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Abstract

Measures of uncertainty are a topic of considerable and growing interest. Recently, the
introduction of extropy as a measure of uncertainty, dual to Shannon entropy, has opened
up interest in new aspects of the subject. Since there are many versions of entropy, a uni-
fied formulation has been introduced to work with all of them in an easy way. Here we
consider the possibility of defining a unified formulation for extropy by introducing a
measure depending on two parameters. For particular choices of parameters, this mea-
sure provides the well-known formulations of extropy. Moreover, the unified formulation
of extropy is also analyzed in the context of the Dempster–Shafer theory of evidence,
and an application to classification problems is given.
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1. Introduction

Let X be a discrete random variable with support S of cardinality N and with probability
vector (p1, . . . , pN). In 1948, Shannon [16] introduced a measure of information or uncertainty
about X, known as Shannon entropy, as

H(X) = −
N∑

i=1

pi log pi,

where log denotes the natural logarithm. Shannon’s paper is considered to be pioneering
and several studies have been devoted to measures of information or discrimination; see,
for instance, [7], [13], [14], and [18]. Recently, a new measure, known as extropy, has been
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proposed by Lad et al. [11] as a measure dual to Shannon entropy, and is defined by

J(X) = −
N∑

i=1

(1 − pi) log (1 − pi).

Another important and well-known generalization of Shannon entropy is Tsallis entropy,
defined in [19] as

Sα(X) = 1

α − 1

(
1 −

N∑
i=1

pα
i

)
,

where α is a parameter greater than 0 and different from 1. Tsallis entropy is a generalization
of Shannon entropy since

lim
α→1

Sα(X) = H(X).

It is also possible to study the extropy-based version of Tsallis entropy, namely Tsallis extropy,
as studied in detail by Balakrishnan et al. [2]. In that paper, two equivalent expressions for
Tsallis extropy are given by

JSα(X) = 1

α − 1

(
N − 1 −

N∑
i=1

(1 − pi)
α

)

= 1

α − 1

N∑
i=1

(1 − pi)
(
1 − (1 − pi)

α−1),
where α > 0 and α �= 1. Of course, the definition of Tsallis extropy guarantees the preservation
of the same relation which holds between Shannon entropy and extropy, in the sense that

lim
α→1

JSα(X) = J(X).

The study of measures of uncertainty has recently been extended to the fractional calculus.
In that context, Ubriaco [20] defined the fractional version of Shannon entropy, known as
fractional entropy, by

Hq(X) =
N∑

i=1

pi[−log pi]
q,

where 0 < q ≤ 1. Note that for q = 0 it simply reduces to 1 due to the normalization condition.
Moreover, for q = 1 it reduces to the Shannon entropy, i.e. H1(X) = H(X). Up to now, the
corresponding version based on extropy has not been studied in detail. Of course, the fractional
extropy can be easily defined as

Jq(X) =
N∑

i=1

(1 − pi)[−log (1 − pi)]
q,

where 0 < q ≤ 1, and this is a particular case of the definition of fractional Deng extropy (see
[10]) for the choice of a basic probability assignment that degenerates in a discrete probability
function. Again, the case q = 0 is not of interest since it reduces to a constant, whereas for
q = 1 we obtain J1(X) = J(X).
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Furthermore, the study of measures of uncertainty has been extended to the Dempster–
Shafer theory of evidence [4, 15]. This is a generalization of classical probability theory, which
allows better handling of uncertainty. More precisely, the discrete probability distributions are
replaced by the mass functions which can give a weight, a sort of degree of belief, towards
all the subsets of the space of the events. More details on this theory and on measures of
uncertainty developed in its context will be recalled later on.

Recently, Balakrishnan et al. [1] proposed a new definition with the purpose of unifying
the definitions of Shannon, Tsallis, and fractional entropies. This was called fractional Tsallis
entropy, or the unified formulation of entropy, and it is given by

Sq
α(X) = 1

α − 1

N∑
i=1

pi(1 − pα−1
i )(−log pi)

q−1, (1)

where α > 0, α �= 1 and 0 < q ≤ 1. We can readily observe that the fractional Tsallis entropy
is always non-negative and that for q = 1 it reduces to the Tsallis entropy, i.e. S1

α(X) = Sα(X).
Moreover, as α tends to 1, the fractional Tsallis entropy converges to the fractional entropy,
and if, in addition, q = 1, it also converges to Shannon entropy. Balakrishnan et al. [1] also
proposed a unified formulation of entropy in the context of the Dempster–Shafer theory of
evidence.

The purpose of this paper is to give the corresponding unified version of extropy, a defini-
tion which includes all previously defined extropies as special cases. Furthermore, a unified
formulation for extropy is proposed also in the context of the Dempster–Shafer theory of
evidence.

2. Preliminaries on the Dempster–Shafer theory

Dempster [4] and Shafer [15] introduced a theory to study uncertainty. Their theory of
evidence is a generalization of classical probability theory. In the Dempster–Shafer theory
(DST) of evidence, an uncertain event with a finite number of alternatives is considered, and
a mass function over the power set of the alternatives, i.e. a degree of confidence to all of
its subsets, is defined. If we assign positive mass only to singletons, we recover a discrete
probability distribution. By DST it is possible to describe situations in which there is less
specific information.

Let X be a frame of discernment (FOD), i.e. a set of mutually exclusive and collectively
exhaustive events denoted by X = {θ1, θ2, . . . , θ|X|}. The power set of X is denoted by 2X and
has cardinality 2|X|. A function m : 2X → [0, 1] is called a mass function or a basic probability
assignment (BPA) if

m(∅) = 0 and
∑
A∈2X

m(A) = 1.

If m(A) �= 0 implies |A| = 1, then m is also a probability mass function, i.e. BPAs general-
ize discrete random variables. Moreover, the elements A such that m(A) > 0 are called focal
elements.

In DST, there are different indices to evaluate the degree of belief in a subset of the
FOD. Among them, we recall here the definitions of belief function, plausibility function,
and pignistic probability transformation (PPT). The belief function and plausibility function
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are defined as

Bel (A) =
∑

∅�=B⊆A

m(B), Pl (A) =
∑

B∩A�=∅
m(B),

respectively. Note that the plausibility of A can also be expressed as 1 minus the sum of the
masses of all sets whose intersection with A is empty. Moreover, both the belief and the plau-
sibility vary from 0 to 1 and the belief is always less than or equal to the plausibility. Given
a BPA, we can evaluate for each focal element the pignistic probability transformation (PPT)
which represents a point estimate of belief and can be determined as

PPT (A) =
∑

B : A⊆B

m(B)

|B| (2)

(see [17]).
Recently, several measures of discrimination and uncertainty have been proposed in the

literature and in the context of the Dempster–Shafer evidence theory (see e.g. Zhou and Deng
[21], where a belief entropy based on negation is proposed). For a detailed review we refer
to Deng [6]. Among them, one of the most important is known as Deng entropy, which was
introduced in [5] for a BPA m as

ED(m) = −
∑

A⊆X : m(A)>0

m(A) log2

(
m(A)

2|A| − 1

)
.

This entropy is similar to Shannon entropy and they coincide if the BPA is also a proba-
bility mass function. The term 2|A| − 1 represents the potential number of states in A. For a
fixed value of m(A), 2|A| − 1 increases with the cardinality of A and then Deng entropy does
too. Moreover, the fractional version of Deng entropy was proposed and studied by Kazemi
et al. [10], whereas Tsallis–Deng entropy was introduced by Liu et al. [12]. Based on these
measures, Balakrishnan et al. [1] defined a unified formulation of entropy also in the context
of Dempster–Shafer theory. This formulation of entropy is also called the fractional version of
Tsallis–Deng entropy, and it is

SDq
α(m) = 1

α − 1

∑
A⊆X : m(A)>0

m(A)

[
1 −

(
m(A)

2|A| − 1

)α−1](
−log

m(A)

2|A| − 1

)q−1

,

where α > 0, α �= 1, 0 < q ≤ 1. It is a general expression of entropy as it includes several
versions of entropy measure, in the context of both DST and classical probability theory.

In analogy with the relation between Shannon entropy and extropy, Buono and Longobardi
[3] defined Deng extropy as a measure of uncertainty dual to Deng entropy. The definition was
given in order to satisfy the invariant property for the sum of entropy and extropy. For a BPA
m over a FOD X, the Deng extropy is defined by

JD(m) = −
∑

A⊂X : m(A)>0

(1 − m(A)) log

(
1 − m(A)

2|Ac| − 1

)
, (3)

where Ac is the complementary set of A in X and |Ac| = |X| − |A|. In addition, in the context
of fractional calculus, Kazemi et al. [10] defined the fractional version of Deng extropy as

JDq(m) =
∑

A⊂X : m(A)>0

(1 − m(A))

[
−log

(
1 − m(A)

2|Ac| − 1

)]q

, 0 < q ≤ 1. (4)
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To the best of our knowledge, the corresponding measure related to Tsallis entropy has not yet
been studied. Here this measure is called Tsallis–Deng extropy, and is defined by

JDα(m) = 1

α − 1

∑
A⊂X : m(A)>0

(1 − m(A))

[
1 −

(
1 − m(A)

2|Ac| − 1

)α−1]
, α > 0, α �= 1. (5)

3. Fractional Tsallis extropy

In this section we introduce the unified formulation of extropy in the context of classical
probability theory. We refer to this formulation as fractional Tsallis extropy and, for a discrete
random variable X, it is

JSq
α(X) = 1

α − 1

N∑
i=1

(1 − pi)[1 − (1 − pi)
α−1][−log (1 − pi)]

q−1, (6)

where α > 0, α �= 1, and 0 < q ≤ 1. As mentioned above, the purpose of giving this definition
is based on the fact that this expression includes the classical, Tsallis, and fractional extropies
as special cases.

Remark 1. The fractional Tsallis extropy is non-negative for any discrete random variable. In
fact the term 1 − (1 − pi)α−1 is positive for α > 1 and negative for 0 < α < 1, so that the sum
in (6) has a definite sign and it is the same sign as α − 1.

Remark 2. This extropy is non-additive. In fact, if we consider X with probability vector ( 1
3 , 2

3 )
and Y with probability vector ( 1

4 , 3
4 ), it is easy to show that JSq

α(X ∗ Y) �= JSq
α(X) + JSq

α(Y). For
particular choices of α and q, we obtain JS0.5

2 (X ∗ Y) = 1.2341, whereas JS0.5
2 (X) = 0.5610,

JS0.5
2 (Y) = 0.5088.

Proposition 1. If q = 1 the fractional Tsallis extropy is equal to Tsallis extropy.

Proof. The proof follows from (6) for q = 1. �

Proposition 2. The fractional Tsallis extropy converges to the fractional extropy as α goes
to 1.

Proof. By taking the limit for α to 1 in (6) and by applying L’Hôpital’s rule, we obtain

lim
α→1

JSq
α(X) = lim

α→1

1

α − 1

N∑
i=1

(1 − pi)[1 − (1 − pi)
α−1][−log (1 − pi)]

q−1

= lim
α→1

N∑
i=1

(1 − pi)[−(1 − pi)
α−1] log (1 − pi)[−log (1 − pi)]

q−1

= lim
α→1

N∑
i=1

(1 − pi)
α[−log (1 − pi)]

q =
N∑

i=1

(1 − pi)[−log (1 − pi)]
q

= Jq(X). �
Corollary 1. If both parameters of the fractional Tsallis extropy go to 1, then

lim
α,q→1

JSq
α(X) = J(X).
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FIGURE 1. Relationships between different versions of extropy in classical probability theory.

The results given in Propositions 1, 2, and Corollary 1 are summarized in Figure 1 in
the form of a schematic diagram, by displaying the relationships between different kinds of
extropy.

In the following proposition, we show that the fractional Tsallis entropy and fractional
Tsallis extropy satisfy a classical property of entropy and extropy related to their sum.

Proposition 3. Let X be a discrete random variable with finite support S and with correspond-
ing probability vector p. Then

Sq
α(X) + JSq

α(X) =
N∑

i=1

Sq
α(pi, 1 − pi) =

N∑
i=1

JSq
α(pi, 1 − pi),

where Sq
α(pi, 1 − pi) and JSq

α(pi, 1 − pi) are the fractional Tsallis entropy and extropy of a
discrete random variable taking on two values with corresponding probabilities (pi, 1 − pi).

Proof. The second equality readily follows by observing that, for a random variable with
support of cardinality 2, the fractional Tsallis entropy and extropy coincide. In order to prove
the first equality, by (1) and (6), note that

Sq
α(X) + JSq

α(X)

= 1

α − 1

N∑
i=1

[
pi(1 − pα−1

i )(−log pi)
q−1 + (1 − pi)[1 − (1 − pi)

α−1][−log (1 − pi)]
q−1],

and then the statement follows. �

Theorem 1. The supremum of the fractional Tsallis extropy as a function of q ∈ (0, 1] is
attained in one of the extremes of the interval, while the infimum is attained in one of the
extremes of the interval or it is a minimum assumed in a unique point q0 ∈ (0, 1).

Proof. The fractional Tsallis extropy is a convex function of q. Thus there are three possible
cases to consider. In the first case it is strictly increasing in q, so that the infimum is attained
at 0 and the maximum at q = 1. In the second case it is strictly decreasing in q and then
the minimum is reached at q = 1 while the supremum is reached at 0. In the last case it is
decreasing up to q0 ∈ (0, 1) and then increasing, so that q0 is the minimum and the supremum
is reached at one of the extremes of the interval (0,1). �
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FIGURE 2. The fractional Tsallis extropy in Example 1 as a function of α for different choices of q (a),
and as a function of q for different choices of α (b).

Example 1. Consider a discrete random variable X with support of cardinality 4 and probabil-
ity vector (0.1, 0.2, 0.3, 0.4). It is possible to study the fractional Tsallis extropy as a function
of either α or q by fixing the other one as shown in Figure 2. There it is possible to observe a
decreasing monotonicity for all the choices of α and q.

Example 2. Consider XN as a discrete random variable uniformly distributed over a support of
cardinality N. Then the components of the probability vector are pi = 1/N, i = 1, . . . , N, and
the fractional Tsallis extropy is obtained by

JSq
α(XN) = N − 1

α − 1

[
1 −

(
1 − 1

N

)α−1][
−log

(
1 − 1

N

)]q−1

, (7)

for α > 0, α �= 1, and 0 < q ≤ 1. In Table 1, the values of JSq
α(XN) are given as a function

of N for different choices of the parameters α and q. Moreover, these values are plotted in
Figure 3, showing that they increase with N. By considering the Taylor expansion of equation
(7), we note that as N goes to infinity, JSq

α(XN) is asymptotically N1−q. Thus it diverges, and
this explains why the cases related to the same value of q seem to be paired in Figure 3.

4. A unified formulation of extropy

Now we introduce a unified formulation of extropy in the context of the Dempster–Shafer
theory of evidence via

JDq
α(m) = 1

α − 1

∑
A⊂X : m(A)>0

(1 − m(A))

[
1 −

(
1 − m(A)

2|Ac| − 1

)α−1](
−log

1 − m(A)

2|Ac| − 1

)q−1

, (8)

where α > 0, α �= 1, and 0 < q ≤ 1. As well as the fractional Tsallis extropy, this is a general
formulation, since it includes several versions of extropy measures in the context of both DST
and classical probability theory.

Remark 3. The unified formulation of extropy (8) is also non-negative.
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TABLE 1. Values of the fractional Tsallis extropy for the discrete uniform distribution as a function of N,
for different choices of q and α.

α = 0.5, α = 0.5, α = 0.5, α = 5, α = 5, α = 5,
N q = 0.2 q = 0.5 q = 0.75 q = 0.2 q = 0.5 q = 0.75

5 3.1349 1.9990 1.3739 1.9601 1.2498 0.8590
10 5.8921 2.9997 1.7090 4.6824 2.3838 1.3581
15 8.3445 3.7415 1.9175 7.1670 3.2135 1.6470
20 10.6254 4.3588 2.0743 9.4836 3.8904 1.8514
25 12.7888 4.8989 2.2020 11.6792 4.4739 2.0110
30 14.8637 5.3851 2.3107 13.7825 4.9934 2.1426
35 16.8683 5.8309 2.4060 15.8120 5.4657 2.2553
40 18.8149 6.2450 2.4911 17.7805 5.9016 2.3541
45 20.7122 6.6332 2.5683 19.6975 6.3082 2.4424
50 22.5670 7.0000 2.6391 21.5699 6.6907 2.5225
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FIGURE 3. The fractional Tsallis extropy in Example 2 as a function of N with different choices of the
parameters α and q.

Proposition 4. If q = 1, the unified formulation of extropy in (8) is equal to Tsallis–Deng
extropy in (5).

Proof. By taking q = 1 in (8), we have

JD1
α(m) = 1

α − 1

∑
A⊂X : m(A)>0

(1 − m(A))

[
1 −

(
1 − m(A)

2|Ac| − 1

)α−1]
= JDα(m). �
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Proposition 5. The unified formulation of extropy in (8) converges to the fractional Deng
extropy in (4), as α goes to 1.

Proof. By taking the limit for α going to 1 in (8), and by using L’Hôpital’s rule, it follows
that

lim
α→1

JDq
α(m) = lim

α→1

∑
A⊂X : m(A)>0

(1 − m(A))

[(
1 − m(A)

2|Ac| − 1

)α−1](
−log

1 − m(A)

2|Ac| − 1

)q

=
∑

A⊂X : m(A)>0

(1 − m(A))

(
−log

1 − m(A)

2|Ac| − 1

)q

= JDq(m),

and the proof is complete. �

Corollary 2. When both parameters α and q in (8) tend to 1, the unified formulation of extropy
in (8) converges to Deng extropy in (3), that is,

lim
α,q→1

JDq
α(m) = JD(m).

Remark 4. If the BPA m is such that all focal elements have cardinality N − 1, then in the
expression of the unified formulation of extropy, |Ac| = 1 for each term in the sum. Hence the
unified formulation of extropy reduces to

JDq
α(m) = 1

α − 1

∑
A⊂X : m(A)>0

(1 − m(A))
[
1 − (1 − m(A))α−1][−log (1 − m(A))]q−1

= JSq
α(Y),

where Y is a discrete random variable with support X = {θ1, . . . , θN} such that pi = P(θi) =
m(X � {θi}), for i = 1, . . . , N.

To summarize the results given in Propositions 4 and 5, Corollary 2, and Remark 4, the
relationships between different formulations of extropy are depicted in Figure 4 in the form of
a schematic diagram.

Theorem 2. The supremum of the unified formulation of extropy in (8), as a function of q ∈
(0, 1], is attained at one of the extremes of the interval, and the infimum is either attained at
one of the extremes of the interval or it is a minimum at a unique q0 ∈ (0, 1).

Proof. The proof is similar to that of Theorem 1. �

Example 3. Let X be a frame of discernment with cardinality 4 and consider the BPA m∗ such
that

m∗(A) = 2|A| − 1∑
B⊆X (2|B| − 1)

, A ⊆ X.

It is a well-known BPA which gives the same mass to all the subsets with the same cardinal-
ity. More precisely, with |X| = 4, we have four subsets with cardinality 1 and mass 1/65, six
subsets with cardinality 2 and mass 3/65, four subsets with cardinality 3 and mass 7/65, and
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FIGURE 4. Relationships between different entropies in DST (blue) and classical probability theory
(yellow).
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FIGURE 5. The unified formulation of extropy in Example 3 as a function of α for different choices of q
(a), and as a function of q for different choices of α (b).

one subset with cardinality 4 and mass 15/65. Remember that the last one, i.e. the entire frame
of discernment X, is not involved in the evaluation of the unified formulation of extropy. In
Figure 5, the values of the unified formulation of extropy of m∗ are plotted as a function of α

or q.

4.1. Application to classification problems

The measures of uncertainty are an efficient tool in the classification problems; see, for
instance, [1], [2], and [3]. Here the unified formulation of extropy is applied to the classification
problem based on the Iris flowers dataset given in [8]. It is composed of 150 instances equally
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TABLE 2. The unified formulation of extropy of BPAs based on similarity of interval numbers.

Attribute SL SW PL PW

JD0.5
5 1.5733 1.5855 0.6664 0.7108

TABLE 3. The weights of attributes based on the unified formulation of extropy.

Attribute SL SW PL PW

Weight 0.1523 0.1511 0.3595 0.3371

divided into three classes, Iris setosa (Se), Iris versicolor (Ve), and Iris virginica (Vi), and, for
each of them, four attributes are known, i.e. the sepal length in cm (SL), the sepal width in cm
(SW), the petal length in cm (PL), and the petal width in cm (PW). By using the method of
max–min values, the model of interval numbers is obtained and is presented in Table 10 in [1].
Suppose the selected instance is (6.3, 2.7, 4.9, 1.8). It belongs to the class Iris virginica and our
purpose is to classify it correctly. Four BPAs, one for each attribute, are generated by using the
similarity of interval numbers proposed by Kang et al. [9]. Without any additional information,
the final BPA is determined by giving the same weight to each attribute. In order to discriminate
between classes, we evaluate the PPT (2) of singleton classes for the final BPA obtaining
PPT ( Se ) = 0.1826, PPT ( Ve ) = 0.4131, PPT ( Vi ) = 0.4043. Thus the focal element with the
highest PPT is the class Iris versicolor, which would be our final decision but which is not the
correct one. Hence we try to improve the method by using the unified formulation of extropy in
(8), by choosing as parameters q = 0.5 and α = 5. The unified formulation of extropy of BPAs
obtained by using the similarity of interval numbers is evaluated and the corresponding results
are given in Table 2.

A greater value of the unified formulation of extropy represents a higher uncertainty, so it
is reasonable to give more weight to the attributes with a lower value of that measure. Here
we define the weights by normalizing to 1 the reciprocal values of the unified formulation of
extropy, and the results are given in Table 3.

Based on the weights in Table 3, a weighted version of the final BPA is obtained. Then
the PPTs of the singleton classes are computed as PPT ( Se ) = 0.1156, PPT ( Ve ) = 0.4360,
PPT ( Vi ) = 0.4485. Hence the focal element with the highest PPT is the type Iris virginica,
and it would therefore be our final decision, which is the correct one. By using the method
based on the unified formulation of extropy, a gain in terms of recognition rate is obtained
going from 94% of the non-weighted method to 94.67% of the method explained here.

5. Conclusions

The recent study of the extropy as a dual measure of uncertainty has inspired us to intro-
duce its unified formulation. We have obtained well-known concepts of extropy for particular
choices of the two parameters involved. This unified formulation has also been analyzed in the
context of the Dempster–Shafer theory of evidence. Further, an application to classification
problems of the proposed measure is described.
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