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On Σ1-definable closed unbounded sets
Omer Ben-Neria and Philipp Lücke
Abstract. Definable stationary sets, and specifically, ordinal definable ones, play a significant role
in the study of canonical inner models of set theory and the class HOD of hereditarily ordinal
definable sets. Fixing a certain notion of definability and an uncountable cardinal, one can consider
the associated family of definable closed unbounded sets. In this paper, we study the extent to
which such families can approximate the full closed unbounded filter and their dependence on the
defining complexity. Focusing on closed unbounded subsets of a cardinal κ which are Σ1-definable
in parameters from Hκ and ordinal parameters, we show that the ability of such closed unbounded
sets to well approximate the closed unbounded filter on κ can highly vary and strongly depends on
key properties of the underlying universe of set theory.

1 Introduction

The concepts of closed unbounded and stationary subsets capture many of the key
aspects of the combinatorics of cardinals of uncountable cofinalities. Recent develop-
ments in the study of canonical inner models of set theory provide strong motivations
for analyzing the definability – specifically, the ordinal definability – of these objects.
In particular, the notion of a ω-strongly measurable cardinal κ in HOD, introduced by
Woodin (see [21, Definition 189]) to measure local failures of the inner model HOD to
approximate the set-theoretic universe V, is equivalent to the fact that the restriction
of the closed unbounded filter on {α < κ ∣ cof(α) = ω} to HOD identifies with the
intersection of a small number of ordinal definable normal measures onκ in HOD (see
[2, Lemma 2.4]). Since, in HOD, many of the sets in this intersection do not contain
a closed unbounded subset, it follows that there are many subsets of the cardinal κ
that are HOD-stationary (i.e., that meet every closed unbounded subset of κ that is an
element of HOD) but are not stationary subsets of κ in V.

Motivated by this observation, the purpose of the work presented in this paper is
to study the extent to which hierarchies of definable closed unbounded subsets of an
uncountable cardinal κ can approximate the full closed unbounded filter on κ, where
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2 O. Ben-Neria and P. Lücke

the different hierarchies are given in terms of the complexity of the defining formulas
(e.g., Σn-formulas1 for some natural number n) and the set of parameters allowed in
these formulas (e.g., ordinal parameters or parameters contained in Hκ). Since ordinal
definable sets of ordinals can be represented as the unique solutions of Σ2-formulas
with ordinal parameters (see the proof of [9, Lemma 13.25] for details) and closed
unbounded subsets of uncountable cardinals κ that are definable by Σ0-formulas with
ordinals and elements of Hκ can be shown to have a very simple, eventually periodic
structure,2 the first place to expect different phenomena is with Σ1-definable closed
unbounded sets. In order to motivate the definitions and results contained in this
paper, we start by presenting two settings in which Σ1-definable closed unbounded
sets give an optimal approximation to the collection of all closed unbounded sets:
• In Gödel’s constructible universe L, every subset (and, in particular, every closed

unbounded subset) of an infinite cardinal κ is the unique solution of a Σ1-formula
with parameters fromκ+. This follows directly from the fact that every such subset is
the η-th element in the canonical well-ordering of L for some η < κ+, and transitive
models of “ ZFC− + V = L ” containing an ordinal η can uniformly compute the
initial segment of order-type η + 1 of this well-ordering.

• Martin’s Maximum MM implies that every closed unbounded subset of ω1 contains
a closed unbounded subset that is the unique solution of a Σ1-formula that only
uses the ordinal ω1 and real numbers as parameters. This statement follows directly
from results of Woodin that show that MM implies admissible club guessing (see
[20, Theorems 3.16, 3.17 & 3.19]).

In addition, results that will be contained in a sequel to this paper show that for
every uncountable cardinal κ satisfying κ<κ = κ, there is cofinality-preserving forcing
extension V[G] of the ground model V in which there exists a subset E of κ such that
every closed unbounded subset of κ contains a closed unbounded subset that is the
unique solution of a Σ1-formula that only uses the set E and ordinals less than κ+ as
parameters.

In contrast to these settings, the results of this paper will isolate several canonical
contexts in which collections of Σ1-definable closed unbounded sets fail to approxi-
mate the closed unbounded filter. In order to formulate these results, we now specify
the notions of definability used in this paper.

Definition 1.1 A class Γ is definable by a formula φ(v0 , . . . , vn) and parameters
y0 , . . . , yn−1 if

Γ = {x ∣ φ(x , y0 , . . . , yn−1)}.

Throughout this paper, we study the definability of certain sets of ordinals. Given
such a set E, we will mostly consider the questions that ask whether the set {E} is
definable (in the sense of Definition 1.1) by certain formulas with parameters coming
from a given class. Note that this form of definability differs from the statement that

1See [9, p. 183].
2More precisely, it is possible to use [14, Lemma 2.3] to show that if φ(v0 , . . . , vn) is a Σ0-

formula, κ is an uncountable cardinal, and z0 , . . . , zn−1 ∈ Hκ ∪Ord with the property that C =
{α < κ ∣ φ(α, z0 , . . . , zn−1)} is a closed unbounded subset of κ, then there exists a set N of natural
numbers such that C ∩ [λ, λ + ω) = {λ + n ∣ n ∈ N} holds for coboundedly many limit ordinals λ < κ.
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On Σ1-definable closed unbounded sets 3

the set E itself is definable (again in the sense of Definition 1.1) in the given way. While
the former implies the latter, it is easy to see that the converse implication fails for the
set ω1 of all countable ordinals and definability by Σ1-formulas without parameters.

We now introduce the main concepts studied in this paper:

Definition 1.2 Let n be a natural number, let κ be a uncountable cardinal, and let S
be a subset of κ.
(1) Given a class R, the subset S is Σn(R)-stationary in κ if C ∩ S ≠ ∅ holds for every

closed unbounded subset C of κ with the property that the set {C} is definable
by a Σn-formula with parameters in R ∪ {κ}.

(2) The subset S is Σn-stationary in κ if it is Σn(∅)-stationary in κ.
(3) Given a class R, the subset S is Σn(R)-stationary inκ if it is Σn(R ∪ Hκ)-stationary

in κ.
(4) The subset S is Σn-stationary in κ if it is Σn(∅)-stationary in κ.

Trivially, all stationary subsets of a given uncountable cardinal κ are Σn(R)-
stationary in κ for every parameter class R and every natural number n. As indicated
by Definition 1.2, our focus in this paper will be on natural classes R such as Ord,
Hκ, Hμ for some μ < κ, and their combinations. We therefore view the existence of
nonstationary Σn(R)-stationary sets as a measure for the discrepancy between the
collection of Σn(R)-definable closed unbounded subsets and the collection of all
closed unbounded subsets. Our results will isolate several settings in which highly
nonstationary sets (such as singletons, or sets of successor cardinals below a limit
cardinal) are stationary for rich collections of definable sets. In particular, even in
the case of singular cardinals of countable cofinality, where stationarity coincides
with coboundedness, we will present canonical examples of such cardinals in which
sparse subsets are Σn(R)-stationary. The proofs of all these results reveal that, in
the given settings, the considered collections of Σn(R)-definable closed unbounded
subsets and Σn(R)-stationary sets possess many of the structural features provable
for the collections of closed unbounded and stationary subsets of regular uncountable
cardinals. Below, we list six of our main results that best illustrate the phenomenon
described above:
• If κ is a Ramsey cardinal, then every unbounded subset of κ that consists of

cardinals is Σ1-stationary (Theorem 4.1).
• If κ is a (possibly singular) limit of measurable cardinals, then every unbounded

subset of κ that consists of cardinals is Σ1(Ord)-stationary (Theorem 4.6).
• If ωω is a Jónsson cardinal, then every unbounded subset of {ωn ∣ n < ω} is

Σ1-stationary in ωω (Theorem 4.13).
• It is equiconsistent with the existence of a measurable cardinal that every

unbounded subset of {ωn ∣ n < ω} is Σ1(Ord)-stationary in ωω (Theorem 5.3).
• It is equiconsistent with the existence of a Mahlo cardinal that there is a regular

cardinal μ for which the singleton {μ} is Σ1(Hμ)-stationary in μ+ (Theorem 5.11).
• While it is provable that for every set A of cardinality less than the reaping

number r3 and every singular cardinal κ of countable cofinality, there are disjoint

3See Definition 2.1 below.
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4 O. Ben-Neria and P. Lücke

Σ1(A)-stationary subsets of κ (Proposition 2.8), it is equiconsistent with the
existence of a measurable cardinal that there is a singular cardinal κ of countable
cofinality such that for every subset A of Hκ of cardinality r, there are are disjoint
Σ1(A)-stationary subsets of κ (Corollary 5.10).

We now briefly outline the structure of this paper: In Section 2, we prove prelim-
inary results about the theory of Σn(R)-stationary sets using mostly combinatorial
arguments. In addition, we introduce an auxiliary property of Σn-undefinability of an
ordinal, which plays a key role in the result of the paper. In Section 3, we examine
Σ1-definability in the Dodd-Jensen core model and prove several results regarding
Σ1-stationary sets in KDJ . Section 4 is devoted to showing that Σ1-stationarity is weak
in the presence of sufficiently large cardinals (e.g., measurable cardinals or stably
measurable cardinals) or at small cardinals with strong partition properties (e.g., when
ωω is Jónsson). In Section 5, we build on the results about KDJ as well as on forcing
results with large cardinals to prove several equiconsistency results about weakness
of Σ1(Ord)-definable closed unbounded sets. In Section 6, we conclude the paper by
listing some problems left open by our results.

2 Preliminaries about Σn-Stationary sets

In this section, we start to develop the theory of Σn(R)-stationary sets for natural
classes R.

2.1 A proper hierarchy

In order to motivate the below results, we start our investigations of Σn(R)-stationary
sets by presenting a setting in which these sets form a properly descending hierarchy
in the parameter n.

Theorem 2.1 Assume that the GCH holds. Then, for every uncountable regular cardinal
κ and every cardinal θ satisfying θ = θκ, there is a uniformly definable partial orderPκ,θ
such that forcing with Pκ,θ preserves cofinalities, and if G is Pκ,θ -generic over V, then,
in V[G], for every natural number n > 0 and every set A of cardinality less than θ with
the property that the set {A} is definable by a Σ2-formula with parameters in A, there is
a subset of κ that is Σn(A)-stationary in κ and not Σn+1(A)-stationary in κ.

Note that the definability assumptions on the parameter set A stated in the above
theorem are satisfied in the case where θ = κ++ and A = Hκ ∪ κ+. We therefore directly
get the following corollary whose statement should be compared with the two settings
discussed in Section 1, in which all Σ1(κ+)-stationary subsets of an uncountable
cardinal κ are stationary.

Corollary 2.2 If the GCH holds, then for every uncountable regular cardinal κ, there
is a uniformly definable cofinality preserving partial order Pκ with the property that
whenever G is Pκ-generic over V and n > 0 is a natural number, then, in V[G], there is
a subset of κ that is Σn(κ+)-stationary in κ and not Σn+1(κ+)-stationary in κ.

https://doi.org/10.4153/S0008414X24000567 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000567


On Σ1-definable closed unbounded sets 5

The above result is a consequence of the following two observations that might be
of independent interest:

Proposition 2.3 Let n > 0 be a natural number, let κ be an uncountable cardinal with
P(κ) ⊆ HOD, and let A be a set with the property that the set {A} is definable by
a Σn+1-formula with parameters in A. If there is a nonstationary subset of κ that is
Σn(A)-stationary in κ, then there is a subset of κ that is Σn(A)-stationary in κ and
not Σn+1(A)-stationary in κ.

Proof Let E be the least nonstationary subset of κ in the canonical well-ordering
of HOD that is Σn(A)-stationary in κ. Since the collection of all initial segments of
the canonical well-ordering of HOD is definable by a Σ2-formula without parameters,
and the collection C(n) of all ordinals λ with Vλ ≺Σn V is definable by a Πn-formula
without parameters (see [1, Section 1]), we know that the set {E} is definable by a
Σn+1-formula with parameters in A. Let C denote the least closed unbounded subset of
κ in the canonical well-ordering of HOD that is disjoint from E. But then we know that
the set {C} is also definable by a Σn+1-formula with parameters in A, and therefore, C
witnesses that E is not Σn+1(A)-stationary in κ. ∎

Proposition 2.4 Let κ be an uncountable cardinal with κ<κ = κ, let θ > κ be a cardinal
with θκ = θ, let G be Add(κ, θ)-generic over V, and let C be a collection of closed
unbounded subsets of κ of cardinality less than θ in V[G]. Then, in V[G], there exists a
nonstationary subset E of κ with the property that C ∩ E ≠ ∅ holds for all C ∈ C.

Proof By our assumptions, we can find a generic extension M of V such that
C ∈ M ⊊ V[G] and V[G] is a nontrivial Add(κ, θ)-generic extension of M. Let
H ∈ V[G] be Add(κ, 1)-generic over M, let X denote the subset of κ corresponding to
H, and set E = X/Lim(X). Genericity then ensures that E intersects every unbounded
subset of κ in M. In particular, we know that C ∩ E ≠ ∅ holds for every C ∈ C. Finally,
since E is disjoint from Lim(X), we know that E is a nonstationary subset of κ in
V[G]. ∎

A combination of these two observations now directly yields the desired
consistency proof:

Proof of Theorem 2.1 Assume that the GCH holds. Given an uncountable regular
cardinal κ and a cardinal θ satisfying θ = θκ, we define Pκ,θ to be the two-step
iteration Add(κ, θ) ∗ Q̇, where Q̇ is the canonical Add(κ, θ)-name for the<θ+-closed
partial order that codes P(κ) into the GCH-pattern above θ+ (see, for example, [7]).
Let G ∗ H be (Add(κ, θ) ∗ Q̇)-generic over V. Fix a natural number n > 0 and a
set A ∈ V[G , H] of cardinality less than θ with the property that, in V[G , H], the
set {A} is definable by a Σ2-formula with parameters in A. Since P(P(κ))V[G] =
P(P(κ))V[G ,H] and, in V[G , H], there are less than θ-many closed unbounded
subsets C of κ with the property that the set {C} is definable by a Σn-formula with
parameters in A∪ {κ}, an application of Proposition 2.4 shows that, in V[G , H], there
is a nonstationary subset of κ that is Σn(A)-stationary in κ. But our setup ensures
that P(κ)V[G] = P(κ)V[G ,H] ⊆ HODV[G ,H], and hence, Proposition 2.3 allows us to
conclude that, in V[G , H], there is a subset of κ that is Σn(A)-stationary in κ and not
Σn+1(A)-stationary in κ. ∎
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6 O. Ben-Neria and P. Lücke

In a sequel to this paper, we will provide analogous results about the properness of
the hierarchy of Σn(A)-stationary sets for singular cardinals.

2.2 Combinatorial arguments

We now continue by analyzing basic structural features of the collection of all Σn(A)-
stationary sets. All results presented in this section are purely combinatorial in the
sense that they only rely on counting arguments. We nevertheless decided to phrase
them in such a way that they make statements about collections of definable subsets.
These formulations motivate several of our later results that will show that, in general,
we cannot relax the stated assumptions on the sizes of parameter sets. We start our
analysis by comparing Σn(A)-stationarity with standard stationarity and isolating
settings in which counting arguments ensure the existence of Σn(A)-stationary sets
that are not stationary.

Proposition 2.5 If κ is a cardinal of uncountable cofinality, A is a set of cardinality
at most cof(κ), and n is a natural number, then there is an unbounded, nonstationary
subset of κ that is Σn(A)-stationary in κ.

Proof Let ⟨Cα ∣ α < cof(κ)⟩ be an enumeration of all closed unbounded subsets C of
κ with the property that the set {C} is definable by a Σn-formula with parameters in
A∪ {κ}. In addition, define C to be a diagonal intersection of these sets with respect
to some strictly increasing continuous sequence of order type cof(κ) in κ. Define
S = C/Lim(C). Then S is an unbounded and nonstationary subset of κ. Moreover, we
have C ∩ S ≠ ∅ whenever C is a closed unbounded subset of κ with the property that
the set {C} is definable by a Σn-formula with parameters in A∪ {κ}. ∎

The results of this paper show that the implication in the above proposition can
fail if we consider sets of parameters of cardinality cof(κ)+. In the case of regular
cardinals, the examples given in Section 1 about L and under MM provide examples
of such failures. For singular cardinals κ of uncountable cofinality, Corollary 3.4
below will show that, in the Dodd-Jensen core model, stationarity coincides with
Σ1(P(cof(κ)))-stationarity and therefore also with Σ1-stationarity in κ. Moreover,
5.2 shows that when κ is singular of uncountable cofinality, the existence of
Σ1-stationarity subset of κ that is not stationary is equiconsistent with the existence
of cof(κ) many measurable cardinals. In the case of singular cardinals of countable
cofinalities, Theorem 5.3 will give an analogous equiconsistency result. We start with
a quick combinatorial argument.

Proposition 2.6 If κ is a singular cardinal of countable cofinality, A is a set of
cardinality less than κω , and n is a natural number, then there is an unbounded subset
of κ that is Σn(A)-stationary in κ and whose complement in κ is unbounded in κ.

Proof Since the set [κ]ω contains an almost disjoint family of cardinality κω

that consists of unbounded subsets of κ, we can find an element b ∈ [κ]ω that is
unbounded in κ and has the property that no infinite subset of b is definable by a
Σn-formula with parameters in A∪ {κ}. Then, κ/b is Σn(A)-stationary in κ and the
complement of this set in κ is unbounded in κ. ∎
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On Σ1-definable closed unbounded sets 7

We continue by comparing the structural properties of Σn(A)-stationary sets with
those of standard stationary sets. Our first focus in this comparison will be the
question of the existence of disjoint Σn(A)-stationary sets at various uncountable
cardinals. In the case of cardinals of uncountable cofinality, the fact that all stationary
sets are Σn(A)-stationary already ensures the existence of such sets. The next result
strengthens this conclusion by showing that a version of Solovay’s Theorem on the
splitting of stationary sets holds for Σn(A)-stationary sets.

Proposition 2.7 Suppose that κ is a cardinal of uncountable cofinality, A is a set of
cardinality cof(κ) with A∩ κ cofinal in κ, n < ω, and S is a Σn(A)-stationary subset
of κ. Then, there exists a partition ⟨Sα ∣ α < cof(κ)⟩ of S into Σn(A)-stationary subsets.

Proof Since A∩ κ is unbounded in κ, we know that there are cof(κ)-many
Σn(A)-definable closed unbounded subsets of κ. Let ⟨Cα ∣ α < cof(κ)⟩ be an enu-
meration of all closed unbounded subsets C of κ with the property that the set {C}
is definable by a Σn-formula with parameters in A∪ {κ}. Since the assumption that
A∩ κ is unbounded in κ implies that Cα ∩ S is unbounded in κ for all α < cof(κ),
we can find a strictly increasing sequence ⟨σα ∣ α < cof(κ)⟩ of elements of S with the
property that σ≺α0 ,α1≻ ∈ Cα1 for all α0 , α1 < cof(κ), where ≺⋅, ⋅≻ ∶ Ord × Ord �→ Ord
denotes the Gödel pairing function. If we now pick a partition ⟨Sα ∣ α < cof(κ)⟩ of S
with the property that {σα ,β ∣ β < cof(κ)} ⊆ Sα holds for all α < cof(κ), then each Sα
is Σn(A)-stationary in κ. ∎

In the case of cardinals of countable cofinality, the existence of disjoint
Σn(A)-stationary sets turns out to be closely connected to the reaping number r.

Definition 2.1 r is the least cardinality of a subset A of [ω]ω with the property that
for every b ∈ [ω]ω , there is a ∈ A such that either a/b or a ∩ b is finite.

We will later show that, in general, the conclusion of the following proposition
cannot be extended to sets of parameters of cardinality r (see Corollaries 3.6 and 5.10
below).

Proposition 2.8 Let κ be a singular cardinal of countable cofinality, let A be a set of
cardinality less than r, and let n be a natural number. Then, there exists a subset E of κ
with the property that both E and κ/E are Σn(A)-stationary in κ.

The proof of this proposition relies on the equivalence provided by the next lemma:

Lemma 2.9 The following statements are equivalent for every infinite cardinal θ:
(1) θ < r.
(2) For every singular cardinal κ of countable cofinality and every subset A of [κ]ω that

consists of cofinal subsets of κ and has cardinality at most θ, there exists a subset E
of κ such that for every a ∈ A, both a ∩ E and a/E are infinite.

(3) There is a singular cardinal κ of countable cofinality with the property that for every
subset A of [κ]ω that consists of cofinal subsets of κ and has cardinality at most θ,
there exists a subset E of κ such that for every a ∈ A, both a ∩ E and a/E are infinite.

Proof First, assume that (1) holds and (2) fails. Then, there is a singular cardinal κ
of countable cofinality and a subset A of [κ]ω such that A consists of cofinal subsets
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8 O. Ben-Neria and P. Lücke

of κ, ∣A∣ ≤ θ, and for every subset E of κ, there is a ∈ A such that either a ∩ E or a/E is
finite. Let ⟨κn ∣ n < ω⟩ be a strictly increasing sequence that is cofinal in κ with κ0 = 0.
Given a ∈ A, define

ba = {n < ω ∣ a ∩ [κn ,κn+1) ≠ ∅} ∈ [ω]ω .

Since ∣A∣ < r, we can now find c ∈ [ω]ω with the property that for all a ∈ A, both ba/c
and ba ∩ c are infinite. Set

E = ⋃
n∈c

[κn ,κn+1).

By our assumptions, there is a ∈ A with the property that either a/E or a ∩ E is finite.
But this implies that either ba/c or ba ∩ c is finite, a contradiction.

Now, assume that (3) holds and (1) fails. Then, there is a singular cardinal κ of
countable cofinality with the property that for every subset A of [κ]ω that consists of
cofinal subsets of κ and has cardinality at most θ, there exists a subset E of κ such
that for every a ∈ A, both a ∩ E and a/E are infinite. Fix A ⊆ [ω]ω of cardinality r

such that for every b ∈ [ω]ω , there exists a ∈ A with the property that either a/b or
a ∩ b is finite. Pick a s strictly increasing sequence ⟨κn ∣ n < ω⟩ that is cofinal in κ
and, given a ∈ A, define ba = {κn ∣ n ∈ a} ∈ [κ]ω . Since ba is cofinal in κ for all a ∈ A,
we can now find a subset E of κ such that for every a ∈ A, both ba ∩ E and ba/E are
infinite. Set c = {n < ω ∣ κn ∈ E} ∈ [ω]ω . If a ∈ A, then both a/c and a ∩ c are infinite,
contradicting our assumptions on A. ∎

Proof of Proposition 2.8 Let κ be a singular cardinal of countable cofinality, let A
be a set of cardinality less than r, and let n > 0 be a natural number. Then, there exists
a subset A′ of [κ]ω of cardinality less than r that consists of cofinal sequences and has
the property that for every closed unbounded subset C of κ such that the set {C} is
definable by a Σn-formula with parameters in A∪ {κ}, there exists a ∈ A′ with a ⊆ C.
Using Lemma 2.9, we can now find a subset E of κ such that for every a ∈ A, both a/E
and a ∩ E are infinite. Then, both E and κ/E are Σn(A)-stationary in κ. ∎

We close this section by comparing another aspect of the behavior of stationary
sets with its counterpart in the definable context. While the collection of all closed
unbounded subsets of a cardinal of uncountable cofinality is closed under intersec-
tions, and therefore, all of these subsets are stationary, these implications can obviously
fail at a singular cardinal of countable cofinality, where all unbounded sets of order
type ω are closed unbounded and stationarity coincides with coboundedness. The
following lemma completely characterizes the settings in which these implications also
hold in the definable context:

Lemma 2.10 Given a class A and a natural number n > 0, the following statements are
equivalent for every singular cardinal κ of countable cofinality:

(1) There is a cofinal function c ∶ ω �→ κ that is definable by a Σn-formula with
parameters in A∪ {κ}.

(2) There are disjoint closed unbounded subsets C0 and C1 ofκwith the property that the
sets {C0} and {C1} are both definable by Σn-formulas with parameters in A∪ {κ}.
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On Σ1-definable closed unbounded sets 9

(3) There are closed unbounded subsets C0 and C1 of κ with C0 ∩ C1 bounded in κ and
the property that the sets {C0} and {C1} are both definable by Σn-formulas with
parameters in A∪ {κ}.

Proof First, we assume that there is a cofinal function c ∶ ω �→ κ that is definable
by a Σn-formula with parameters in A∪ {κ}. Define C0 = {c(n) + ω ∣ n < ω} and
C1 = {c(n) + ω + 1 ∣ n < ω}. Then, C0 and C1 are disjoint closed unbounded in
κ, and the sets {C0} and {C1} are definable by Σn-formulas with parameters in
A∪ {κ}. In the other direction, assume that there are closed unbounded subsets
C0 and C1 of κ with C0 ∩ C1 bounded in κ and the property that the sets {C0}
and {C1} are both definable by Σn-formulas with parameters in A∪ {κ}. We define
μ = max(C0 ∩ C1) < κ and let c ∶ ω �→ κ denote the unique function with c(0) = μ
and

c(2k + 2 − i) = min(C i/(c(2k + 1 − i) + 1))

for all k < ω and i < 2. The Σn-Recursion Theorem then implies that c is definable by
a Σn-formula with parameters in A∪ {κ}. Moreover, we know that c is cofinal in κ
because otherwise, μ < supk<ω c(k) ∈ C0 ∩ C1. ∎

Using an argument similar to the one of the previous Lemma, we obtain the
following corollary, which will later allow us to show that definable closed unbounded
sets behave nicely in various settings.

Corollary 2.11 Let κ be a singular cardinal of countable cofinality, let A be a class,
and let n > 0 be a natural number with the property that there exists a subset of κ
that is Σn(A)-stationary in κ and consists of cardinals. Then, the collection of all closed
unbounded subsets C ofκwith the property that the set {C} is definable by a Σn-formula
with parameters in A∪ {κ} is closed under intersections.

2.3 The Σn-undefinability property

We introduce a notion that will allow us to show that various nonstationary sets of
cardinals E ⊆ κ of an uncountable cardinal κ are Σn-stationary.

Definition 2.2 Given uncountable cardinals μ < κ, an ordinal γ ≥ κ, and a natural
number n, we say that the cardinal κ has the Σn(μ, γ)-undefinability property if no
ordinal α in the interval [μ,κ) has the property that the set {α} is definable by a
Σn-formula with parameters in the set Hμ ∪ {κ, γ}. Moreover, we say that κ has the
Σn(μ)-undefinability property if it has the Σn(μ,κ)-undefinability property.

The next lemma shows how this undefinability property is connected to Σn-
stationarity:

Lemma 2.12 Given uncountable cardinals μ < κ, an ordinal γ ≥ κ, and a natural
number n > 0, ifκ has the Σn(μ, γ)-undefinability property, then the set {μ} is Σn(Hμ ∪
{γ})-stationary in κ.

Proof Let C be a closed unbounded subset of κ with the property that the
set {C} is definable by a Σn-formula with parameters in Hμ ∪ {κ, γ}. Assume,
toward a contradiction, that μ is not an element of C. Set ν = min(C/μ) > μ. Then,
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C ∩ μ ≠ ∅ because otherwise, ν = min(C), and this would imply that the set {ν} is
definable by a Σn-formula with parameters in Hμ ∪ {κ, γ}. This allows us to define
ρ = max(C ∩ μ) < μ. But then, ν = min(C/(ρ + 1)), and hence, {ν} is definable by a
Σn-formula with parameters in Hμ ∪ {κ, γ}, a contradiction. ∎

The following direct corollary of the above lemma will later allow us to isolate
various examples of Σ1-stationary subsets of cardinals of countable cofinality that are
not stationary (i.e., not cobounded) in the given limit cardinal.

Corollary 2.13 Let κ be a limit cardinal, let γ ≥ κ be an ordinal, let n > 0 be a natural
number, and let E be the set of uncountable cardinals μ < κ with the property that κ
has the Σn(μ, γ)-undefinability property for all μ ∈ E. If E is unbounded in κ, then E is
Σn({γ})-stationary in κ.

3 Undefinability in the Dodd-Jensen core model

In the following, we establish basic definability and undefinability results dealing with
Dodd-Jensen core model KDJ . These results make use of the presentation of this model
in [5] and [11]. In this setting, a set M is a premouse at an ordinal μ > ω if M is of the
form JU

η and

⟨M , ∈, U⟩ ⊧ “ U is a normal ultrafilter on μ. ”

Moreover, if M is a premouse at μ, then we define the lower part of M to be the
set l p(M) = M ∩ Vμ . Given a premouse M and an ordinal δ, an iteration of M of
length δ is given by a sequence ⟨Mα ∣ α < δ⟩ of premice and a commuting system
⟨ jα ,β ∶ Mα �→ Mβ ∣ α ≤ β < δ⟩ of Σ1-elementary embeddings such that the following
statements hold:
• M = M0 and jα ,α = idMα for all α < δ.
• If α + 1 < δ, Mα = JU

η is a premouse at μ and Mα+1 = JW
ζ is a premouse at ν, then

Mα+1 is the transitive collapse of the ultrapower of Mα using U, jα ,α+1 as the
corresponding ultrapower embedding, jα ,α+1(μ) = ν, and

W = {[ f ]U ∣ f ∈ μ Mα ∩ Mα , {ξ < μ ∣ f (ξ) ∈ U} ∈ U}.

• If γ ∈ Lim ∩ δ, then ⟨Mγ , ⟨ jα ,γ ∶ Mα �→ Mγ ∣ α < γ⟩⟩ is a direct limit of
⟨⟨Mα ∣ α < γ⟩, ⟨ jα ,β ∶ Mα �→ Mβ ∣ α ≤ β < γ⟩⟩.

If such an iteration exists, then it is uniquely determined, and it is called the
δ-iteration of M. A premouse M is then called a mouse if δ-iterations of M exist for
all δ ∈ Ord. Note that since the iterability of a premouse can be checked in every
transitive structure of uncountable ordinal height that contains the mouse and
satisfies a sufficiently strong fragment of ZFC (see [11, Theorem 2.7]), it follows that
the class of all mice is Σ1-definable from every uncountable ordinal. We can now use
such iterations to compare a mouse M = JU

η at some ordinal μ with a mouse N = JW
ζ

at an ordinal ν, in the sense that they allow us to find mice M′ = JC
η′ and N ′ = JC

ζ′ at the
same ordinal ρ and Σ1-elementary embeddings j ∶ M �→ M′ and i ∶ N �→ N ′ with
j(μ) = i(ν) = ρ (see [5, Lemma 1.13]). In our arguments below, we will frequently
make use of results of Dodd and Jensen (see [5, pp. 238-241]) that show that the
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Dodd-Jensen core model KDJ is equal to the union of the constructible universe L
and the lower parts l p(M) of all mice M.

We now prove three lemmata that show that various objects that witness the
accessibility of cardinals in KDJ are simply definable.

Lemma 3.1 If κ is an infinite cardinal that is not inaccessible in KDJ , then the set
{HKDJ

κ } is definable by a Σ1-formula with parameter κ.

Proof Since the GCH holds in KDJ and HKDJ

ℵ0
= Lω , we may assume that either κ is a

successor cardinal in KDJ or κ is singular in KDJ . Moreover, we may assume that there
exists a mouse because otherwise, KDJ = L, and {HKDJ

κ } = {Lκ} is Σ1-definable in the
desired way.

Claim If M is a mouse at some ν > κ such that κ is either a successor cardinal or a
singular cardinal in M, then HKDJ

κ ⊆ M. ∎

Proof of the Claim Fix x ∈ HKDJ

κ . Then, there exists a mouse N0 at some cardinal
μ < κ such that ∣N0∣ < κ and x ∈ l p(N0). Let N be the mouse obtained by iterating
the top measure of N0 κ-many times. Then clearly, we have x ∈ l p(N), and κ is the
critical point of the top measure of N and is therefore inaccessible in N. The coiteration
of M and N, which can only involve the top measures of the two mice, results in
Σ1-elementary embeddings πM ∶ M �→ M′ and πN ∶ N �→ N ′ with the following
properties:
• κ is inaccessible in N ′, but not in M′,
• x ∈ l p(N ′),
• P(κ)M = P(κ)M′ , and
• one of M′, N ′ is an initial segment of the other.
It is therefore clear that N ′ must be an initial segment of M′, from which we conclude
that x ∈ PM′(κ) and therefore that x ∈ M. ∎

As outlined earlier, the assumption that KDJ ≠ L implies that KDJ is equal to the
union of all lower parts of mice. In particular, there exists a mouse M at an ordinal
above κ with the property that κ is either a successor cardinal or a singular cardinal in
M. By the above claim, we know that HKDJ

κ = HM
κ holds for every mouse M with these

properties. By combining this implication with earlier remarks about the definability
of the class of all mice, we can derive the statement of the lemma.

Lemma 3.2 If κ is an infinite cardinal, then the set {cof(κ)KDJ

} is definable by a
Σ1-formula with parameter κ.

Proof This is trivial in the case κ is not singular in KDJ . Assuming it is singular, we
know that cof(κ)KDJ

is the unique ordinal ξ < κ with the property that ξ is regular in
HKDJ

κ and KDJ contains a cofinal function c ∶ ξ �→ κ. Since the class KDJ is definable
by a Σ1-formula with parameter κ (see, for example, the proof of [14, Lemma 4.13]),
we can apply Lemma 3.1 to conclude that the set {cof(κ)KDJ

} is also definable by a
Σ1-formula with parameter κ. ∎
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Lemma 3.3 If κ is an infinite cardinal and c is the <KDJ -least cofinal function from
cof(κ)KDJ

to κ in KDJ , then the set {c} is definable by a Σ1-formula with parameter κ.

Proof This is an immediate consequence of the proof of [16, Lemma 2.3], which
shows that the collection of initial segments of the restriction of <KDJ to P(κ) is
definable by a Σ1-formula with parameter κ, and Lemma 3.2 above. ∎

We now use the above results to show that, in the case of singular cardinals κ of
uncountable cardinality, the statement of Proposition 2.5 cannot be strengthened in
ZFC. We will later improve this result to obtain cof(κ)-many measurable cardinals
from the existence of a singular cardinal κ of uncountable cofinality with the property
that there exists a nonstationary Σ1-stationary subset of κ (see Theorem 5.1 and
Corollary 5.2 below).

Corollary 3.4 Assume that there is no inner model with a measurable cardinal. If κ
is a singular cardinal of uncountable cofinality and S is Σ1(P(cof(κ)KDJ

))-stationary
in κ, then S is a stationary subset of κ.

Proof By our assumption, the results of [4] ensure that κ is a singular cardinal in
KDJ . Using Lemma 3.3, we find a closed unbounded subset C0 of κ of order-type
cof(κ)KDJ

with the property that both the set {C0} and the monotone enumeration
of C0 are definable by a Σ1-formula with parameter κ. Given an arbitrary closed
unbounded subset C of κ, we then know that the intersection C ∩ C0 is a closed
unbounded subset and the set {C ∩ C0} is definable by a Σ1-formula with parameters
in P(cof(κ)KDJ

) ∪ {κ}. This shows that every subset of κ that is Σ1(P(cof(κ)KDJ

))-
stationary in κ is stationary in κ. ∎

We now derive further consequences of the above lemmata. The results of the
subsequent sections will show that it is possible to use large cardinals to obtain singular
cardinals κ where the negations of all of the listed statements hold.

Corollary 3.5 Assume that there is no inner model with a measurable cardinal. If κ is
a singular cardinal, then the following statements hold:
(1) If α < κ, then the set {α} is not Σ1(α)-stationary in κ.
(2) There is an unbounded subset of κ that consists of cardinals and is not Σ1-stationary.
(3) There exists a regressive function r ∶ κ�→ κ that is definable by a Σ1-formula with

parameter κ and is not constant on any unbounded subset of κ.

Proof Set λ = cof(κ)KDJ

and let c ∶ λ �→ κ denote the the <KDJ -least cofinal
function from λ to κ in KDJ . By our assumption, the results of [4] imply that λ < κ,
and we can use Lemma 3.1 to show that the set HKDJ

κ is definable by a Σ1-formula with
parameter κ. Moreover, Lemma 3.2 and Lemma 3.3 ensure that both the set {λ} and
the function c are definable by a Σ1-formulas with parameter κ.

Now, fix α < κ. If α ≤ λ, then C = (λ,κ) is a closed unbounded subset of κ that is
disjoint from {α} and has the property that the set {C} is definable by a Σ1-formula
with parameter κ. In the other case, if λ < α, then there is ξ < λ with c(ξ) > α, and
C = (c(ξ),κ) is a closed unbounded subset of κ disjoint from {α} with the property
that the set {C} is definable by a Σ1-formula with parameters in α ∪ {κ}.
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Next, assume that κ is a limit of limit cardinals in KDJ , and define C to be the closed
unbounded set of all ordinals ρ < κ with the property that, in KDJ , the ordinal ρ is a
limit cardinal. Since the set {HKDJ

κ } is definable by a Σ1-formula with parameter κ,
it follows that set {C} is definable in the same way. Now, let E denote the set of all
successor cardinals of singular cardinals smaller thanκ. Since our setup and the results
of [4] ensure that all singular cardinals are singular in KDJ and KDJ computes the suc-
cessors of these cardinals correctly, we know that each element of E is the successor of a
singular cardinal in KDJ , and this shows that C ∩ E = ∅. In particular, we can conclude
that E is an unbounded subset of κ that consists of cardinals and is not Σ1-stationary.

We now assume that κ is not a limit of limit cardinals in KDJ . Let η denote the
least ordinal below κ with the property that the interval (η,κ) contains no ordinals
that are limit cardinals in KDJ , and we define C to be the set of ordinals in (η,κ)
that are successor ordinals of ordinals that are cardinals in KDJ . Our assumptions
then imply that C is a cofinal subset of κ of order-type ω, and this implies that C is
a closed unbounded subset of κ. Moreover, the fact that the set {HKDJ

κ } is definable
by a Σ1-formula with parameter κ ensures that the set {C} is definable in the same
way. If we now define E to be the set of all cardinals in the interval (η,κ), then E is
unbounded in κ, and since C ∩ E = ∅ holds, we know that E is not Σ1-stationary.

Finally, define r ∶ κ�→ λ to be the unique map with c(α) = 0 for all α < λ and
c(α) = min{ξ < λ ∣ c(ξ) ≥ α} for all λ ≤ α < κ. Then, r is regressive, and it is not
constant on any unbounded subset of κ. Moreover, our earlier observations show
that r is definable by a Σ1-formula with parameter κ. ∎

Corollary 3.6 Assume that there is no inner model with a measurable cardinal. If κ is
a singular cardinal of countable cofinality, then the following statements hold:

(1) There are disjoint closed unbounded subsets C0 and C1 ofκwith the property that the
sets {C0} and {C1} are both definable by Σ1-formulas with parameters in Hκ ∪ {κ}.

(2) There exists a subset A of Hκ of cardinality r such that every subset of κ that is
Σ1(A)-stationary in κ contains a closed unbounded subset C of κ with the property
that the set {C} is definable by a Σ1-formula with parameters in A∪ {κ}.

Proof Set λ = cof(κ)KD J . Our assumptions then imply that λ < κ. Let c ∶ λ �→ κ
denote the <KDJ -least cofinal function in KDJ . Since cof(λ) = ω, we can also
fix a cofinal function d ∶ ω �→ λ. Define C0 = {ω ⋅ ((c ○ d)(i)) ∣ i < ω} and
C1 = {α + 1 ∣ α ∈ C0}. Then, the sets C0 and C1 are disjoint closed unbounded
subsets of κ. Moreover, Lemma 3.3 ensures that the sets {C0} and {C1} are both
definable by Σ1-formulas with parameters κ and d. Finally, pick a subset A of Hκ

of cardinality r such that ω ∪ {d} ⊆ A, A∩ κ is cofinal in κ, and for every b ∈ [ω]ω ,
there is a ∈ A∩ [ω]ω with the property that either a/b or a ∩ b is finite. Let S be
a subset of κ that is Σ1(A)-stationary in κ. The fact that A∩ κ is unbounded in κ
then implies that the set b = {i < ω ∣ (c ○ d)(i) ∈ S} is infinite. Hence, there exists
a ∈ A with the property that either a/b or a ∩ b is finite. Set C = {(c ○ d)(i) ∣ i ∈ a}.
Then, C is closed unbounded in κ, and the set {C} is definable by a Σ1-formula
with parameters in A∪ {κ}. Hence, we know that C ∩ S is unbounded in κ, and this
shows that a ∩ b is infinite. We can now find k < ω with a/b ⊆ k, and if we define
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D = {(c ○ d)(i) ∣ k ≤ i ∈ A}, then D is a closed unbounded subset of S and the set
{D} is definable by a Σ1-formula with parameters in A∪ {κ}. ∎

We end this section with another result about the definability of initial segments
of the Dodd-Jensen core model that will be used in our characterizations of stably
measurable cardinals below.

Lemma 3.7 Let κ be an uncountable cardinal, and let E ∈ KDJ be a subset of κ. If κ is
regular in KDJ and E is a bistationary subset of κ in KDJ , then the set {HKDJ

κ } is definable
by a Σ1-formula with parameter E.

Proof Since the class KDJ is definable by a Σ1-formula with parameter κ in V, we
may assume that V = KDJ holds. Moreover, we may assume that there exists a mouse
because otherwise, we have KDJ = L, and {HKDJ

κ } = {Lκ} is definable by a Σ1-formula
with parameter E. 2 The desired statement is then a direct consequence of the following
observation:

Claim If M is a mouse with E ∈ l p(M), then Hκ ⊆ M. ∎

Proof of the Claim Assume, toward a contradiction, that there is an x ∈ Hκ/M.
Then, there is a mouse N0 with ∣N0∣ < κ and x ∈ l p(N0). As above, this allows us
to find a mouse N at κ with x ∈ l p(N). Let π0 ∶ M �→ M′ and π1 ∶ N �→ N ′ be
the Σ1-elementary embeddings obtained by coiterating M and N (i.e., either M′ is
an initial segment of N ′ or N ′ is an initial segment of M′). Since HM

κ = HM′
κ and

x ∈ l p(N)/M, we now know that M′ is an initial segment of N ′. This implies that
E ∈ P(κ)M = P(κ)M′ ⊆ P(κ)N ′ = P(κ)N . Since the given N-ultrafilter on κ is equal
to the restriction of the closed unbounded filter on κ to P(κ)N , we can conclude that
E either contains a closed unbounded subset of κ or is disjoint from such a subset.
This contradicts the bistationarity of E. ∎

This claim now shows that Hκ is the unique set B with the property that there exists
a mouse M with E ∈ l p(M) and B = HM

κ . This directly yields the desired Σ1-definition
of {Hκ}.

4 Large cardinals and Σ1-stationary sets

In Section 2, we already gave examples of two important features of Σ1(A)-stationary
sets. First, the collection of these sets can be substantially larger than the collection
of ordinary stationary sets. Second, this collection can possess structural features that
resemble the behavior of stationary sets. We start by proving results for large cardinals
and then extend these results to limits of large cardinals (not necessarily regular).
Finally, we show that it is possible to derive similar consequences from Ramsey-
theoretic properties that may hold on smaller cardinals.

4.1 Stably measurable cardinals

The following large cardinal property, introduced by Welch in [19], turns out to be
closely connected to Σ1-undefinability considerations.
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Definition 4.1 (Welch) An uncountable regular cardinal κ is stably measurable if
there exists
• a transitive set M with Hκ ∪ {κ} ⊆ M ≺Σ1 Hκ+ ,
• a transitive set N with M ∪ <κN ⊆ N , and
• a normal, weakly amenable N-ultrafilter F on κ with the property that ⟨N , ∈, F⟩ is

iterable.

In [17], Sharpe and Welch defined an uncountable cardinal κ to be iterable if
for every subset A of κ, there is a transitive model M of ZFC− of cardinality κ
with A,κ ∈ M and a weakly amenable M-ultrafilter U on κ such that ⟨M , ∈, U⟩ is
ω1-iterable. It is easy to see that all iterable cardinals are stably measurable. Moreover,
all Ramsey cardinals are iterable (see [17, Lemma 5.2]), and this shows that all
measurable cardinals are stably measurable. In the other direction, [19, Corollary 1.18]
shows that if κ is a stably measurable cardinal, then a# exists for every set of ordinals
a in Hκ. Motivated by Corollary 3.5, we proceed toward the following result:

Theorem 4.1 Let κ be a stably measurable cardinal.
(1) If μ < κ is an uncountable cardinal, then the singleton {μ} is Σ1(Hμ)-stationary

in κ.
(2) If E is an unbounded subset of κ that consists of cardinals, then E is Σ1-stationary

in κ.
(3) If S is a Σ1-stationary subset of κ and r ∶ κ�→ κ is a regressive function that is

definable by a Σ1-formula with parameters in Hκ ∪ {κ}, then r is constant on a
Σ1-stationary subset of S.

Using Lemma 2.12 and Corollary 2.13, the first two statements of Theorem 4.1
directly follow from the next lemma:

Lemma 4.2 If κ is a stably measurable cardinal, then κ has the Σ1(μ)-undefinability
property for every uncountable cardinal μ < κ.

Proof Assume, toward a contradiction, that there is a Σ1-formula φ(v0 , v1 , v2), an
uncountable cardinal μ < κ, an ordinal α in the interval [μ,κ), and z ∈ Hμ such that
α is the unique ordinal ξ with the property that φ(ξ,κ, z) holds. Pick a transitive
set M with Hκ ∪ {κ} ⊆ M ≺Σ1 Hκ+ , a transitive set N with M ∪ <κN ⊆ N , and a
weakly amenable N-ultrafilter F on κ with the property that ⟨N , ∈, F⟩ is iterable.
Now, pick an elementary submodel ⟨X , ∈, F0⟩ of ⟨N , ∈, F⟩ of cardinality less than μ
with tc({z}) ∪ {κ, α} ⊆ X, and let π ∶ X �→ N0 denote the corresponding transitive
collapse. Then, π(z) = z and π(α) < π(κ) < μ ≤ α. Moreover, if we set U = π[F0],
then U is a weakly amenable N0-ultrafilter on π(κ) and [10, Theorem 19.15] implies
that ⟨N0 , ∈, U⟩ is iterable. This yields a transitive set N1 and an elementary embedding
j ∶ N0 �→ N1 with j(π(κ)) = κ and j ↾ HN0

π(κ) = idHN0
π(κ)

. Since our setup ensures that
φ(α,κ, z) holds in N, we now know that φ(π(α),κ, z) holds in N1. By Σ1-upwards
absoluteness, this shows that φ(π(α),κ, z) holds in V, contradicting the uniqueness
of α. ∎

We now work toward a proof of the third part of Theorem 4.1. The starting point
for this is a result of Welch (see [19, Theorem 1.26]) proving that stably measurable
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cardinals have the Σ1-club property introduced in [14] (i.e., if κ is a stably measurable
cardinal and E is a subset of κ with the property that the set {E} is definable by
a Σ1-formula with parameters in Hκ ∪ {κ}, then either E or κ/E contains a closed
unbounded subset of κ). This result directly implies that if κ is a stably measurable
cardinal and r ∶ κ�→ κ is a regressive function that is definable by a Σ1-formula with
parameters in Hκ ∪ {κ}, then for every ordinal α < κ, there is a closed unbounded
subset Cα of κ with the property that Cα is either contained in r−1{α} or disjoint
from r−1{α}. By forming the diagonal intersection △α<κCα , it is now easy to see that
there is a unique ordinal α∗ < κwith the property that Cα∗ ⊆ r−1{α∗}, and this directly
implies that α∗ is the unique ordinal smaller than κ with the property that r−1{α∗}
contains a closed unbounded subset of κ. The following lemma further strengthens
this conclusion:

Lemma 4.3 Let κ be a stably measurable cardinal, and let E be a subset of κ that
contains a closed unbounded subset ofκ and has the property that the set {E} is definable
by a Σ1-formula with parameters in Hκ ∪ {κ}. Then, there exists a closed unbounded
subset C of κ with C ⊆ E and the property that the set {C} is definable by a Σ1-formula
with parameters in Hκ ∪ {κ}.

Proof Fix a Σ1-formula φ(v0 , v1 , v2) and an element z of Hκ with the property that
the set {E} is definable by the formula φ(v0 , v1 , v2) and the parameters κ and z. By
our assumptions on κ, there exists a transitive set M with Hκ ∪ {κ} ⊆ M ≺Σ1 Hκ+ , a
transitive set N with M ∪ <κN ⊆ N , and a normal, weakly amenable N-ultrafilter F
on κ with the property that ⟨N , ∈, F⟩ is iterable. This setup ensures that E ∈ M and
φ(E ,κ, z) holds in N. Moreover, the fact that E contains a closed unbounded subset
of κ implies that M contains such a subset of E and since F is a normal N-ultrafilter,
we can conclude that E is an element of F. Pick an elementary submodel ⟨X , ∈, F0⟩
of ⟨N , ∈, F⟩ of cardinality less than κ with tc({z}) ∪ {κ} ⊆ X, and let π ∶ X �→ N0
denote the corresponding transitive collapse. Then, π(z) = z, and if we set U = π[F0],
then U is a weakly amenable N0-ultrafilter on π(κ) and [10, Theorem 19.15] ensures
that ⟨N0 , ∈, U⟩ is iterable. Let

⟨⟨Nα ∣ α ∈ Ord⟩, ⟨ jα ,β ∶ Mα �→ Mβ ∣ α ≤ β ∈ Ord⟩⟩

denote the linear iteration of ⟨N0 , ∈, U⟩. Then, ( j0,κ ○ π)(κ) = κ, ( j0,κ ○ π)(z) = z,
Σ1-upwards absoluteness implies that φ(( j0,κ ○ π)(E),κ, z) holds in V, and hence,
we know that ( j0,κ ○ π)(E) = E. Moreover, the fact that E ∈ F ensures that π(E) ∈ U
and therefore ( j0,α ○ π)(κ) ∈ ( j0,α+1 ○ π)(E) ⊆ E for all α < κ. This shows that the
closed unbounded subset C = {( j0,α ○ π)(κ) ∣ α < κ} of κ is a subset of E. Finally, the
set {C} is definable by a Σ1-formula with parameters κ, N0, and U. ∎

Proof of Theorem 4.1 The last two lemmata prove the first two assertions of the
theorem. To prove the third assertion, let κ be a stably measurable cardinal, let S
be Σ1-stationary in κ, and let r ∶ κ�→ κ be a regressive function that is definable
by a Σ1-formula with parameters in Hκ ∪ {κ}. Our earlier observations now show
that there is a unique ordinal α < κ with the property that the set r−1{α} contains a
closed unbounded subset of κ. Since the set {r−1{α}} is definable by a Σ1-formula
with parameters in Hκ ∪ {κ}, Lemma 4.3 yields a closed unbounded subset C of κ
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with C ⊆ r−1{α} and the property that the set {C} is definable by a Σ1-formula with
parameters in Hκ ∪ {κ}. Then, r is constant on C ∩ S, and since κ is an uncountable
regular cardinal, we know that this set is Σ1-stationary in κ. ∎

We can now show that in the Dodd–Jensen core model KDJ , stably measurable
cardinals are characterized by the Σ1-stationarity of unbounded sets of cardinals:

Theorem 4.4 If V = KDJ , then the following statements are equivalent for every
cardinal κ > ω1:
(1) The cardinal κ is stably measurable.
(2) The set {Hκ} is not definable by a Σ1-formula with parameters in the set Hκ ∪ {κ}.
(3) The cardinal κ is a limit cardinal, and every unbounded subset of κ that consists of

cardinals is Σ1-stationary in κ.

Proof First, assume that κ is not stably measurable. Then, we can apply
[19, Theorem 2.6] to find a bistationary subset E of κ with the property that the
set {E} is definable by a Σ1-formula with parameters in Hκ ∪ {κ}. Lemma 3.7 then
shows that the set {Hκ} is definable by a Σ1-formula with parameters in Hκ ∪ {κ}.

Now, assume that κ is a limit cardinal and the set {Hκ} is definable by a Σ1-formula
with parameters in Hκ ∪ {κ}. Let C denote the set of all limit cardinals smaller than κ.
Our assumption then implies that the set {C} is definable by a Σ1-formula with
parameters in Hκ ∪ {κ}. If C is unbounded in κ, then the set of all successor cardinals
smaller than κ is an unbounded subset of κ that consists of cardinals and is not
Σ1-stationary in κ. In the other case, if C is bounded in κ, then cof(κ) = ω, Lemma 3.3
yields a cofinal function c ∶ ω �→ κ that is definable by a Σ1-formula with parameterκ,
and the set D = {c(n) + 1 ∣ n < ω} is closed unbounded in κ that contains no cardinals
and has the property that the set {D} is definable by a Σ1-formula with parameter κ.

Together with Theorem 4.1, these computations establish all equivalences claimed
in the theorem. ∎

Next, we show that stable measurability provides the exact consistency strength for
the existence of limit cardinals with given undefinability property:

Theorem 4.5 The following statements are equiconsistent over ZFC:
(1) There exists a stably measurable cardinal.
(2) There exists a limit cardinal κ with the property that every unbounded subset of κ

that consists of cardinals is Σ1-stationary in κ.

Proof Assume, toward a contradiction, that there is no inner model with a stably
measurable cardinal and κ is a limit cardinal with the property that every unbounded
subset of κ that consists of cardinals is Σ1-stationary in κ. Then, Corollary 3.5 shows
that κ is regular. Since κ is not stably measurable in KDJ , Theorem 4.4 now shows that
in KDJ , the set {Hκ} is definable by a Σ1-formula with parameters in Hκ ∪ {κ}. Let C
denote the set of all ordinals less than κ that are limit cardinals in KDJ . Then, C is a
closed unbounded subset ofκ, and since the class KDJ is definable by a Σ1-formula with
parameter κ, the set {C} is definable by a Σ1-formula with parameters in Hκ ∪ {κ}.
Now, let E denote the set of all successor cardinals of singular cardinals less than κ.
The results of [4] then show that the elements of E are successor cardinals of singular
cardinals in KDJ , and hence, C ∩ E = ∅. This shows that E is an unbounded subset of κ
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that consists of cardinals and is not Σ1-stationary. In combination with Theorem 4.1,
these arguments prove the desired equivalence. ∎

In Section 5, we show that the assertion in item (2) of the last theorem can
consistently hold at κ = ℵω , starting from the consistency assumption of a measurable
cardinal.

4.2 Limits of measurable cardinals

We now continue by showing that many of the above results can be extended to larger
classes of definable sets if the given cardinal is a (not necessarily regular) limit of
measurable cardinals:
Theorem 4.6 Let κ be a cardinal that is a limit of measurable cardinals.
(1) Every unbounded subset S of κ consisting of cardinals is Σ1(Ord)-stationary.
(2) If S is a Σ1(Ord)-stationary subset of κ and r ∶ κ�→ κ is a regressive function that

is definable by a Σ1-formula with parameters in Hκ ∪ Ord, then r is constant on a
Σ1(Ord)-stationary subset of S.

The starting point of the proof of this theorem is the following technical lemma
that generalizes [13, Lemma 1.1.25] to embeddings given by linear iterations.
Lemma 4.7 Suppose that κ0 < κ1 are measurable cardinals and α0 < κ1 is an ordinal.
Given i < 2, let U i be a normal ultrafilter on κi , and let

⟨⟨M i
α ∣ α ∈ Ord⟩, ⟨ ji

α ,β ∶ M i
α �→ M i

β ∣ α ≤ β ∈ Ord⟩⟩

denote the linear iteration of ⟨V, ∈, U i⟩. In addition, let

⟨⟨M∗α ∣ α ∈ Ord⟩, ⟨ j∗α ,β ∶ M∗α �→ M∗β ∣ α ≤ β ∈ Ord⟩⟩

denote the linear iteration of ⟨M0
α0

, ∈, j0
0,α0

(U1)⟩. Then, j∗0,α ↾ Ord = j1
0,α ↾ Ord for all

α ∈ Ord.
Proof Fix an ordinal α1 < κ with the property that j∗0,α ↾ Ord = j1

0,α ↾ Ord holds for
all α < α1. Set M0 = M0

α0
, M1 = M1

α1
, M∗ = M∗α1

, j0 = j0
0,α0

, j1 = j1
0,α1

, j∗ = j∗0,α1
, and

U∗ = j0(U1). Then, j0(κ1) = κ1. In addition, if i < 2, then we define κi
α = ji

0,α(κi) for
all α ∈ Ord and C i = {κi

α ∣ α < α i}. An application of [10, Lemma 19.6] then shows
that every element of M∗ is of the form j0( f )(c) with n < ω, f ∶ [κ0]n �→ V and
c ∈ [C0]n . In addition, given i < 2 and n < ω, we define

U n
i = {X ⊆ [κi]n ∣ ∃E ∈ U i [E]n ⊆ X}.

The results of [10, Chapter 19] then show that U n
i is a <κi -complete ultrafilter on [κi]n .

Set U n
∗ = j0(U n

1 ) for all n < ω. Our assumption now implies that j∗0,α(κ1) = κ1
α holds

for all α < α1. In particular, we know that every ordinal is of the form j∗(g)(d) with
n < ω, g ∶ [κ1]n �→ Ord in M0 and d ∈ [C1]n .
Claim If n < ω, B ∈ U n

1 , and B∗ ∈ U n
∗ , then j0[B] ∩ B∗ ≠ ∅. ∎

Proof of the Claim Pick n < ω, f ∶ [κ0]n �→ V and c ∈ [C0]n with B∗ = j0( f )(c).
By [10, Lemma 19.9], we then have

D = {a ∈ [κ0]n ∣ f (a) ∈ U n
1 } ∈ U n

0 .
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Since U n
0 has cardinality less than κ1, the <κ1-completeness of U n

1 implies that
E = ⋂{ f (a) ∣ a ∈ D} is an element of U n

1 . Pick b ∈ B ∩ E. Then,

D ⊆ {a ∈ [κ0]n ∣ b ∈ f (a)} ∈ U n
0 ,

and [10, Lemma 19.9] shows that j0(b) ∈ j0[B] ∩ j0( f )(c) = j0[B] ∩ B∗ ≠ ∅. ∎

Claim If n < ω and g0 , g1 ∶ [κ1]n �→ Ord are functions in M0 with

{b ∈ [κ1]n ∣ g0(b) = g1(b)} ∈ U n
∗ ,

then

{b ∈ [κ1]n ∣ g0( j0(b)) = g1( j0(b))} ∈ U n
1 .

Proof of the Claim Assume, toward a contradiction, that the above conclusion fails.
Then, we know that the set B = {b ∈ [κ1]n ∣ g0( j0(b)) ≠ g1( j0(b))} is an element
of U n

1 . In this situation, we can use our first claim to find b ∈ B with g0( j0(b)) =
g1( j0(b)), a contradiction.

The same proof also yields the following implication:

Claim If n < ω and g0 , g1 ∶ [κ1]n �→ Ord are functions in M0 such that the set
{b ∈ [κ1]n ∣ g0(b) < g1(b)} is an element of U n

∗ , then the set

{b ∈ [κ1]n ∣ g0( j0(b)) < g1( j0(b))}

is an element of U n
1 . ∎

Claim For every function f ∶ [κ1]n �→ Ord in V, there is a function g ∶ [κ1]n �→
Ord in M0 with

{b ∈ [κ1]n ∣ f (b) = g( j0(b))} ∈ U n
1 .

Proof of the Claim Given b ∈ [κ1]n , pick mb < ω, fb ∶ [κ0]mb �→ Ord in V and cb ∈
[C0]mb with f (b) = j0( fb)(cb). Then, there is m < ω and c ∈ [C0]m with

B = {b ∈ [κ1]n ∣ mb = m, cb = c} ∈ U n
1 .

Define

G ∶ [κ0]m × B �→ Ord; (a, b) �→ fb(a)

and

g ∶ [κ1]n �→ Ord; b �→ j0(G)(c, b).

Then, g is an element of M0, and

g( j0(b)) = j0(G)(c, j0(b)) = j0( fb)(c) = f (b)

holds for all b ∈ B ∈ U n
1 . ∎

Claim If g ∶ [κ1]1 �→ Ord is an element of M0, then

j1(g ○ j0)({κ1}) = j1(g)({κ1}).
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Proof of the Claim Since standard arguments show that {{γ} ∣ γ < κ1 , j0(γ) = γ}
is an element of U 1

1 , we know that the set {{γ} ∣ γ < κ1 , (g ○ j0)(γ) = g(γ)} is also
contained in U 1

1 , and hence, an application of [10, Lemma 19.9] shows that we have
j1(g ○ j0)({κ1}) = j1(g)({κ1}). ∎

By our second claim and [10, Lemma 19.9], there exists a well-defined class function
F ∶ Ord �→ Ord with the property that

F( j∗(g)(c)) = j1(g ○ j0)(c)

holds for all n < ω, g ∶ [κ1]n �→ Ord in M0 and c ∈ [C1]n . Moreover, our third claim
shows that F is order-preserving. Finally, since every ordinal is of the form j1( f )(c)
for some n < ω, f ∶ [κ1]n �→ Ord in V and c ∈ [C1]n , our fourth claim shows that F
is also surjective. In combination, this shows that F is the identity on Ord. Now, fix an
ordinal γ, and let gγ denote the constant function on [κ1]1 with value γ. Then, we have

j∗(γ) = j∗(gγ)({κ1}) = F( j∗(gγ)({κ1}))

= j1(gγ ○ j0)({κ1}) = j1(gγ)({κ1}) = j1(γ),

and this proves the statement of the lemma.

Using the above results, we can now drive a variation of [13, Lemma 1.1.27] for
iterations. The following lemma will be the main tool used in the proofs of this section.

Lemma 4.8 Let λ ≥ ℵ0 be a regular cardinal, let κ⃗ = ⟨κξ ∣ ξ < λ⟩ be a strictly increasing
sequence of measurable cardinals with supremum κ, and let U⃗ = ⟨Uξ ∣ ξ < λ⟩ be a
sequence with the property that Uξ is a normal ultrafilter on κξ for all ξ < λ. Assume
that either κ = λ or λ < κ0. Given ξ < λ, let

⟨⟨M ξ
α ∣ α ∈ Ord⟩, ⟨ jξ

α ,β ∶ M ξ
α �→ M ξ

β ∣ α ≤ β ∈ Ord⟩⟩

denote the linear iteration of ⟨V, ∈, Uξ⟩. Then, for all ordinals γ and eventually all ξ < λ,
we have jξ

0,α(γ) = γ for all α < κ.

Proof Assume, toward a contradiction, that there is an ordinal γ such that for
unboundedly many ξ < λ, there is an α < κ with jξ

0,α(γ) > γ. Let γ be minimal with
this property. Pick ζ < λ and α0 < κ with jζ

0,α0
(γ) > γ. Set j = jζ

0,α0
and M = Mζ

α0
.

Then, j(λ) = λ and j(κ) = κ. Moreover, if we set j(κ⃗) = ⟨κ′ξ ∣ ξ < λ⟩ and j(U⃗) =
⟨U ′ξ ∣ ξ < λ⟩, then the fact that j(γ) > γ yields an ordinal ρ < λ with the property that
i ξ
0,α(γ) = γ holds for all ρ ≤ ξ < λ and all α < κ, where

⟨⟨N ξ
α ∣ α ∈ Ord⟩, ⟨i ξ

α ,β ∶ N ξ
α �→ N ξ

β ∣ α ≤ β ∈ Ord⟩⟩

denotes the linear iteration of ⟨M , ∈, U ′ξ⟩. By our assumption, we are now able
to pick ρ < ξ < λ and α1 < κ such that κξ > α0 and jξ

0,α1
(γ) > γ. In this situation,

Lemma 4.7 implies that i j(ξ)
0,α1

(γ) = jξ
0,α1

(γ) > γ, and since ρ ≤ ξ ≤ j(ξ) < λ, this yields
a contradiction. ∎
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With the help of Lemma 4.8, we can now work toward a proof of the first part of
Theorem 4.6.

Lemma 4.9 In the setting of Lemma 4.8, for every ordinal γ ≥ κ, there exists an ordinal
λ0 < λ with the property that the cardinal κ has the Σ1(κξ , γ)-undefinability property
for all λ0 ≤ ξ < λ.

Proof Lemma 4.8 yields λ0 < λ with the property that jξ
0,α(κ) = κ and jξ

0,α(γ) = γ
holds for all λ0 ≤ ξ < λ and α < κ. Assume, toward a contradiction, that there is
a Σ1-formula φ(v0 , . . . , v3), and ordinal λ0 ≤ ξ < λ, an element z of Hκξ , and an
ordinal α in the interval [κξ ,κ) such that the set {α} is definable by the formula
φ(v0 , . . . , v3) and the parameters κ, γ, and z. Pick an ordinal β < κ with jξ

0,β(κξ) > α.
Then, we know that jξ

0,β(α) > α, and elementarity implies that φ( jξ
0,β(α),κ, γ, z)

holds in M ξ
β . But then, Σ1-upwards absoluteness implies that φ( jξ

0,β(α),κ, γ, z) holds
in V, contradicting our assumptions. ∎

Lemma 4.10 Let κ be a cardinal that is a limit of measurable cardinals. Then, every
unbounded subset of κ that consists of cardinals is Σ1(Ord)-stationary in κ.

Proof Work in the setting of Lemma 4.8. Let E be an unbounded subset of κ that
consists of cardinals, and fix a Σ1-formula φ(v0 , v1 , v2), an ordinal γ, and z ∈ Hκ with
the property that there exists a closed unbounded subset C of κ that is the unique set
x with the property that φ(x , γ, z) holds. By combining Lemma 4.8 and Lemma 4.9
with Corollary 2.13, we can find ξ < λ such that κξ is an element of C, z ∈ Hκξ , and
for all α < κ, we have jξ

0,α(κ) = κ and jξ
0,α(γ) = γ. In this situation, we can find a

cardinal κξ < μ ∈ E with jξ
0,μ(κξ) = μ. Then, φ( jξ

0,μ(C), γ, z) holds in M ξ
μ , and since

Σ1-upwards absoluteness implies that this statement also holds in V, it follows that
jξ
0,μ(C) = C. Moreover, since κξ ∈ C, we can now use elementarity to conclude that

μ = jξ
0,μ(κξ) ∈ C ∩ E ≠ ∅. ∎

The next result generalizes [19, Theorem 1.26] and Lemma 4.3 to (possibly singular)
limits of singular cardinals:

Lemma 4.11 Let κ be a cardinal that is a limit of measurable cardinals, and let E
be a subset of κ with the property that the set {E} is definable by a Σ1-formula with
parameters in Ord ∪ Hκ. Then, there exists a closed unbounded subset C of κ of order
type κ with the property that the set {C} is definable by a Σ1-formula with parameters
in Hκ ∪ {κ}, and either C ⊆ E or C ∩ E = ∅ holds.

Proof We may assume that there is a Σ1-formula φ(v0 , v1 , v2), an ordinal γ, and
z ∈ Hκ with the property that E is the unique set x satisfying φ(x , γ, z). By Lemma 4.8,
there exists a measurable cardinal κ0 < κ with z ∈ Hκ0 and a normal ultrafilter U on
κ0 satisfying j0,α(κ) = κ and j0,α(γ) = γ for all α < κ, where

⟨⟨Mα ∣ α ∈ Ord⟩, ⟨ jα ,β ∶ Mα �→ Mβ ∣ α ≤ β ∈ Ord⟩⟩

is the linear iteration of ⟨V , ∈, U⟩. Given an ordinal α < κ, elementarity ensures
that φ( j0,α(E), γ, z) holds in Mα . In this situation, Σ1-upwards absoluteness implies
that φ( j0,α(E), γ, z) holds in V for all α < κ, and this allows us to conclude that
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j0,α(E) = E holds for all α < κ. If κ0 is an element of E, then these observations show
that { j0,α(κ0) ∣ α < κ} is a closed unbounded subset of E of order type κ. In the other
case, if κ0 ∉ E, then { j0,α(κ0) ∣ α < κ} is a closed unbounded subset of E of order type
κ that is disjoint from E.

Now, pick a transitive model N of ZFC− such that N contains κ and U and the
model ⟨N , ∈, U⟩ is linearly iterable. Let

⟨⟨Nα ∣ α ∈ Ord⟩, ⟨iα ,β ∶ Nα �→ Nβ ∣ α ≤ β ∈ Ord⟩⟩

denote the linear iteration of ⟨N , ∈, U⟩. In this situation, the fact that P(κ0) ⊆ N
implies that j0,α(κ0) = i0,α(κ0) holds for all α < κ. Since the class of all sets N with
the above properties is definable by a Σ1-formula with parameter U, we can conclude
that the set {{ j0,α(κ0) ∣ α < κ}} is definable by a Σ1-formula with parameters in
Hκ ∪ {κ}. ∎

The techniques used in the above proofs also allow us to prove the second part of
Theorem 4.6:

Proof of Theorem 4.6 Let κ be a limit of measurable cardinals. Then, Lemma 4.10
shows that every unbounded subset of κ that consists of cardinals is Σ1(Ord)-
stationary. Now, let S be a Σ1(Ord)-stationary subset of κ, and let r ∶ κ�→ κ be a
regressive function that is definable by a Σ1-formula φ(v0 , . . . , v3), an ordinal γ, and
an element z of Hκ. As in the proof of Lemma 4.11, we can now find a measurable
cardinal κ0 < κ with z ∈ Hκ0 and a normal ultrafilter U on κ0 with the property that
j0,α(γ) = γ holds for all α < κ, where

⟨⟨Mα ∣ α ∈ Ord⟩, ⟨ jα ,β ∶ Mα �→ Mβ ∣ α ≤ β ∈ Ord⟩⟩

denotes the linear iteration of ⟨V , ∈, U⟩. Let r(κ0) = ξ < κ0. Then, φ(κ0 , ξ, γ, z)
holds in V, and for all α < κ, elementarity implies that φ( j0,α(κ0), ξ, γ, z) holds
in Mα . Given α < κ, Σ1-upwards absoluteness now implies that φ( j0,α(κ0), ξ, γ, z)
holds in V, and hence, r( j0,α(κ0)) = ξ. This shows that the restriction of r to the
closed unbounded subset C = { j0,α(κ0) ∣ α < κ} of κ is constant with value ξ.
Moreover, the proof of Lemma 4.11 shows that the set {C} is definable by a Σ1-
formula with parameters κ and U. Since Corollary 2.11 and Lemma 4.10 show that
the set C ∩ S is Σ1(Ord)-stationary in κ, these arguments show that r is constant on a
Σ1(Ord)-stationary subset of S. ∎

4.3 Partition properties

Remember that, given uncountable cardinals μ < κ, the cardinal κ is μ-Rowbottom
if the square brackets partition relation κ�→ [κ]<ω

λ ,<μ holds true for all λ < κ (i.e.,
for every λ < κ and every function c ∶ [κ]<ω �→ λ, there exists H ∈ [κ]κ with
the property that ∣c[[H]<ω]∣ < μ). Moreover, ω1-Rowbottom cardinals are called
Rowbottom cardinals. The following lemma connects this partition property to the
Σ1-undefinability property:

Lemma 4.12 Let κ be a μ-Rowbottom cardinal. If either κ = ωω or ρ<μ < κ holds for
all ρ < κ, then κ has the Σ1(μ)-undefinability property.
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Proof Assume, toward a contradiction, that there is a Σ1-formula φ(v0 , v1 , v2), an
element z of Hμ , and an ordinal α in [μ,κ) that is the unique set x such that φ(x ,κ, z)
holds.

Claim There exists an elementary submodel X of Hκ+ satisfying tc({z}) ∪ {κ, α} ⊆ X,
∣X ∩ α∣ < ∣α∣ and ∣X ∩ κ∣ = κ.

Proof of the Claim Define L to be the countable first-order language that extends
L∈ by a unary predicate symbol Ṗ, a unary function symbol ṡ, a constant symbol κ̇, a
constant symbol α̇, and a constant symbol ċy for every y ∈ tc({z}). Pick an elementary
submodel M of Hκ+ of cardinality κ with tc({z}) ∪ (κ + 1) ⊆ M and a surjection
s ∶ κ�→ M. Now, let A denote an L-expansion of ⟨M , ∈⟩ with ṖA = α, ṡA ↾ κ = s,
κ̇A = κ, α̇A = α, and ċA

y = y for all y ∈ tc({z}). In addition, we define ρ = ∣α∣ ≥ μ.
First, assume that ρ<μ < κ holds. Then, [10, Theorem 8.5] yields an elementary

substructure X of A of cardinality κ with ∣X ∩ α∣ < μ ≤ ρ. This setup then ensures that
tc({z}) ∪ {κ, α} ⊆ X, and since ran(s ↾ X) = X, we also know that ∣X ∩ κ∣ = κ.

In the other case, assume that κ = ωω . Then, ρ is regular and κ is also
ρ-Rowbottom. Another application of [10, Theorem 8.5] now produces an elementary
substructure X of A of cardinality κ with ∣X ∩ α∣ < ρ. As above, we can conclude that
tc({z}) ∪ {κ, α} ⊆ X and ∣X ∩ κ∣ = κ. ∎

Let π ∶ X �→ N denote the corresponding transitive collapse. Then, our setup
ensures that π(κ) = κ, π(z) = z, and π(α) < α. Moreover, since Σ1-absoluteness
causes φ(α,κ, z) to hold in Hκ+ and X, we know that φ(π(α),κ, z) holds in N. But
then, Σ1-upwards absoluteness implies that this statement holds in V, contradicting
our assumptions. ∎

Recall that a cardinal κ is Jónsson if for every function f ∶ [κ]<ω �→ κ, there is a
proper subset H ofκ of cardinalityκwith f [[H]<ω] ⊆ H. Motivated by the notoriously
open question whether the first limit cardinal ωω can be Jónsson, we show that
this assumption causes analogs of central results from the previous two sections to
hold at ωω .

Theorem 4.13 If ωω is a Jónsson cardinal, then the following statements hold:
(1) Every infinite subset of {ωn ∣ n < ω} is Σ1-stationary in ωω .
(2) If r ∶ ωω �→ ωω is a regressive function that is definable by a Σ1-formula with

parameters in Hℵω ∪ {ωω}, then r is constant on an infinite subset of {ωn ∣ n < ω}.

Proof Since ωω is the least Jónsson cardinal, we know that ωω is ωn-Rowbottom
for some 0 < n < ω (see [10, Proposition 8.15]). Then, Lemma 4.12 implies that ωω has
the Σ1(ωk)-undefinability property for all n ≤ k < ω. An application of Corollary 2.13
then shows that every infinite subset of {ωm ∣ m < ω} is Σ1-stationary in ωω .

Now, assume that r ∶ ωω �→ ωω is a regressive function that is definable by a
Σ1-formula with parameters in Hℵω ∪ {ωω}. Then, we can find 0 < n < ω and z ∈ Hℵn

such that ωω is ωn-Rowbottom and r is definable by a Σ1-formula φ(v0 , . . . , v3)
and the parameters ωω and z. By repeating the proof of Lemma 4.12, we can find
an elementary submodel X of Hℵω+1 with tc({z}) ∪ {κ} ⊆ X, ∣X ∩ ωω ∣ = ℵω , and
∣X ∩ ωn ∣ = ℵn−1. Let π ∶ X �→ N denote the corresponding transitive collapse. Then,
ωω ∈ N , π(ωω) = ωω and ωn ∈ ran(π). Set λ = π−1(ωn) < ωn . Then, π ↾ λ = idλ ,
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and an easy induction shows that π(ωk) < ωk holds for all n ≤ k < ω. In particular,
we know that π−1(α) > α holds for all ωn ≤ α < ωω . By elementarity, the formula
φ(v0 , . . . , v3) and the parameters ωω and z define a regressive function in N. In
particular, Σ1-upwards absoluteness implies that φ(α, r(α), ωω , z) holds in N for all
α < ωω . We now define a strictly increasing sequence ⟨μ i ∣ i < ω⟩ of ordinals in the
interval [ωn , ωω) by setting μ0 = ωn and μ i+1 = π−1(μ i) for all i < ω. We can then
inductively show that each μ i is a cardinal with r(μ i) = r(λ), and hence, r is constant
on an infinite subset of {ωm ∣ m < ω}. ∎

We end this section by presenting an example of an application of the concepts
isolated in this paper to reduce the class of models of set theory in which ωω possesses
strong partition properties. In particular, we will show that ωω is not ω2-Rowbottom
in the standard models of strong forcing axioms, where the given axiom was forced
over a model of the GCH by turning some large cardinal into ω2. This implication will
be a direct consequence of the following observation:

Lemma 4.14 Assume that there is a natural number n∗ > 1 such that there are no
special ωn∗-Aronszajn trees, and for all n∗ < n < ω, there are special ωn-Aronszajn trees.
Then, the set {ωn∗} is definable by a Σ1-formula with parameter ωω , and the cardinal
ωω is not ωn∗-Rowbottom.

Proof Consider the collection of all transitive models M of ZFC− with the following
properties:

• ωω + 1 ⊆ M.
• ωω = ωM

ω .
• In M, for every n∗ < n < ω, there is a special ωM

n -Aronszajn tree.

The collection of such models M is not empty as it includes Hℵω+1 . It is clear that for
each model M in this collection, we have ωM

n∗ = ωn∗ . Hence, we can conclude that
the set {ωn∗} is definable by the Σ1-formula with parameter ωω that says there is a
model M with the above properties and x is equal to ωM

n∗ . In particular, this shows
that the cardinal ωω does not have the Σ1(ωn∗)-undefinability property, and hence,
Lemma 4.12 shows that ωω is not ωn∗-Rowbottom. ∎

If we start in a model of the GCH containing a supercompact cardinal and use
the canonical forcing to force the validity of some strong forcing axiom, like PFA
or MM++, then a result of Baumgartner shows that the tree property holds at ω2,
and since the GCH holds above ℵ0, a result of Specker ensures that there are special
ωn-Aronszajn trees for all 2 < n < ω. Therefore, the above lemma shows that ωω is
not ω2-Rowbottom in these models. This observation should be compared with the
consistency results of König in [12].

5 Equiconsistency results

We build on the results of the previous sections to obtain more equiconsistency results
that witness various ways by which different types of Σ1-definable closed unbounded
sets of cardinals κ fail to approximate the closed unbounded filter on κ.
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5.1 Limits of uncountably many measurable cardinals

We start by showing that, in the case of singular cardinals of uncountable cofinality,
Theorem 4.6 provides the right consistency strength for both of the listed conclusions.
In contrast, we will later show that the consistency strength for singular cardinals of
countable cofinality is merely a single measurable cardinal.

Theorem 5.1 Let κ be a singular cardinal of uncountable cofinality. If there is no
inner model with cof(κ)-many measurable cardinals, then the following statements
hold:

(1) Every subset of κ that is Σ1-stationary in κ is stationary in κ. In particular, there
is an unbounded subset of κ that consists of cardinals and is not Σ1-stationary
in κ.

(2) There exists a regressive function r ∶ κ�→ κ that is definable by a Σ1-formula with
parameters in Hκ ∪ {κ} and is not constant on any unbounded subset of κ.

Proof By [11, Theorem 2.14], our assumptions imply that 0l ong (as defined in [11,
Definition 2.13]) does not exist. Let Ucan denote the canonical sequence of measures,
and let K[Ucan] denote the canonical core model (as defined in [11, Definition 3.15]).
Then, our assumption ensures that dom(Ucan) has order-type less than cof(κ).
Moreover, since cof(κ) is uncountable, we can apply [11, Theorem 3.23] to show that κ
is not measurable in K[Ucan]. But this allows us to use [11, Theorem 3.20] to conclude
that κ is singular in K[Ucan]. Set U = Ucan ↾ κ and K = K[U] (see [11, Definition 3.1]).
Then, U ∈ Hκ and [11, Theorem 3.9] shows that P(κ)K[Ucan] ⊆ K. In particular, we
know that κ is singular in K, and we can define c ∶ cof(κ)K �→ κ to be the <K[U]-
least cofinal function in K (see [11, Theorem 3.4]). Then, [16, Lemma 2.3] shows that c
is definable by a Σ1-formula with parameters in Hκ ∪ {κ}. But this shows that there is
a closed unbounded subset C ofκ of order-type cof(κ)K such that min(C) > cof(κ)K,
and the set {C} is definable by a Σ1-formula with parameters in Hκ ∪ {κ}. As in the
proof of Corollary 3.4, we now know that every subset of κ that is Σ1-stationary in κ
is stationary in κ. Finally, the function

r ∶ κ�→ cof(κ)K; α �→ otp (C ∩ α)

is a regressive function that is definable by a Σ1-formula with parameters in Hκ ∪ {κ}
and is not constant on any unbounded subset of κ. ∎

By combining this result with Theorem 4.6, we obtain the following equiconsis-
tency:

Corollary 5.2 The following statements are equiconsistent over ZFC:

(1) There exist uncountably many measurable cardinals.
(2) There exists a singular cardinal κ of uncountable cofinality with the property that

some nonstationary subset of κ is Σ1-stationary in κ.
(3) There exists a singular cardinal κ of uncountable cofinality with the property that

some nonstationary subset of κ is Σ1(Ord)-stationary in κ.
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5.2 Countable cofinalities

The aim of this section is to prove the following equiconsistency result:

Theorem 5.3 The following statements are equiconsistent over ZFC:
(1) There is a measurable cardinal.
(2) Every unbounded subset of {ωn ∣ n < ω} is Σ1(Ord)-stationary in ωω .
(3) There is a singular cardinal κ of countable cofinality and a subset of κ that consists

of cardinals and is Σ1(Ord)-stationary in κ.
(4) There is a singular cardinal κ of countable cofinality and a subset of κ that consists

of cardinals and is Σ1-stationary in κ.

Remark 5.4 The restriction to Σ1(Ord)-definability in (2) of the theorem is optimal
since the sequence ⟨ωn ∣ n < ω⟩ is Σ2(Ord)-definable.

In the following arguments, we will make use of the Easton-support collapse
version from [18] of a universal collapse forcing (see [6] for a comprehensive back-
ground).

Definition 5.1 Suppose that κ is a Mahlo cardinal, and let

Iκ = {ω} ∪ {γ < κ ∣ γ is inaccessible}.

For each γ ∈ Iκ, we define Q(γ, <κ) to be the product

Q(γ, <κ) = ∏
δ∈Iκ/γ

Col(δ, <κ)

with the Easton-support.

Remark 5.5 The partial orderQ(γ, <κ) is clearly definable from the ordinals γ andκ,
and forcing with Q(γ, <κ) collapses all cardinals in the interval (γ,κ). Since this
partial order is <γ-closed and satisfies the κ-chain condition, the cardinal κ becomes
γ+ in Q(γ, <κ)-generic extensions. In the following, we will rely on the following two
useful features of this partial order:
(1) If δ < κ is a Mahlo cardinal and γ ∈ Iδ , then Q(γ, <δ) ×Q(δ, <κ) is a regular

subforcing of Q(γ, <κ).
(2) Q(γ, <κ) is weakly homogeneous.
The proofs are left to the reader (see also [18]).

Before proving Theorem 5.3, we review some basic facts about Prikry forcing and
products of collapse forcings. Suppose that κ is a measurable cardinal and U is a nor-
mal measure on κ. We let PU denote the Prikry forcing given by U. Conditions PU are
then of the form p = ⟨sp , Ap⟩, where sp ∈ [κ]<ω is a finite sequence of Mahlo cardinals
and Ap ∈ U consists of Mahlo cardinals and satisfies min(Ap) > max(sp). We then
have p ≤PU q if sp end-extends sq , Ap ⊆ Aq , and sp/sq ⊆ Aq . If, moreover, sp = sq holds,
then we say p is a direct extension of q, denoted by p ≤∗

PU
q. Given a condition p in PU

and t ∈ [Ap]<ω , we let p⌢t denote the condition ⟨sp ∪ t, Ap/(max(t) + 1)⟩. Finally, if
G is PU -generic filter over V, then its associated Prikry sequence κ⃗G = ⟨κG

n ∣ n < ω⟩ is
defined by κ⃗G = ⋃{s ∈ [κ]<ω ∣ ∃A ∈ U ⟨s, A⟩ ∈ G}. Below, we record some of the basic
properties of PU that will be used in the following arguments (see [8] for details).
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Fact 5.6

(1) The direct extension order ≤∗
PU

is <κ-closed.
(2) Forcing with PU does not introduce new bounded subsets of κ.
(3) The partial order PU satisfies the κ+-chain condition.
(4) (Prikry Property) For every condition q in PU and every statement σ in the forcing

language of PU , there is p ≤∗
PU

q which decides σ.
(5) (Strong Prikry Property) For every condition q in PU and every dense open set D

of PU , there is p ≤∗
PU

q and n < ω such that D contains all conditions of the form
p⌢t with t ∈ [Ap]n .

(6) (Name-Capturing Property) For every condition q inPU and everyPU -name ḟ for a
function with domain ω with the property that ḟ G(n) ∈ HκG

n
holds whenever n < ω

and G is PU -generic over V with q ∈ G, there is a condition p ≤∗
PU

q and a function
F ∶ [Ap]<ω �→ Hκ so that

p⌢t ⊩PU “ ḟ (∣šp ∪ ť∣) = F̌(ť) ”

holds for every t ∈ [A∗]<ω .
(7) A PU -generic filter G is generated by its induced Prikry sequence κ⃗G in the sense

that G = {⟨κ⃗G ↾ n, A⟩ ∣ n < ω, κ⃗G/n ⊆ A ∈ U}.
(8) (Mathias Criterion) A sequence κ⃗ = ⟨κn ∣ n < ω⟩ generates aPU -generic filter if and

only if κ⃗/A is finite for every A ∈ U.

To push the construction down to ωω , we force with a product of collapse posets
after adding a Prikry forcing. Let ρ⃗ = ⟨ρn ∣ n < �ρ⃗⟩ be a strictly increasing sequence of
Mahlo cardinals of length 0 < �ρ⃗ ≤ ω and define Cρ⃗ to be the product

Q(ω, <ρ0) × ∏
0<n<�ρ⃗

Q(ρn−1 , <ρn)

with full support. Therefore, conditions in Cρ⃗ are sequences q = ⟨qn ∣ n < �ρ⃗⟩ with
q0 ∈ Q(ω, <ρ0) and qn ∈ Q(ρn−1 , <ρn) for all 0 < n < �ρ⃗ .

Remark 5.7

(1) Standard arguments about product forcings show that if G is Cρ⃗ -generic over V,
then ρn = ωV[G]

n+1 holds for every n < �ρ⃗ .
(2) By the absorption argument for the Easton-support collapse product

(Remark 5.5), if s is a finite strictly increasing sequences of Mahlo cardinals and
t is a subsequence of s with max(s) = max(t), then Cs is a regular subforcing
of Ct . This directly implies that if ρ⃗ is a strictly increasing sequence of Mahlo
cardinals of length ω and s is a finite subset of ρ⃗, then Cρ⃗ is a regular subforcing of
Cρ⃗ /s . Moreover, the associated forcing projection from Cρ⃗ /s to Cρ⃗ is the identity
on the components below min(s) and above min (ρ⃗/(max(s) + 1)).

(3) The forcing Cρ⃗ is weakly homogeneous. Therefore, if some condition in Cρ⃗ forces
a statement with ground model parameters to hold, then every condition forces
this statement to hold. Similarly, for every sequence ρ⃗ and an initial segment s,
the quotient forcing Cρ⃗/Cs is also weakly homogeneous.
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In the following, let Ċ denote the canonical PU -name for a partial order with the
property that ĊG = Cκ⃗G holds whenever G is PU -generic over V. The argument of the
following Lemma will give the forcing direction of Theorem 5.3.

Lemma 5.8 If G ∗ H is (PU ∗ Ċ)-generic over V and γ ≥ κ is an ordinal, then in
V[G , H], the cardinal ωω has the Σ1(ωn , γ)-undefinability property for all sufficiently
large natural numbers n.

Proof Fix a condition p∗ in PU . For each natural number n ≥ ∣sp∗ ∣, let σn be the
statement in the forcing language of PU that says that there is a condition in Ċ which
forces that κ does not have the Σ1(κ̇n , γ)-undefinability property, where κ̇n denotes
the canonical PU -name for κG

n . By the Prikry property, for each ∣sp∗ ∣ ≤ n < ω, there is
a condition pn ≤∗

PU
p∗ that decides σn . We complete the proof by showing that for all

∣sp∗ ∣ ≤ n < ω, the condition pn forces ¬σn to hold. Suppose otherwise that pn ⊩PU σn
for some ∣sp∗ ∣ ≤ n < ω. Pick a condition p ≤PU pn with ∣sp ∣ = n. Since p ⊩PU σn , there
is a PU -name q̇ for a condition in Ċ so that

⟨p, q̇⟩ ⊩
PU∗Ċ

“κ does not have the Σ1(κ̇n , γ̌)-undefinability property. ”

Since κ̇n is a PU -name and Ċ is forced to be weakly homogeneous (see Remark 5.7),
we can assume that q̇ is the name for the trivial condition 1̇

Ċ
in Ċ. This allows us to

find (PU ∗ Ċ)-names ẋ, α̇, and τ̇ so that ⟨p, 1̇
Ċ
⟩ forces the following statements to

hold:
• ẋ is an element of Hκ̇n .
• α̇ is an ordinal in the interval [κ̇n , κ̌).
• τ̇ is the Gödel number of a Σ1-formula φ(v0 , . . . , v3) that defines the set {α̇} using

the parameters κ̌, γ̌, and ẋ.
Making another use of the fact that Ċ is forced to be a weakly homogeneous

partial order, we may assume α̇ and τ̇ are PU -names. Moreover, using the Prikry
property of PU , we may also assume that p decides that τ̇ codes a given Σ1-formula
φ(v0 , . . . , v3). Since the quotient forcing Cκ⃗G /Cκ⃗G↾(n+1) is weakly homogeneous
whenever G is PU -generic over V, we may assume that ẋ is a (PU ∗ Ċn)-name, where
Ċn is the canonical PU -name for Cκ⃗G↾(n+1). In addition, since forcing with PU does
not add new bounded sets toκ and Ċn is forced to satisfy the κ̇n-chain condition, there
is a PU -name ẏ with the property that whenever G is PU -generic over V with p ∈ G,
then ẏG is a Cκ⃗G↾(n+1)-name in HV

κG
n

that Cκ⃗G↾(n+1) forces to be equal to ẋ. The fact
that p⌢⟨ρ⟩ ⊩PU “ κ̇n = ρ̌ ” holds for every ρ ∈ Ap allows us to use the name-capturing
property of PU (see Fact 5.6) to find a function Y ∶ Ap �→ Hκ with the property that
for every ρ ∈ Ap , the set Y(ρ) is a Csp∪{ρ}-name in Hρ with p⌢⟨ρ⟩ ⊩PU “ ẏ = Y̌(ρ̌). ”
Using the normality of U, we can find A ⊆ Ap in U and ẏ0 in Hκ with the property
that Y(ρ) = ẏ0 holds for all ρ ∈ A. Let ρ0 = min(A). Then, we can find an ordinal
α in the interval [ρ0 ,κ) and a condition r0 ≤PU p⌢⟨ρ0⟩ with α < max(sr0) and
r0 ⊩PU “ α̇ = α̌. ” Set ρ1 = min(A∩ Ar0) and r1 = ⟨sp ∪ {ρ1}, Ar0/(ρ1 + 1)⟩. Then, r1
is a condition in PU that strengthens p⌢⟨ρ1⟩. Let G1 ∗ H1 be (PU ∗ Ċ)-generic over
V with r1 ∈ G1. We then have κG1

n = ρ1 > max(sr0) > α. By the Mathias criterion
for PU (see Fact 5.6), the sequence sr0

⌢(κ⃗G1 ↾ [n, ω)) generates a PU -generic filter
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G0 over V that is an element of V[G1]. It is then clear that r0 is an element of G0
and V[G0] = V[G1]. Moreover, since κ⃗G1 ↾ n = sp = sr0 ↾ n, it follows that κ⃗G1 is
a subsequence of κ⃗G0 with finite difference, and hence, the absorption property of
Easton collapse posets (see Remark 5.5) ensures that the partial orderCκ⃗G0 is a regular
subforcing of the partial order Cκ⃗G1 . Let H0 ∈ V[G0 , H1] denote the filter on Cκ⃗G0

induced by H1. Since H0 and H1 induce the same filter on Csp∪{ρ0}, we know that
ẏH0

0 = ẏH1
0 . This implies that φ(α,κ, γ, ẏH1

0 ) holds in V[G0 , H0], and by Σ1-upwards
absoluteness, this statement also holds in V[G0 , H1]. But this yields a contradiction
because the fact that r1 is an element of G1 implies that α̇G1 ≥ κG1

n = ρ1 > α and α̇G1 is
the unique element a of V[G0 , H1] with the property that φ(a,κ, γ, ẏH1

0 ) holds. ∎

A combination of the above lemma with Corollary 2.13 now directly yields the
following result:

Corollary 5.9 If G ∗ H is (PU ∗ Ċ)-generic over V, then in V[G , H], every unbounded
subset of {ωn ∣ n < ω} is Σ1(Ord)-stationary in ωω .

We are now ready to prove the main result of this section:

Proof of Theorem 5.3 First, let κ be a singular cardinal of countable cofinality, and
let E be a subset of κ that consists of cardinals and is Σ1(Ord)-stationary in κ. Assume,
toward contradiction, that there is no inner model with a measurable cardinal. Then,
κ is singular in the Dodd-Jensen core model KDJ . By Lemma 3.3, there is a cofinal
function c ∶ cof(κ)KDJ

�→ κ which is definable by a Σ1-formula with parameter κ. In
addition, pick a cofinal function g ∶ ω �→ cof(κ)KDJ

. Then the composition f = c ○ g ∶
ω �→ κ is cofinal in κ and Σ1-definable from the parameters κ and g ∈ Hκ. Then, the
C = { f (n) + 1 ∣ n < ω} is closed unbounded in κ, and it is definable by a Σ1-formula
with parameters in Hκ ∪ {κ}. Since it consists of successor ordinals, it is disjoint
from E, contradicting our assumptions.

The above computations show that (4) implies (1) in the statement of the theorem.
This completes the proof of the theorem because the implications from (2) to (3)
and from (3) to (4) are trivial, and the implication from (1) to (2) is given by
Corollary 5.9. ∎

By combining Theorem 5.3 with the second part of Corollary 3.6, we derive the
following equiconsistency result that shows that the statement of Proposition 2.8 is
optimal in ZFC.

Corollary 5.10 The following statements are equiconsistent over ZFC:

(1) There is a measurable cardinal.
(2) There is a singular cardinal κ of countable cofinality with the property that for every

subset A of Hκ of cardinality r, there exists a subset E of κ such that both E and κ/E
are Σ1(A)-stationary.

(3) There is a singular cardinal κ of countable cofinality with the property that there
exists a subset E of κ such that both E and κ/E are Σ1(Ord)-stationary.
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5.3 Successors of regular cardinals

We continue by studying Σ1(A)-stationary subsets of successor cardinals. In this
section, we prove the following equiconsistency result for successors of regular
cardinals:

Theorem 5.11 The following statements are equiconsistent over ZFC:
(1) There is a Mahlo cardinal.
(2) There is a regular cardinal μ with the property that the set {μ} is Σ1(Hμ)-stationary

in μ+.
(3) There is a regular cardinal μ with the property that the set {μ} is Σ1-stationary

in μ+.

Lemma 5.12 If κ is a Mahlo cardinal, then there exists an inaccessible cardinal δ < κ
with the property that Q(δ, <κ) forces κ to have the Σ1(δ)-undefinability property.

Proof Assume, toward a contradiction, that no such δ exists. Then, for every
inaccessible γ ∈ Iκ, the fact that Q(γ, <κ) is weakly homogeneous (see Remarks 5.5
and 5.7) allows us to find xγ , αγ , and τγ such that the following statements hold:
• xγ is an element of Hγ .
• αγ is an ordinal in the interval [γ,κ).
• τγ is a Gödel number of a Σ1-formula φ(v0 , v1 , v2) with the property that the trivial

condition of Q(γ, <κ) forces that αγ is the unique set a such that φ(a,κ, xγ) holds.

Since κ is a Mahlo cardinal, we can find a stationary subset S of κ consisting of
inaccessible cardinals, an element x of Hκ, and a Σ1-formula φ(v0 , v1 , v2) such that for
all γ ∈ S, we have xγ = x and τγ is a Gödel number of φ(v0 , v1 , v2). Let γ0 = min(S)
and γ1 = min(S/(αγ0 + 1)). Clearly, we then have γ0 < γ1 and αγ1 > αγ0 . Let G0 be
Q(γ0 , <κ)-generic over V. As Q(γ1 , <κ) is a regular subforcing of Q(γ0 , <κ), we can
now find G1 ∈ V[G0] that is Q(γ1 , <κ)-generic over V. In this situation, we know
that φ(αγ1 ,κ, x) holds in V[G1], and by Σ1-upwards absoluteness, this statement
also holds in V[G0]. But this yields a contradiction because αγ1 > αγ0 , and αγ0 is the
unique element a of V[G0] with the property that φ(a,κ, x) holds in V[G0]. ∎

Proof of Theorem 5.11 Suppose that μ is a regular cardinal so that the set {μ} is
Σ1-stationary in μ+. Assume, toward a contradiction, that κ = μ+ is not a Mahlo
cardinal in L. Then, there is a constructible closed unbounded subset of κ whose
elements are singular in L. Let C denote the <L-least such subset of κ. Then, the set
{C} is definable by a Σ1-formula with parameter κ, and hence, we know that μ is an
element of C. But this is a contradiction because all elements of C are singular.

The above computations yield the implication from (3) to (1) in the statement of
the theorem. The implication from (1) to (2) is given by a combination of Lemma 2.12
and Lemma 5.12. Finally, the implication from (2) to (3) is trivial. ∎

5.4 Successors of singular cardinals

The last arguments used in the above proof of Theorem 5.11 do not apply if we
consider successors of singular cardinals. Indeed, it turns out that the corresponding
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assumption has much higher consistency strength. In one direction, we show that an
analogous statement holds for successors of limits of measurable cardinals:
Theorem 5.13 If κ is a limit of measurable cardinals, then the cardinal κ+ has the
Σ1(κ)-undefinability property.
Proof Assume, toward a contradiction, that there is a Σ1-formula φ(v0 , v1 , v2), an
ordinal α in the interval [κ,κ+), and an element z of Hκ such that α is the unique set
a with the property that φ(a,κ+ , z) holds. Pick a measurable cardinal δ < κ such that
z ∈ Hδ and cof(κ) ∈ δ ∪ {κ}. Pick a normal ultrafilter U on δ, and let

⟨⟨Mα ∣ α ∈ Ord⟩, ⟨ jα ,β ∶ Mα �→ Mβ ∣ α ≤ β ∈ Ord⟩⟩

denote the linear iteration of ⟨V , ∈, U⟩. Standard arguments now allow us to
conclude that j0,γ(κ+) = κ+ and j0,γ(z) = z holds for all γ < κ+ (see, for example,
[15, Lemma 7.3]). We can now pick γ < κ+ with j0,γ(δ) > α. Elementarity then implies
that φ( j0,γ(α),κ+ , z) holds in Mγ , and by Σ1-upwards absoluteness, this shows that
φ( j0,γ(α),κ+ , z) also holds in V. Since j0,γ(α) > α, this yields a contradiction. ∎

In combination with Lemma 2.12, the above result shows that if κ is a limit of
measurable cardinals, then the set {κ} is Σ1(Hκ)-stationary inκ+. We end this section
by showing that in the case of successors of singular cardinals, the used large cardinal
assumption is optimal. In the proof of this result, we again rely on the results of [11].
Theorem 5.14 Letκ be a singular cardinal with the property that the set {κ} is Σ1(Hκ)-
stationary in κ+. Then, there is an inner model with cof(κ)-many measurable cardinals.
Proof Assume, toward a contradiction, that the above conclusion fails. An applica-
tion of [11, Theorem 2.14] then shows that 0l ong does not exist. Let Ucan denote the
canonical sequence of measures, and let K[Ucan] denote the canonical core model.
Our assumption then implies that dom(Ucan ↾ κ) is a bounded subset of κ.
Claim κ+ = (κ+)K[Ucan]. ∎

Proof of the Claim First, if κ ∉ dom(Ucan), then the fact that dom(Ucan ↾ κ) is
bounded in κ allows us to use [11, Theorem 3.20] to derive the desired conclusion.
Hence, we may assume that κ is an element of dom(Ucan). An application of
[11, Theorem 3.23] then shows that cof(κ) = ω, and there is a generic extension of
K[Ucan] by finitely-many Prikry forcings that computes κ+ correctly. But this also
means that K[Ucan] computes κ+ correctly. ∎

Set U = Ucan ↾ κ ∈ Hκ. By [11, Theorem 3.9], we then have P(κ)K[Ucan] ⊆ K[U],
and hence, the above claim shows that κ+ = (κ+)K[U].
Claim The set {κ} is definable by a Σ1-formula with parameters κ+ and U.
Proof of the Claim If ζ < κ+ is an ordinal and M is a U-mouse (i.e., an iterable
premouse over U; see [11, Definition 2.5]) with κ+ ∈ l p(M) and κ+ = (ζ+)M , then a
direct adaptation of the proof of Lemma 3.1 shows that P(κ) ⊆ M, and hence, κ = ζ .
Since there exists a U-mouse that satisfies the listed properties with respect to κ, this
observation yields the desired definition of the set {κ}. ∎

The above claim directly yields a contradiction because it implies that the set
{(κ,κ+)} is definable by a Σ1-formula with parameters in Hκ ∪ {κ+}.
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6 Open Problems

There are many natural ways to vary Definition 2.2. For example, given a cardinal κ
greater than ω1, we may ask whether for some uncountable ordinal α < κ, the set {α} is
definable by a Σ1-formula with parameterκ. Since our arguments to derive consistency
strength from the undefinability property (as in the proof of Theorem 5.3) cannot be
directly adjusted to this variation, we arrive at the following question:
Question 6.1 Assume that for every uncountable ordinal α < ωω , the set {α} is not
definable by a Σ1-formula with parameter ωω . Does 0# exist?

In Section 4.3, we show that many of the implications of large cardinals on Σ1(A)-
stationary sets can also be derived for smaller cardinals in the case where these
cardinals possess strong partition properties. For some of these implications, it is
natural to ask whether they can be strengthened. First, since Lemma 4.12 relies on
additional assumptions on the given Rowbottom cardinal, we ask whether these
assumptions can be omitted:
Question 6.2 Does every μ-Rowbottom cardinal have the Σ1(μ)-undefinability
property?

Second, when we consider Σ1-definable regressive functions and compare the third
part of Theorem 4.1 and the second part of Theorem 4.6 with the second part of
Theorem 4.13, then we notice that our result for the case where ωω is Jónsson is
restricted to Σ1-stationary sets consisting of cardinals. We therefore ask if the given
conclusion can also be extended to arbitrary Σ1-stationary subsets in this setting.
Question 6.3 Assume that ωω is a Jónsson cardinal, S is a Σ1-stationary subset of
ωω , and r ∶ ωω �→ ωω is a regressive function that is definable by a Σ1-formula with
parameters in Hℵω ∪ {ωω}. Is r constant on a Σ1-stationary subset of S?

Finally, let us say that a cardinal κ is strongly measurable with respect to
Σ1(Ord)-clubs if there is an inner model W in which κ is measurable such that the
collection of Σ1(Ord)-closed unbounded subsets of κ (in V) is generated by the
intersection filter F ∈ W of η < κ many κ-complete ultrafilters on κ in W. The proof
of Theorem 5.3 shows that ωω can be strongly measurable with respect to Σ1-definable
clubs. Can the same hold for other singular cardinals such as ωω1 ?
Question 6.4 Can ωω1 be strongly measurable with respect to Σ1(Ord)-clubs?

See [3] for an analog of Prikry forcing, that changes the cofinality of a cardinal κ to
ω1 by a homogeneous poset.
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