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Abstract. A real algebraic curve of genus g is a pair (S, 〈τ 〉), where S is a closed
Riemann surface of genus g and τ : S → S is a symmetry, that is, an anti-conformal
involution. A Schottky uniformization of (S, 〈τ 〉) is a tuple (�,�, P : � → S), where �

is a Schottky group with region of discontinuity � and P : � → S is a regular
holomorphic cover map with � as its deck group, so that there exists an extended
Möbius transformation τ̂ keeping � invariant with P ◦ τ̂ = τ ◦ P. The extended
Kleinian group K = 〈�, τ̂ 〉 is called an extended Schottky groups of rank g. The
interest on Schottky uniformizations rely on the fact that they provide the lowest
uniformizations of closed Riemann surfaces. In this paper we obtain a structural picture
of extended Schottky groups in terms of Klein–Maskit’s combination theorems and
some basic extended Schottky groups. We also provide some insight of the structural
picture in terms of the group of automorphisms of S which are reflected by the
Schottky uniformization. As a consequence of our structural description of extended
Schottky groups, we get alternative proofs to results due to Kalliongis and McCullough
(J. Kalliongis and D. McCullough, Orientation-reversing involutions on handlebodies,
Trans. Math. Soc. 348(5) (1996), 1739–1755) on orientation-reversing involutions on
handlebodies.

2010 Mathematics Subject Classification. 30F10, 30F40, 30F50.

1. Introduction. Throughout this Introduction, S will denote a closed Riemann
surface of genus g. We say that S is symmetric if it admits an anti-conformal
automorphism of order two, say τ : S → S, called a symmetry of S; in this case we say
that the pair (S, 〈τ 〉) is a real algebraic curve and that the fixed points of the symmetry τ

are the real points of the real algebraic curve. The connected components of fixed points
of the symmetry are called the ovals or mirrors of it and, by Harnack’s theorem [6],
such a number of ovals is at most g + 1. If the symmetry has fixed points, then it is
called a reflection; otherwise it is called an imaginary reflection. The quotient space
R = S/〈τ 〉 turns out to be a compact (possible bordered) Klein surface, and conversely
every compact (possible bordered) Klein surface is obtained in that way. The compact
Klein surface R has boundary if and only if τ is a reflection; in this case the number of
boundary components of R is equal to the number of ovals of τ (see the foundational
monograph by Alling and Greenleaf [2]). The theory of real algebraic curves is related
to the theory of real forms of complex algebraic curves and its study is nowadays well
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understood. Most of the achievements in this area (see for example [3] viewed as a
survey) were possible mainly due to a good understanding of the algebraic structure
of non-Euclidean crystallographic (NEC) groups introduced in [15] by Macbeath and
the well-developed Teichmüller theory for Fuchsian and NEC groups [4, 16, 30]. We
are interested in studying real algebraic curves in terms of uniformizations (see below)
of closed Riemann surfaces, but we will restrict ourselves to the lowest ones.

A uniformization of S is a triple (�,�, P : � → S), where � is a planar Riemann
surface, � is a (finitely generated) group of conformal automorphisms of �, acting
freely and discontinuously on it, and P : � → S is a regular covering map with � as
its deck group. By the results given in [19] we may assume, and it will be assumed
from now on, that (�,�) is a function group, that is, � is a finitely generated Kleinian
group and � is a �-invariant connected component of its region of discontinuity. The
collection of uniformizations of S is partially ordered: If (�1, �1, P1 : �1 → S) and
(�2, �2, P2 : �2 → S) are two uniformizations of S, then the first is higher than the
second if there is a continuous map h : �1 → �2 so that P1 = P2 ◦ h (note that h is
necessarily a holomorphic cover map). In the case that h is a homeomorphism, these two
uniformizations are called topologically equivalent (in fact, they are holomorphically
equivalent). The highest ones are produced when � is simply connected; for instance,
if g ≥ 2, then a highest uniformization is given if � is a Fuchsian group (Fuchsian
uniformizations) and the lowest ones are produced when � is a Schottky group (Schottky
uniformizations) [19, 21–24].

Let S be a closed Riemann surface and H be a finite group of (conformal/anti-
conformal) automorphisms of S. Let us consider some uniformization (�,�, P :
� → S) of S. We say that H lifts with respect to the given uniformization if for
every h ∈ H there exists an automorphism of �, say k : � → �, so that h ◦ P = P ◦ k.
The lifted group, say K , contains � as a normal subgroup so that K/� is isomorphic
to H (in particular, if � is not the trivial group, then K is an infinite group; so it
is not isomorphic to H). In this definition we are not requiring the liftings to be
either Möbius or extended Möbius transformations. In the case each of the liftings
can be chosen to be either Möbius or extended Möbius transformations, so the
lifted group K is a (possible extended) function group, we say that the above is a
uniformization of (S, H). A necessary and sufficient condition for H to lift is given in
[12] (see Theorem 3.2 in Section 3 for the case of Schottky uniformizations). If the
uniformization is a highest uniformization (that is, � is simply connected), then H
lifts. By the uniformization theorem, we may assume that � is either the Riemann
sphere �̂, the complex plane � or the unit disc � if g is equal to 0, 1 or at least 2
respectively. Under such assumption on �, the above is a uniformization of (S, H) and
the structure of the corresponding extended function group K is well understood. On
the other extreme if the uniformization is a lowest one (that is, � is a Schottky group
of rank g and � is its region of discontinuity), then it is not in general true that H lifts
with respect to the given Schottky uniformization. Anyway, if H = 〈τ 〉, where τ is a
symmetry of S, it is well known that it is always possible to find a suitable Schottky
uniformization for which 〈τ 〉 lifts [7, 28, 29] (this is a consequence of the fact that there
exists a finite collection of pairwise simple loops on S, which is invariant under τ and
that cut off S into planar surfaces). Let us assume that 〈τ 〉 lifts with respect to the
above Schottky uniformization. As the region of discontinuity of a Schottky group
is of class OAD (that is, it admits no holomorphic function with finite Dirichlet norm
[1, p. 241]), every conformal (respectively, anti-conformal) automorphism of the region
of discontinuity of a Schottky group is a Möbius (respectively, extended Möbius)
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transformation. In particular, one again obtains a uniformization for (S, 〈τ 〉), and the
corresponding extended function group K has � as its orientation-preserving half; we
say that K is an extended Schottky group of rank g.

A general structural decomposition theorem for function groups, in the sense of
Klein–Maskit’s combination theorems [20, 24, 25], was stated by Maskit [17, 21–23]
in terms of some basic function groups. In the case of extended function groups one
has a similar general structural result; in [10] the details and the subtle modifications
to Maskit’s arguments for the structural description of extended function groups can
be found. As the structural picture of Schottky groups is quite simple, we expect to
have a more explicit structural picture of an extended Kleinian group K containing
a Schottky group as a finite index subgroup; this is mainly due to the absence of
(accidental) parabolic elements, that Schottky groups have no elliptic transformations
and the fact that the limit set is totally disconnected. In this paper we restrict ourselves
to the case when K is an extended Schottky group (see Theorem 2.1) and relate
such a structural picture to group of automorphisms of the uniformized surface by
its orientation-preserving half Schottky group. Our structural picture of extended
Schottky groups can be used to obtain results in [13, Section 7]) about the topological
classification of orientation-reversing involutions on handlebodies, whose methods are
from combinatorial group theory (finite extensions of free groups) in three-dimensional
handlebodies. It seems that their topological methods are not so easy to extend to the
classification of more general finite groups of automorphisms of handlebodies, but
our methods seem to be easy to generalize, with suitable modifications, to provide
the structural picture of (possible extended) function groups K containing a Schottky
group � as a normal subgroup and with quotient K/� being a finite group. This will
be pursued elsewhere, at first for the cyclic case.

In Section 2 we state all our main results. In Section 3 we provide the main
definitions (which have not been already stated), the (simple) version of Klein–Maskit’s
combination theorems we need in this paper and we recall the lifting property of [8]
needed in this paper. In Section 4 we provide the proof of the structural picture of
extended Schottky groups.

2. Main results.

2.1. Basic extended Schottky groups. The basic extended Schottky groups are (i)
cyclic groups generated by either a reflection or an imaginary reflection (anti-conformal
involution acting freely on the Riemann sphere) or a glide-reflection (extended Möbius
transformation whose square is a hyperbolic one) and (ii) real Schottky groups of rank g:
extended Kleinian groups generated by a reflection (called the associated reflection) and
a Schottky group of rank g whose elements commute with the associated reflection.

Next we proceed to give a discussion on real Schottky groups. Let K be a real
Schottky group, � be its region of discontinuity, τ be its associated reflection and � be
its associated Schottky group. Clearly, � is the orientation-preserving half of K . If C
is the circle of fixed points of τ , then C is invariant under K and the limit set of K is a
subset of C. Let D be any of the two discs bounded by C and set C0 = C ∩ �. If D is
invariant under �, then �/K = (D ∪ C0)/� is a compact bordered Riemann surface
of some genus p with k > 0 boundary components; we say that the real Schottky
group has signature (+; p; k). If D is not invariant under �, then there is an index two
subgroup K0 of K that preserves D (it necessarily contains glide-reflections). In fact,
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Figure 1. An extended Schottky group K constructed as in Theorem 2.1 with
a = b = c = d = e = r1 = 1. In this case K is generated by a reflection A, an

imaginary reflection B, a glide-reflection C, a loxodromic D and the real Schottky
group generated by the reflection F and the loxodromic transformation E. The
compact Klein surface �/K is a connected sum of four real projective planes,

a genus one orientable surface and has exactly two boundary components.

let A1, . . . , Ag be a set of free generators of � and for each j = 1, . . . , g, we set Bj

equal to Aj if it keeps invariant D or Bj = τ ◦ Aj (a glide-reflection) otherwise. Then
B1, . . . , Bg generates K0 and the quotient �/K = (D ∪ C0)/K0 is a compact bordered
non-orientable surface, say of topological genus q, and r > 0 boundary components;
we say that the real Schottky group has signature (−; q; r).

2.2. The structural picture of extended Schottky groups. The structural picture
of extended Schottky groups in terms of Klein–Maskit’s combination theorem (see
part (1) in Theorem 3.1 in Section 3) is provided by the following.

THEOREM 2.1 (Structural decomposition of extended Schottky groups). An
extended Schottky group can be constructed from Klein–Maskit’s combination theorem
as the free product of the following basic extended Schottky groups:

(i) Cyclic groups generated by reflections.
(ii) Cyclic groups generated by imaginary reflections.

(iii) Cyclic groups generated by glide-reflections.
(iv) Cyclic groups generated by loxodromic transformations.
(v) Real Schottky groups.

Conversely any group of Möbius and extended Möbius transformations constructed
using ‘a’ groups of type (i), ‘b’ groups of type (ii), ‘c’ groups of type (iii), ‘d’ groups
of type (iv) and ‘e’ groups of type (v), is an extended Schottky group if and only
if a + b + c + e > 0. If, in addition, the real Schottky groups have ranks r1, . . . , re ≥ 1,
then the extended Schottky group has rank g = a + b + 2(c + d) + e − 1 + r1 + . . . + re.

Figure 1 shows an example of the structure of an extended Schottky group of
rank 7 constructed as stated in Theorem 2.1.
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REMARK 2.2 Two interesting examples. The following two constructions will be
important in the proof of Theorem 2.1. The first example is provided by an HNN-
extension of a real Schottky group by a cyclic group generated by either a loxodromic
transformation or a glide-reflection. The second one is a free product of two real
Schottky groups and an HNN-extension of it by a cyclic group generated by either a
loxodromic transformation or a glide-reflection.

(1) Let us consider a collection of simple loops on the Riemann sphere, say �1, . . . ,
�2r+3, so that �3, . . . , �2r+3 are circles, �4, . . . , �2r+3 are pairwise disjoint and each
one orthogonal to �3, �1 and �2 are disjoint from all other loops and are separated by
the circle �3, and the loops �1, �2, �4, . . . , �2r+3 bound a domain D of connectivity
2r + 2 (see Figure 2 for the case r = 1). Let τ be the reflection on �3. For each
j = 1, . . . , r, let Bj be a loxodromic transformation sending the circle �2j+2 onto the
circle �2j+3, keeping invariant �3 so that Bj(D) ∩ D = ∅. Let A be either loxodromic
or glide-reflection so that A(�2) = �1 and A(D) ∩ D = ∅ (in particular, its fixed points
are separated by �3). The group K1 = 〈τ, B1, . . . , Br〉 is a real Schottky group of rank r
(τ is its associated reflection and 〈B1, . . . , Br〉 is its associated Schottky group of rank r).
The group K = 〈τ, B1, . . . , Br, A〉 is an extended Kleinian group obtained as the HNN-
extension of K1 by the cyclic group generated by A. Note that K is also generated by
K1 and T = τ ◦ A. Let us assume that either τ (�1) = �2 or τ (�1) ∩ �2 = ∅, and that
in the case τ (�1) and �2 are disjoint, none of them separates the other from the circle
of fixed points of τ . Under such assumptions T is either a reflection or an imaginary
reflection (if τ (�1) = �2) or a glide-reflection or a loxodromic transformation in the
other situation. We may then see that K is an extended Schottky group constructed,
as in Theorem 2.1, as a free product of the above real Schottky group K1 and a cyclic
group of either (i), (ii), (iii) or (iv) type.

(2) Let �0 be a simple loop on the Riemann sphere and let �1 and �2 be the
two open topological discs bounded by it. On �j we consider a collection of circles,
say �

j
3,. . . ,�j

2rj+3 so that �
j
4,. . . , �

j
2r+3 are orthogonal to �

j
3, all the loops, with the

exception of �
j
3, are pairwise disjoint, and the loops �

j
4,. . . , �

j
2rj+3 bound a domain Dj

of connectivity 2rj. Let �j be a simple loop contained inside the open disc Ej (the disc
bounded by �

j
3 and disjoint from �3−j) disjoint from the loops �

j
4,. . . , �

j
2rj+3 (see

Figure 3 for the case r1 = 1 and r2 = 2). Let τj be the reflection on �
j
3. For each k =

1, . . . , rj, let Bj
k be a loxodromic transformation sending the circle �

j
2k+2 onto the circle

�
j
2k+3, keeping invariant �

j
3 so that Bk(Dj) ∩ Dj = ∅. We also consider a glide-reflection

or a loxodromic transformation E so that E(�1) = �2 and E(D) ∩ D = ∅, where D =
D1 ∩ D2 ∩ E∗

1 ∩ E∗
2 , and E∗

j = �̂ − (Ej ∪ �
j
3). The group Kj = 〈τj, Bj

1, . . . , Bj
rj 〉 is a real

Schottky group of rank rj (its associated reflection id τj and its associated Schottky
group of rank rj is 〈Bj

1, . . . , Bj
rj 〉). Let K be the extended Kleinian group constructed as

a free product of K1 and K2 and an HNN-extension by the cyclic group generated by E.
It is not difficult to check that K is also generated by K1 and K2 and the transformation
T = τ2 ◦ E ◦ τ1. Let us assume that the loops τ1(�1) and τ2(�2) are contained in D,
that they are either disjoint or the same loop and if they are disjoint, then none of
them separates the other from the circle �1

3 . Under these assumptions, one has that T
is either a reflection or an imaginary reflection (in the case τ1(�1) = τ2(�2)) or a
glide-reflection or a loxodromic transformation. So we may see that K is an extended
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Figure 2. An extended Kleinian group as in (1) of Remark 2.2 with r = 1.
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Figure 3. An extended Kleinian group as in (2) of Remark 2.2 with r1 = 1 and r2 = 2.

Schottky group constructed, as in Theorem 2.1, as the free product of two real Schottky
groups and a cyclic group of either (i), (ii), (iii) or (iv) type.

2.3. Extended Schottky groups as subgroups of extended Kleinian groups. Let K̂
be an extended Kleinian group containing an extended Schottky group K as a finite
index normal subgroup. Let � be the index two orientation-preserving half of K .
If γ ∈ K̂ and A ∈ �, then γ Aγ −1 ∈ K (as K is normal subgroup) and γ Aγ −1 preserves
the orientation. It follows that � is also a finite index normal subgroup of K̂.
Our second result states that the numbers a, b and e used in the construction of
K in Theorem 2.1 can be explicitly computed in terms of the conjugacy classes
of the anti-conformal involutions of K̂ . Before stating the result we need some
definitions.
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REMARK 2.3. We should notice that K̂ may not be in general an extended Schotky
group, but if its orientation-preserving half K̂+ is torsion free, then K̂ is necessarily an
extended Schottky group. In fact, under this assumption, K̂+ is a purely loxodromic
function group whose region of discontinuity is connected. Now by the classification
of function groups in [21, 23], one has K̂+ as a Schottky group.

Let G = K̂/� (a finite group by our assumptions) and let θ : K̂ → G be the
canonical projection with ker(θ ) = �. If τ ∈ G is an involution so that Kτ = θ−1(〈τ 〉)
contains extended Möbius transformations, then Kτ is an extended Schottky group
whose orientation-preserving half is �.

Let C = {ηi : i ∈ I} be a maximal collection of anti-conformal involutions (i.e.
reflections and imaginary reflections) of K̂ which are non-conjugate in K̂ . We call such
a set C a complete set of symmetries of K̂ and we shall refer to its elements as to
canonical symmetries.

REMARK 2.4. As the group K̂ is necessarily geometrically finite (since it is a finite
extension of a Schottky group), the set C is finite. However, due to Theorem 2.1, we
will not need this fact in the proof of the next theorem and so we do not go into
details.

Next, for each i ∈ I we set I(i) ⊂ I defined by those j ∈ I so that θ (ηi) and θ (ηj)
are conjugate in G (in particular, i ∈ I(i)). Note at this point that it may happen that
for j ∈ I(i), ηj can be an imaginary reflection even if ηi is a reflection and vice versa. We
set by J(i) the subset of I(i) defined by those j for which ηj is an imaginary reflection.
We also set by F(i) ⊂ I(i) − J(i) for those j for which ηj has a finite centralizer in K̂
and E(i) = I(i) − (J(i) ∪ F(i)). Note that as K has a finite index in K̂ , a reflection
η ∈ K̂ has an infinite centralizer C(K̂, η) in K̂ if and only if it has an infinite centralizer
in K .

THEOREM 2.5. Let K̂ be an extended Kleinian group containing a Schottky group
� as a finite index normal subgroup. Let G = K̂/�, let θ : K̂ → G be the canonical
projection and let C = {ηi : i ∈ I} be a complete set of symmetries of K̂. Then Ki =
θ−1(〈θ (ηi)〉) = 〈�, ηi〉 is an extended Schottky group, constructed using ai reflections, bi

imaginary reflections and ei real Schottky groups as in Theorem 2.1, where

ai =
∑

j∈F(i)

[C(G, θ (ηj)) : θ (C(K̂, ηj))],

bi =
∑
j∈J(i)

[C(G, θ (ηj)) : θ (C(K̂, ηj))],

ei =
∑

j∈E(i)

[C(G, θ (ηj)) : θ (C(K̂, ηj))].

REMARK 2.5. It is well known that if K̂ is an extended Kleinian group containing
a Schottky group � of rank g ≥ 2 as a finite index normal subgroup, then the index
of � in K̂ is at most 24(g − 1) [32]. In [9] the structural picture of Kleinian groups
containing a Schottky group of maximal index 12(g − 1) as a normal subgroup (in
terms of Klein–Maskit’s combination theorems) and the corresponding quotients are
provided (see also [33]). From that information, one obtains a concrete picture for K̂
in the maximal index situation and, in particular, information about the symmetries
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of K̂ , their centralizers and the quotient groups K̂/�. So in these cases the use of
Theorem 2.5 to compute the values of ai, bi and ei is not so difficult to carry out.

2.4. Counting topological equivalences of extended Schottky groups. The struct-
ural picture of extended Schottky groups provided in Theorem 2.1 easily permits to
count the number of topologically different extended Schottky groups of a fixed rank.
The main point for this counting argument is a certain uniqueness of the decomposition
structure. More precisely, assume that one decomposition of the extended Schottky
group K uses ‘a’ cyclic groups generated by reflections, ‘b’ cyclic groups generated by
imaginary reflections, ‘c’ cyclic groups generated by glide-reflections, ‘d’ cyclic groups
generated by loxodromic transformations and ‘e’ real Schottky groups. Let us consider
the hyperbolic 3-orbifold O = �3/K . The number ‘a’ is the number of boundary
components of O homeomorphic to discs; the number ‘b’ is the number of points of O
over which it fails to be a manifold; ‘e’ is equal to the number of boundary components
different from discs (the topological structure of each of these boundary components
determines the corresponding real Schottky group); and d + c is determined from the
relation g = a + b + 2(c + d) + e − 1 + r1 + · · · + re.

If b + c > 0, then we may replace each of the loxodromic generators of the ‘d’
cyclic groups by glide-reflections, that is, we may assume d = 0 (this procedure has
been used in [11]).

COROLLARY 2.6. The number of topologically different extended Schottky groups of
rank g is bounded above by[

g + 4
2

][
g + 5

2

]
− 2 +

∑
(e;r1,...,re)∈�g

×
([g + 4 − e − ∑e

j=1 rj

2

][g + 5 − e − ∑e
j=1 rj

2

]
− δ(e;r1,...,re)

)
×

e∏
j=1

[
2 + 3rj

2

]
,

where

�g =
⎧⎨⎩(e; r1, . . . , re) : 1 ≤ e, 1 ≤ r1 ≤ · · · ≤ re, e +

e∑
j=1

rj ≤ g + 1

⎫⎬⎭
and δ(e;r1,...,re) is equal to 1 or 2 for g − e − ∑e

j=1 rj even or odd, respectively. The
symbol [x] denotes the maximum integer less or equal to x.

Proof. The structural picture of extended Schottky groups given in Theorem 2.1
asserts that the topological class of an extended Schottky group of rank g is completely
determined by the number ‘a’ of groups of type (i), the number ‘b’ of groups of type
(ii), the number ‘c’ of groups of type (iii), the number ‘d’ of groups of type (iv), the
number ‘e’ of real Schottky groups (and their ranks rj) and the topological type of each
of these (satisfying the conditions given in Theorem 2.1). Without taking care of the
topological type of each of the real Schottky groups (just their ranks), we see that such
a number is equal to the number of different tuples of the form

(a, b, c, d, (e; r1, . . . , re))
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satisfying the following conditions (see the observations previous to the statement of
Corollary 2.6):

(1) a + b + c + e > 0;
(2) 1 ≤ r1 ≤ r2 ≤ · · · ≤ re;
(3) if b + c > 0, then d = 0 and
(4) g = a + b + 2(c + d) + e − 1 + ∑e

j=1 rj.
The above number is equal to the desired formula but without the final product

on it.
Secondly, for each such tuple (a, b, c, d, (e; r1, . . . , re)) we need to count how

many topologically non-equivalent groups can be constructed with such a data. For
this we just need to note that we only need to compute, for each j = 1, . . . , e, the
number Nj of topologically different real Schottky groups of a fixed rank rj ≥ 1; this
number Nj being equal to the number of topologically different symmetries with fixed
points that a closed Riemann surface of genus rj may have, that is, Nj = [(2 + 3rj)/2]
(see [14]; this part takes care of the product at the end of the formula). All the
above permit to obtain the desired formula. The details are left to the interested
reader. �

3. Definitions and notations. In this section we review some of the definitions
(which have not been stated before), set some notations and recall some technical
results that we will need in this paper. Generalities on Kleinian and extended Kleinian
groups can be found, for instance, in [24, 26].

An extended Möbius transformation is the composition of a Möbius transformation
with complex conjugation. It is well known that the conformal automorphisms
(respectively, anti-conformal automorphisms) of the Riemann sphere �̂ are the Möbius
transformations (respectively, extended Möbius transformations). We denote by �̂

the group of Möbius and extended Möbius transformations and by � its index two
subgroups of Möbius transformations. The group �̂ can also be viewed by the Poincaré
extension theorem as the group of hyperbolic isometries of the hyperbolic space �3;
in this case � is the group of orientation-preserving ones. Möbius transformations
are classified into parabolic, loxodromic (including hyperbolic) and elliptic. Similarly,
extended Möbius transformations are classified into pseudo-parabolic (the square is
parabolic), glide-reflections (the square is hyperbolic), pseudo-elliptic (the square is
elliptic), reflections (of order two admitting a circle of fixed points on �̂) and imaginary
reflections (of order two and having no fixed points on �̂). Each imaginary reflection
in �̂ has exactly one fixed point in �3 and this point determines it uniquely. If K is a
subgroup of �̂, not contained in �, then its canonical orientation-preserving subgroup
K ∩ �, denoted by K+, has index two in K .

A Kleinian group is a discrete subgroup of �. Similarly, an extended Kleinian group
is a discrete subgroup of �̂ necessarily containing extended Möbius transformations.
If K is a (extended) Kleinian group, then its region of discontinuity is the (necessarily
open) subset � of �̂ consisting of those points over which K acts discontinuously. If
� �= ∅, then we say that K is of the second kind; otherwise of the first kind. Note that K is
an extended Kleinian group if and only if K+ is a Kleinian group: both of these with the
same region of discontinuity. A function group (respectively, a extended function group)
is a pair (K,�), where K is a finitely generated Kleinian group (respectively, a finitely
generated extended Kleinian group) and � is a K-invariant connected component of
its region of discontinuity.
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The decomposition of function groups in the sense of Klein–Maskit’s combination
theorems is provided in [21–23] and that for extended function group can be seen in [10]
(were the subtle modifications of the arguments for function groups are provided). We
next state a simple version of Klein–Maskit’s combination theorems which is enough
for us in this paper.

THEOREM 3.1 (Klein–Maskit’s combination theorem [20, 25]).
(1) (Free products) Let Kj be a (extended) Kleinian group with region of
discontinuity �j , for j = 1, 2. Let Fj be a fundamental domain for Kj and assume that
there is a simple closed loop �, contained in the interior of F1 ∩ F2, bounding two discs
D1 and D2, so that for j = 1, 2, the set � ∪ Dj ⊂ �3−j is precisely invariant under the
identity in K3−j . Then K = 〈K1, K2〉 is a (extended) Kleinian group, with fundamental
domain F1 ∩ F2, which is the free product of K1 and K2. Every finite-order element in K
is conjugated in K to a finite-order element of either K1 or K2. Moreover, if both K1 and
K2 are geometrically finite, then K is so.

(2) (HNN-extensions) Let K0 be a (extended) Kleinian group with region of
discontinuity �, and let F be a fundamental domain for K0. Assume that there are
two pairwise disjoint simple closed loops �1 and �2, both of these contained in the
interior of F , so that �j bounds a disc Dj such that (�1 ∪ D1) ∩ (�2 ∪ D2) = ∅ and that
�j ∪ Dj ⊂ � is precisely invariant under the identity in K0. If T is either a loxodromic
transformation or a glide-reflection so that T(�1) = �2 and T(D1) ∩ D2 = ∅, then
K = 〈K0, f 〉 is a (extended) Kleinian group, with fundamental domain F ∩ (D1 ∪ D2)c,
which is the HNN-extension of K0 by the cyclic group 〈T〉. Every finite-order element of K
is conjugated in K to a finite-order element of K0. Moreover, if K0 is geometrically finite,
then K is so.

The Schottky group of rank 0 is just the trivial group. A Schottky group of rank
g ≥ 1 is a Kleinian group � generated by loxodromic transformations A1, . . . , Ag so
that there are 2g disjoint simple loops, C1, C′

1, . . . , Cg, C′
g with a 2g-connected outside

D ⊂ �̂, where Ai(Ci) = C′
i and Ai(D) ∩ D = ∅, for i = 1, . . . , g. The collection of loops

C1, C′
1,. . . , Cg and C′

g is called a fundamental set of loops for � with respect to above
generators (these groups are the free product of g cyclic loxodromic groups by use of (1)
in Klein–Maskit’s combination theorem). The region of discontinuity � of a Schottky
group � of rank g is known to be connected and dense in �̂ and that S = �/� is a
closed Riemann surface of genus g. Classical retrosection theorem states that every
closed Riemann surface is obtained, up to conformal equivalence, from a Schottky
group as above.

It is well known that a Schottky group of rank g can be defined as a purely
loxodromic Kleinian group of the second kind which is isomorphic to a free of rank g
[18]. It also follows that every hyperbolic structure on the interior of a handlebody
whose conformal boundary is a closed Riemann surface (that is a Kleinian structure
of the handlebody) is provided by a Schottky group.

The proof of Theorem 2.1 will be based in the following lifting criteria of groups of
automorphisms (either conformal or anti-conformal) of Riemann surfaces to Schottky
uniformizations.

THEOREM 3.2. [8] Let (�,�, P : � → S) be a Schottky uniformization of the closed
Riemann surface S of genus g ≥ 2 and let H be a group of (conformal/anti-conformal)
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automorphisms of S. Then H lifts with respect to the above Schottky uniformization if
and only if there is a collection F of pairwise disjoint simple loops on S such that

(i) each connected component of S − F is a planar surface;
(ii) F is invariant under the action of H and

(iii) for each α ∈ F , P−1(α) is a collection of pairwise disjoint simple loops in �.

REMARK 3.3. We should note that Theorem 3.2 can be seen as a consequence of
the Equivariant Loop Theorem [27], whose proof is based on minimal surfaces, that
is, surfaces that minimize the area locally. The proof given in [8] only uses arguments
proper to (planar) Kleinian groups and the hyperbolic metric.

We make use of Theorem 3.2 for the case that H is a cyclic group generated by a
symmetry τ of S, in which case it states a necessary and sufficient condition for the
Schottky uniformization of S to be a Schottky uniformization for the real algebraic
curve (S, 〈τ 〉).

4. Proof of Theorem. 2.1 In what follows a simple loop means a Jordan curve
and a circle on the Riemann surface is either an Euclidean circle in the complex plane
or the union of an Euclidean line with the point at infinity. Circles have associated a
reflection for which the circle is its locus of fixed points.

4.1. First part. We first prove that the extended Kleinian groups constructed as
described in Theorem 2.1 are extended Schottky groups indeed. Let us construct an
extended Kleinian group as stated in the second part of Theorem 2.1 as follows (see
Figure 4). Consider non-negative integers a, b, c, d, r, s, p1,. . . ,pr (where some of
them may be zero) and strictly positive integers k1,. . . , kr, q1,. . . , qs, l1,. . . , ls, so that
a + b + c + r + s > 0. Set n = a + b + c + d + r + s and e = r + s. Let us consider a
collection of n pairwise disjoint simple loops, say �1,. . . , �n, all of them bounding a
connected domain D of connectivity n. Let Dj be the open topological disc bounded
by the loop �j which is disjoint from D.

(i) For each j = 1, . . . , a, we consider a circle Tj ⊂ Dj and let τj be the reflection on
Tj.

(ii) For each j = 1, . . . , b, we consider a simple loop Nj ⊂ Da+j and let ηj be an
imaginary reflection keeping invariant Nj and permuting both discs bounded by
it.

(iii) For each j = 1, . . . , c, we consider two pairwise disjoint simple loops Dj, D′
j ⊂

Da+b+j (so that Dj, D′
j and �a+b+j bound a common domain of connectivity 3).

Let δj be a glide-reflection so that δj(Dj) = D′
j and δj(D) ∩ D) = ∅.

(iv) For each j = 1, . . . , d, we consider two pairwise disjoint simple loops Ej, E′
j ⊂

Da+b+c+j (so that Ej, E′
j and �a+b+c+j bound a common domain of connectivity 3).

Let εj be a loxodromic transformation so that εj(Ej) = E′
j and εj(D) ∩ D) = ∅.

(v) For each j = 1, . . . , r, we consider real Schottky groups Fj of type (+; pj; kj),
whose associated reflection γj ∈ Fj has its circle of fixed points Lj contained in
Da+b+c+d+j, and the closure of the complement of Da+b+c+d+j is contained in a
fundamental domain for Fj.

(vi) For each j = 1, . . . , s, we consider real Schottky groups Gj of type (−; qj; lj),
whose associated reflection θj ∈ Gj has its circle of fixed points Mj contained in
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Figure 4. The loops in the geometrical construction.

Da+b+c+d+r+j, and the closure of the complement of Da+b+c+d+r+j is contained in
a fundamental domain for Gj.

The properties of the loops �j permit to construct (by part (1) of Klein–Maskit’s
combination theorem 3.1) an extended Kleinian group K as a free product of the a
cyclic groups generated by reflections τj, the b cyclic groups generated by the imaginary
reflections ηj, the c cyclic groups generated by the glide-reflections δj, the d cyclic groups
generated by the loxodromic transformations εj and the r + s real Schottky groups Fj

and Gj. We call the type of constructed groups as above a geometrical extended Schottky
group of type

(ξ ; b, c, d, {p1, . . . , pr}, {q1, . . . , qs}; a, {k1, . . . , kr}, {l1, . . . , ls}),

where ξ = + in the case that b = c = s = 0 (in which case we say that K is orientable)
and ξ = − in others cases (in this case we say that K is non-orientable). If � is the
region of discontinuity of K , then �/K is orientable if and only if ξ = +. Lemma 4.1
asserts that K is in fact an extended Schottky group.

LEMMA 4.1. A geometrical extended Schottky group K of type

(ξ ; b, c, d, {p1, . . . , pr}, {q1, . . . , qs}; a, {k1, . . . , kr}, {l1, . . . , ls})

is an extended Schottky group of rank

g = a + b + 2(c + d) + 2p1 + · · · + 2pr + q1 + · · · + qs

+ k1 + · · · + kr + l1 + · · · + ls − 1.
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Proof. Keeping the above notation, K is generated by τ1,. . . , τa, η1,. . . , ηb,
δ1,. . . , δc, ε1,. . . , εd and the real Schottky groups F1,. . . , Fr and G1,. . . , Gs. It
follows from Klein–Maskit’s combination theorems that the finite-order elements in K
(different from the identity) are conjugated to one of the generators τ1,. . . , τa, η1,. . . ,
ηb, γ1,. . . , γr and θ1,. . . , θs. In this way, we may define a surjective homomorphism

φ : K → 〈x : x2 = 1〉,
by the rule

φ(τj) = φ(ηj) = φ(δj) = φ(γj) = φ(θj) = x,

φ(εj) = φ(F+
j ) = φ(K+

j ) = 1.

Again, as a consequence of Klein–Maskit’s combination theorem, one has that
K is geometrically finite and its region of discontinuity � is connected. It follows
from the definition of φ that K+ = ker(φ) is torsion-free and, in particular, K+

is purely loxodromic, geometrically finite function group with connected region of
discontinuity �. As a consequence of the classification of function groups [23], we
obtain that K+ is a Schottky group and, in particular, K is an extended Schottky
group. As S+ = �/K+ is a closed Riemann surface of genus g admitting a symmetry
τ (induced by K) so that S+/〈τ 〉 = �/K , we may obtain the value of g as desired. �

4.2. Second part. In order to finish the proof of Theorem 2.1, we need to check
that every extended Schottky group is in fact a geometrical extended Schottky group.

Let K be an extended Schottky with � as its region of discontinuity. Let � = K+

be its index two Schottky subgroup, say of rank g, S+ = �/� and τ : S+ → S+ be
the symmetry induced by K − � on S+. Denote by P : � → S+ the regular covering
map whose deck group is the Schottky group �. In this way, (�,�, P : � → S+) is a
Schottky uniformization of (S+, 〈τ 〉).

As � has no finite-order elements besides the identity and it has index two in K ,
every finite-order element of K , different from the identity, has order two (they are
either imaginary reflections of reflections) and every finite-order subgroup of K is
either the trivial group or a cyclic group of order two generated by either a reflection
or an imaginary reflection. Also, as � has neither parabolic transformations or elliptic
transformations, the circle of fixed points of two different reflections in �̂ cannot
intersect themselves or to be a tangent.

If C ⊂ � is a simple loop, then we denote by KC its K-stabilizer. The condition for C
to be contained in the region of discontinuity of K asserts that KC is a finite-order
subgroup of K so, as already noted, KC is either trivial or a cyclic group of order two
generated by either a reflection or an imaginary reflection.

4.2.1. Construction of a collection of loops on S+. Theorem 3.2 asserts the
existence of a collection F0 of pairwise disjoint simple loops on S+ satisfying the
following three properties:
(a) The connected components of S+ − F0 are planar surfaces.
(b) Each loop in F0 lifts to a loop in � under the covering P : � → S+.
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(c) The collection F0 is invariant under τ .

LEMMA 4.2. We may modify the collection F0, without destroying the properties
(a)–(c), in order to assume that it contains all those ovals of τ which lift to loops under
P : � → S+.

Proof. Let A ⊂ S+ be an oval of τ which lifts to a loop under P : � → S+ and as-
sume that A does not belong to our original collection F0. If no loop in F0 intersects A,
then clearly we may add A to F0 without destroying properties (a)–(c). If a loop
B ∈ F0 intersects A, then we proceed as follows: Let C, D ⊂ � be simple loops so that
P(C) = A, P(D) = B and C ∩ D �= ∅. We claim that C ∩ D consists of two different
points. In fact, if τC is the reflection on C (so τC ∈ K is a lifting of τ ), then τC(D) belongs
to P−1(F0) (as such a collection of loops is invariant under K). But we may see that D
and τC(D) should intersect over the points in C ∩ D. It follows that τC(D) = D. Now
the planarity property of � asserts the desired intersection property. Let us denote by p
and q the intersection points of C and D, by C1 one of the two arcs of C − {p, q} and
by D1 and D2 the two arcs of D − {p, q}. Then for j = 1, 2, the loop Dj ∪ C1 ∪ {p, q}
projects to a simple loop Lj on S+ so that τ (L1) = L2. We may deform continuously
the loops Lj to simple loops M1 and M2, respectively, so that they are disjoint from the
oval A and also disjoint from all loops in F0 − {B}, satisfying that τ (M1) = M2 and
that Mj lifts to simple loops under P. Then we may delete B from F0 and to add the
oval A and the loops M1 and M2. The new collection of loops, in this way constructed,
still satisfy properties (a)–(c). Proceeding in this way for each of the ovals of τ that lifts
to loops under P : � → S+, we produce the desired collection. �

As a consequence of Lemma 4.2, we may also assume that our collection F0

satisfies the following extra property.
(d) Each oval of τ that lifts to a loop under P : � → S+ belongs to F0.

Let C ⊂ � be a connected component of P−1(F0) (a simple loop by (b)). As
observed before, (i) KC is trivial or (ii) KC is generated by a reflection τC or (iii) KC is
generated by an imaginary reflection ηC .

In case (ii) we have the following two possibilities:
(ii.1) the circle Fix(τC), of fixed points of the reflection τC , is completely contained in

�.
(ii.2) Fix(τC) contains limit points of �.

In case (ii.1) we may see that P(Fix(τC)) is an oval of τ . By (d), such an oval belongs
to F0. The planarity of � asserts that in this case C and Fix(τC) should intersect. The
disjointness property of the loops in P−1(F0) then asserts that C = Fix(τC).

Let us now assume that we are in case (ii.2). Again, similar to the proof of
Lemma 4.2, the intersection between Fix(τC) and C must consist of two different
points, say p and q. If one of the two arcs in Fix(τC) − {p, q} is contained in �, then we
may proceed as in the proof of Lemma 4.2 to replace P(C) with two new loops which
are disjoint from any oval of τ and any other loop in F0 − {P(C)}, permuted by τ so
that they also lift to loops under P : � → S+. With this procedure we may assume that
each time we have (ii.2), both arcs in Fix(τC) − {p, q} contain limit points, that is, we
may assume the following extra property for F0.
(e) The stabilizer in K of loop C in P−1(F0) is trivial or generated by an imaginary

reflection or a reflection τC and, in this last case, either
(e.1) C = Fix(τC); or
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(e.2) both topological open discs bounded by C contain limit points in Fix(τC).

Such a constructed collection F0 of loops satisfying (a)–(e) is not necessarily
unique. But we may consider one which is minimal in the sense that by deleting any
non-empty sub-collection from it some of the properties (a)–(e) do not hold. We still
denote such a minimal collection with the symbol F0.

Let R be a connected components of � − P−1(F0). Then P(R) is a planar-
connected region of S+ and P : R → P(R) is a homeomorphism, in particular,
�-stabilizer of R is a finite-order subgroup of �; so trivial. In this way its K-stabilizer is
either trivial or a cyclic group generated by either a reflection or an imaginary reflection.
If the K-stabilizer of R is a cyclic group generated by an imaginary reflection η, then
there should be a simple loop δ ⊂ R so that η(δ) = δ. We may add the loop P(δ) to F0

without destroying any of the properties (a)–(e). In this way we obtain a new collection
of loops, which we denote by the symbol F , satisfying the properties (a)–(e) and also
the extra property.
(f) None of the connected components of � − P−1(F) is stabilized by an imaginary

reflection of K .

REMARK 4.3. As a consequence of the above properties, each connected component
of � − P−1(F) has K-stabilizer either trivial or a cyclic group generated by a reflection
whose circle of fixed points contains limit points of K . Moreover, in this last situation,
if the reflection is ρ ∈ K and Cρ is its circle of fixed points, then every loop in P−1(F)
intersecting Cρ has the property that each of the two discs bounded by it contains limit
points in Cρ .

4.2.2. Decomposition of K . We call each of the loops in P−1(F) a structure loop
of K and each of the connected components of � − P−1(F) a structure region of K .
As already noted, each structure region is homeomorphic under P to a planar region
in S+. Moreover, the projection under P of any two structure regions are either equal
(both regions are �-equivalent) or disjoint with no common boundary loop or disjoint
with some common boundary(ies). Set S = S+/〈τ 〉, which a compact Klein surface
and let us denote by Q : S+ → S the two-fold regular branched cover induced by τ .
The image under Q of any loop in F is either a simple loop or a simple arc whose end
points belong to the boundary of S (the projection of the ovals of τ ). As the number
of connected components of S − Q(F) is finite, we may choose a finite collection P of
structure regions so that
(1) the projection under Q of any two different structure regions of P are disjoint;

that is, any two structure regions in P are non-equivalent under K ;
(2) the union of the projections under Q of all structure regions in P equals S − Q(F).

That is, every structure region is K-equivalent to one in P ;
(3) the union of the structure regions in P together with their boundary structure

loops is a planar connected domain D of finite connectivity.
Condition (3) follows from the fact that we may cut off S with some of the loops

and arcs in Q(F) to obtain a planar-connected surface.
If C is a structure loop in the interior of D, then, by (1), its K-stabilizer can only be

trivial or a cyclic group generated by the reflection whose circle of fixed points contains
limit points. In the case the K-stabilizer of C is trivial, we may perform part (1) of
Klein–Maskit’s combination theorem 3.1 for K stabilizers of two structure regions
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having C as a common boundary. Some of the K-stabilizers are trivial and others
are a cyclic group generated by a reflection whose circle of fixed points contains limit
points (at the end, these are to produce the real Schottky groups). In the case that
the K-stabilizer of C is a cyclic group generated by a reflection, both structure regions
having C as a common boundary have K-stabilizer the cyclic group generated by the
previous reflection. In this case we do not perform any action (just think that the union
of these two structure regions together with C is a bigger structure region). So far we
have constructed with part (1) of Klein–Maskit’s combination theorem 3.1 the free
product of a finite collection of cyclic groups generated by some reflections. Denote
such a group with the symbol K1 (a subgroup of K).

Next, we should take care of the boundary structure loops of D. Let C1 be
a boundary structure loop. If the K-stabilizer of C1 is generated by an imaginary
reflection or a reflection with C1 as its circle of fixed points, then we may perform part (1)
of Klein–Maskit’s combination theorem 3.1 between K1 and the cyclic group generated
by the previous involution (in this case, a simple loop to perform the construction is
any loop in a small neighbourhood of C1). With this type of procedure, we obtain
an extended Kleinian group K2 (again a subgroup of K), which is the free product of
cyclic groups of types (i) and (ii) in Theorem 2.1 and the group K1.

Now we are left those boundary loops with K-stabilizer either trivial or a cyclic
group generated by a reflection whose circle of fixed points contains limit points of K .

Let C2 be a boundary loop with K-stabilizer to be generated by a reflection
ζ ∈ K whose circle of fixed points has limit points. Let R1 ∈ P be the structure region
stabilized by ζ containing C2 in the border. The projection loop Q(P(C2)) is a simple
arc in S, whose end points belong to the boundary of S. Again, there should be
another boundary loop, say C′

2, of D and either a loxodromic transformation or
a glide-reflection h ∈ K so that h(C2) = C′

2. The K-stabilizer of C′
2 is generated by

the reflection h ◦ ζ ◦ h−1. If C′
2 is also a boundary of R1, then h ◦ ζ ◦ h−1 = ζ and

we perform the HNN-extension of 〈ζ 〉 by the cyclic group generated by h. Next, assume
that h ◦ ζ ◦ h−1 �= ζ (that is, C′

2 is not a boundary loop of R1). Then the structure
region R1 is neighboured (along C2) to the structure region R2 (which does not belong
to P) which is K-equivalent to the structure region R3 in P stabilized by h ◦ ζ ◦ h−1

(containing C′
2 in the boundary). We may replace R3 with R2 without destroying all the

previous properties (this is possible since R1 and R3 are border regions). We may now
assume that h ◦ ζ ◦ h−1 = ζ and proceed as before with the HNN-extension procedure.
In this way, proceeding with all boundary loops of D, which are stabilized by the
same ζ , we produce a real Schottky group whose reflection is ζ . We may find a simple
loop that separates all the used boundary loops from the rest, we see that the real
Schottky group is a free product factor in the HNN-extension of K2 as above. With
this procedure we obtain an extended Kleinian group K3 (a subgroup of K). So far,
this extended Kleinian group K3 is constructed as in Theorem 2.1, so it is an extended
Schottky group.

Let us now assume the K-stabilizer of a boundary loop C3 to be trivial. Then the
projection loop Q(P(C3)) is a simple loop in the interior of S so that if we cut S along
Q(P(C3)) then we obtain two extra boundaries. These two extra boundaries correspond
to two structure loops in the boundary of D; one of them being C3. There is then an
element h ∈ K so that h(C3) is the other boundary loop which projects to Q(P(C3)).
That boundary loop is different from C3 as the K-stabilizer of C3 was assumed to be
trivial. In this way there is no option that h is either loxodromic or a glide-reflection. We
have performed part (2), that is, an HNN-extension, in Klein–Maskit’s combination
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theorem 3.1 for K3 using h. With this type of procedure, we obtain an extended Kleinian
group K4 (again a subgroup of K). Let us note that by the choice of D we necessarily
have �(K4)/K4 = S. It follows that K = K4.

At this point we are almost done. The only problem is that when performing the
last HNN-extensions we may have situations as already described in Remark 2.2. But,
as already noticed in both cases of Remark, we may proceed to modify some of the
elements used in the HNN-extension to obtain the desired result.

5. Proof of Theorem 2.5. We make suitable modifications to the arguments given
in [5] to obtain the desired result. Let us consider the canonical projection θ : K̂ →
G = K̂/� and let θ (ηi) = σ ∈ G. If � is the region of discontinuity of K̂), then, as �

has finite index in K̂ , � is also the region of discontinuity of �.
The group Kσ = θ−1(〈σ 〉) turns out to be a an extended Schottky group. By the

decomposition structure provided by Theorem 2.1, Kσ is constructed using a cyclic
groups generated by reflections, b cyclic groups generated by imaginary reflections, e
real Schottky groups and some finite number of cyclic groups generated by either
loxodromic transformations or glide-reflections.

Let us first consider the imaginary reflections of Kσ . The arguments for reflections
are similar. Each imaginary reflection in Kσ is conjugate in K̂ to some of the canonical
imaginary reflection ηj. Two imaginary reflections in Kσ provide different fixed points
of σ if they are non-conjugate in Kσ . It follows that we need to count the imaginary
reflections of the form wηjw

−1 that belong to Kσ which are non-conjugate in Kσ . For,
set first Ci = θ−1(C(Ĝ, σ )) and note that Ci normalizes Kσ . Indeed, if w ∈ Ci, then θ (w)
commutes with σ . Now, let γ ∈ Kσ . As θ (γ ) ∈ 〈σ 〉, θ (w) commutes with θ (γ ). It follows
that θ (w−1γw) = θ (w)−1θ (γ )θ (w) = θ (γ ) ∈ 〈σ 〉, that is, w−1γw ∈ Kσ .

Note that for w ∈ K̂ , we have wηiw
−1 ∈ Kσ if and only if θ (w)σθ (w)−1 = σ which

is equivalent to have w ∈ Ci. Now for w1, w2 ∈ Ci, w1ηiw
−1
1 is conjugate in Kσ to

w2ηiw
−1
2 if and only if there is some γ ∈ Kσ so that w−1

1 γw2 ∈ C(K̂, ηi). As w−1
1 γw2 =

(w−1
1 w2)(w−1

2 γw2), the above is equivalent to have w1w
−1
2 ∈ C(K̂, ηi)Kσ .

It follows from above that the conjugates of ηi give rise to ni fixed points of σ ,
where

ni = [Ci : C(K̂, ηi)Kσ ]

= [θ (Ci) : θ (C(K̂, ηi))θ (Kσ )]

= [C(Ĝ, σ ) : θ (C(K̂, ηi))〈σ 〉].

As σ ∈ θ (C(K̂, ci)), we obtain that

ni = [C(Ĝ, σ ) : θ (C(K̂, ηi))].

Now for w ∈ K̂, let wηjw
−1 ∈ Kσ , that is, θ (w)θ (ηj)θ (w)−1 = σ . There is some γ1 ∈ �

for which wηjw
−1 = ηiγ1. So there is some γ2 ∈ � so that ηj = w−1ηiwγ2 (since �

is a normal subgroup in K̂). It follows that for each v ∈ K̂ we have vηjv
−1 =

(vw−1ηiwv−1)(vγ2v
−1). Therefore, vηjv

−1 ∈ Kσ if and only if vw−1ηiwv−1 ∈ Kσ or
equivalently vw−1 ∈ Ci.

Let u1, u2 ∈ Ci, v1 = u1w and v2 = u2w. The imaginary reflections
v1ηjv

−1
1 , v2ηjv

−1
2 ∈ Kσ are conjugate in Kσ if and only if u−1

1 u2 ∈ w(C(K̂, ηj)�)w−1.
In fact, v1ηjv

−1
1 and v2ηjv

−1
2 are conjugate in Kσ if and only if there is some
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γ ∈ Kσ so that v−1
1 γ v2 ∈ C(K̂, ηj). As v−1

2 γ v2 = w−1(u−1
2 γ u2)w ∈ w−1Kσw =

Kj = θ−1(〈θ (ηj)〉) = 〈�, ηj〉, we have that v1ηjv
−1
1 and v2ηjv

−1
2 are conjugates

in Kσ if and only if v−1
1 v2 ∈ C(K̂, ηj)Kj = C(K̂, ηj)�. This asserts that

u−1
1 u2 = w(v−1

1 v2)w−1 ∈ w(C(K̂, ηj)�)w−1 as desired.
If Cj = θ−1(C(Ĝ, θ (ηj))), then as wCjw

−1 = Ci, the above asserts that given j ∈ I(i)
conjugations of ηj in K̂ produce in Kσ , nj = [Cj : C(K̂, ηj)�] isolated fixed points of σ .
Note that

nj = [Cj : C(K̂, ηj)�]

= [Cj/� : C(K̂, ηj)�/�]

= [C(Ĝ, θ (ηj)) : θ (C(K̂, ηj))].

Finally, with the observation that for k, l ∈ J(i), the imaginary reflections ηk and ηl

are non-conjugate in Kσ , all the above provides the formula that permits to count the
number b of non-conjugated imaginary reflections in Kσ .

The arguments for the case of reflections and real Schottky groups follow the same
lines as the above case and so we omit it. This finishes the proof of Theorem 2.5.

6. Algebraic types of extended Schottky groups. As a consequence of Theorem
2.1 and its proof, one may easily describe the algebraic structures of extended Schottky
groups and their uniformized orbifolds. In this section we provide some observations
as a consequence of that description.

6.1. Algebraic types. Let us consider an extended Schottky group K of type

(ξ ; b, c, d, {p1, . . . , pr}, {q1, . . . , qs}; a, {k1, . . . , kr}, {l1, . . . , ls}).

The type asserts that K is constructed as in Theorem 2.1 by using a groups of type
(i), b groups of type (ii), c groups of type (iii), d groups of type (iv) and e = r + s real
Schottky groups of type (+; pj; kj) for j = 1, . . . , r, and of type (−; qj; ll) for j = 1, . . . , s.
It now follows, from Klein–Maskit’s combination theorem, that K is isomorphic as an
abstract group to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z2 ∗ · · · ∗ Z2︸ ︷︷ ︸
a+b

∗ Z ∗ · · · ∗ Z︸ ︷︷ ︸
c+d

∗

∗
(

Z2 ⊕ (Z ∗ · · · ∗ Z︸ ︷︷ ︸
2p1+k1−1

)
)

∗ · · · ∗
(

Z2 ⊕ (Z ∗ · · · ∗ Z︸ ︷︷ ︸
2pr+kr−1

)
)

∗ .

∗
(

Z2 ⊕ (Z ∗ · · · ∗ Z︸ ︷︷ ︸
q1+l1−1

)
)

∗ · · · ∗
(

Z2 ⊕ (Z ∗ · · · ∗ Z︸ ︷︷ ︸
qs+ls−1

)
)

(1)

Let S = �/K be the compact surface uniformized by K . The orientability type of S
is determined by ξ ∈ {±}; the surface being orientable if and only if ξ = +. The first
(a + b) factors provide a compact surface S1 homeomorphic to the connected sum of b
projective planes with a boundary components. The second (c + d) factors correspond
to make a connected sum of S1 with a closed orientable surface of genus d and with
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the connected sum of 2c real projective planes. Let us denote the resulting compact
surface by the symbol S2. The other factors provide the type of real Schottky groups
to use in the construction. Each factor Z2 ⊕ (Z ∗ · · · ∗ Z︸ ︷︷ ︸

2pj+kj−1

) provides a Riemann surface

of genus pj and also kj boundary components with which to make a connected sum
with S2. Each factor Z2 ⊕ (Z ∗ · · · ∗ Z︸ ︷︷ ︸

qj+lj−1

) provides a connected sum of qj real projective

planes and lj boundary components to make a connected sum with the previous
compact (bordered) surface.

Summarizing the above we have the following.

PROPOSITION 6.1. If K is an extended Schottky group, with region of discontinuity �,
of type

(+; 0, 0, d, {p1, . . . , pr}, {−}; a, {k1, . . . , kr}, {−}),
then �/K is a compact Riemann surface of genus d + p1 + · · · + pr with exactly a +
k1 + · · · + kr boundary components. Similarly, if K is an extended Schottky group, with
region of discontinuity �, of type

(−; b, c, d, {p1, . . . , pr}, {q1, . . . , qs}; a, {k1, . . . , kr}, {l1, . . . , ls}),
then �/K is a compact non-orientable Klein surface of topological genus b + 2c + 2d +
2p1 + · · · + 2pr + q1 + · · · + qs with exactly a + k1 + · · · + kr + l1 + · · · + ls boundary
components.

Proof. This follows from the structural picture in Theorem 2.1 together with
previous observations. �

6.2. Isomorphisms classes of extended Schottky groups. Clearly, two extended
Schotky groups of different orientability type cannot be conjugated topologically,
but they may be isomorphic as abstract groups; for instance, geometrically extended
Schottky groups of types

(+; 0, 0, 0, {−}, {−}; 2, {−}, {−}), and (−; 2, 0, 0, {−}, {−}; 0, {−}, {−}),
are isomorphic to Z2 ∗ Z2. The first type gives uniformizations of a closed annulus and
the second one gives uniformizations of the Klein bottle.

Proposition 6.1 provides the topological structure for the (bordered) compact
surface uniformized by an extended Schottky group of a given type. In particular, we
may decide, in terms of the types, when two extended Schottky groups uniformize
topologically equivalent compact surfaces. For it, their types should provide the same
orientability type, the same topological genus of the surface and the same number of
boundary components. We proceed to list all of the possibilities.

PROPOSITION 6.2 (Orientable type). Let Kj be an orientable extended Schottky
group of type

(+; 0, 0, dj, {pj
1, . . . , pj

rj
}, {−}; aj, {kj

1, . . . , kj
rj
}, {−}), j = 1, 2.
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(a) K1 and K2 uniformize topologically equivalent compact Riemann surfaces if and
only if

(∗1)

{
d1 + p1

1 + · · · + p1
r1

= d2 + p2
1 + · · · + p2

r2

a1 + k1
1 + · · · + k1

r1
= a2 + k2

1 + · · · + k2
r2

.

(b) Under the equality (∗1) we have that K1 and K2 are isomorphic as abstract groups
if and only if

(∗2)

⎧⎨⎩
a1 = a2 = a
d1 = d2 = d
r1 = r2 = r

and there exists a permutation σ ∈ �r so that

(∗3)

{
k1

j = k2
σ (j)

p1
j = p2

σ (j)
.

(c) The extended Schottky groups K1 and K2 are topologically equivalent if and only
if the three equalities (∗1), (∗2) and (∗3) hold simultaneously.

Proof. By Proposition 6.1 the surface uniformized by Kj is a compact Riemann
surface of genus gj = dj + pj

j + · · · + pj
rj bordered by aj + kj

1 + · · · + kj
rj boundary

components. Then (∗1) follows from equality of genus and number of boundary
components. Equality (∗2) follows directly from the algebraic structure given in (1).
Part (c) follows from the fact that the basic groups to use in the construction of both
extended Schottky groups (in Theorem 2.1) should be in the same number for each
possible type. �

PROPOSITION 6.3 (Non-orientable type). Let Kj be a non-orientable extended
Schottky group of type

(−; bj, cj, dj, {pj
1, . . . , pj

rj
}, {qj

1, . . . , qj
sj
}; aj, {kj

1, . . . , kj
rj
}, {lj

1, . . . , lj
sj
}), j = 1, 2.

(a) K1 and K2 uniformize topologically equivalent compact non-orientable Klein
surfaces if and only if

(∗∗1)

⎧⎨⎩
b1 + 2c1 + 2d1 + 2p1

1 + · · · + 2p1
r1

+ q1
1 + · · · + q1

s1
=

b2 + 2c2 + 2d2 + 2p2
1 + · · · + 2p2

r2
+ q2

1 + · · · + q2
s2

a1 + k1
1 + · · · + k1

r1
+ l1

1 + · · · + l1
s1

= a2 + k2
1 + · · · + k2

r2
+ l2

1 + · · · + l2
s2

.

(b) Under the equality (∗∗1) we have that K1 and K2 are isomorphic as abstract groups
if and only if

(∗∗2)

⎧⎨⎩
a1 + b1 = a2 + b2

c1 + d1 = c2 + d2

r1 + s1 = r2 + s2

,
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and there is a permutation σ ∈ �u so that

(∗∗3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) if j ∈ {1, . . . , r1} and σ (j) ∈ {1, . . . , r2}, then
2p1

j + k1
j = 2p2

σ (j) + k2
σ (j);

(2) if j ∈ {1, . . . , r1} and σ (j) ∈ {r2 + 1, . . . , r2 + s2}, then

2p1
j + k1

j = q2
σ (j)−r2

+ l2
σ (j)−r2

;

(3) if j ∈ {r1 + 1, . . . , r1 + s1} and σ (j) ∈ {1, . . . , r2}, then
q1

j−r1
+ l1

j−r1
= 2p2

σ (j) + k2
σ (j);

(4) if j ∈ {r1 + 1, . . . , r1 + s1} and σ (j) ∈ {r2 + 1, . . . , r2 + s2}, then

q1
j−r1

+ l1
j−r1

= q2
σ (j)−r2

+ l2
σ (j)−r2

.

(c) The extended Schottky groups K1 and K2 are topologically equivalent if and only
if the three equalities (∗∗1), (∗∗2) and (∗∗3) hold simultaneously.

Proof. The idea is similar as to the orientable case. �

7. Connection to symmetries of handlebodies. As already mentioned in the
Abstract and the Introduction, the structural description of extended Schottky groups
provides alternative arguments to obtain the results in Kalliogis–McCullough [13]. In
this last section, as a matter of completeness, we provide the following relations. A
compact Kleinian three-manifold M is a compact three-manifold whose interior M0

carries a complete hyperbolic structure and its boundary S carries a natural structure
of a closed Riemann surface (maybe not connected), which is the conformal boundary
of the hyperbolic structure. In other words, there is a torsion-free Kleinian group �

with the region of discontinuity � ⊂ �̂ (maybe empty) so that M = (�3 ∪ �)/�. In
this case, M0 = �3/� and S = �/�. A symmetry of M is an orientation-reversing self-
homeomorphism of order two whose restriction to the interior of M is a hyperbolic
isometry. The restriction of a symmetry of M to its conformal boundary S is a symmetry
of S but not every symmetry of S may necessarily be obtained by the restriction of a
symmetry of M.

Let M = (�3 ∪ �)/� be a compact Kleinian three-manifold homeomorphic to
a handlebody, say of genus g, and let S = �/� be its conformal boundary (a closed
Riemann surface of genus g). In this case � is a Schottky group of rank g. If τ is
a symmetry of M, then by lifting it to the universal cover �3 ∪ �, we obtain an
extended Schottky group K whose orientation-preserving half is �. It follows from
Theorem 2.1 that each connected component of the set of fixed points of τ is either a
point (the projection of the fixed point of imaginary reflections) or a two-dimensional
compact surface (coming from the reflections or the real Schottky factors) which may
be orientable or not and that τ has at most g + 1 connected components of the set
of fixed points (this was already pointed in [13] using three-dimensional arguments
together with combinatorial techniques). The quotient M/〈τ 〉 fails to be a manifold
exactly at the projection of the isolated fixed points of τ (locally looks like a cone
over the projective plane) and its boundary carries a natural compact Klein surface
structure. At this point it is important to note that the presence of isolated fixed points
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is not detected by the restriction of τ to the conformal boundary S and so the above
bound is not a direct consequence of Harnack’s result. Next, we summarize the above.

COROLLARY 7.1. Let K be an extended Schottky group constructed as in Theorem 2.1
using α groups of type (i), β groups of type (ii), γ groups of type (iii), δ groups of type (iv)
and ε groups of type (v). If � is the canonical orientation-preserving subgroup of K and
M = (�3 ∪ �)/�, then K/� represents a symmetry of M whose connected components
of fixed points consist of α two-dimensional closed discs, β isolated points, and ε two-
dimensional non-simply connected compact surfaces. In particular, if M is a handlebody
of genus g with a Schottky structure and τ : M → M is a symmetry with n0 isolated
fixed points, n1 total ovals in the conformal boundary and n2 two-dimensional connected
components of the set of fixed points, then

0 ≤ n0 + n1 ≤ g + 1,

0 ≤ n0 + n2 ≤ g + 1.

As handlebodies are compression bodies, given a tame orientation-reversing
involution τ on a handlebody M, there is an extended Schottky group K so that
there is an orientation-preserving homeomorphism h : MtoM�, where � = K+, so
that hτh−1 is the anti-conformal involution induced by K (see also [32]). As the
orientation-preserving half is unique, this asserts that the number of topologically
different extended Schottky groups is equal to the number of topological classes of
tame orientation-reversing involutions on a handlebody. In particular, Corollary 2.6
provides an upper bound. By group-theoretic methods such an enumeration has been
obtained by Stephanus [31].
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