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Abstract

Many industrial design problems are characterized by a lack of an analytical expression
defining the relationship between design variables and chosen quality metrics. Evaluat-
ing the quality of new designs is therefore restricted to running a predetermined process
such as physical testing of prototypes. When these processes carry a high cost, choosing
how to gather further data can be very challenging, whether the end goal is to accurately
predict the quality of future designs or to find an optimal design. In the multi-fidelity
setting, one or more approximations of a design’s performance are available at varying
costs and accuracies. Surrogate modelling methods have long been applied to problems
of this type, combining data from multiple sources into a model which guides further
sampling. Many challenges still exist; however, the foremost among them is choosing
when and how to rely on available low-fidelity sources. This tutorial-style paper presents
an introduction to the field of surrogate modelling for multi-fidelity expensive black-box
problems, including classical approaches and open questions in the field. An illustrative
example using Australian elevation data is provided to show the potential downfalls
in blindly trusting or ignoring low-fidelity sources, a question that has recently gained
much interest in the community.
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1. Introduction

Industrial design problems are often centred around the performance analysis of a
new design under a variety of use case scenarios, or the search for design parameters
that optimize the performance of a new product. These can be seen, for example,
when characterizing the lift and drag of an aircraft under a wide range of flight
conditions [38], or when optimizing the design of a ship’s hull form to minimize its
water drag [28]. In both cases, a set of inputs (that is, flight conditions or a hull’s
length, draught and so on) affect the investigated output (that is, aircraft lift and drag
or a hull’s water drag), but often no analytical expression of this relationship is known.
Problems of this type are known as black-box problems, where the only way to gather
information is to sample this black-box by following some predetermined procedure.
Industrial black-box problems may also be expensive; that is, sampling the black-box
carries a high-cost requirement such as building a prototype or running a lengthy
computer simulation. This implies that the amount of available data is severely limited
and new sampling sites must be chosen with care.

Surrogate modelling methods [22] have long been applied to these so-called
expensive black-box (EBB) problems to surmount the limitations of working with very
little available data. These techniques rely on constructing an accurate model of the
black-box to help guide further sampling, whether to explore the input space to further
learn the input-output relationship, or to optimize a design by exploring unknown
regions and exploiting promising ones. Furthermore, a key assumption with EBB
problems is that the cost to sample the black-box dominates almost any computational
cost required to train a model. This presents a specific scenario where slow-to-train but
highly accurate models can be constructed and relied upon.

It is often the case when dealing with a high-cost, highly accurate black-box
that other cheaper, less accurate sources of information are available. Problems of
this type are known as multi-fidelity expensive black-box (Mf-EBB) problems. The
special cases where only one additional lower fidelity source is available are known
as bi-fidelity expensive black-box (Bf-EBB) problems. These sources offer a trade-off
between cost and accuracy, often providing a large amount of data which can enhance
the understanding of the expensive source. When these sources are available, surrogate
models often integrate them into the construction of a single model of the costly
black-box. The fusion of multiple information sources into a single surrogate model
has readily been applied to a very wide range of industrial design problems, from
ship component [28, 41, 43] and civil infrastructure [13, 40] design to traffic state
estimation [1] and inter-satellite calibration [10]. Aeroplane component design in
particular often relies on multi-fidelity surrogate models [6, 26, 32, 37, 50, 52], where
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expensive wind tunnel data might be supplemented with much more abundant but less
reliable computational fluid dynamics (CFD) data.

When using surrogate modelling techniques in Mf-EBB problems, many high-level
decisions need to be made. These include selecting the underlying surrogate model
of the expensive black-box source, choosing criteria for selecting further sampling
sites, dividing the available budget between an initial spread-out sample and further
model-guided sampling, and choosing which source to sample at each iteration, among
others. Furthermore, open questions still exist in the field, foremost among them how
to distinguish between beneficial and harmful low-fidelity sources. Indeed, relying on
this additional information might hinder the accuracy of a constructed model or lead
to worse points being found when optimizing.

This tutorial-style paper presents an introduction for new practitioners to the usage
of surrogate modelling techniques in Mf-EBB problems. This is achieved by going
through the classical single-source technique known as Kriging [22, 25, 30] and its
two-source variation known as co-Kriging [17]. Despite having been developed more
than 20 years ago, these techniques are still relevant today due to their strong theory
when training the model’s hyperparameters and the model-based uncertainty metric
they provide, which can guide exploration as well as a balance between exploration and
exploitation of the design space. Furthermore, many newer approaches are variations
of, or inspired by, these techniques. Methods used to train these models and to choose
future samples based on the constructed model as well as other aspects to consider
are presented here. An illustrative example is also used to illustrate these techniques,
as well as the potential pitfalls of relying on low-fidelity sources without proper prior
assessment.

The remainder of this paper is structured as follows. Section 2 formally defines the
different variations of Mf-EBB problems one might consider, as different scenarios
arise when the end goal is the construction of an accurate model or the optimization
of a design. Section 3 presents the surrogate modelling techniques, Kriging and
co-Kriging, their mathematical derivation, and the process followed to train them and
choose sampling sites. Section 4 introduces an illustrative example using Australian
elevation data and compares the performance of Kriging and co-Kriging models which
rely on low-fidelity sources of varying quality. Finally, Section 5 concludes with
existing open questions in the field.

2. Problem definitions

The common component to Mf-EBB problems is the existence of a high-fidelity
source fh and one or more low-fidelity sources fl1 , fl2 , . . . , flk . The term fh(x) denotes the
true performance metric value of a design x = (x1, x2, . . . , xd) obtained via the costly
high-fidelity procedure. This is the source which will be modelled and potentially
optimized as discussed in the following subsections. The term fli (x) denotes the
approximation of the true value obtained from source li. It is assumed that the input
space being investigated is a hypercube, namely, the sources are formally defined as
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fh, fl1 , fl2 , . . . , flk : Ω→ R,

Ω = [x⊥1 , x�1 ] × · · · × [x⊥d , x�d ] ⊂ Rd,

where the hypercube Ω has bounds [x⊥i , x�i ] for dimension i. It is often the case that
each of the low-fidelity sources represents a progressive decrease both in accuracy and
cost relative to fh. This however is not a requirement and a source could be cheaper but
more accurate than another, or more accurate in certain regions of the space. It is up
to the surrogate modelling methods being employed to determine how to rely on these
sources based on cost and apparent usefulness.

One of the underlying assumptions in this paper is that all information sources are
deterministic and therefore sampling a source at a sampled location will only return
an already known value. It is possible however for one or more of the sources to be
stochastic, that is, sampling the same location repeatedly will lead to different values.
Modelling techniques developed for stochastic sources can be quite different to the
approaches presented in this paper. For the interested reader in surrogate models of
stochastic EBB sources, the reader is directed to the work of Ankenman et al. [4].
Two further aspects of these sources might arise in industry but seldom appear in the
literature. The first is the fact that the sources might not have the same domain, such
as the high-fidelity source not being available for sampling in certain regions of the
space. Another complex aspect is the changing trust that testing engineers will have
in different sources, sometimes assuming that low-fidelity sources are more accurate
than the labelled high-fidelity data. In a sense, however, this aspect can be analysed
in a pre-processing step using engineering domain knowledge to label which source
provides the “truth”. Therefore, as is almost exclusively done in the literature, here we
assume that fh always provides the true performance value.

It is worth highlighting at this point that studies of Mf-EBB problems are conducted
in one of two broad settings, namely, a synthetic and an applied setting. In a synthetic
setting, all sources are only assumed to be expensive. In reality, they are almost
always analytical (that is, they are based on a mathematical expression) and the
low-fidelity sources are often a modification of the high-fidelity source via the addition
of some terms or the modification of the coefficients of the expression [3, 45, 49].
A large amount of these synthetic instances have been implemented in C++ and made
available on GitHub [2]. Studies that focus on this setting have large amounts of data
from each of the sources available, despite using only limited samples when training
models or optimizing. This large amount of data can be used to precisely assess the
accuracy of constructed models, as well as to characterize the sources themselves to
analyse their impact on algorithm performance [3, 45]. This type of study can provide
insights into the inner workings of surrogate model methods and provide guidelines
for their usage.

It is also possible for researchers to focus on the applied setting, that is, studies that
focus on the limited data available and how to exploit it. This is particularly relevant
to industrial problems, where the information sources are true expensive black-boxes
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and very little is known about them. Studies of this type primarily propose new ways
to identify useful low-fidelity sources [48] or ways to exploit low-fidelity information
when it seems beneficial to do so [33]. Guidelines and insights developed in a synthetic
setting can often impact the development of these applied techniques. Both settings
therefore have their place and are beneficial to the literature. Mf-EBB problems can be
further classified into three types of sub-problems. This division is characterized by
the given resources, the aim and the success measure being used. These sub-problems
are defined next and are later illustrated in Section 4.

2.1. Problem 1: model creation with fixed sample In this scenario, data from the
available sources have already been gathered and no further sampling of any of the
sources is allowed. That is, the sets Xh, Xl1 , . . . , Xlk and yh, yl1 , . . . , ylk are defined as

Xh = {xh
1, xh

2, . . . , xh
nh
} ⊂ Ω,

Xli = {x
li
1, xli

2, . . . , xli
nli
} ⊂ Ω for 1 ≤ i ≤ k,

yh = {fh(xh
1), . . . , fh(xh

nh
)},

yli = {fli (x
li
1), . . . , fli (x

li
nli

)} for 1 ≤ i ≤ k.

As the data gathered come from an expensive source, the amount of high-fidelity
samples is relatively small, that is, nh ≤ 20d, where d is the problem dimension.
Furthermore, if the sources fh, fl1 , fl2 , . . . , flk are assumed to be of decreasing quality,
it may be that Xh ⊆ Xl1 ⊆ Xl2 ⊆ · · · ⊆ Xlk , although this is not always the case.

The aim in this problem is to construct a model sh : Ω→ R of fh, which is as
accurate as possible given the available data. The performance of the constructed
model in a synthetic setting is measured using a large sample set X and y defined as

X = {x1, x2, . . . , xN} ⊂ Ω,
y = {fh(x1), . . . , fh(xN)},

where N should be a large number, say, N = 1000d. Given this sample, two accuracy
measures are often used in the literature. The first is the root mean squared error
(RMSE) between sh and fh, given by

RMSE =

√∑N
i=1(sh(xi) − fh(xi))2

n

with a lower error indicating better performance. Another possible measure is the
Pearson’s correlation Pcorr between sh and fh, given by

Pcorr =
1

N − 1

(∑N
i=1(fh(xi) − ȳ)(sh(xi) − S̄)

sysS

)
,

where ȳ =
1
N

N∑
i=1

fh(xi),
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sy =

[∑N
i=1(fh(xi) − ȳ)2

N − 1

]1/2
,

S̄ =
1
N

N∑
i=1

sh(xi),

sS =

[∑N
i=1(sh(xi) − S̄)2

N − 1

]1/2
,

with a higher correlation indicating better performance. Whilst it is rare to find
industrial examples that fit this problem definition, it is quite often used in studies that
propose new surrogate modelling methods. Here the practitioner’s decision-making is
restricted to a single question: Given a set of data, which model should be trained?
The performance of different choices, such as how to divide a total budget between
different phases of an algorithm or the usage of different data acquisition strategies,
does not need to be assessed. This allows for an easy comparison between models.

2.2. Problem 2: model creation with sample budget In this scenario, rather
than being given already collected data from each of the sources, the user is given
a total sampling budget of B to be used as desired. This budget indicates how
many times the source fh can be queried. Furthermore, a given set of cost ratios
0 ≤ Cl1

r , Cl2
r , . . . , Clk

r ≤ 1 indicates the cost of sampling the sources fl1 , fl2 , . . . , flk ,
respectively, relative to the cost of fh. For instance, a cost ratio Cli

r = 0.1 indicates
that sampling fli is 10 times cheaper than sampling fh and so one fh sample can be
replaced by 10 fl1 samples. The special case where Cli

r = 0 indicates that the source fli
is cheap, that is, it can be queried as often as desired with no associated cost.

The aim here is to gather the data Xh, Xl1 , . . . , Xlk and yh, yl1 , . . . , ylk from each of
the sources as defined in the previous subsection whilst satisfying

B ≥ |Xh| + Cl1
r |Xl1 | + · · · + Clk

r |Xlk |.

These data are used to train a model sh of fh which is as accurate as possible. Once
again, the performance is measured in terms of the accuracy of the constructed model,
with either the RMSE or Pcorr measures.

This type of problem is a step up from the previous one. The practitioner needs to
choose not only what kind of surrogate model to use, but also how to divide the budget
among fidelities and how to guide future data gathering. It is also much more realistic
in terms of industrial problems, where the aim is not to optimize a design but rather to
understand its performance under a range of conditions.

2.3. Problem 3: function optimization with sample budget In this final scenario,
the user is once again given the sources fh, fl1 , fl2 , . . . , flk , a total budget B and a set of
cost ratios 0 ≤ Cl1

r , Cl2
r , . . . , Clk

r ≤ 1. The aim is to either minimize or maximize fh,
whilst sampling each of the sources at locations Xh, Xl1 , . . . , Xlk and satisfying

B ≥ |Xh| + Cl1
r |Xl1 | + · · · + Clk

r |Xlk |.
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The performance measure is simply the best objective function value of the sampled
points Xh. Whilst being very similar to the previous problem, the key difference here
lies in the fact that one must balance the construction of an accurate surrogate to aid
in optimization and the optimization process itself. Sampling low- and high-fidelity
sources in unexplored regions can help generate more accurate models. Data gathering
therefore needs to balance a need for exploration of the space to find new promising
regions with the exploitation of already discovered good regions to find the best points
possible.

3. Surrogate modelling techniques

As outlined in Section 1, one of the more prominent ways to approach Mf-EBB
problems is through the construction of a surrogate model. This approach applies to
all three of the Mf-EBB sub-problems defined in the previous section, whether the
construction of a model is the end goal itself or when optimizing an expensive source.
Practitioners need to choose a model that not only accurately models the expensive
source with limited data, but also has a suitable mechanism to fuse information from
low-fidelity sources. Furthermore, a suitable acquisition function must be chosen, a
measure of how promising further sample locations are when exploring the space,
exploiting known promising regions, and often balancing the two. Finally, when given
a total budget with no initial data, an initial sample needs to be gathered to construct
an initial surrogate model. Techniques that solve each of these aspects are presented
here.

3.1. Surrogate model Despite a very large number of data modelling techniques
reported in the literature, dealing with expensive sources and small datasets often
leads to the usage of models which might take some time to train, but which can be
highly accurate even with limited information. Perhaps the two best-known underlying
models used in the literature are Kriging [22, 25, 30] and radial basis functions (RBFs)
[12, 18, 34, 39, 51]. These models provide predictions that are based both on an
underlying simple model, often chosen to be constant or linear in the input variables,
combined with an added term that represents the effect of known data points. This
leads to a modelling surface that interpolates existing data, that is, the model prediction
at already sampled locations is the known objective function value.

3.1.1. Kriging Kriging in particular provides very accurate models due to the
combination of its high number of hyperparameters and an approach to choose them
rooted in sound probability theory. Note that this method is used to model a single
source; its adaptation to multiple sources is given in the next section. The formulation
given by Kriging assumes that the function samples made so far at locations x1, . . . , xn
are realizations of random normal variables Y(x1), . . . , Y(xn) with mean μ and variance
σ2. Further, the correlation between variables is based on the distance between them,
that is,
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corr(Y(xi), Y(xj)) = exp
{
−

d∑
k=1

10θk |x(k)
i − x(k)

j |
pk

}
.

Thus, the multivariate random variable Y = [Y(x1) · · ·Y(xn)] has the distribution
Y ∼ N(1μ,σ2R), with

Ri,j = exp
{
−

d∑
k=1

10θk |x(k)
i − x(k)

j |
pk

}
.

Simple Kriging assumes constant mean μ across the space, but it is possible to fit a
regression model to the data before adding the Kriging “layer”. This process is known
as Universal Kriging [31] and is not covered here.

The hyperparameters of a simple Kriging model are μ,σ2, θ1, . . . , θd and p1, . . . , pd.
The values θk and pk give an indication of the effect of moving along any of the
dimensions (that is, changing the value of a single variable) on the objective function.
The hyperparameter θk represents how the correlation changes with distance: large
values mean there is no correlation even for close points in the kth dimension, but
small values indicate that even relatively distant sample points (in the kth dimension)
are correlated. The constant pk allows the technique to model from smooth functions
(pk = 2) to rough, non-differentiable ones (pk → 0). The probability of having observed
the values y given the process Y is given by

fY(y) =
1

(2π)n/2(σ2)n/2|R|1/2
exp
{−(y − 1μ)TR−1(y − 1μ)

2σ2

}
.

The hyperparameter values are chosen to be the maximum likelihood estimators
(MLEs). In practice, first the (monotonically increasing) log function is applied,
leading to the maximization of

log fY(y) = −n
2

log(2π) − n
2

log(σ2) − 1
2

log |R| − (y − 1μ)TR−1(y − 1μ)
2σ2 .

An analytical solution exists for the MLEs μ̂ and σ̂2 of μ and σ2, namely,

μ̂ =
1TR−1y
1TR−11

,

σ̂2 =
(y − 1μ̂)TR−1(y − 1μ̂)

n
.

Substituting this solution into the log-likelihood and removing constant terms leads
to the concentrated log-likelihood

−n
2

log(σ̂2) − 1
2

log(|R|).

Finding the remainder of the hyperparameters must be done numerically as no
analytical solution exists. This consists of an auxiliary optimization problem where
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the concentrated log-likelihood is maximized with respect to θ1, . . . , θd and p1, . . . , pd.
Finding good black-box algorithms to solve this problem is an active area of research
in and of itself [46, 47], but in theory, any solver can be used, such as Accelerated
Random Search [5]. It is recommended to linearly scale the data to lie within the
hypercube [0, 1]d before fitting the model, and to use the bounds −3 ≤ θi ≤ 3 and
0.1 ≤ pi ≤ 2.0 when finding the MLEs.

Once the model has been trained, Kriging treats a prediction at a location x in the
space as having the distribution Y(x) ∼ N(s(x), v2(x)). That is, Kriging provides not
only the most likely objective function value s(x), but also a prediction error metric
v2(x), defined as

s(x) = μ̂ + rTR−1(y − 1μ̂),

v2(x) = σ̂2
[
1 − rTR−1r +

(1 − 1TR−1r)2

1TR−11

]
,

where r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
corr(Y(x), Y(x1)),

· · ·
corr(Y(x), Y(xn))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
The prediction error metric v2(x), in particular, is a helpful metric used to guide

further sampling. This is discussed below. For further details on the derivation of these
expressions, the reader is directed to the work of Jones [22].

3.1.2. Co-Kriging The work of Kennedy and O’Hagan [24] presents a classical
approach for the integration of multiple fidelity sources into a single model. Given
the sources fl0 , fl1 , . . . , flk of decreasing accuracy with fl0 = fh, the observed objective
function value flk (x) at the location x is assumed to come from the random process
Ylk (x). For fidelities lt with 0 ≤ t ≤ k − 1, the observed value flt (x) at the location x is
assumed to come from the random process

Ylt (x) = ρlt+1 Ylt+1 (x) + Ydiff
lt (x) for 0 ≤ t ≤ k − 1.

Here ρlt+1 is kind of a regression parameter, Ylt+1 (x) is the random process represent-
ing the values obtained from source lt+1 and the difference term Ydiff

lt
(x) is assumed to

be independent of Ylt+1 (x), . . . , Ylk (x). The combination of this framework with Kriging
in the special case where only two sources are available is known as co-Kriging [17].
Similarly to Kriging, the idea here is to model the responses of a single cheap objective
function fl at sample points Xl = (xl

1, xl
2, . . . , xl

nl
) and the responses of the expensive

objective function fh at sample points Xh = (xh
1, xh

2, . . . , xh
nh

) as the realization of a
multivariate random variable:

Y = (Yl(Xl), Yh(Xh)) = (Yl(xl
1), . . . , Yl(xl

nl
), Yh(xh

1), . . . , Yh(xh
nh

)).

Following the framework of Kennedy and O’Hagan [24], the multivariate random
variable Yl(Xl), that is, the response of the cheap objective function, is treated as a
multivariate normal random variable with distribution N(μl,σ2

l Rl). The multivariate
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random variable Yh(Xh), that is, the response of the expensive objective function, is
represented by a scaling of ρ of the response of the cheap expensive function Yl(Xh)
plus a new Gaussian process Ydiff(Xh), which models the difference between the cheap
and expensive objective functions, that is,

Yh(Xh) = ρYl(Xh) + Ydiff(Xh).

The random variable Ydiff is also treated as a multivariate normal random variable
with distribution N(μdiff,σ2

diffRdiff). It is assumed that Yl and Ydiff are independent
random variables. Thus, the following covariance measures are given for Yl and Yh:

cov(Yl(Xl), Yl(Xl)) = σ
2
l Rl(Xl, Xl),

cov(Yh(Xh), Yl(Xl)) = ρσ
2
l Rl(Xh, Xl),

cov(Yh(Xh), Yh(Xh)) = ρ2σ2
l Rl(Xh, Xh) + σ2

diffRdiff(Xh, Xh),

where Rl(x1, x2) = exp
{
−

d∑
k=1

10θ
l
k |x(k)

1 − x(k)
2 |

pl
k

}
,

Rdiff(x1, x2) = exp
{
−

d∑
k=1

10θ
diff
k |x(k)

1 − x(k)
2 |

pdiff
k

}
,

Rl(Xl, Xl)i,j = Rl(xl
i, xl

j) 1 ≤ i, j ≤ nl,

Rl(Xh, Xl)i,j = Rl(xh
i , xl

j) 1 ≤ i ≤ nh 1 ≤ j ≤ nl,

Rl(Xh, Xh)i,j = Rl(xh
i , xh

j ) 1 ≤ i, j ≤ nh,

Rdiff(Xh, Xh)i,j = Rdiff(xh
i , xh

j ) 1 ≤ i, j ≤ nh.

Training the hyperparameters of a co-Kriging model is a two-step process. First, the
MLEs μ̂l, σ̂2

l , θ̂l1, . . . , θ̂ld, p̂l
1, . . . , p̂l

d are found similarly to the training of a single-source
Kriging model. That is, a numerical solution is found to the auxiliary optimization
problem

max
θl1,...,θld ,pl

1,...,pl
d

− nl

2
log(σ̂2

l ) − 1
2

log(|Rl(Xl, Xl)|),

where μ̂l =
1TRl(Xl, Xl)−1yl

1TRl(Xl, Xl)−11
,

σ̂2
l =

(yl − 1μ̂l)TRl(Xl, Xl)−1(yl − 1μ̂l)
nl

,

yl = (fl(xl
1), . . . , fl(xl

nl
))T .

The second step consists of finding the MLEs ρ̂, μ̂diff, σ̂2
diff, θ̂

diff
1 , . . . , θ̂diff

d ,
p̂diff

1 , . . . , p̂diff
d . First, the vector d is defined as

d = yh − ρyl(Xh),
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where yh = (fh(xh
1), . . . , fh(xh

nh
))T , and yl(Xh)i is fl(xh

i ) if this value is known and
otherwise, it is

sl(xh
i ) = μ̂l + rT

l Rl(Xl, Xl)
−1(yl − 1μ̂l) with rl = (Rl(x, xl

1), . . . , Rl(x, xl
nl

))T .

That is, if a point has not been evaluated by fl yet, the trained Kriging predictor of the
low-fidelity source is used instead. The MLEs of the second set of hyperparameters
are chosen to be the numerical solution of the auxiliary optimization function

max
ρ,θdiff

1 ,...,θdiff
d ,pdiff

1 ,...,pdiff
d

− nh

2
log(σ̂2

diff) −
1
2

log(|(Rdiff(Xh, Xh)|),

where μ̂diff =
1TRdiff(Xh, Xh)−1d
1TRdiff(Xh, Xh)−11

,

σ̂2
diff =

(d − 1μ̂diff)TRdiff(Xh, Xh)−1(d − 1μ̂diff)
nh

.

Similarly to Kriging, a trained co-Kriging model treats a prediction at a location x
as having the distribution Y(x) ∼ N(sh(x), v2

h(x)), providing both a prediction sh(x) and
an error metric v2

h(x). These are defined as

sh(x) = μ̂ + cTC−1(y − 1μ̂),

v2
h(x) = ρ̂2σ̂2

l + σ̂
2
diff − cTC−1c +

(1 − 1TC−1c)2

cTC−1c
,

with C =

⎡⎢⎢⎢⎢⎢⎣ σ̂
2
l Rl(Xl, Xl) ρ̂σ̂2

l Rl(Xl, Xh)

ρ̂σ̂2
l Rl(Xh, Xl) ρ̂2σ̂2

l Rl(Xh, Xh) + σ̂2
diffRdiff(Xh, Xh),

⎤⎥⎥⎥⎥⎥⎦ ,

c =

⎡⎢⎢⎢⎢⎢⎣ ρ̂σ̂2
l Rl(Xl, x)

ρ̂2σ̂2
l Rl(Xh, x) + σ̂2

diffRdiff(Xh, x)

⎤⎥⎥⎥⎥⎥⎦ ,
μ̂ =

1TC−1y
1TC−11

.

For further details on the derivation of these expressions, the reader is directed to the
work of Forrester et al. [17]. It is worth pointing out that the correlation matrix C can
grow very large as more low-fidelity sources are made available. A potential alternative
is the use of hierarchical Kriging [19], a theoretical simplification of co-Kriging aimed
at easier software implementation when a large number of sources are available. It is
also possible to take a different approach entirely and to add a categorical variable that
denotes from which source a point was sampled. This allows us to consider the data
gathered from all sources as coming from a single source in (d + 1)-dimensional space
and to train a single Kriging model on this (d + 1)-dimensional data [14].

3.2. Initial design of experiments In the case where no initial data are given,
building an initial model first requires the sampling of some or all of the available
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FIGURE 1. A two-dimensional sampling plan of 25 samples with clearly undesirable properties. The thin
grey lines indicate the division of each of the two dimensions into 25 sections. Each cross represents a
sample. Note that as each row and column contains only a single sample, this satisfies the definition of an
LHS plan.

sources. Interestingly, no consensus exists in the literature on what proportion of the
total budget should be spent on an initial sample and how this sample should be further
spread among different sources. A recent 2019 survey [16] on the use of multi-fidelity
models did not cover this question despite presenting different techniques to generate
an initial sample plan. Forrester et al. [17] suggested a rule of thumb of 10d samples,
where d is the problem dimension, to be further refined based on the total budget
and the relative cost of the low-fidelity source. A very recent study [27] however
which analysed (single-source) Kriging optimization on a large variety of functions
found that a much smaller initial sample of size d + 4 worked best. When optimizing
a bi-fidelity EBB problem using RBF surrogate models, Müller [33] found that taking
an initial low-fidelity sample of size 2(d + 1) and a high-fidelity sample of size d + 1
outperformed sampling both the high- and low-fidelity sources 2(d + 1) times. Finally,
despite not providing a suggested proportion of the total budget to be spent on an initial
sample, Toal [45] suggested spending between 10% and 80% of the initial sampling
budget on low-fidelity samples. Generating guidelines for the generation of an initial
sample is one of the open questions in this field.

Having decided on the number of samples to collect from each of the sources,
different approaches exist on how to place these samples within the space. A very
common approach is to rely on latin hypercube sampling (LHS) [36]. Generating a
sample of size n with this method consists of dividing each of the dimensions of the
sample space into n intervals and then placing n samples in the space so that for every
dimension, no two samples lie in the same interval. Whilst LHS in theory should
provide a well-distributed sample within the space, simply relying on the generation
of a random LHS plan can lead to a suboptimal design of experiments. Figure 1
in particular shows a sampling plan which, despite satisfying the LHS definition,
is far from evenly sampling the design space. It is beneficial to generate an LHS
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(a) (b)

FIGURE 2. (a) A randomly generated LHS sampling plan of 25 samples inside the two-dimensional
space [0, 1]2. The minimum Euclidean distance between a pair of points is 0.0754. (b) Result of locally
optimizing the sampling plan by swapping coordinates between pairs of points. This minimum distance
between a pair of points is 0.1602 and the sample is more evenly spread out in the space.

plan that satisfies some kind of local optimality criteria, such as the maximization of
the minimum Euclidean distance between any pair of points. This can be achieved
by starting with a random LHS plan, and then iteratively taking two samples and
swapping one of their coordinates as long as this increases the minimum distance
between any pair of points. Once this can no longer be achieved, the obtained sample
is locally optimal. The clear benefit of using such a procedure is shown in Figure 2.
Note that this deterministic optimization can be quite lengthy at high dimensions and
for large sample sizes, that is, d ≥ 10 and n ≥ 100, in which case, a heuristic approach
such as simulated annealing [7] should be considered.

When generating a multi-fidelity sample, it is often a requirement that the sample
plan of a particular fidelity is a subset of the sample plan of the previous fidelity.
Note that this is not a requirement when constructing a co-Kriging model, although
implementations of this technique often generate an initial design of experiments in
this fashion. Given a sample plan of size nl, the creation of a subset of size nh can be
achieved once again by starting with a random subset and then swapping a point in the
subset with a point outside of it as long as this increases the minimum distance between
a pair of points. Once this can no longer be done, the set is once again locally optimal.
Figure 3 shows the benefit of this approach over simply choosing a random subset.
Another approach when generating a subset is to start with a second LHS sampling
plan and to map each of the samples to the larger sample set [35].

3.3. Acquisition function Once an initial model has been trained, an acquisition
function is a means by which to evaluate the benefit of taking a further sample in
a particular location. New samples are chosen by finding locations that are the most
promising. The definition of “promising” of course depends on the aim of the current
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(a) (b)

FIGURE 3. (a) Procedure when choosing a subset of an LHS plan. The crosses in both panels show
an LHS plan of size 25 inside the two-dimensional space [0, 1]2. The red circles represent a randomly
chosen subset of size 10. The minimum distance between pairs of points is 0.1602. (b) Results of locally
optimizing this subset in panel (a) by swapping points inside and outside of the set. The final subset is
more evenly spread out, and the minimum distance between pairs of points is 0.2400.

process. When the aim is to create as accurate a model as possible, further sampling
should rely on the model’s error prediction. Kriging and co-Kriging particularly shine
in this scenario as their error metric v2(x) is particularly well suited for searches of
this type. An intuitive first option is to choose further sampling sites to be the location
where the surrogate model is most unsure of its prediction, that is, to find

arg maxx∈Ω v2(x).

This approach has the benefit of being intuitive and easy to evaluate. It has been
shown however that a large number of samples tend to be gathered on the boundary of
the space. These samples might therefore have a low impact on the overall accuracy of
the model across the whole space. A second metric which takes this into account can
also be considered, namely,

arg minx′∈Ω

∫
x∈Ω

v2
x′(x) dx.

Here the term v2
x′ is the error prediction function of a surrogate model constructed

with the available data with the addition of a sample at location x′. The integral denotes
the overall model error across the whole space if the point x were added to the dataset.
This acquisition function takes a more global approach; however traditionally, this inte-
gral has been approximated using a technique such as Monte-Carlo integration [42].
Whilst the underlying assumption of Mf-EBB problems is that the computational time
of the surrogate method is outweighed by sampling cost, it is worth stressing that this
process can become computationally intensive. Promisingly, an analytical expression
has been proposed for Kriging models with a reduced set of hyperparameters [8],
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which might lead to this sampling strategy being applicable for relatively larger sample
sizes in the multi-fidelity setting.

When employing a surrogate model in optimization, perhaps an intuitive first choice
is to sample where the model’s prediction s(x) is maximized/minimized. That is, in the
case of a minimization problem, to sample at

arg minx∈Ω s(x).

This however tends to not be a good strategy. Samples gathered in this fashion can
tend to cluster in the same region of the space, particularly for interpolating models.
This is especially counterproductive with a limited sampling budget, as many samples
might be wasted finding a local minimum before restarting the search in some other
region, as is often done by black-box optimizers. A strategy is needed which, at least
part of the time, searches the space for yet-to-be-explored regions that might contain
good values. Essentially, a balance needs to be struck between exploration to find new
promising regions and further exploitation of regions with good solutions.

Once again, Kriging and co-Kriging can rely on their model error prediction metric
to provide such a strategy. Assume that the optimization consists of minimizing a
function f and that the best objective function value found so far had the value f min.
Recall that both Kriging and co-Kriging provide a prediction of f (x) at location x as a
normally distributed random variable Y(x) ∼ N(s(x), v2(x)). Then the probability that
sampling at location x yields an improvement of I ≥ 0 over the best point found so
far is the probability that Y(x) = f min − I. For I > 0, this has the probability density
function

1√
2πv2(x)

exp
{
− 1

2v2(x)
(f min − I − s(x))2

}
.

An analytical expression for the expected improvement exists and it is given by

E[I(x)] =
∫ I=∞

I=0
I
[ 1√

2πv2(x)
exp
{
− 1

2v2(x)
(f min − I − s(x))2

}]
dI

=
√

v2(x)
[ f min − s(x)√

v2(x)
Φ

( f min − s(x)√
v2(x)

)
+ φ
( f min − s(x)√

v2(x)

)]
,

where Φ and φ are the cumulative density function and probability density function of
the standard normal distribution, respectively. Choosing further samples by maximiz-
ing this expression, that is,

arg maxx∈Ω E[I(x)],

is known as efficient global optimization [23] and has many beneficial properties.
The first is that it requires no tuning of optimization parameters once training
of the surrogate model is complete. The second is that it automatically balances
exploration and exploitation. Note that both very low s(x) values (that is, locations
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with good predicted values) and very high v2(x) (that is, locations with high prediction
uncertainty) lead to high expected improvement values. The third reason is the fact
that locations that have already been sampled have an expected improvement of 0 and,
therefore, will never be selected again for sampling.

Choosing the location at which the next sample is collected consists of an auxiliary
optimization problem of the acquisition function of choice. Having chosen the next
sampling site, however, the question remains as to which of the sources should be
sampled. Classical co-Kriging simply samples both fh and fl at the chosen location.
This simple approach is beneficial for the accuracy of further co-Kriging models, as
the training of the intermediate model of fh − ρfl can rely on exact values for both fh
and fl wherever fh is known. As shown in the formulation of co-Kriging in Section
3.1.2, however, this is not a requirement for training the model. Intuitively, one can
see that there might be a benefit in sometimes sampling only fl if this source is highly
accurate or choosing to not sample fl if it is not reliable enough.

The question of when to sample low-fidelity sources is another very active area
of research for Mf-EBB problems. A potential approach is to take into account the
fidelity cost by taking the ratio of the acquisition function at each of the fidelities
and the fidelity cost ratio [20, 21]. This leads to sampling of cheaper low-fidelity
sources even if the potential gain is lower than sampling more expensive sources, as
the cost-to-gain ratio is larger. This approach however can suffer from the assumption
that cost is a proxy for the quality of a source. Indeed, it is possible for a source
that is cheap to be very accurate and for a source that is relatively costly to be
inaccurate. More recent approaches have taken this into account when choosing which
source to sample, focusing on Bf-EBB problems. The work of van Rijn et al. [48]
presents a framework that estimates the benefit of further sampling a single low-fidelity
source when minimizing the surrogate model error. This benefit is used to guide the
division of the remaining available budget between high- and low-fidelity sources.
Müller [33] proposes an optimization framework in which two surrogate models are
trained, the first with only high-fidelity data and the second with low-fidelity data. The
high-fidelity model is used to choose further sample locations, whereas the low-fidelity
model is used to conduct a preliminary assessment of a newly chosen sample site only
when the low-fidelity source is deemed to be trustworthy. Whilst these approaches
are relatively new, the need for techniques that conduct some kind of analysis on
low-fidelity sources before choosing how to use them is clear. The potential downfalls
of not doing so are illustrated in the next section.

4. Illustrative example

As discussed in Section 1, a multitude of real-life problems consider processes that
perfectly fit the definition of an expensive black-box. The work of Forrester et al. [17],
for example, focuses on the design of a transonic civil aircraft wing. The wing’s design
is impacted by the values of 11 design parameters although, in their work, only four of
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them are investigated: area, aspect ratio, sweep and inboard taper ratio. Their objective
function is defined as the performance of the wing’s design, which is measured as the
drag-to-dynamic pressure ratio for a fixed lift. Two simulation tools are available to
assess the performance of a particular design: a linearized potential method denoted
VSaero [29] and a simpler empirical drag estimation code denoted Tadpole [11].

Given the available design parameters and examined output in this example, each
of the three problems defined in Section 2 might arise given certain conditions.
Problems 1 and 2 (defined in Sections 2.1 and 2.2, respectively) arise when the aim
is to accurately model the impact of the wing’s area, aspect ratio, sweep and inboard
taper ratio effect on the drag to dynamic pressure ratio. Problem 1 defines the setting
where the data have been collected by a different engineering team and the only
choice available is how to use them to train a model. Problem 2 defines the setting
where engineers are given the freedom to choose which design values to assess and
which simulator to query for this assessment. Problem 3 (defined in Section 2.3) is the
setting investigated in the study of Forrester et al. [17], where the aim is to optimize the
wing’s performance by minimizing the drag-to-dynamic pressure ratio. The potential
benefits of employing multiple information sources are clearly shown in the study
of this particular industry problem, as the solutions found by co-Kriging are of a
greater quality than those found by Kriging. As is the case with this example, many
real-life expensive outputs can be approximated via alternative means: employing
domain knowledge of similar designs and products, using existing industrial models,
and the usage of simulation engines to emulate physical testing. Whilst relying on these
additional sources can certainly aid in circumventing the cost of analysis, the accuracy
of these sources might be put into question.

The study of aircraft design is just one popular example of industrial challenges in
which various products and processes can be tackled by expensive black-box modelling
and optimization methods, using multi-fidelity data sources. Other varied examples
with these characteristics include civil infrastructure projects [13, 40], materials and
drug screening [9, 15], and biomanufacturing process modelling [44]. An intuitive
two-dimensional example is now introduced to illustrate how techniques such as
co-Kriging, which rely on multiple sources of data, can be affected by the quality
of the data. In this example, we assume we are map makers tasked with exploring
the yet-unknown elevation of Australia. An elevation map of the country is shown in
Figure 4. Here the only way to exactly measure the elevation at a particular location
is to send a team of engineers to take an accurate measurement. Australian elevation
can therefore be assumed here to be a two-dimensional EBB denoted fh. Australian
elevation makes for a hard black-box to model and optimize. As shown in the plot, the
chosen coordinate window includes three very deep (that is, objective function values
lower than −4000 meters) regions at the bottom, top-left and top-right, a very flat land
above sea level, and only a few regions of high altitude, with the highest point being
Mt Kosciuszko in New South Wales at 2228 m shown as the middle red triangle in the
group of three on the bottom right of the map.
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FIGURE 4. Elevation map of Australia. The blue squares mark the capital cities of the country and the
red triangles mark the highest point in each state and territory.

Two additional low-fidelity sources are available in this example to aid in both
exploration and optimization. The first is denoted f error

l and is assumed to consist of
existing inaccurate elevation records, generated here by adding a deterministic error
to the true elevation and shown in Figure 5. Low-fidelity sources of this kind are
often used in benchmarks in the literature. The second low-fidelity source is denoted
f approx
l and is generated with a simple procedure. For locations below sea-level (that

is, for fh(x) < 0), this approximation returns a value of 0 (that is, f approx
l (x) = 0).

Assuming that the elevation of the capital cities is known, at every location above
sea-level, the low-fidelity source provides an approximation of the elevation by taking
a distance-based weighted sum of the elevation of the two nearest capital cities. This
source is shown in Figure 6. For simplicity, here we assume that both low-fidelity
sources are cheap to sample, that is, the cost ratio is Cr = 0 for both sources; the added
effect of having a non-cheap source is discussed further below.

Let us now analyse different problem settings to illustrate the three problem types
defined in Section 2. Assume first that the data have already been gathered, that
is, engineering teams have already been sent to different locations in Australia and
queries have been made of the inaccurate records. Problem 1 defined in Section 2.1
corresponds here to the task of creating a model for the elevation of Australia based on
this fixed sample. Two scenarios are compared. In the first one, 25 engineering teams
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FIGURE 5. Low-fidelity source of the elevation of Australia, generated by adding a deterministic error to
the true elevation. The blue squares mark the capital cities of the country, and the red triangles mark the
highest point in each state and territory.

have been sent to collect data and 50 queries of the inexact records have been made.
That is, 25 fh samples and 50 f error

l samples are available to train a model. In the second
scenario, the same amount of data of both kinds is available, but all f error

l data come
from locations that are above sea level. This second scenario can be perhaps seen as
more realistic if the source f error

l is assumed to represent inaccurate records from city
councils, which only exist on land. Figure 7 shows the locations at which these samples
have been gathered for both scenarios. The accuracy of Kriging models trained only
with high-fidelity data and co-Kriging models trained with high- and low-fidelity data
in both scenarios is shown in Table 1. In this example, note that many factors can
impact the benefit of relying on low-fidelity sources. The fact that relying on data from
f error
l can be beneficial is represented by the decreased error of co-Kriging models over

Kriging models when these data have been collected evenly from the whole space.
However, in the second scenario, co-Kriging models have a larger error than Kriging
models, despite the same amount of low-fidelity data having been collected from the
same source. As the only difference in the second scenario is the fact that low-fidelity
data are restricted to lie above sea level, it is clear that when choosing whether to rely
on a low-fidelity source, practitioners should carefully consider not only its quality but
also the potential bias introduced by the sampling procedure.
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FIGURE 6. Low-fidelity source of the elevation of Australia, which is an approximation based on the
known elevation of the capital cities. The blue squares mark the capital cities of the country, and the red
triangles mark the highest point in each state and territory.

Let us now assume that we have been given more freedom of action when generating
a map of Australia, that is, we are given the option to choose from where to gather data.
The only given guideline is that we are restricted to sending a surveying team to at
most 100 locations. This translates to Problem 2 defined in Section 2.2, namely, model
creation with a sample budget. To assess the value of the low-fidelity sources, three
approaches are compared. The first is to rely only on high-fidelity data via the use of
a Kriging model. The second is to work with a co-Kriging model which relies on data
from fh and the low-fidelity source f error

l . Finally, the third approach is to work with
a co-Kriging model which relies on data from fh and the low-fidelity source f approx

l .
Following the design of experiments outlined in Section 3.2, a set of 50 locations is
chosen via a locally optimized LHS plan at which f error

l and f approx
l are sampled, and

a subset of 25 locations is chosen at which fh is sampled. The relevant data are used
to train the Kriging model and the two co-Kriging models, and then further sampling
locations are iteratively chosen by maximizing the model uncertainty, as described in
Section 3.3. The process is stopped once the high-fidelity source has been sampled
a total of 100 times. Repeating this approach 10 times and taking the average model
error yields the results shown in Figure 8.
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FIGURE 7. Locations at which samples have been gathered and made available to train a model. The blue
crosses represent the 25 locations at which the high-fidelity source has been sampled. The orange squares
represent 50 locations at which the low-fidelity source f approx

l has been sampled and are spread out across
the whole space. The green circles represent 50 locations at which the low-fidelity source f approx

l has been
sampled; this last set of samples has been restricted to lie on locations above sea level, marked by the
shown outline.

TABLE 1. Error of constructed models for five repetitions. The second column shows the error of Kriging
models constructed using 25 high-fidelity samples spread out across the space. The third column shows
the error of co-Kriging models constructed with high-fidelity data and 50 samples from f error

l spread out
across the space. The fourth column shows the error of co-Kriging models constructed with high-fidelity
data and 50 samples from f error

l spread out across locations above sea level.

Repetition Kriging co-Kriging spread out co-Kriging above sea-level

1 1308.55 1180.69 1465.15
2 1294.4 1195.26 1378.99
3 1294.44 1129.29 1590.07
4 1552.9 1175.21 1611.1
5 1366.34 1183.36 1399.48
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FIGURE 8. Average error of three surrogate models trying to model the elevation of Australia. The
performance is shown for Kriging models which only use data from fh (blue), co-Kriging models which
use data from fh and f error

l (orange), and co-Kriging models which use data from fh and f approx
l (green).

It can be seen here that the low-fidelity source f error
l is an asset when attempting to

model the elevation of Australia, as co-Kriging models that rely on this source are the
most accurate on average. Classical examples of this type have often been used in the
literature to motivate the development of multi-fidelity techniques such as co-Kriging.
It might be counter-productive to blindly rely on low-fidelity sources when they are
available, however, as the same graph shows that co-Kriging models which rely on the
source f approx

l perform worse than Kriging models which only rely on high-fidelity data.
This can be unsurprising, given that the source f approx

l only gives an extremely rough
outline of the elevation. This example nonetheless demonstrates that one must be wary
of always using data simply because it is available. It is also worth noting that when
much high-fidelity data is available (that is, towards the right of the graph), Kriging
models and co-Kriging models trained with f error

l data show similar performance. The
plot’s horizontal axis is based only on high-fidelity evaluations since so far, it has
been assumed that the cost of sampling f error

l was zero. It could be that this is not the
case; assume for instance that obtaining the existing inaccurate elevation record of a
particular location requires enquiring the archives and this is roughly ten times cheaper
than sending a team of engineers to the location. In this case, the cost ratio Cr of f error

l
would be equal to 0.1 and the total budget spent at any given moment is impacted by
the number of low-fidelity samples taken. If this were the case, the orange line should
be “shifted” to the right, meaning that for large budgets, the best approach is to not
rely on any low-fidelity data.
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FIGURE 9. Average best point found during the optimization of three surrogate modelling techniques.
The performance is shown for Kriging models which only use data from fh (blue), co-Kriging models
which use data from fh and f error

h (orange), and co-Kriging models which use data from fh and f approx
h

(green).

Let us now focus on an optimization task. Assume that we have been tasked
with finding the tallest point in Australia, once again with an overall budget of
100 samples. This translates to Problem 3 defined in Section 2.3, namely function
optimization with sample budget. Once again, the performance of Kriging models,
co-Kriging models trained with f error

l data and co-Kriging models trained with f approx
l

data is compared using the same experimental setup. The only difference now is that
further samples are iteratively chosen based on the expected improvement measure
presented in Section 3.3. The results are shown in Figure 9. Perhaps unsurprisingly,
relying on the source f error

l is an improvement over using only high-fidelity data. Since
this source helps generate more accurate models, it seems a natural conclusion that
it should help find better points during optimization. What is perhaps unexpected
is the fact that relying on the source f approx

l leads to better points being found
almost immediately, despite this source being counter-productive for surrogate model
accuracy. This behaviour can be explained by the fact that the capital city Canberra is
at an elevation of 554 m. As this low-fidelity approximation is based on the elevation
of the capital cities and every other city is at sea level, the approximation leads to
an almost flat objective function with only a high-elevation area in the bottom right
of the map. This happens to coincide with the highest region of the true elevation
of Australia. Because of this, co-Kriging models trained with these data choose to
sample in that region, leading to good points being found very quickly. Note that the
low-fidelity source does not think that the area near Canberra is very high (as it thinks
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it has a maximum elevation of 500 m), but it thinks it is the highest area and this
is sufficient. From a mathematical standpoint, this can be described as f approx

l and
fh having a large difference, but being highly correlated in the highest regions of fh.
Once again, the fact that a low-fidelity source is harmful for model creation with a
sample budget, but is beneficial for function optimization with a sample budget, speaks
to the complexity of characterizing beneficial low-fidelity sources and of creating
algorithms that intelligently exploit or ignore these sources. Finally, note that none of
these examples involved the three sources being used at the same time. The question of
reliance on low-fidelity sources only grows in difficulty when more of them are made
available at the same time.

5. Conclusion

This tutorial-style paper has provided an introduction for new practitioners to
surrogate modelling techniques for Mf-EBB problems. The focus has been on the
definition of different problem variations and the use of traditional approaches, such
as training co-Kriging models and using expected improvement as the acquisition
function. As alluded to throughout the paper, many new techniques have been created
since the multi-fidelity data fusion of Kennedy and O’Hagan [24] was first proposed
over 20 years ago. However, a key aspect of methods for Mf-EBB problems, which
still seems to lack a satisfying level of understanding, is how the quality of low-fidelity
sources can impact multi-fidelity techniques and how this impact can be mitigated.
The elevation example in particular has helped to highlight that characterizing and
exploiting helpful low-fidelity sources is far from trivial. Indeed, relying on beneficial
low-fidelity sources can become a sub-optimal choice if their domain is restricted to
certain regions in the space or their cost is too great, and harmful low-fidelity sources
when constructing accurate surrogate models can be very beneficial when used during
an optimization process.

Strategic questions such as how to divide a total budget among an initial design
of experiments and how to further divide the sample among sources also still lack
a consensus from the literature. These questions are particularly important for new
techniques that seek to learn whether a source is helpful or harmful before relying
on them, as it is crucial to strike the right balance between spending long enough
correctly characterizing a source and being left with enough budget to exploit this
characterization. The recent work of Toal [45] and Andrés-Thió et al. [3] on the
analysis of low-fidelity source quality impact on co-Kriging model performance has
shown this area to require further study, particularly as it can provide insights into
the creation of new adaptive techniques. Their work however has focused on the
synthetic setting, using a large amount of data to characterize these sources which
is not available in practice. A characterization based only on the data available to train
these surrogate models appears to still be missing. Finally, it might be possible to
create a methodology that does not choose what sources are worth using, but rather
filters out only the harmful data from a particular source and relies only on localized
helpful information. This finer approach would benefit from sources that are highly
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accurate in some regions, but very inaccurate in others. Whether this is a feasible
approach remains to be seen.
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