
A STATISTICAL TREATMENT OF THE STELLAR ROTATIONAL 

VELOCITIES WHICH CONSIDERS THE BREAK-UP LIMIT 

P. L. BERNACCA 
Asiago Astrophysical Observatory, University of Padua, Italy 

Abstract. This paper develops a new statistical approach to the study of the axial rotational velocities 
of the stars, by considering the break-up limit or any upper limit for the equatorial rotational veloci­
ties. The main conclusions are as follows: (1) For random orientation of the axis of rotation, the 
frequency function of the inclination a to the line of sight is not sina, as assumed until now. (2) For 
stars with the same break-up velocity y&, the distribution of a is given by: 

iA(a) = y„sina J f(y)(v2
b-y

2) l/2dy, 

where f{y) is the distribution of the apparent velocities y = v sina, v being the true rotational velocity. 
New integral equations governing the frequency function of a, y and v have been derived and the 
correct procedure to treat observations has been discussed; a simple method is also suggested to get 
an approximate trend of the distribution of the true velocities directly from the observed histo­
gram. The method of analysis proposed in this paper has been applied to a re-discussion of the rota­
tional behaviour of a group of Be stars. 

1. Introduction 

It is well known that the apparent (equatorial) rotational velocity of a star can be 
determined spectroscopically (Shajn and Struve, 1929; Slettebak, 1949; Huang, 1953). 
If the axis of rotation of a star is inclined at an angle a to the line of sight, the apparent 
velocity y is given by: 

y = us ina , (1) 

where v is the true (equatorial) rotational velocity. 
Since the value of a for individual stars is unknown, one can attempt only to derive 

group properties, such as the frequency distribution of v, from observations of y in a 
sample of stars and this statistical approach requires some assumption as to the 
frequency of occurrence of a given angle of inclination among the stars in the sample 
under consideration. The hypothesis usually made is that the axes of rotation are 
randomly distributed in space so that the function 

•/'(a) = sin a (2) 

may be considered to represent the distribution of a. Let us recall here briefly the main 
points of the theory as developed, for instance, by Chandrasekhar and Munch (1950). 

The integral equations: 

f <P(V. (p(v) dv 

7)1 / 2 f(y) = y\z7£L2-*n-2 (3) 
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f(y)dy 
5P" J y2(y2-v2y 

(p(v) = --_v --w ^ ^ - ^ - ^ (4) 

relate the frequency function q>(v) of the true velocities with the corresponding f(y) 
of the apparent ones. Since the differentiation of an observed distribution (given often 
in the form of a histogram) can lead to results which are misleading, instead of deriving 
q>(v) by (4), the function: 

(p(v) = 4 - [e-p(v-'")2 + e-;
2<"+">2] (5) 

is assumed and the problem is solved by appropriate selection of the parameters y and 
vl to fit the computed distribution f(y) to the observed histogram. 

The central moments of cp(v) can be derived by means of (3) without the knowledge 
of the function itself; for instance, the mean and the mean square deviation are given 
respectively by: 

<»> = - <y> (6) 

<(v-<vyyy = l.5(y2y-14<y>2 (7) 

so that we can compute them directly from the observations. 
In the above analysis no restrictions are imposed on the variables y and v (except 

of course y < v) and relation (2) is an 'a priori' assumption, which is considered to be 
valid for any observed random sample of rotating stars. Since the condition of sta­
bility requires that a star rotates with an equatorial velocity not greater than its 
break-up velocity vb (determined for each star by radius and mass distribution), it 
follows that any statistical analysis must exclude the expectation of stars rotating 
with a velocity greater than some known limit; in particular, if a sample of stars with 
the same break-up velocity is considered, any q>(v) must vanish for v>vb and <y> 
must not exceed vb when formula (6) is used. 

The question arises now whether the foregoing procedure will yield always correct 
results from this point of view; let us consider a sample of stars whose rotational 
velocities have a unique upper limit (in particular the same break-up velocity) and 
suppose that the observed frequency distribution be / 0 (y): 

If one assumes a function <p(v; vuj) so that: 

<p(v;v1,j) = (p0(v;vuj) 0^v^vb 

= 0 vb < v 

it may be possible to fit/(j; vuj), as computed by (3), to / 0 (y); however this is not 
true in general. Let us consider the following two cases: 

(i) When a distribution: 

fx (y) = -r^-zw* ° ^ y ^ v» ( 8 ) 

vb(vb - y ) 
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is observed, a Dirac (5-function S(v-vb) is the solution of the integral Equation (3), 
meaning that all stars rotate at the equatorial break-up velocity. Formula (6) gives, 
of course, (v} = vb when <j>> has been computed by (8). On the other hand, for a 
frequency function f2(y), so that/20>)</i0>) in a given interval (0, j 0 ) , it is impossible 
to find a true distribution q>(v) vanishing for v>vb: it is obvious that (6) yields in this 
case (v}>vb. 

It can be argued that if f2(y) is observed, the hypothesis of random orientation for 
the rotational axes is no longer valid but at least two conclusions can be drawn: first, 
one must care about the assumption 'a priori' of (2); second, the inclusion of vb gives 
the possibility of detecting deviation from randomness. 

(ii) Let us suppose that all apparent velocities in a sample have been observed to 
lie between y0 and vb. Since v<vb, relation (1) states that sin_,(j>0/i>,,)^a<7t/2 for 
each star. If the axes of rotation are randomly distributed, with a. within the above 
limits, it may be assumed now 'a priori' (see Figure 2): 

vb sin a . 
n a ) = / 2 2M/2 a ^ s i n (y0lvb) K - y0) (9) 

= 0 0 < a < s i n _ 1 ( y o K ) . 

The integral Equation (3) and (4) need to be modified as well as formulae (6) and (7). 
It follows that (2) is not always the correct frequency function for the inclination a. 
Further, an example analogous to case (i) can be easily constructed by means of (9) 
and the modified integral equations, which would show how the assumption 'a priori' 
of (9) may be not quite correct. 

In the following sections we attempt to derive a general frequency distribution \jj (a) 
and develop thereby a different method of analysis; therefore, a conclusive judgment 
on the statistical meaning of (2) will be given later. 

2. The Distribution Function of the Inclination of the Rotational Axes 

Let us consider a sample of stars of known break-up velocity vb and whose apparent 
velocities y have been determined: by (1) and the condition v^vb, we have for each 
star: 

y < t ) t s i n a . (10) 

If an angle 9 is defined by the relation 

y = vb sinO (11) 

the inclination a of each star must satisfy the condition: 

0 < a ^ r c / 2 . (12) 

Since y may range from 0 to one of the values vb, 9 will vary between 0 and n/2. In 
the (9, a)-plane the representative points of the stars lie in the triangle defined by the 
straight lines 9 = 0, a = nj2 and a = 9 (Figure 1). The number of stars dn with 9 and a 
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within (9, 9+dO) and (a, a+da) can be written: 

dn = Nij/(9, a)d9da, (13) 

where N is the total number of stars and \j/ (0, a) is the distribution function in the (9, 
a)-plane. 

TT/2 9 

Fig. 1. The triangle defines the region occupied by the representative points (9, a) of stars rotating 
with an inclination a to the line of sight and whose apparent velocity is y = Vb sin 9, Vb being the 

break-up limit. 

The bivariate distribution \j/ (9, a) can be written (see e.g. Trumpler and Weaver, 
1953) as: 

tff(M) = tfr8(0)<Ka\0), (14) 

where \j/9 {&) is the marginal distribution of the sample with respect to 9, which is 
known from the observations, while i/t (a\0) is the frequency function of a for each 
0-array. If one picks from the sample all stars with a given 9 and assumes that the 
axes of rotation of these stars are randomly distributed in space with the condition 
(12), it follows (see Figure 2): 

^(a\0)da 
2K sin a da sin a da a ^ 9. (15) 

2n-2n(l - c o s 0 ) cosfl 

Thus the bivariate distribution (14) is known and the marginal distribution of the 
sample with respect to a, ip (a), can be obtained simply by: 

H*) = ip(9,a)d9 = sma I - - — dfl. v ' ' cos0 
• [ * • 
J CO 

(0) 
(16) 

If only stars with the same break-up velocity are considered (or if only one upper limit 
lo the true velocities for all stars does exist), the frequency function of 9 can be written 
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Fig. 2. The probability of occurrence of a (ranging from 8 to rc/2), between a and a + da, is given by 
sin ada/cos 0. 

as: 
ij/g(0) — vbf(vb sin 6) cos 0 

so that, by means of (16), we have: 

ij/(a) = vb sin a f(vb sin 9) d9 

or 

i^(a) = vb sin a 

^ sin a 

J K2 
y 2 ) 1 / 2 ' 

(17) 

(18) 

(19) 

Relations (16) and (18) or (19) represent the distribution of the inclination of the 
rotational axes; they depend on the observations through \j/e (6) or f(y). 

The statistical meaning of (2) and (9) now becomes clear, since they can be derived 
from (19) if particular observations such as f(y) = d(y) and f(y) = S(y—y0) are con­
sidered respectively: the early function i//(a) = sina [and (9) too] appears to be only 
an array distribution and it can no longer be used in the rotational context, unless 
some empirical information exists showing that the fraction of stars with a between 
a and a+da is just sina da. 

3. The Moments of the Distribution of the True Rotational Velocities 

The mean, the mean square deviation and the skewness of <p(v) can be derived from 
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the general relation: 
K/2 

</> = < (/"> I (sina)" \j/(a) da. (20) 

o 

Let A„ be the integral factor contained in (20); it then follows that: 

<^> = ^ r 1 <y> (2i) 

<(» - <»»2> = A;1 <y2} - V <y>2 (22) 

<(t> - <»»3> = A;1 < / > - 3 (^M2) _ 1 <^> <^2> + 2Ar3<^>3. (23) 
Hereafter we consider only the case of stars with the same break-up velocity, so that 
(21) may be used to compute the mean true velocity for stars of known apparent 
velocity, having approximately the same spectral type and luminosity class; however 
the following results may be applied to any sample of rotating stars whenever a 
unique upper limit has been recognized. Thus the A„ are obtained from (20) using the 
distribution (18) or (19). 

Any observed distribution, given in the form of a histogram, can be written as: 

f(y) = ir = ~ ^ ~ — . yr-i<y<yr (24) 

with r= 1, 2,... k, where k is the number of intervals in which (0, vb) is divided, N is 
the total number of stars, JVr is the number of stars whose apparent velocity satisfies 
the condition yr_1 <y<yr\ further, in formula (24), y0 = 0 and yk = vb. 

Since the Nr stars may be considered uniformly distributed in {yr-i, yr), their dis­
tribution function fr (y) is given by: 

My) = i/0v - yr- 0 y,-1 < y *s yr 

= 0 elsewhere 

or, by means of (24): 

My) = WIN, yr-i<y^yr 

= 0 elsewhere 

Each fr(y) produces a distribution function i/v(a), that, through (18) or (19), becomes: 

"0 0 < a ^ 9 r _ ! 

x JrN 

vh(a — 0._,)—sin a 0 , _ , < a < 0 r , 
^ r (a)= bK ° K ^ (27) 

AN 
vb(6r — 0r-\)—sina 0r < a < it/2 

where 9r is defined by yr = vb sin 6r. 
From the definition of a distribution function, it can be shown easily that the total 

distribution ij/(a.) for the sample of the N stars, is given by: 

•A(a) = JV-1iriVrlAr(a) (28) 
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so that, by (20), (27) and (28), we have for the quantities An: 

A„=VbYjrlr f (a - 0r_ 0 (sin a)"+ ' d a + (0 r - (? ,_!) f (sina)n+1 d a ] . 

(29) 

Taking n= 1, 2, 3 successively, after integration and some reductions, (29) gives: 

' ' % ! > ' 
sin20r - sin20r_, + 7t(0r - 0r_i) - (0r

2 - 0,_J] (30) 

A2 = _• + !" ) /r(sin3 0r - sin3 0r_ J 'I. 
A3=4Al + 

K 

16 Z* 
(sin4 0r — sin40r_,) , 

(31) 

(32) 

where for A2 the definition of Ir and 0r has been taken into account. 
The quantities An (n= 1, 2, 3) appear to depend on the value of the histogram Ir in 

the interval r and on the particular subdivision of (0, vb), which defines each 0r. 
Although some general rules must be followed in the drawing of a histogram, it will 
depend somewhat on the choice of the observer. In order to illustrate the procedure 
and to test the personal choice of a histogram, we consider the rotational velocities 

650 

j» 600 
E 

550 

500 

450 

400 

350 

I 
Equatorial break-up velocities 

(Luminosity class IV-V) 

_L 
BO B5 AO F5 A5 FO 

Spectral type 

Fig. 3. Slettebak's computed break-up velocities against spectral type (full points). The uncertainty 
is of the order of 25 km/sec (shaded area). 
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determined by Slettebak (1966a) for 42 B6-B9e stars of luminosity class IV-V. 
In Figure 3 the relationship between spectral type and break-up velocity is shown 

according to Slettebak (1966b); the shaded region represents the uncertainty in vb 

which is of the order of 25 km/sec. The break-up limit for B6-B9 stars ranges roughly 
from 480 km/sec to 450 km/sec, but it may be lowered for Be stars if they are considered 
to be evolved objects. In the following a limit of 450 km/sec is assumed for all the 
42 stars, an approximation that is sufficient for our aim. 

In Table I three possible frequency functions are given, computed by means of 
(24), together with 9r and sinfj,; the subdivision of (0, vb) in k intervals has been made 
according to the first column of Table I and histogram (b) has been constructed with 
the condition yr_t ^y<yr for all but one star, whose velocity of 400 km/sec has been 
arbitrarily lowered. The value of An (« = 1, 2, 3) is practically the same for histogram 
(a) and (c) while it is a little higher for case (b). According to formulae (21)-(23) we 
need first <j> and the higher moments of f(y): if they are derived by means of the 
histogram itself, the results are slightly different in the three cases (Table II, column 
(i)); if the observed moments are computed directly from the values of the apparent 
rotational velocities, no differences occur (Table II, column (ii)). 

These results encourage one to believe that different histograms will yield with 

TABLE I 
Three possible empirical distributions (/r) for the same sample of Be stars (Slettebak, 1966a) 

r (Vr-1, yr) yr—yr-1 Nr 102/r 0, Sm 9r 

(a) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 
6 
7 
8 

( 0, 25) 
( 25, 75) 
( 75, 125) 
(125, 175) 
(175, 225) 
(225, 275) 
(275, 325) 
(325, 375) 
(375, 425) 
(425, 450) 

( 0, 100) 
(100, 200) 
(200, 300) 
(300, 400) 
(400, 450) 

( 0, 50) 
( 50, 130) 
(130, 220) 
(220, 280) 
(280, 330) 
(330, 360) 
(360, 430) 
(430, 450) 

25 
50 
50 
50 
50 
50 
50 
50 
50 
25 

100 
100 
100 
100 
50 

50 
80 
90 
60 
50 
30 
70 
20 

0 
2 
1 
3 
3 
10 
9 
13 
1 
0 

(b) 
2 
5 
13 
22 
0 

(c) 
0 
3 
6 
10 
9 
13 
1 
0 

0 
0.0952 
0.0476 
0.1428 
0.1428 
0.4761 
0.4285 
0.6190 
0.0476 
0 

0.0476 
0.1190 
0.3095 
0.5238 
0. 

0 
0.0892 
0.1587 
0.3968 
0.4285 
1.0317 
0.0340 
0 

0.05558 
0.16745 
0.28148 
0.39942 
0.52360 
0.65746 
0.80700 
0.98511 
1.23590 
1.57079 

0.22410 
0.46055 
0.72973 
1.09491 
1.57079 

0.11134 
0.29310 
0.51081 
0.67158 
0.82321 
0.92730 
1.27153 
1.57079 

0.05556 
0.16667 
0.27778 
0.38889 
0.50000 
0.61111 
0.72222 
0.83333 
0.94444 
1.00000 

0.22222 
0.44444 
0.66667 
0.88889 
1.00000 

0.11111 
0.28889 
0.48889 
0.62222 
0.73333 
0.80000 
0.95556 
1.00000 
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0.6 

0.4 

0.2 

0.0 

1.0 

0.8 

0.6 

0.2 

(a) 

present 

(a) 

(b) 

(c) 

previous 

<V> 
Km/sec 

310 

310 

310 

3 5 0 

<Cv 
K 
-<V>)V* 
m/sec 

75 

75 

75 

2 0 

(b) 

V b = 4 5 0 Km/sec <y> = 275 Km/sec 

(C) 

200 300 4 0 0 

Km/sec 

Fig. 4. (a), (b), (c). Three possible empirical distributions for the same group of stars. Inset: compa­
rison between the central moments of the distribution of the true rotational velocities computed by 

the present method and the previous one. The case is the one of the Be stars 
studied by Slettebak (1966a). 

sufficient accuracy the same information for a given sample of stars. One must bear 
in mind that the variety of histograms for the same sample is not large, since the size 
of the intervals ( j r _ 1 ; yr) can be neither too small nor too large, in order to avoid 
accidental errors or loss of information, respectively. In Figure 4 the three histograms 
of Table I have been drawn together with the present values of the first two central 
moments of cp{v) and the corresponding ones determined by (6) and (7) (previous): 
the mean true velocity is 310 km/sec instead of 350 km/sec and the resulting root mean 
square deviation is much larger than the previous one: 75 km/sec instead of 20 km/sec. 

4. The Distribution Function of the True Rotational Velocities for 
Homogeneous Samples 

Hereafter we discuss the method of deriving a true distribution only for homogeneous 
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TABLE II 
The mean and the root mean square of the true velocities v derived for the distribution of Table I: 
(i) by (yy and (,y2y given by the histogram and (ii) by <y> and <^2> computed directly from the 

observations 

Type 

a 
b 
c 

Ai 

0.88489 
0.89112 
0.88499 

A2 

0.79983 
0.81010 
0.79935 

Aa 

0.73308 
0.74626 
0.73229 

(0 
<y> 

270 
280 
270 

<vy 

305 
315 
310 

(Til 

85 
90 
80 

(ii) 
<yy 

275 
275 
275 

<vy 

310 
310 
310 

Ov 

75 
75 
75 

ov = <(v - < i ;» 2 > i / 2 

samples, i.e. for samples of stars which have the same equatorial break-up velocity. 
However, the method can be used for stars in general whenever an upper limit has 
been recognized, aside from the concept of break-up. 

A. FORMAL SOLUTION 

The true rotational velocity v, can be expressed, according to (1) and (11) as: 

vh sin 0 
v = a > 9, (33) 

sin a 

where vb is now a constant. The function cp(v) can be obtained from the bivariate 
frequency function \jj (6, a) (Section 2) as follows: 

sin~1iv/vb) 

dx(v,6)\ 

dv 
dfl. (34) <p(v)= j tfr [<*(», 0),0] 

o 

Using relations (14), (15), (18) and (33) in (34), results in: 

V 

, x »b f y2J\y) dy 
W = l -77-2 2 W T 2 2\ • ( 3 5 ) 

0 

The integral Equation (35) can be easily solved with respect to f(y)* in order to 

* Relation (35) is a Volterra's equation of the first kind which may be written 

V(P (v) = I ^771 I K :. 77T2- zv ( a) 
yby

2f{y) __dy 

M-y>ll»2-y2Y 
0 

Since the kernel k(y, v) = l/v^(v2—y2) becomes infinite for v =y, solution (36) can be obtained by 
the following procedure: 

(1) multiply both sides of the Equation (a) by du/\/("2 — v2); 
(2) integrate with respect to v from 0 to u after changing the order of integration in the double 

integral; 
(3) take the derivative with respect to u of both sides of the resulting equation; 
(4) write y instead of u. 
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have a relation analogous to (3): 

f(y) = ̂ ^r^^y\f^^- (36) 
2_ -J(vl ~ y2) o_ C vq)(v)dv 

nvb y dy ) ^(y2 - v2)' 

If the observed histogram is of high precision, the distribution q>(v) can be obtained 
by (35), through numerical integration, provided that the empirical distribution has 
been approximated by a continuous function f(y). On the other hand, owing to the 
uncertainty in the measures of the apparent rotational velocities or to the small 
number of the stars, it would be more correct to use (36) after assuming some form 
for <p(v), with two parameters, for example of the type (5). In this case, for the nu­
merical integration, it is more convenient to write (36) as: 

2V(t£ - / ) r yl 
f(y) = -jr~2—J\ <p(y<>) 

vb y U(y - y0) 
nil 

[ s in/J^- |»(3;sin/S)]d/?l (37) 

71/2 

+ 
s i n " 1 (TO/}*) 

where %\nji = vjy, and the function q>(v) must be defined different from zero only 
in (y0, vb); further, y0 ranges from 0 to vb, depending on the interval (0, y0) where no 
apparent velocities have been observed. 

It should be pointed out that the procedure contained in Equations (36) or (37) is 
analogous to that sketched in Section 1, but it has a different meaning: if we assume 
a function cp(v) = 0 in (0, y0) and <p(u)#0 in (y0, vb), we can find a function f(y)#0 
in (0, y0) by means of (3), but this is impossible through (36) or (37); this fact does 
not imply the impossibility of observing rotational velocities smaller than y0 for stars 
whose true rotational velocity is greater than yQ; it simply emphasizes that the present 
theory has been developed starting from the observations and gives a distribution 
q> (v) different from zero in every interval where f(y) does not vanish. It follows that 
any assumed <p (v) has not necessarily a real physical meaning, unless we are able to 
find it, when the computed/(j) has been fitted to the observed histogram; relations 
(36) and (37) are simply a mathematical tool in order to assign to the block-curve 
of the apparent ones, a continuous distribution of the true velocities which might be 
free from the accidental element contained in an empirical distribution, as far as possi­
ble. 

B. SPECIAL FORMS OF DISTRIBUTIONS 

With the purpose of comparing the results of the present statistical treatment with 
the ones derived under sin a, we consider in the following some special functions 
f{y), which may conceivably represent particular observations; 

(a) Suppose that the observed rotational velocities are distributed according to (8): 
it has already been shown (Section 1) that all stars rotate at the equatorial break-up 
if i/>(a) = sina. 
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Presently, the frequency function \j/{a) is, by (8) and (19): 

ij/ (a) = — sin a In (cos a) (38) 

which indicates that most of the stars are viewed nearly equatorially (Figure 5, curve 
a); hence the observed distribution will differ little from the true one, which turns out 

1 n 1 1 1 1 1 r 

30° 60° 0( 

Fig. 5. The actual distribution function of the inclination ex is shown for different observed distri­
butions (a, b, c, d) of the rotational velocities. The previous function sin a is plotted for comparison. 

to be: 

<p(v) = ^—iA—^,sin_1 — • (39) 
v\/(vb-v'1) vb v 

The function (39) has been derived tediously by (35) and plotted in Figure 6a as a 
solid line. The difference between (39) and the ^-solution (plotted as a dashed line in 
the figure) is remarkable. The result can be applied to the apparent rotational beha­
viour of the Be stars considered in Section 3; the observed cut-off is near 350 km/sec, 
if one star with v sin a = 400: km/sec is excluded. Since formula (8) with i;6 = 350 
approximates satisfactorily the histogram ((a) and (c) of Figure 4), it has been believed 
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<y> = 0.79 

<v> = 0.84 

« v > = 1) 

<y> = 0 . 5 0 

<v) = 0.57 

« v > = 0.64) 

i r 

<y> = 0.59 

<v> = 0.67 

«v> = 0.75) 

<y>=0.25 

<v> = 0.30 

« v > = 0.32) 

0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 

Rotational velocity in units of vb 

0.6 0.8 1.0 

Fig. 6. The present distribution of the true rotational velocities (solid lines) is compared with that 
derived under sin a (broken lines). The corresponding observed distributions f(y), given by the 
appropriate solid tracings, are the same as in Figure 5 (a, b, c, d). The mean of the apparent and true 
rotational velocities (<>>> and <u» are also indicated in units of the break-up limit vt>- In parentheses, 
the value of (v) has been computed by <u> = (4/TT) <,y}. For a correct understanding of case d, see 

discussion in the text. 

https://doi.org/10.1017/S0252921100027238 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100027238


240 P. L. BERNACCA 

that we are concerned with stars rotating probably at the same velocity of 350 km/sec 
(Slettebak, 1966a; Huang, 1969). 

If an effective upper limit to the true velocities near 350 km/sec is assumed, because 
no velocity has been observed beyond it, we have actually no longer (p(v) = 8(v — 350), 
but (39) where ^ = 350; the mean true velocity is now 0.84 x 350«300 instead of 
«350 km/sec and the spread around the mean becomes not negligible. 

(b) Let the observed distribution be 

f(y) = ^yy/(vi-y2). (40) 

The angle a turns out to be distributed according to: 

iA(a) = f s in 3 a (41) 

(see Figure 5, curve b) and for the true velocities we have: 

(p(v) = 2vlv2
b 0^v^vb (42) 

instead of: 

<p(v) = 3v2lvl 0^v<vb (43) 

which is the solution of the integral Equation (3). 
The trend of both (42) and (43) is shown in Figure 6b respectively by the solid 

straight line and the broken one: the solid curve represents the observations according 
to (40). 

Let us consider now an apparent distribution of the type (25); the function \jj{a) is 
given by (27) where it is now Nr = N and / ,= \\{yr—yr_j); hereafter write Ayr instead 
of yr-yr-i. 

Suppose that the apparent velocities have been accurately measured and the number 
of stars, N, is sufficiently large to believe that (25) may be a fairly good representation 
of the apparent rotational behaviour of our stars. If so, we attempt to use (35) to 
get (pr(v). We have: 

, . . * f y2*y ( 4 4 ) 

(45) 

and, of course, <j»P(i>)=0 for 0<i> <_)>,.-1- The above integrals can be evaluated by 
means of elliptic integrals, as follows. 

By (1) and the positions v = xvb and yr = srvb, (45) becomes: 
s i n - 1 ( s r / x ) 

f sin2 a da 
Ayr<pr(xvb) = -T- 2 . 2 sr < x < 1. (46) 

J sj(l-x z s in ' a ) 
s i n " l (sr- i/jc) 

Ayr J »V(C - y) VOfc - y) 
J V - l 

M
 vb [ y2dy 

Jr-1 -^ v ^ 

yr < v < vb 

https://doi.org/10.1017/S0252921100027238 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100027238


A STATISTICAL TREATMENT OF THE STELLAR ROTATIONAL VELOCITIES 241 

If the upper limit of the integration in (46) is set up equal to n\2 we obtain (44). 
Consider the Legendre integral Lr(x), defined by: 

L,(X) = 

sin ' (sr/x) 

sin2 a da 

y/(\ — x2 sin2a) 
(47) 

and the following elliptic integrals of first and second kind, respectively: 

s i n - l (sr/x) 

Fr(x) = (1 - x 2 s i n 2 a ) ~ 1 / 2 d a (48) 

o 
s i n - l isr/x) 

Er(x) = (1 - x 2 s i n 2 a ) 1 / 2 d a . (49) 

o 

Integrals (48) and (49) can be readily found in mathematical tables. In terms of (48) 
and (49), the Legendre integral (47) can be written: 

Lr(x) = x-2[Fr(x)-Er(x)]. (50) 

If the upper limit of integration in (47), (48), (49) is set up equal to n/2, formula (50) 
yields the complete Legendre integral Lc(x), so that (44) and (45) can be evaluated by 
means of: 

Ayrq>r{xvb) = Lc(x) - Lr_,(x) sr_x^x^sr (51) 

Ayr(pr(xub) = Lr(x) - Lr_i (x) sr «c x < 1. (52) 

Let us consider now two particular cases of distributions (25): 

(c) yr = vb, yr-i=0 

(d) yr = yo*Vb, y r - i = o . 

In case (c) we soon find that the rotational axes are distributed according to a sin a 
(Figure 5, curve c) and, from the preceding analysis, the function which governs the 
true velocities turns out to be: 

vbcp(v) = Lc(vlvb). (53) 

If (2) is assumed to represent the distribution of a, cp(v) can be obtained by (4) using 
in \tf{y)=\jvb, resulting in: 

, s 2 1 
<PW = --,,-2 Ty (54) 

The difference between (53) and (54) is small (Figure 6c); for instance, according to 
(54) 32% of the stars have a rotational velocity between 0 and 0.5%, while by (53) we 
have 40% in the same interval. 

The special distribution (d) requires particular attention if we treat it by (51) and (52). 
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(55) 

The analytical form of ij/ (a) is: 

vb 
rfi (a) = — a sin a 0 ^ a < 90 

y0 

vb 
— — 60 sin a 60 < a ^ n/2 

y0 

and the distribution of the true velocities, through (51) and (52), where it is now 
Ayr=y<» is given by: 

<p(v) = yolLc(vlvb) 0^v^yo 

- i j ( v • - i M ^ ^ (56) 

Let us fix the value of y0 to be vb/2; then (55) differs little from sina (Figure 5, 
curve d) so that we expect that <p{v) derived by (3) will differ little from (56); the 
situation is apparently quite different since it can be easily verified that the following 
function: 

n y/(yo ~ v ) (57) 
= 0 y0<v^vb 

is the solution of the integral Equation (3) for the particular f{y) under discussion 
(distributions (56) and (57) have been plotted in Figure 6d assuming y0 = vb/2). 

Relation (57) excludes the existence of stars rotating beyond y0 while one would 
expect to find them; on the other hand by (56) there would be «25% of the stars with 
a velocity in (0.5, 1) but none of them has been observed near the equator; moreover, 
only stars with u^0.5 have been observed equator-on. Such a result is clearly un­
reliable, if one does not pay attention to the meaning of the observed distribution. 
Consider the following: 

I f / ( j ) = 1/Jo is the result of observations in a very large sample of stars, it is very 
likely that the size of the sample is sufficient to make y0 the effective upper-limit to the 
true velocities; hence case d degenerates into case c and any strangeness drops. 

Otherwise, when the number of stars observed is not large enough, the histogram 
/ ( j ) = l / j 0 must be considered necessarily as a rough empirical distribution. Then it 
would be more correct to fit it to a continuous function by means of (36) or (37), and 
the distribution (56) may indicate fairly well the form of the function q> (v), that one 
must assume; an analogous procedure gives in this case a reliable true distribution 
under (2) (as was explained in Section 1), that would result completely different from 
(57) and similar to (56). 

It does not seem, however, that (56) gives information about the distribution of the 
true rotational velocities of less accuracy than the observed histogram does about 
the apparent ones; using (56) we have the advantage of getting almost immediately 
an idea of the rotational behaviour of our stars: for instance, in the case shown in 
Figure 6d, we are not far from the probabilistic truth if »25% of the stars are predicted 
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to rotate in (0.5, 1) and«75% in (0, 0.5); it is not difficult to infer that an elegant 
distribution cp(v), derived by the formally correct procedure will yield practically the 
same expectation. 

All the frequency functions discussed so far, have been collected in Table 111. 

5. A Method of Getting a Rough Distribution <p(v) from the Histogram of 
the Apparent Rotational Velocities 

The correct procedure to derive a true distribution <p(v) has been discussed in Section 
4. However, (36) or (37) requires the tabulation of a set of functions (p(v), each 
truncated at vb, in order to fit any observed histogram. Alternatively any observed 
histogram must be approximated by a suitable continuous function f(y) in order to 
integrate (35). 

This procedure may be tedious and time consuming; in the following we suggest 
a means to get an approximate trend of q>(v) by simple numerical calculations, starting 
from the case (d) considered in the foregoing section, which makes it possible to 
treat each block of a histogram by formulae (51) and (52). 

Let us take a histogram of the type (26) and call cpr (xvb) the distribution of the 
true velocities v = xvb for the stars which have been observed between yr_t and yr. 

Analogously to what has been done in Section 3, the total distribution (p(xvb) is: 

(p(xvb) = £ r Ir Ayr<pr(xvb). (58) 

When (51) and (52) have been used in (58), we can write for every x ranging between 
.?,._! and sr: 

<p(xvb\.Ur = IrLc(x)- I k ( / k + 1 - 4 ) M x ) . (59) 
i 

Although the trend of (59) may represent the distribution of the rotational velocities, 
it is not of very practical use: for our purpose it is sufficient to get the mean value of 
q>(v) in every interval ( j r_i , yr), that is: 

<<p\-i,r = (sr-sr_1)~
1 <p(xvb)r_Urdx. (60) 

Sr-l 

After the calculation has been performed in (60) by simple integration of the Le-
gendre integrals with respect to x, we find: 

<</»>r-1, r = ' (T„ - Tr_ l r_ J + 
Sr — 5 r _ ! 

r - 1 

- ( S r - s , - i ) - 1 'Zk(h+i-Ik)(Tkr-Tkr_i), (61) 
1 

where: 
Tkr = s-'Eifc; 6r) - s ; \ \ ~ sr

2) F ( # ; 9r). (62) 
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The elliptic integral Fand E, already defined in Section 4, are given now by: 

F ( # ; 0 P ) = (* (1 - s i n 2 0 r s i n 2 a ) " 1 / 2 d a 

o 

E(pk
r;Or)= f (1 - s i n 2 0 r s i n 2 a ) 1 / 2 d a , 

(63) 

(64) 

where: 
0r = sin"' sr — sin"' (y,lvb) (65) 

tf = sin"' (sjsr) = sin"' (yjy,). (66) 

In (63) and (64) we have written sin20r instead of s2 since in mathematical tables 
elliptic integrals may be tabulated for a set of values of the modular angle 9r. 

As an example of the application of the foregoing formulae (61)—(66), let us consider 
the Be stars partially analysed in Section 3; we may start from the histogram (b) 
(Table I and Figure 3), assuming again a break-up velocity of 450 km/sec for all 
stars, and select the first interval between 0 and 100 km/sec and the following ones of 
50 km/sec in size up to 450 km/sec. 

If one looks, for instance, for the mean of q>(v) between 100 and 150 km/sec, 
(61) gives: 

<<P>.2 = -—- (T22-Tu) —(h-I^iT^-T^), 

where, according to (62)-(66), it is: 

r , , = s^E(nl2; 0,) - s,"1 (1 - s2) E{n\2; 9,) 

Tl2 = s2
lE(p2; 02)-s-2

x{\-s\)F{f$2; 02) 

T22 = s2
lE(Ttl2; 62) -s2

l(i- s2
2)F{nll; 62). 

The numerical pattern is as follows: 

/, =0.048 x 10"2 

/2 =0.119 x 10"2 

Si = 100/450 

s2= 150/450 

0, = s i n " ' s , w 13° 

02 = s i n " ' s 2 « 19?5 

i5̂  = s in - , ( s 1 /5 2 )*42° . 

By interpolation in mathematical tables we find F(90°; 13°), F(90°; 19°.5), F(42°; 
19°.5) and the corresponding elliptic integrals of second kind E; finally we get: 

<(?>12« 0.075 x 10"2. 

https://doi.org/10.1017/S0252921100027238 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100027238


246 P. L. BERNACCA 

io ' f (y> 

0.5S 

, 
10 ip(v) 

0.50 

0.45 

0.40 

0.35 

0.30 

0.25 

Q20 

0.15 

0.10 

0.05 

-
-

-

-

~ 

-

-

-

-

: 

. 
_ 
• 

I ! I 

B6-B9e stars 

(luminosity class I V - V ) 

~l | 
3.7% ! 3.7% i 4.7% 

I I 
I i i 

1 1 1 

1 
1 

1 1 | 1 1 | 
1 

1 1 
1 1 

" ~ 1 1 
1 1 
( 1 

1 
1 
1 

1 | 1 1 
1 1 

1 
1 
1 
1 

9.4% 1 12.7% I 19.9% 
i i 
i i 

1 

27.9% 18.0% 

-

-

-

-

-

-

-

-

-

-

50 100 150 200 250 300 350 400 450 
Km/sec 

Fig. 7. Approximate trend of the distribution of the rotational velocities v for Be stars, given in the 
form of a histogram (broken tracing). The solid tracing is the histogram of the apparent velocities 
y = v sin a (case b of Figure 4). The percentage of stars in each interval of the 'true histogram' is 

shown. The cut-off is assumed to be at 450 km/sec. 

The whole histogram of the true velocities is shown in Figure 7 by the broken 
tracing; the percentage of stars in each interval has also been indicated. It appears 
that a Be star does not need to be a rapid rotator; if the usual assumption of equatorial 
envelopes yielding a shell spectrum is correct, then shell stars are viewed nearly 
equator-on; if so, the statistical method so far suggested would explain the observation 
of Be stars with a shell spectrum at velocities lower than 300 km/sec (Slettebak, 1966a), 
a fact that a ^-solution could not explain. 

It is useful to notice that the existence of intrinsically slow rotators among the Be 
stars has already been suggested on an observational basis by some authors (Schild, 
1966; Deeming and Walker, 1967). 
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6. Concluding Remarks 

In Sections 2-4 the statistical method of investigating the rotational behaviour of a 
group of stars has been established on the basis of the observations and the existence 
of an upper limit to the true velocities. 

It may be useful to emphasize the kind of problem we are dealing with. Suppose 
we have a sample of bodies of known rotational velocity and spread them randomly 
in space. If one asks for the expectation of the apparent rotational velocity f(y), the 
solution is just (3) where q>(v) is known. The actual problem is quite different: apparent 
velocities are observed and a guess as to the distribution of the true velocities is 
required; the best estimate is obtained by the method developed in this paper. The 
usual procedure of considering valid a law when its consequences, derived under 
admissible general hypothesis, have been observed, cannot be applied to rotational 
velocities. 

The present method depends on the selection of the upper limit and one must 
operate carefully; consider, for instance, the following: it is well known that Ap stars 
are observed to be slow rotators; suppose that we are dealing with a sample for which 
the maximum apparent velocity is 100 km/sec: if an upper limit of, say, 400 km/sec 
is assumed for A-stars (Figure 3), there is no difference in practice between using the 
earlier treatment (with sin a) or the present one; if, however, Ap stars are considered 
to be intrinsically slow rotators, it may be quite correct to take the observed maximum 
as the effective upper limit so that the use of the present method becomes important. 

Finally, let us consider briefly again the approximate method of Section 5: since 
Tkr depends only on the selection of the intervals (^r_1; sr), one can construct once 
for all a square matrix: 

r T u T,-
0 

r = 
' 2 2 

0 0 

Tl3 

T23 

T3i 

• TlH 

• T2n 

• T3n 

T 

where n is the number of intervals. Taking n = 20, for instance, we have the possibility 
by T and (61) of transforming immediately a large variety of observed histograms 
yielding results of sufficient accuracy, within the errors by which apparent velocities 
have been determined. 
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Discussion 

Steinitz: Would an observer in some other location in space obtain the same v(a)? 
Bernacca: In general, he will obtain a different v(a). Assume for a moment that the axes of Be 

stars are nearly perpendicular to the galactic plane. For a sample of such stars, all rotating near the 
break-up velocity, an observer located on the galactic plane and far from the sample would derive 
il/(a) ~ 8{a — n/2). On the other hand, an observer located far from the galaxy in the direction of the 
galactic pole would always measure small v sina, say ^ 100 km/sec. If he thinks that Be stars are 
normally very rapid rotators and recognizes pole-on characteristics in all stars, he might conclude 
that y/(a) ~ 3(a). Otherwise he may assume that the Be phenomenon is independent of rotation and 
take 100 km/sec as the effective upper limit because no larger velocities have been observed: y/(a) 
would turn out to be different again, depending on/(>>). 

Steinitz: Would you agree that some of our classification schemes are aspect dependent? 
Bernacca: I agree. 
Collins: How sensitive are your results to the choice of Vb (i.e., the critical velocity)? 
Bernacca: I can give an answer, at the moment, only for a sample of stars with the same critical 

velocity. The choice of Vb affects mostly the mean square deviations of a true distribution; however, 
if you have a large sample of stars, the upper limit Vb cannot be too far from the maximum observed 
apparent velocity, unless you are aware of selection effects. If the number of stars is smal 1, any statisti­
cal method will yield unreliable results, of course. Let me point out that Vb is not necessarily the 
critical velocity, but any other upper limit which can be recognized or assumed reasonably. 
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