM↑ BScore↑ HM↑

Polarity swap FULL MODEL 75.5 23.65 64.6 −2.838 0.360
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NO KD 71.8 23.03 64.4 −2.878 0.349
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NO PARA 83.0 22.06 61.3 −2.964 0.349
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NO PARA KD 80.2 20.85 59.4 −3.024 0.331
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NO ADV 8.1 24.11 65.0 −2.933 0.121
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NO ADV KD 3.9 24.34 65.5 −2.919 0.067

Author imitation FULL MODEL 69.5 14.49 58.9 −3.373 0.240
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NO KD 68.7 14.30 58.4 −3.411 0.237
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NO PARA 68.9 11.72 54.0 −3.591 0.200
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NO PARA KD 61.5 11.29 52.8 −3.688 0.191
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NO ADV 26.6 13.87 60.8 −3.270 0.182
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NO ADV KD 19.5 14.56 64.7 −3.139 0.167

Formality transfer FULL MODEL 87.8 39.80 64.0 −2.130 0.547
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NO KD 74.5 37.86 64.0 −2.170 0.502
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NO PARA 81.5 33.89 54.5 −2.326 0.479
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NO PARA KD 78.0 33.05 60.0 −2.352 0.464

Paraphrase pre-training and model components. To confirm that TST models can benefit from
our proposals, we conducted an ablation study on all datasets by eliminating or modifying a
certain component (e.g., objective functions or pre-training phase). We tested the following vari-
ations: (1) FULL MODEL: our proposed model with all the components described in Section 4;
(2) NO KD: the model without the knowledge distillation component (α = 0); (3) NO PARA: the
model trained from scratch, without pre-training the Seq2Seq model on paraphrase data; (4) NO
PARA KD: the model trained from scratch and without knowledge distillation; (5) NO ADV: the
model trained without the adversarial loss component; and (6) NO ADV KD: the model trained
without the adversarial loss component and without the knowledge distillation (α = 0). Table 5
exhibits the results.

The results indicate that the pretraining strategy significantly impacts content preservation. On
all tasks, pretraining considerably increased the content preservation metric. In the Shakespeare
dataset and in the GYAFC corpus, the style accuracy also improved with pre-training, which
makes sense since the diversity of the paraphrase model should lead to a lower degree of input
copying. On the other hand, in the YELP dataset, the pretraining approach harmed the model
style control. This also makes sense since the polarity swap task is not a rewriting task, so having
a paraphrase of a sentence does not help. For that, something that changes the meaning is nec-
essary. This observation indicates that these tasks should not be indiscriminately tackled as TST
tasks since there is a clear need to change the meaning of the polarity swap task.

Regarding the isolated impact of our proposed knowledge distillation technique, all the model
variations from Table 5 trained with the distillation achieved higher accuracy and HM when
compared with the variations trained without. Although adversarial training is the most cru-
cial component for style control, the distillation also positively affects style accuracy. Comparing
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Table 6. Pearson correlation between content preservation metrics over N
systems

BS SIM BLUE

Task N SIM BLUE BS

Polarity swap 17 0.787 0.656 0.612
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p= 0 p= 0 p= 0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Author imitation 12 0.682 0.555 0.488
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p= 0 p= 0 p= 0

the two model variations without adversarial training (NOȦDV and NOȦDVK̇D), we realize
distillation increases the accuracy, yet not so impressively as the adversarial component.

Since we decided to use the harmonic mean (HM) of the BLUE with the style accuracy for
model selection, to interpret the impact of the pre-training phase better, in Figure 3 located in
Appendix C, we plot these three metrics achieved by our FULL MODEL and its variation NO
PARA along the training process on the Yelp validation set. From the graphics, we can realize that
the training dynamics are different. When training the model from scratch, the content preserva-
tion metric starts almost from zero until reaching its limit. In contrast, the pretrained model starts
at its maximum but with low accuracy. Once its highest value is reached, the HM tends downward
after many training steps. At last, we notice the FULL MODEL reaches its highest HM faster than
the model trained from scratch, showing another benefit from pretraining.

The hyperparameters of the models in Table 5 are listed in Appendix A.

Metric analysis. Since evaluating generated texts is an open field and a challenging task, we
adopted three metrics for content preservation. To glean further insights about these choices,
we calculate the Pearson Correlation between evaluation metrics for content preservation over N
systems (Table 6).

The results show that while SIM and BARTScore highly correlated with each other, BLEU does
so to a lesser extent, suggesting this might be a less robust measure to assess the goodness of TST
tasks. Since transfer style often involves lexical changes, n-gram-based matching metrics such as
BLEU usually fail to recognize information beyond the lexical level. This result strengthens the
necessity for adopting metrics concerned with capturing the overall semantics of a sentence, like
SIM and BARTScore.

5.2.4 Qualitative analyses
At last, we carry out some qualitative analyses: (1) compare samples generated by MATTES and
DLSM and (2) compare our model and training approach with the state-of-art method in the Yelp
dataset (Lai et al. 2021).

MATTES versus deep latent sequence model. We examine the output from our model and the
Deep Latent Sequence model for the author imitation task. We picked this task because the ref-
erence outputs for the test set are provided. From the qualitative analysis, we observed that both
models can generate good translations, but MATTES tends to preserve the content better. On
the other hand, Deep Latent Sequence tends to create too short sentences when the input sen-
tence is long, losing content. This observation concurs with the fact that MATTES’s content
preservation metric is the highest. The attention mechanisms might have helped in handling
long sentences. Besides, the sentences generated by the Deep Latent Sequence model have lower
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Table 7. Transferred sentences for the author imitation task

Model Shakespeare to modern

Source Lo, here upon thy cheek the stain doth sit Of an old tear that is not washed off yet.

Ref. There’s still a stain on your cheek from an old tear that hasn’t been washed off yet.

Deep Lat. Right on, now.

Ours Okay, here on your cheeks the stigma do the sitting of an old tears that’s not washed out yet.

Source These happy masks that kiss fair ladies’brows, Being black, puts us in mind they hide the fair.

Ref. Look at other beautiful girls.

Deep Lat. These!

Ours. These happy masks that kiss beautiful ladies’leggeds, being black, puts us in mind they hide the beautiful.

perplexity than the test set, indicating short or trivial sentences. Table 7 exhibits examples of the
generated sentences for long inputs.

Appendix B shows other examples of transferred sentences by MATTES, DLSM, and Style
Transformer in the sentiment transfer task.

MATTES versus generic resources model. The state-of-the-art (SOTA) model in the polarity
swap (Lai et al. 2021), which also leverages generic resources for pretraining, adopts the same
Transformer architecture as MATTES. The primary difference lies in MATTES additional style
embedding layer and the depth of both networks. While MATTES has 23M parameters, the
SOTA model starts its training from an already pretrained BART model (Lewis et al. 2020) with
139M parameters. Its impressive results were thanks to further pretraining using synthetic pairs
of sentences with opposite polarities.

Analyzing MATTES metrics achieved in the YELP dataset and comparing them with Lai et al.
(2021), we realize that adopting a pretraining phase using generic paraphrase data made all the
content preservation metrics of both models very similar. Nevertheless, in the case of MATTES,
this benefit came at the expense of style accuracy reduction, damage that did not occur in the
author imitation task. These facts strengthen pretraining as a great skill to increase content preser-
vation and that both tasks should not be treated and approached equally as style transfer tasks. As
polarity swap is not a rewriting task, the pretrained paraphrase system gets in the way of the style
control, putting all the effort to change the style into the adversarial mechanisms.

5.3 Limitations and final remarks
Although theoretically attractive, adopting the proposed components and the training schema
has some drawbacks. Adversarial training is challenging due to its instability and likely divergence
after some epochs. The knowledge distillation strategy requires using a pretrained MLM to gen-
erate the soft targets and adds two more parameters for tuning during training. Also, although
beneficial, pretraining the Seq2seq model increases the overall running time. At last, when adopt-
ing the pretrained model strategy, during inference, the model first converts the input to the
paraphrase style and then to the target style, finishing the translation process. The models trained
from scratch, as they do not consider the paraphrase style, convert directly to the target style.

To answer the research questions enunciated in Section 1, in this section, we presented
an experimental evaluation of the proposed model and compared it to other state-of-the-art
models. We also conducted an ablation study with two main contributions, namely, the pre-
trained Seq2Seq and the knowledge distillation component, to observe their individual impact
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on the results. Following the experimental results, this section showed qualitative analyses and
MATTES’s comparisons with other works related to the unsupervised TST task.

6. Conclusions
This manuscript proposed a newmethod based onmachine learning to perform the unsupervised
textual style transfer task, where only the sentence and its respective textual style are available
for training. Interpreting a text and converting it to the desired style is a fundamental skill for
communication between people. Equipping machines with these skills is necessary to make them
part of the communication process.

Given how difficult it is to manually create annotated TST datasets with parallel texts trans-
formed from one style to another, we adopted an unsupervised approach in this manuscript. The
proposed method, MATTES, as far as we know, is the first to use the bidirectional representations
produced by a MLM as labels to support the training of a generator neural network in the TST
task.

The overall architecture of MATTES was inspired by a previous method, the Style Transformer
but significantly changing the training procedure. In addition to the pretraining phase of the
Seq2Seq model, during the main training, MATTES adopts as labels the probability distribution
provided by a MLM for each token of the input sentence as part of its loss function. The exper-
imental results indicated that MATTES reaches the state of the art in the author imitation task,
considering both content preservation and an overall score for style transfer. In the formality
transfer task, although we do not reach the best model regarding content preservation, our pro-
posed techniques lead to significant improvements in both content preservation and style control.
In the polarity swap task, MATTES content preservation metrics were close to the SOTA model,
but the style measure was not impressive. We believe the polarity swap did not benefit as much as
the other tasks from the pretraining because the former is a task that needs to change the mean-
ing to accomplish its goal and cannot be considered a rewriting task. On the other hand, the
knowledge distillation technique is task agnostic and can be suitable in many situations. The less
information you have to build a proper probability distribution to generate texts, the more helpful
the distillation might be.

Future work includes adopting MATTES in the challenging task of text simplification Al-
Thanyyan and Azmi (2021). In addition, we intend to add knowledge distillation to other existing
models where the distillation may fit to provide more evidence that it improves text generation
in the unsupervised textual style transfer. Knowledge distillation can also be added to the sen-
tence reconstruction component of the generator network. Another promising idea, inspired by
machine translation, is to optimize directly a differentiable metric during training that takes into
account both style control and content preservation. The adoption of a paraphrase style enables
the model to handle the multiattribute transfer, which is an exciting direction to follow. Finally,
we want to train MATTES in other languages, such as Brazilian Portuguese.

To sum up, we reinforce the need for a better evaluation of text generation methods in natural
language. With the increasing presence of machines as parts of the communication process, it is
expected that this subarea of NLP continues to gain prominence in the academic and industrial
world. The advance of machine learning algorithms that work or are compatible with the TST task
enables the creation of models capable of smoothly controlling the text attributes.
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Appendix A. Best performance models
In order tomake the experiments conducted in thismanuscript reproducible, in the Tables 8 and 9,
we list the hyperparameters used in the training of the models of Table 5. The learning rate, the

Table 8. Hyperparameters used in training. For sentiment transfer 0 means negative and 1 positive. For author imitation 0
means shakespearean and 1 modern English

Sentiment transfer Author imitation

Model TKD α (nd ,nf ) (a1,a2) TKD α (nd ,nf ) (a1,a2)

FULL 0→1 10 0.1 (10,5) (0.25,0.5) 1 0.5 (7,5) (0.15,0.3)


FULL 1→0 10 0.1 (10,5) (0.25,0.5) 5 0.1 (7,5) (0.15,0.3)


NO KD 0→1 – 0 (7,5) (0.15,0.3) – 0 (7,5) (0.15,0.3)


NO KD 1→0 – 0 (10,5) (0.25,0.5) – 0 (7,5) (0.15,0.3)


NO PARA 10 0.1 (10,5) (0.25,0.5) 5 0.5 (7,5) (0.2,0.5)


NO PARA KD – 0 (10,5) (0.25,0.5) – 0 (10,5) (0.25,0.5)


NO ADV 10 0.5 – (0.25,0.5) 5 0.5 – (0.15,0.3)


NO ADV KD – 0 – (0.25,0.5) – 0 – (0.15,0.3)
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Table 9. Hyperparameters for training. For formality transfer 0means informal
and 1 formal

Sentiment transfer

Model TKD α (nd ,nf ) (a1,a2)

FULL 0→1 10 0.65 (7,5) (0.15,0.3)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FULL 1→0 5 0.65 (7,5) (0.15,0.3)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NO KD – 0 (7,5) (0.15,0.3)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NO PARA 0→1 1 0.5 (7,5) (0.15,0.3)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NO PARA 1→0 5 0.5 (7,5) (0.15,0.3)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NO PARA KD – 0 (10,5) (0.25,0.5)

maximum sentence size, and the word dropout were kept untouched throughout the experiments.
For the sentiment transfer task, these values are 0.0001, 32, and 0.2, respectively. For the author
imitation task, the values are 0.0001, 64, and 0.25, respectively. And for the formality transfer task,
the values are 0.0001, 32, and 0.25, respectively.

Appendix B. Examples of sentences collected from the experimens conducted on the
sentiment transfer task
Table 10 brings some transferred sentences collected fromMATTES (FULLMODEL), DLSM, and
Style Transformer.

Table 10. Examples of transferred sentences in the sentiment transfer task

Model Negative to positive

Source I guess she wasn’t happy that we were asking the prices.

Deep Lat I love it and i love the happy hour we were expecting the prices.

Style Tranf. I recommend she was always happy that we were asking the prices.

MATTES I recommend she wasn’t happy that we were asking the prices!

Source Went to the sunday brunch to celebrate our daughter’s college graduation.

Deep Lat Went to the sunday brunch to celebrate our daughter’s college favorite.

Style Tranf. Easy to the sunday brunch to celebrate our daughter’s college graduation.

MATTES Came to the sunday brunch to celebrate our daughter’s college graduation!

Source You can not judge people based on appearance.

Deep Lat You can definitely count based on time on appearance.

Style Tranf. You can definitely judge people based on appearance.

MATTES You can a judge people based on appearance!

Source Did they not have a fountain machine on site?

Deep Lat Lots of fun, outdoor seating on the site!

Style Tranf. Did they well have a fountain machine on site!

MATTES Did they also have a great jazz machine on site?
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Table 10. Continued

Model Positive to negative

Source Rick is a seriously cool guy!

Deep Lat Ugh.

Style Tranf. Rick was a seriously over guy?

MATTES Rick is a seriously cold guy!

Source I highly recommend e &m painting.

Deep Lat I wouldn’t recommend &mm.

Style Tranf. I won’t be e &m painting.

MATTES I do not recommend e &m painting.

Source We recommend imports & american auto service to everyone we know.

Deep Lat We would rather buy an american auto service to everyone we know.

Style Tranf. We wouldn’t billed & american auto service to everyone we know.

MATTES We wouldn’t imports or american auto service to everyone we know.

Source Loved the burgers, i had the jalapeo ranch burger it was really tasty.

Deep Lat However, the burgers i had the jalapeo ranch burger it was really disappointing.

Style Tranf. Ordered the burgers, i had the jalapeo ranch burger it was really tasty.

MATTES Used to the burgers, i had the jalapeo ranch burger it was really tasty.
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Appendix C. Evolution of metrics
Figure 3 shows the style accuracy, self-bleu and harmonic mean (HM) achieved throughout train-
ing by our FULL MODEL and its variation without the pre-training strategy (NO PARA), on the
Yelp validation set.

Figure 3. Evaluation metrics, for both transfer directions, during training for our FULL MODEL and its variation NO PARA on
the Yelp dataset
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Appendix D. Trade-off: Bleu versus Accuracy
Table 11 shows models selected using a higher threshold for the style accuracy. As shown, the
improvement comes at the expense of reducing the content preservation.

Table 11. Metrics formmodel variations trained from scratch. The best results
are in bold.

Task Model Acc↑ BLEU↑ HM↑

Sentiment T = 5; α = 0.5 89.9 19.16 0.316
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tranfer T = 10; α = 0.5 88.3 20.52 0.333

Author T = 5; α = 0.5 81.3 9.13 0.164
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

imitation T = 1; α = 0.5 72.0 11.24 0.194

Cite this article: Scalercio A and Paes A (2024). Masked transformer through knowledge distillation for unsupervised text
style transfer. Natural Language Engineering 30, 973–1008. https://doi.org/10.1017/S1351324923000323
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