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Fingering convection in a spherical shell
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We use 123 three-dimensional direct numerical simulations to study fingering convection
in non-rotating spherical shells. We investigate the scaling behaviour of the flow length
scale, the non-dimensional heat and compositional fluxes Nu and Sh and the mean
convective velocity over the fingering convection instability domain defined by 1 ≤ Rρ <

Le, Rρ being the ratio of density perturbations of thermal and compositional origins and Le
the Lewis number. We show that the chemical boundary layers are marginally unstable and
adhere to the laminar Prandtl–Blasius model, hence explaining the asymmetry between
the inner and outer spherical shell boundary layers. We develop scaling laws for two
asymptotic regimes close to the two edges of the instability domain, namely Rρ � Le and
Rρ � 1. For the former, we develop novel power laws of a small parameter ε measuring
the distance to onset, which differ from theoretical laws published to date in Cartesian
geometry. For the latter, we find that the Sherwood number Sh gradually approaches
a scaling Sh ∼ Ra1/3

ξ when Raξ � 1; and that the Péclet number accordingly follows

Pe ∼ Ra2/3
ξ |RaT |−1/4, RaT and Raξ being the thermal and chemical Rayleigh numbers.

When the Reynolds number exceeds a few tens, we report on a secondary instability
which takes the form of large-scale toroidal jets which span the entire spherical domain.
Jets distort the fingers, resulting in Reynolds stress correlations, which in turn feed the
jet growth until saturation. This nonlinear phenomenon can yield relaxation oscillation
cycles.

Key words: double diffusive convection, jets

1. Introduction

Double-diffusive effects are ubiquitous in fluid envelopes of planetary interiors. For
instance, in the liquid iron core of terrestrial planets, the convective motions are driven
by thermal and compositional perturbations which originate from the secular cooling
and the inner-core growth (e.g. Roberts & King 2013). Several internal evolution models
coupled with ab initio computations and high-pressure experiments for core conductivity
are suggestive of a thermally stratified layer underneath the core–mantle boundaries of
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Mercury (Hauck et al. 2004) and the Earth (e.g. Pozzo et al. 2012; Ohta et al. 2016). Such a
fluid layer could harbour fingering convection, where thermal stratification is stable whilst
compositional stratification is unstable (Stern 1960). In contrast, in the deep interior of
the gas giants Jupiter and Saturn, the internal models by Mankovich & Fortney (2020)
suggest the presence of a stabilising helium gradient opposed to the destabilising thermal
stratification, a physical configuration prone to semi-convective instabilities (Veronis
1965).

The linear stability analysis of double-diffusive systems, as carried out by e.g. Stern
(1960), Veronis (1965) and Baines & Gill (1969), shows that fingering convection occurs
in planar geometry when the density ratio Rρ = |αT�T|/αξ�ξ belongs to the interval

1 ≤ Rρ < Le, (1.1)

where αT (αξ ) are the thermal (compositional) expansion coefficient and �T (�ξ ) are
the perturbations of thermal (compositional) origin. In the above expression, Le is the
Lewis number, defined by the ratio of the thermal and solutal diffusivities. Note that the
upper bound of the instability domain, Le, ignores a correcting term that is a function
of the structure of the unstable mode, and that becomes negligible in the limit of large
thermal and compositional Rayleigh numbers, to be defined below (see e.g. Turner 1973,
§ 8.1.2). Close to onset, the instability takes the form of vertically elongated fingers, whose
typical horizontal size Lh results from a balance between buoyancy and viscosity and
follows Lh = |RaT |−1/4 d, where RaT is the thermal Rayleigh number and d is the vertical
extent of the fluid domain (e.g. Schmitt 1979b; Taylor & Bucens 1989; Smyth & Kimura
2007). Developed salt fingers frequently give rise to secondary instabilities, such as the
collective instability (Stern 1969), thermohaline staircase formation (Radko 2003) or jets
(Holyer 1984). The saturated state of the instability is therefore frequently made up of a
mixture of small-scale fingers and large-scale structures commensurate with the size of
the fluid domain. A mean-field formalism can then be successfully employed to describe
the secondary instabilities (e.g. Traxler et al. 2011b; Radko 2013).

Following Radko & Smith (2012), Brown, Garaud & Stellmach (2013) hypothesise
that fingering convection saturates once the growth rate of the secondary instability is
comparable to that of the primary fingers. In the context of the low Prandtl numbers
(Pr � 1) relevant to stellar interiors, they derive three branches of semi-analytical scaling
laws for the transport of heat and chemical composition which depend on the value
of rρ = (Rρ − 1)/(Le − 1). These theoretical scaling laws accurately account for the
behaviours observed in local three-dimensional (3-D) numerical simulations (see, e.g.
Garaud 2018, figure 2). In the context of large Prandtl numbers, Radko (2010) developed a
weakly nonlinear model for salt fingers which predicts that the scaling behaviours for the
transport of heat and chemical composition should follow power laws of the distance to
onset (see also Stern & Radko 1998; Radko & Stern 2000; Xie et al. 2017).

Besides the growth of the celebrated thermohaline staircases (Garaud et al. 2015),
the fingering instability can also lead to the formation of large-scale horizontal flows
or jets. By applying the methods of Floquet theory, Holyer (1984) demonstrated that
a non-oscillatory secondary instability could actually grow faster than the collective
instability for fluids with Pr � 1. This instability takes the form of a mean horizontally
invariant flow which distorts the fingers (see her figure 1). Cartesian numerical simulations
in two dimensions carried out by Shen (1995) later revealed that the nonlinear evolution
of this instability yields a strong shear that eventually disrupts the vertical coherence
of the fingers (see his figure 2). Jets were also obtained in the two-dimensional (2-D)
simulations by Radko (2010) for configurations with Pr = 10−2 and Le = 3 and by
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Fingering convection in a spherical shell

Garaud & Brummell (2015) for Pr = 0.03 and Le ≈ 33.3. In addition to the direct
numerical simulations, jets have also been observed in single-mode truncated models by
Paparella & Spiegel (1999) and Liu, Julien & Knobloch (2022). The qualitative description
of the instability developed by Stern & Simeonov (2005) underlines the analogy with
tilting instabilities observed in Rayleigh–Bénard convection (e.g. Goluskin et al. 2014): jets
shear apart fingers, which in turn feed the growth of jets via Reynolds stress correlations.
The nonlinear saturation of the instability can occur via the disruption of the fingers
(Shen 1995), but can also yield relaxation oscillations with a predator–prey-like behaviour
between jets and fingers (Garaud & Brummell 2015; Xie, Julien & Knobloch 2019).
Garaud & Brummell (2015) suggest, however, that this instability may be confined to 2-D
fluid domains, and hence question the relevance of jet formation in three dimensions when
Pr � 1. The 3-D bounded planar models by Yang, Verzicco & Lohse (2016) for Pr = 7,
however, exhibit jets for simulations with Rρ = 1.6. This raises the question of the physical
phenomena which govern the instability domain of jets. In addition, to date, jets have only
been observed in local simulations containing a few tens of fingers; their relevance in 3-D
global domains therefore remains to be assessed.

The vast majority of the theoretical and numerical models discussed above adopt a
local Cartesian approach. Two configurations are then considered. The most common,
termed unbounded, resorts to using a triply periodic domain without boundary layers (e.g.
Stellmach et al. 2011; Brown et al. 2013). Conversely, in the bounded configurations,
the flow is maintained between two horizontal plates and boundary layers can form in
the vicinity of the boundaries (e.g. Schmitt 1979b; Radko & Stern 2000; Yang et al.
2015). This latter configuration is also relevant to laboratory experiments in which thermal
and/or chemical compositions are imposed at the boundaries of the fluid domain (e.g.
Taylor & Bucens 1989; Hage & Tilgner 2010; Rosenthal, Lüdemann & Tilgner 2022).
One of the key issues of the bounded configuration is to express scaling laws that depend
on the thermal �T and/or compositional �ξ contrasts imposed over the layer. Early
experiments by Turner (1967) and Schmitt (1979a) suggest that the salinity flux grossly
follows a 4/3 power law on �ξ , with an additional secondary dependence on Rρ , Pr and
Le (see Taylor & Veronis 1996). Expressed in dimensionless quantities, this translates
to Sh ∼ Ra1/3

ξ , Sh being the Sherwood number and Raξ a composition-based Rayleigh
number. This is the double-diffusive counterpart of the classical heat transport model
for turbulent convection in which the heat flux is assumed to be depth independent
(Priestley 1954). Yang et al. (2015) refined this scaling by extending the Grossmann–Lohse
theory for classical Rayleigh–Bénard convection (hereafter GL, see Grossmann & Lohse
2000) to the fingering configuration. Considering a suite of 3-D bounded Cartesian
numerical simulations with Pr = 7 and Le = 100, Yang et al. (2016) then found that the
dependence of Sh upon Raξ is well accounted for by the GL theory. Scaling laws for the
Reynolds number Re put forward by Yang et al. (2016) involve an extra dependence on
the density ratio with an empirical exponent of the form Re ∼ R−1/4

ρ Ra1/2
ξ . This latter

scaling differs from the one obtained by Hage & Tilgner (2010) – Re ∼ Raξ |RaT |−1/2

– using experimental data with Pr ≈ 9 and Le ≈ 230. Differences between the two could
possibly result from the amount of data retained to derive the scalings. Both studies indeed
also consider configurations with Rρ < 1 where overturning convection can also develop
and modify the scaling behaviours. The development of boundary layers makes the
comparison between bounded and unbounded configurations quite delicate, as it requires
defining effective quantities measured on the fluid bulk in the bounded configuration (see
Radko & Stern 2000; Yang et al. 2020).
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In planetary interiors, fingering convection operates in a quasi-spherical fluid gap
enclosed between two rigid boundaries in the case of terrestrial bodies. For terrestrial
planets possessing a metallic iron core, the Prandtl number Pr is O(10−1), while the
Lewis number Le is O(103) (e.g. Roberts & King 2013). The depth of the fingering
convection region is more uncertain. In any event, it would correspond to a thin shell
in the case of Earth, with a ratio between the inner radius ri and the outer radius ro
larger than ri/ro = 0.9 (e.g. Labrosse 2015, and references therein), while a deeper shell
configuration is more likely for Mercury, since the corresponding fluid layer may be
as thick as 880 km (Wardinski et al. 2021), yielding a radius ratio close to 0.6. One
of the main goals of this study is to assess the applicability of the results derived in
local planar geometry to global spherical shells. Because of curvature and the radial
changes of the buoyancy force, spherical-shell convection differs from the plane layer
configuration and yields asymmetrical boundary layers between both boundaries (e.g.
Gastine, Wicht & Aurnou 2015). Only a handful of studies have considered fingering
convection in spherical geometry and they all incorporate the effects of global rotation,
which makes the comparison with planar models difficult. Silva, Mather & Simitev (2019)
and Monville et al. (2019) computed the onset of rotating double-diffusive convection
in both the fingering and semi-convection regimes. Monville et al. (2019) and Guervilly
(2022) also considered nonlinear models with Pr = 0.3 and Le = 10 and observed the
formation of large-scale jets. Guervilly (2022) also analysed the scaling behaviour of the
horizontal size of the fingers and their mean velocity. At a given rotation speed, the finger
size Lh gradually transits from a large horizontal scale close to onset to decreasing length
scales on increasing supercriticality. When rotation becomes less influential, Lh tends to
conform with Stern’s scaling. The mean fingering velocity was found to loosely follow the
scalings by Brown et al. (2013) (see Guervilly’s figure 10b), deviations from the theory
likely occurring because of the imprint of rotation on the dynamics.

While our long-term objective is to conduct global simulations of fingering convection
in the presence of global rotation, we opt for an incremental approach. Our immediate
goal with the present work is twofold: (i) to assess the salient differences (if any) between
fingering convection in global, non-rotating spherical domains and fingering convection in
local, non-rotating Cartesian domains; (ii) to examine the occurrence of jet formation in
spherical-shell fingering convection. To do so, we conduct a systematic parameter survey
of 123 direct numerical simulations in a spherical geometry, varying the Prandtl number
between 0.03 and 7, the Lewis number between 3 and 33.3 and the vigour of the forcing up
to Raξ = 5 × 1011. The radius ratio of the spherical shell is the same for all simulations.
While its value of 0.35 is admittedly smaller than current estimates relevant to planetary
interiors (see above), it is meant to exacerbate the differences that may exist between
Cartesian and spherical set-ups; such a deep shell is also less demanding on the angular
resolution required to resolve fingers, and makes a systematic analysis possible.

The paper is organised as follows: in § 2, we present the governing equations and the
numerical model; in § 3 we focus on deriving scaling laws for fingering convection in
spherical shells; in § 4, we analyse the formation of jets before concluding in § 5.

2. Model and methods

2.1. Hydrodynamical model
We consider a non-rotating spherical shell of inner radius ri and outer radius ro with
ri/ro = 0.35 filled with a Newtonian Boussinesq fluid of background density ρc. The
spherical-shell boundaries are assumed to be impermeable, no slip and held at constant
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Fingering convection in a spherical shell

temperature and chemical composition. The kinematic viscosity ν, the thermal diffusivity
κT and the diffusivity of chemical composition κξ are assumed to be constant. We adopt
the following linear equation of state:

ρ = ρc[1 − αT(T − Tc) − αξ (ξ − ξc)], (2.1)

which ascribes changes in density (ρ) to fluctuations of temperature (T) and chemical
composition (ξ ). In the above expression, Tc and ξc denote the reference temperature
and composition, while αT and αξ are the corresponding constant expansion coefficients.
In the following, we adopt a dimensionless formulation using the spherical-shell gap
d = ro − ri as the reference length scale and the viscous diffusion time d2/ν as the
reference time scale. Temperature and composition are respectively expressed in units
of �T = Ttop − Tbot and �ξ = ξbot − ξtop, their imposed contrasts over the shell. The
dimensionless equations which govern the time evolution of the velocity u, the pressure p,
the temperature T and the composition ξ are expressed by

∇ · u = 0, (2.2)

∂u
∂t

+ u · ∇u = −∇p + 1
Pr

(
−RaTT + Raξ

Le
ξ

)
ger + ∇2u, (2.3)

∂T
∂t

+ u · ∇T = 1
Pr

∇2T, (2.4)

∂ξ

∂t
+ u · ∇ξ = 1

LePr
∇2ξ, (2.5)

where er is the unit vector in the radial direction and g = r/ro is the dimensionless gravity.
The set of equations (2.2)–(2.5) is governed by four dimensionless numbers

RaT = −αTgod3�T
νκT

, Raξ = αξ god3�ξ

νκξ

, Pr = ν

κT
, Le = κT

κξ

, (2.6a–d)

termed the thermal Rayleigh, chemical Rayleigh, Prandtl and Lewis numbers, respectively.
Our definition of RaT makes it negative, in order to stress the stabilising effect of the
thermal background. For the sake of clarity, we will also make use of the Schmidt number
Sc = ν/κξ = Le Pr in the following. The stability of the convective system depends on the
value of the density ratio Rρ (Stern 1960) defined by

Rρ = αT�T
αξ�ξ

, (2.7)

which relates to the above control parameters via Rρ = Le|RaT |/Raξ . In order to compare
models with different Lewis numbers Le, it is convenient to also introduce a normalised
density ratio rρ following Traxler, Garaud & Stellmach (2011a)

rρ = Rρ − 1
Le − 1

. (2.8)

This maps the instability domain for fingering convection, 1 ≤ Rρ < Le, to 0 ≤ rρ < 1.

2.2. Numerical technique
We consider numerical simulations computed using the pseudo-spectral open-source code
MagIC (freely available at https://github.com/magic-sph/magic) (Wicht 2002). MagIC has
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been validated against a benchmark for rotating double-diffusive convection in spherical
shells initiated by Breuer et al. (2010). The system of equations (2.2)–(2.5) is solved in
spherical coordinates (r, θ, φ), expressing the solenoidal velocity field in terms of poloidal
(W) and toroidal (Z) potentials

u = uP + uT = ∇ × (∇ × W er) + ∇ × Z er. (2.9)

The unknowns W, Z, p, T and ξ are then expanded in spherical harmonics up to the
maximum degree �max and order mmax = �max in the angular directions. Discretisation
in the radial direction involves a Chebyshev collocation technique with Nr collocation
grid points (Boyd 2001). The equations are advanced in time using the third-order
implicit–explicit Runge–Kutta schemes ARS343 (Ascher, Ruuth & Spiteri 1997) and
BPR353 (Boscarino, Pareschi & Russo 2013) which handle the linear terms of (2.2)–(2.5)
implicitly. At each iteration, the nonlinear terms are calculated on the physical grid space
and transformed back to spectral representation using the open-source SHTns library
(freely available at https://gricad-gitlab.univ-grenoble-alpes.fr/schaeffn/shtns) (Schaeffer
2013). The seminal work by Glatzmaier (1984) and the more recent review by Christensen
& Wicht (2015) provide additional insights into the algorithm (the interested reader may
also consult Lago et al. (2021) with regard to its parallel implementation).

2.3. Diagnostics
We introduce here several diagnostics that will be used to characterise the convective flow
and the thermal and chemical transports. We hence adopt the following notations to denote
temporal and spatial averaging of a field f :

f̄ = 1
tavg

∫ t0+tavg

t0
f dt, 〈 f 〉V = 1

V

∫
V

f dV, 〈 f 〉S = 1
4π

∫ 2π

0

∫ π

0
f sin θ dθ dφ,

(2.10a–c)

where time averaging runs over the interval [t0, t0 + tavg], V is the spherical shell volume
and S is the unit sphere. Time-averaged poloidal and toroidal energies are defined by

Ek,pol = 1
2
〈uP · uP〉V =

�max∑
�=1

E�
k,pol, Ek,tor = 1

2
〈uT · uT〉V =

�max∑
�=1

E�
k,tor, (2.11a,b)

noting that both can be expressed as the sum of contributions from each spherical
harmonic degree �, E�

k,pol and E�
k,tor. The corresponding Reynolds numbers are then

expressed by

Repol = √2Ek,pol, Retor = √2Ek,tor. (2.12a,b)

In the following we also employ the chemical Péclet number, Pe, to quantify the vertical
velocity. It relates to the Reynolds number of the poloidal flow via

Pe = Repol Sc. (2.13)

We introduce the notation Θ and Ξ to define the time and horizontally averaged radial
profiles of temperature and chemical composition

Θ = 〈T〉S, Ξ = 〈ξ〉S. (2.14a,b)
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Heat and chemical composition transports are defined at all radii by the Nusselt Nu and
Sherwood Sh numbers

Nu =
〈urT〉S − 1

Pr
dΘ

dr

− 1
Pr

dTc

dr

, Sh =
〈urξ〉S − 1

Sc
dΞ

dr

− 1
Sc

dξc

dr

, (2.15a,b)

where dTc/dr = riro/r2 and dξc/dr = −riro/r2 are the gradients of the diffusive states.
In the numerical computations, those quantities are practically evaluated at the outer
boundary, r = ro, where the convective fluxes vanish. Heat sinks and sources in fingering
convection are provided by buoyancy power of thermal and chemical origins PT and Pξ ,
expressed by

PT = |RaT |
Pr

〈gurT〉V , Pξ = Raξ

Sc
〈gurξ〉V . (2.16a,b)

On time average, the sum of these two buoyancy sources balances the viscous dissipation
Dν according to

PT + Pξ = Dν, (2.17)

where Dν = 〈(∇ × u)2〉V .
As shown in Appendix B, the thermal and compositional buoyancy powers can be

approximated in spherical geometry by

PT ≈ −4πrirm

V
|RaT |
Pr2 (Nu − 1), Pξ ≈ 4πrirm

V
Raξ

Sc2 (Sh − 1), (2.18a,b)

where rm = (ro + ri)/2 is the mid-shell radius. The turbulent flux ratio (Traxler et al.
2011a) is defined by

γ = Rρ

|〈urT〉V |
〈urξ〉V

≈ RρLe
Nu − 1
Sh − 1

. (2.19)

The typical flow length scale is estimated using an integral length scale (see Backus,
Parker & Constable 1996, § 3.6.3)

Lh = πrm√
�h(�h + 1)

≈ πrm

�h
, (2.20)

in which the average spherical harmonic degree �h is defined according to

�h =
∑

�,m �Em
�∑

�,m Em
�

, (2.21)

where Em
� denotes the time and radially averaged poloidal kinetic energy at degree � and

order m. Note that this global �h is what uniquely defines the flow length scale, and is
routinely used as a diagnostic in global spherical simulations (e.g. Christensen & Aubert
2006). One could define a radially varying �h, by considering the radial profiles of the
spherical harmonic expansion of the kinetic poloidal energy, and obtain accordingly Lh(r).
Preliminary inspections revealed no sizeable changes of Lh(r) in the fluid bulk, and led us
to stick to the integral definition given above for the sake of parsimony.
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Name Notation Definition This study

Thermal Rayleigh |RaT | |αT goD3�T/νκT | 7.334 × 104 − 1.83 × 1011

Chemical Rayleigh Raξ αξ goD3�ξ/νκξ 2 × 105 − 5 × 1011

Prandtl Pr ν/κT 0.03 − 7
Schmidt Sc ν/κξ 1 − 30
Lewis Le κT/κξ 3 − 33.3
Density ratio Rρ Le|RaT |/Raξ 1 − Le

Table 1. Name, notation, definition and range covered by the dimensionless control parameters employed in
this study.

105 106 107 108 109 1010 1011 1012

Raξ

105

106

107

108

109

1010

1011

|R
a T

|

Pr = 0.03

Pr = 0.1
Pr = 0.3
Pr = 1.0
Pr = 3.0
Pr = 7.0

105 106 107 108 109 1010 1011 1012

Raξ

0

0.2

0.4
rρ

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

5

6

7

8

9

10

lo
g

1
0
 (

|R
a T

|)

rρ (b)(a)

Figure 1. (a) Normalised density ratio rρ in the thermal Rayleigh number |RaT |–chemical Rayleigh
number Raξ plane for the 123 simulations performed for this study; (b) log10(|RaT |) in the Raξ –rρ plane for
the same simulations. Markers reflect the value of Pr.

2.4. Parameter coverage
Table 1 summarises the parameter space covered by this study. In order to compare our
results against previous numerical studies by e.g. Stellmach et al. (2011), Traxler et al.
(2011a), Brown et al. (2013) and Yang et al. (2016), the Prandtl number Pr spans two
orders of magnitude, from 0.03 to 7, while the Lewis number Le varies from 3 to 33.3.
The thermal and chemical Rayleigh numbers RaT and Raξ are between −1.83 × 1011

and −7.33 × 104, and 2 × 105 and 5 × 1011, respectively, thereby permitting an extensive
description of the primary instability region for each value of the Lewis number Le (recall
(1.1)). In practice, this coverage leads to a grand total of 123 simulations.

Figure 1 illustrates the exploration of the parameter space. Subsets of simulations were
designed according to three different strategies. First, by varying (RaT , Raξ ), hence the
buoyancy input power, while keeping the triplet (Pr, Le, Rρ) constant. This gives rise to the
horizontal lines in figure 1(b). Second, by varying Raξ , and consequently Rρ , at constant
(Pr, Le, RaT). These series are located on the horizontal lines in figure 1(a), and along
branches of the same colour in figure 1(b), see e.g. the yellow circles with Raξ � 1010. This
subset is meant to ease the comparison with previous local studies in periodic Cartesian
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Fingering convection in a spherical shell

boxes, where the box size is set according to the number of fingers it contains, which
amounts to an implicit prescription of RaT . Third, we performed a series by varying RaT ,
keeping (Pr, Le, Raξ ) constant. It shows as a vertical line of 5 circles in both panels of
figure 1, noting that Raξ is set to 1010 for this series.

On the technical side, the spatial resolution ranges from (Nr, �max) = (41, 85) to
(769, 938) in the catalogue of simulations, notwithstanding a single simulation that used
finite differences in radius with 1536 grid points in conjunction with �max = mmax = 1536.
Moderately supercritical cases were initialised by a random thermo-chemical perturbation
applied to a motionless fluid. The integration of strongly supercritical cases started from
snapshots of equilibrated solutions subject to weaker forcings, in order to shorten the
duration of the transient regime. Numerical convergence was in most cases assessed by
checking that the average power balance defined by (2.17) was satisfied within 2 % (King,
Stellmach & Aurnou 2012). In some instances, however, the emergence and growth of
jets caused the solution to evolve over several viscous time scales τν without reaching a
statistically converged state in the power balance sense. The convergence criterion we used
instead was that of a stable cumulative temporal average of Ek,tor, which we assessed by
visual inspection. For five strongly driven simulations, jets did not reach their saturated
state because of a too costly numerical integration; this may result in an underestimated
value of Ek,tor. These five cases feature a ‘NS’ label in the leftmost column of table 3,
where the main properties of the 123 simulations are listed. The total computation time
required for this study represents 20 million single core hours, executed for the most part
on AMD Rome processors.

2.5. Definition of boundary layers
We now turn our attention to the practical characterisation of the boundary layers that
emerge in our bounded set-up, whose properties are governed by the least diffusive
field, i.e. the chemical composition (e.g. Radko & Stern 2000). In the remainder of
this study, λi (respectively λo) will denote the thickness of the inner (respectively outer)
chemical boundary layer. In contrast to planar configurations, boundary layer thicknesses
at both boundaries differ (λi /= λo) due to curvature and radial changes of the gravitational
acceleration (e.g. Vangelov & Jarvis 1994; Gastine et al. 2015). Figure 2(a) shows
the time-averaged radial profiles of convective and diffusive chemical fluxes (recall
(2.15a,b)), alongside the variance of chemical composition, σξ (r), for a simulation with
|RaT | = 3.66 × 107, Rρ = 1.1, Pr = 7 and Le = 3 (simulation 123 in table 3). Several
methods have been introduced to assess the boundary layer thicknesses. An account
of these approaches is given by Julien et al. (2012, § 2.2), in the classical context of
Rayleigh–Bénard convection in planar geometry. In that set-up, temperature is uniform
within the convecting bulk, and a first approach consists of picking the depth at which
the linear profile within the thermal boundary layer intersects the temperature of the
convecting core (see also Belmonte, Tilgner & Libchaber 1994, their figure 3). A second
possibility is to argue that the depth of the boundary layer is that at which the standard
deviation of temperature reaches a local maximum (e.g. Tilgner, Belmonte & Libchaber
1993, their figure 4). Long et al. (2020) showed, however, that both approaches become
questionable when convection operates under the influence of global rotation, in which
case the heterogeneous distribution of temperature causes the linear intersection method
to fail, or if Neumann boundary conditions are prescribed in place of Dirichlet conditions
for the temperature field, then the maximum variance method is no longer adequate.
A third option proposed by Julien et al. (2012), and favoured by Long et al. (2020) in
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their study, is to define λi and λo at the locations where convective and diffusive fluxes are
equal. Chemical boundary layers defined by this condition appear as blue-shaded regions
in figure 2. They are thinner than those that may have been determined otherwise using
either the linear intersection or the standard deviation approaches (Julien et al. 2012) and
they are asymmetric, with λi < λo. Figure 2(b) shows the time-averaged radial profiles
of temperature and composition. We observe a pronounced asymmetry in both profiles
with a larger temperature and composition drop accommodated across the inner boundary
layer than across the outer one. Inspection of figure 2(b) also reveals that the profiles
of composition and temperature remain quite close to linear within the boundary layers
determined with the flux equipartition method. In the following, we will adhere to this
approach, and exploit the linearity of the profiles of temperature and composition in some
of our derivations. The downside of this choice is that it does not incorporate the curvy
part of the profiles at the edge of the boundary layers, hence possibly overestimating the
contrast of composition in the fluid bulk compared with other boundary layer definitions.

Let λb denote the thickness of the bulk of the fluid permeated by fingers, let ΔbΘ and
ΔbΞ stand for the contrast of temperature and composition across this region and let ΔiΞ
(ΔoΞ) and ΔiΘ (ΔoΘ) be the composition and temperature drops across the inner (outer)
chemical boundary layer. By choice, each contrast is a positive quantity. We note for future
usage that the following non-dimensional relationships hold:

1 = λi + λb + λo, 1 = ΔiΘ + ΔbΘ + ΔoΘ, 1 = ΔiΞ + ΔbΞ + ΔoΞ.

(2.22a–c)

3. Fingering convection

3.1. Flow morphology
We first focus on a series of three simulations to highlight the specificities of fingering
convection in global spherical geometry. Figure 3 provides three-dimensional renderings
of the fingers, along with the corresponding kinetic energy spectra, of three cases that share
Rρ = 1.1, Pr = 7 and Le = 3 and differ by Raξ , which increases from 108 to 2 × 1010

(simulations 123, 118 and 103 in table 3). The convective power injected in the fluid
is accordingly multiplied by 500 between the simulation closest to onset, illustrated in
figure 3(a), and the most supercritical one, shown in figure 3(c). For the least forced
simulation (figure 3a), the flow is dominated by coherent radial filaments that extend
over the entire spherical shell. These particular structures are reminiscent of the ‘elevator
modes’ found in periodic planar models (e.g. Radko 2013, § 2.1). Inside each of these
filaments T , ξ and ur can be considered to be quasi-uniform. The velocity field reaches
relatively small amplitudes, with a poloidal Reynolds number Repol ≈ 10. Geometrical
patterns link the fingers together over spherical surfaces, and it appears that fingers emerge
at the vertices of polygons in the vicinity of the inner sphere. Fingers have an almost
constant width in the bulk of the domain. The rather large polygonal patterns that appear
on the outer surface of the three-dimensional rendering are due to the weakening of
the radial velocity in the vicinity of the outer boundary layer, that goes along with a
widening of the finger as it penetrates the boundary layer. The spectrum of this simulation,
displayed in figure 3(d), presents a marked maximum, with an average spherical harmonic
degree �h (recall (2.21)) of 39. The majority of the poloidal kinetic energy of the fluid is
stored in degrees close to this peak. The quasi-homogeneous lateral thickness of fingers in
figure 3(a) illustrates this spectral concentration.

Figure 3(b) reveals that a strengthening of the forcing leads to an increase of the
magnitude of the velocity, with Repol = 28, alongside a gradual loss of the coherent tubular
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Figure 2. (a) Time-averaged radial profiles of convective and diffusive compositional fluxes, expressed by
r2〈urξ〉S and −r2Sc−1 dΞ/dr respectively (see (2.15a,b)), for a simulation with |RaT | = 3.66 × 107, Rρ = 1.1,
Pr = 7 and Le = 3 (simulation 123 in table 3). The radial profile of the variance of composition σξ is
represented by a dash-dotted line. (b) Time-averaged radial profiles of composition (solid blue line) and
temperature (solid mustard line). Horizontal dashed lines highlight the values of composition and temperature
at the edges of the convective bulk. Here, ΔiΞ (ΔiΘ) is the composition (temperature) drop across the inner
boundary layer. The blue-shaded areas highlight the inner and outer chemical boundary layers, of thickness λi
and λo, respectively, while the convective bulk has a thickness λb.

structure of the fingers in favour of undulations and occasional branchings. They contract
horizontally, leading to a shift of �h to a higher value of 75. The geometrical patterns
remain well defined over the inner sphere but appear attenuated at the outer spherical
surface, again the signature of the effect of the outer boundary layer. Further increase
of the injected convective power causes the occasional fracture of fingers in the radial
direction, see figure 3(c), as they assume the shape of flagella reminiscent of the modes of
Holyer (1984, figure 1). Although the fingers gradually lose their vertical coherence with
increased convective forcings, they still present an anisotropic elongated structure in the
radial direction. Accordingly, the lateral thickness of the fingers continues to decrease and
�h now reaches a value of 166. That amounts to finding O(104) such elongated structures
at any radius r in the bulk of the flow.
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Figure 3. (a–c) Three-dimensional renderings of the radial velocity for three simulations carried out using
Rρ = 1.1, Pr = 7 and Le = 3, and Raξ = 108, 109 and 2 × 1010 (simulations 123, 118 and 103 in table 3),
for (a), (b) and (c), respectively. Inner and outer spherical surfaces correspond to ri + 0.03 and ro − 0.04,
respectively. (d) Poloidal kinetic energy spectra as a function of spherical harmonic degree � for these three
simulations. Dashed vertical lines correspond to the average spherical harmonic degree �h (see (2.21)), of value
39, 75 and 166, for Raξ = 108, 109 and 2 × 1010.

3.2. Mean profiles and compositional boundary layers
We now assess the impact of fingers on the average temperature and composition profiles
within the spherical shell. Figure 4(a,b) shows the time-averaged radial profiles of
temperature and composition of four simulations that share |RaT | = 3.66 × 109, Pr = 7,
Le = 3 and differ by the prescribed Raξ , whose value goes from 4.392 × 109 to 1.1 × 1010,
with a concomitant decrease of rρ from 0.75 down to 5 × 10−4.

The increase of Raξ impacts composition more than temperature, as it leads to steeper
boundary layers and flatter bulk profiles of ξ that substantially deviate from their diffusive
reference, displayed with a dashed line in figure 4(b). Inspection of figure 4(a) shows that
this trend exists but is less marked for temperature. Accordingly, the bulk temperature and
composition drops, ΔbΘ and ΔbΞ , introduced above decrease as Raξ increases, in a much
more noticeable manner for composition than for temperature. Boundary layer asymmetry
inherent in curvilinear geometries (Jarvis 1993) is clearer with increasing Raξ : for the
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Figure 4. (a) Time-averaged radial profile of temperature, Θ , for four simulations sharing |RaT | = 3.66 ×
109, Pr = 7 and Le = 3, and increasing values of rρ (simulations 106, 110, 112 and 113 in table 3).
(b) Time-averaged radial profile of composition, Ξ , for the same simulations. The inset shows a magnification
of the inner boundary layer, whose edge is shown with a thick vertical segment. In both panels, the dashed lines
correspond to the diffusive reference profile.

largest forcing considered here, approximately 40 % (10 %) of the contrast of composition
is accommodated at the inner (outer) boundary layer.

To enable comparison with results from unbounded studies, we seek scaling laws for
the effective contrasts ΔbΘ and ΔbΞ that develop in the fluid bulk. To that end, and
in line with the characterisation of boundary layers we introduced above, we first make
use of the heat and composition flux conservation over spherical surfaces. Assuming that
temperature and composition vary linearly within boundary layers yields(

ri

ro

)2
ΔiΘ

ΔoΘ
= λi

λo
,

(
ri

ro

)2
ΔiΞ

ΔoΞ
= λi

λo
, (3.1a,b)

where the ri/ro factors emphasise the asymmetry of the boundary layer properties caused
by the spherical geometry. To derive scaling laws for the ratio of the temperature and
composition drops at both boundary layers, one must invoke a second hypothesis. In
classical Rayleigh–Bénard convection in an annulus, Jarvis (1993) made the additional
assumption that the boundary layers are marginally unstable (Malkus 1954). In other
words, a local Rayleigh number defined on the boundary layer thickness should be
close to the critical value to trigger convection. Later numerical simulations in three
dimensions by Deschamps, Tackley & Nakagawa (2010) in the context of infinite Prandtl
number convection and by Gastine et al. (2015) for Pr = 1, however, showed that this
hypothesis failed to correctly account for the actual boundary layer asymmetry observed in
spherical geometry. For fingering convection in bounded domains, Radko & Stern (2000)
nonetheless showed that the marginal stability argument provides a reasonable description
of the boundary layers for composition. We here test this hypothesis by introducing the
local thermohaline Rayleigh numbers Raλi and Raλo defined over the extent of the inner
and outer boundary layers

Raλi = giλ
3
i
(
RaξΔiΞ − |RaT |ΔiΘ

)
, Raλo = goλ

3
o
(
RaξΔoΞ − |RaT |ΔoΘ

)
,

(3.2a,b)
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where gi and go denote the acceleration due to gravity at the inner and outer boundaries,
with gi/go = ri/ro. We note in passing that gravity increasing linearly with radius is the
second factor responsible for the boundary layer asymmetry. Equating Raλi and Raλo to a
critical value Rac gives, in light of (3.1a,b),(

λi

λo

)3

= ro

ri

ΔoΞ

ΔiΞ
. (3.3)

Further use of (3.1a,b) yields

λo

λi
=
(

ri

ro

)−1/4

, (3.4)

and

ΔoΞ

ΔiΞ
=
(

ri

ro

)7/4

, (3.5)

both of which are a function of the sole radius ratio ri/ro.
Figure 5 shows the conformity of these two laws to the numerical dataset, which has

a constant radius ratio ri/ro = 0.35. In figure 5(a), we observe a close to linear increase
of λo with λi over two orders of magnitude of variations. A least-squares fit performed
for those simulations with λi < 0.02 provides λo = 1.18 λi instead of the expected λo =
1.30 λi from (3.4). Simulations causing this departure are those close to onset with thick
boundary layers within which the linearity assumption may not hold. Likewise, we see
in figure 5(b) that (3.5) captures the relative ratio ΔoΞ/ΔiΞ within the dataset. We find
ΔoΞ = 0.14ΔiΞ instead of the predicted ΔoΞ = 0.16ΔiΞ , and note that the dispersion
about a linear law is maximum for strongly driven simulations (those with smaller rρ

in figure 5b). These results indicate that, in contrast with Rayleigh–Bénard convection,
the marginal stability hypothesis provides a good way to characterise the boundary layer
asymmetry in spherical-shell fingering convection, with the caveat that confirmation of
this finding should be sought for radius ratios other than the one considered in this study.

In order to obtain a relationship between the contrasts across the bulk, ΔbΞ and ΔbΘ ,
recall that the Sherwood and Nusselt numbers Sh and Nu are expected to read at r = ro

Sh = ro

ri

ΔoΞ

λo
, Nu = ro

ri

ΔoΘ

λo
, (3.6a,b)

if the linearity assumption for composition and temperature holds within the chemical
boundary layer. Combining these definitions with (2.22a–c) and (3.4)–(3.5) yields the
following relationship between ΔbΘ , ΔbΞ , Nu and Sh:

1 − ΔbΞ

1 − ΔbΘ
= Sh

Nu
. (3.7)

Figure 6(a) shows that there is convincing evidence for a linear relationship between (1 −
ΔbΞ)/(1 − ΔbΘ) and Sh/Nu across the parameter space sampled by the dataset; the slope
is equal to 0.84 instead of the expected value of one. This might come from the uncertainty
related to the departure from the linearity assumption for the chemical boundary layer,
possibly leading to underestimation of the true value of the Sherwood number.
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Figure 5. (a) Thickness of the outer boundary layer, λo, as a function of the thickness of the inner boundary
layer, λi. (b) Composition contrast across the outer boundary layer, ΔoΞ , as a function of its inner counterpart,
ΔiΞ . In both panels, the dashed lines correspond to a linear fit to data retaining only those simulations with
λi < 0.02.
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Figure 6. (a) Value of (1 − ΔbΞ)/(1 − ΔbΘ) as a function of Sh/Nu. (b) Thickness of the inner boundary
layer as a function of Pe−1/3L2/3

h derived in (3.12). In each panel, the result of the linear regression is shown
with a dashed line.

For a better understanding of (3.7), it is insightful to split the mean radial profiles into
the sum of a reference conducting state and fluctuations denoted by primed quantities

Ξ = ξc + Ξ ′, Θ = Tc + Θ ′. (3.8a,b)

Using the definition of the flux ratio (2.19), (3.7) can be rewritten as

ΔbΞ
′

ΔbΘ ′ ≈ RρLeγ −1, (3.9)

where we have assumed that Δbξc = ΔbTc ≈ 1.
Following Yang et al. (2015), we now evaluate whether results coming from classical

Rayleigh–Bénard convection models regarding the nature of the boundary layers are
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still applicable to bounded double-diffusive convection. In that regard, the cornerstone
of the GL theory is that the kinetic and thermal boundary layer thicknesses adhere to
the Prandtl–Blasius model (e.g. Schlichting & Gersten 2018, § 9.2). In this model, the
boundary layer corresponds to a laminar flow over a horizontal plate and the temperature
and chemical composition are treated as passive scalars. For fingering convection with
Le > 1, this translates to

λξ

Lh
∼ Sc−1/2 Re−1/2

h (Sc < 1),
λξ

Lh
∼ Sc−1/3 Re−1/2

h (Sc > 1), (3.10a,b)

where λξ denotes the thickness of the inner or outer chemical boundary layer, and Reh =
uhLh/ν is a Reynolds number defined using the length scale Lh and the near-boundary
horizontal flow velocity uh. For tubular fingers, mass conservation between the finger core
of typical diameter λξ (Yang et al. 2016, their figure 10) and the horizontal flows that
converge towards the finger in the boundary layers demands

uhλξπLh ≈ ur
π

4
λ2

ξ (Sc < 1),
λξ

λU
uhλπLh ≈ ur

π

4
λ2

ξ (Sc > 1), (3.11a,b)

where λU denotes the thickness of the velocity boundary layer. The factor λξ /λU in
the equation on the right reflects the fact that the velocity boundary layer is nested in
the compositional one when Sc > 1. As such, and assuming linear boundary layers, the
relevant horizontal flow velocity has to be rescaled by the relative thickness of both
boundary layers. Using (3.10a,b), this then leads to the unique form

λξ ∼ Pe−1/3Lh
2/3, (3.12)

for both Schmidt number end members. Figure 6(b) shows the thickness of the inner
compositional boundary layer (λξ = λi) as a function of this theoretical scaling for all
the simulations where the boundary layers could be evaluated. The reduced scatter of
the data as well as the slope of the best fit power law being close to one indicate an
excellent agreement with the Prandtl–Blasius model combined with the hypothesis of
tubular fingers.

3.3. Effective density ratio
In order to compare the dynamics with unbounded domains, the common practice in
bounded planar geometry (Schmitt 1979b; Radko & Stern 2000; Yang et al. 2020) consists
in introducing an effective density ratio within the bulk of the domain expressed by

R�
ρ = Rρ

ΔbΘ

ΔbΞ
. (3.13)

This measure is appropriate to fingering convection in Cartesian domains with Rρ � Le,
given the piecewise-linear nature of the composition profile (see e.g. figure 2 of Yang
2020). This estimate is, however, not suitable close to onset as the boundary layer definition
becomes ill posed. An extra complication arises in spherical geometry since our definition
of boundary layers only retains the linear part of the drop of composition, which tends to
overestimate ΔbΞ (recall figure 2 and the discussion in § 2.5). As such, it appears more
reliable to introduce an effective density ratio (and its normalised counterpart) based on
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the gradients of temperature and composition at mid-depth

R�
ρ = −Rρ

dΘ

dr

∣∣∣∣
rm

(
dΞ

dr

∣∣∣∣
rm

)−1

, r�
ρ = R�

ρ − 1

Le − 1
. (3.14a,b)

We saw above that the contrast of composition across the bulk (or fingering region) is
systematically lower than that of temperature. It hence follows that R�

ρ > Rρ and r�
ρ > rρ .

3.4. Finger width
We now derive scaling laws for fingering convection based on our 123 bounded
simulations, beginning with the typical lateral extent Lh of a finger, as defined in (2.21).
In his seminal contribution, Stern (1960) predicts a scaling of the form

Lh ∝ |RaT |−1/4, (3.15)

for an unbounded Boussinesq fluid subjected to uniform thermal and chemical background
gradients when Le � Rρ � 1. A least-squares fit of our dataset yields

Lh = 4.23 |RaT |−0.23, (3.16)

where the exponent found is rather close to the expected value of −0.25, for values of |RaT |
spanning 6 orders of magnitude. Yet, inspection of figure 7(a) reveals that this scaling fails
to capture a second dependency to rρ . At a given value of |RaT |, we observe indeed that
Lh is an increasing function of rρ . In order to make progress, let us assume that the finger
width is controlled by a balance between buoyancy and viscous forces. In addition, we
resort to the tall finger hypothesis introduced by Stern (1975, p. 192) and christened by
Smyth & Kimura (2007), which consists of neglecting along-finger derivatives in favour of
cross-finger derivatives. Accordingly, the time and volume average of the radial component
of (2.3) becomes 〈(

−RaT

Pr
T + Raξ

LePr
ξ

)
r
ro

〉
V

∼ 〈∇2u · er
〉
V ∼ Repol

L2
h

. (3.17)

Likewise, the average of the heat equation (2.4) leads to

Repol
ΔbΘ

λb
∼ 〈T〉V

PrL2
h
. (3.18)

Finally, a relationship between 〈T〉V and 〈ξ〉V is expressed by means of the flux ratio γ

〈ξ〉V ∼ Le|RaT |
γ Raξ

〈T〉V , (3.19)

which, in light of (2.19), assumes implicitly that the radial velocity correlates well with
thermal and chemical fluctuations. Upon combining (3.17)–(3.19), we obtain

L−4
h ∼ (γ −1 − 1)|RaT |ΔbΘ

λb
. (3.20)

The bulk temperature gradient ΔbΘ/λb aside, this expression is equivalent to that
proposed by Taylor & Bucens (1989) in the discussion of their experimental results.
Figure 7(b) shows Lh as a function of |RaT |(γ −1 − 1). The extra factor (γ −1 − 1)
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Figure 7. (a) Horizontal length scale Lh (2.21) as a function of |RaT |. (b) Value of Lh as a function of
|RaT |(γ −1 − 1). In both panels, the dashed lines correspond to power law fits.

removes the dispersion observed in figure 7(a). A least-squares fit of log10(Lh) vs
log10[|RaT |(γ −1 − 1)] leads to

Lh = 5.28
[
(γ −1 − 1)|RaT |

]−0.26
. (3.21)

The exponent of |RaT | remains close to the value of −0.25 proposed by Stern (1960). In
order to assess the effect of the ΔbΘ/λb term, we introduce the misfit

χ2
y =

√√√√ 1
N

N∑
i=1

∣∣∣∣ ỹi − yi

yi

∣∣∣∣2, (3.22)

where N is the number of simulations, yi is the ith measured value of log10(Lh) and ỹi its
prediction by the least-squares fit of interest. In the absence of a correction factor, recall
(3.16), we obtain χ2

y = 0.091. With the full correction (3.20), χ2
y = 0.023, which amounts

to a fourfold reduction. The misfit increases by a modest amount to 0.025 if we omit the
factor ΔbΘ/λb in (3.20). It thus appears reasonable to ignore that factor for the sake of
parsimony. In the remainder of this study, we will therefore adhere to

L4
h ∼ γ

1 − γ
|RaT |−1. (3.23)

Following the idea of Schmitt (1979b), we now examine whether the average spherical
harmonic degree �h of fingers in developed convection relates to the degree of the fastest
growing mode, �FG. Linearisation of the system (2.2)–(2.5) is conducted by considering
small perturbations of the poloidal scalar W, temperature T and composition ξ . Performing
a spherical harmonic expansion of these variables leads to equations decoupled in
harmonic degree � and independent of the spherical harmonic order m. We use the ansatz

[W�, T�, ξ�](t, r) = [Ŵ�, T̂�, ξ̂�](r) exp (τ�t) , (3.24)

where [Ŵ�, T̂�, ξ̂�] are the radial shape functions of the perturbation of degree �. Focusing
on the real-valued eigenvalues τ� relevant to the fingering instability, we obtain the
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Figure 8. (a) Mean spherical harmonic degree �h as a function of the degree of the fastest growing mode �FG;
the dashed line shows the result of the linear regression. (b) Most linearly unstable degree �FG|RaT |−1/4 as
a function of the supercriticality parameter ε. The dashed line in panel (a) corresponds to a linear fit forced
over the entire dataset, yielding a prefactor equal to 1.89, while the best fit in panel (b) was obtained from the
simulations with ε < 0.5.

generalised eigenvalue problem

A�X � = τ�B�X �, (3.25)

where A� and B� are real dense matrices, X � ≡ [W�, T�, ξ�]T is the state vector and we
understand that each eigenvalue depends on �, RaT , Raξ , Pr and Le. We resort to the
Linear Solver Builder (LSB) package developed by Valdettaro et al. (2007) to determine the
harmonic degree �FG of the fastest growing mode which corresponds to �FG = arg max�τ�

for any given set-up of the numerical dataset.
Figure 8(a) shows �h as a function of �FG. To first order, �h grows almost linearly with

�FG and the proportionality coefficient linking the two harmonic degrees seems to weakly
depend on the input parameters. We find that �h is consistently greater than �FG. The linear
fit �h = 1.89 �FG is shown as a dashed line in figure 8(a), and is overall in agreement
with the simulations. Significant departures occur for �FG < 30, as the least turbulent
simulations tend towards verifying �h = �FG (see e.g. the pentagon at the bottom left of
figure 8a). Far from onset, a large number of modes are excited and the broadening of the
spectra noticeable in figure 3(d) reflects the nonlinear interaction of theses modes.

The fastest growing modes can be expanded in powers of a supercriticality parameter ε

which quantifies the distance to onset of fingering convection

ε = Raξ − |RaT |
|RaT | = Le

Rρ

− 1. (3.26)

For finite Prandtl numbers, the first-order contribution reads (e.g. Schmitt 1979b; Stern &
Radko 1998; Radko 2010)

�4
FG ∼ ε|RaT |, (3.27)

in the limit of vanishing ε. Figure 8(b) shows the spherical harmonic degree of the fastest
growing mode �FG|RaT |−1/4 as a function of the distance to onset ε. The best fit to the
data reveals a good agreement with the expected theoretical scaling whenever ε � 1.
Significant departures appear beyond ε ≈ 0.5, indicating the limit of validity of the scaling
(3.27).
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Figure 9. (a) Sherwood number Sh as a function of Raξ . (b) Flux ratio γ as a function of R�
ρ/Le. The dashed

line corresponds to the first bisector γ = R�
ρ/Le.

We hence retain from figure 8 that the hypothesis put forward by Schmitt (1979b) – i.e.
that the finger width relates to the horizontal size of the fastest growing mode – works
better for weakly nonlinear models, i.e. when ε � 1. This observation will later be used
to derive scaling laws for weakly nonlinear fingering convection.

3.5. Scaling laws for transport
We now aim at deriving integral scaling laws for the transport of composition and heat,
and for the mean vertical velocity.

Figure 9(a) shows Sh as a function of Raξ , and two trends emerge: first, at any given Raξ ,
numerical models with rρ < 0.2 (dark blue symbols) provide an effective upper bound
for the transport of chemical composition. This upper bound of the Sherwood number
Sh grows with Raξ according to a power law that appears almost independent of Pr.
Second, close to onset (rρ � 1), simulations are organised along branches representative
of a dependency of Sh on Raξ much steeper than the one of the effective upper bound.
Each branch corresponds to fixed values of RaT , Pr, and Le, and gradually tapers off to
the rρ � 1 trend as the value of rρ decreases along the branch. This prompts us to analyse
the regimes rρ � 1 and rρ � 1 separately.

It is also informative to inspect the variations of the turbulent flux ratio γ , as
defined by (2.19), in both limits. Figure 9(b) shows γ against R�

ρ/Le. When rρ � 1, γ

substantially deviates from R�
ρ/Le and gradually saturates around values which decrease

upon increasing the Lewis number: simulations with Le = 3, Pr = 7 (circles) saturate at
γ ≈ 0.8, while those with Pr ≤ 1 (pentagons, hexagons, squares and triangles) gradually
tapper off around values of 0.6 and 0.4 for Le = 10 and Le ≥ 30, respectively. The series of
simulations with Pr = 7 (circles) seems to suggest that the γ ≈ 0.8 plateau may actually
precede an increase at even lower values of R�

ρ/Le, a trend predicted by Kunze (1987)
in the limit of Pr, Le � 1. In contrast, close to onset, the flux ratio is well described by
R�

ρ/Le

γ ≈ R�
ρ

Le
, (3.28)

a behaviour consistent with the arguments put forward by Schmitt (1979b).
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Fingering convection in a spherical shell

3.5.1. The rρ � 1 regime
We shall start our analysis by investigating the weakly nonlinear regime characterised
by small values of the supercriticality parameter ε defined above in (3.26). In the limit
where γ ≈ R�

ρ/Le, the scaling law obtained for the finger width (3.20) can be rewritten by
breaking down the mean radial profiles into a sum of the conducting state and fluctuations.
This yields

L−4
h ∼ |RaT |

[
Le
Rρ

(
1 + ΔbΞ

′

λb

)
− 1 − ΔbΘ

′

λb

]
, (3.29)

where we have assumed that |dξc/dr| = dTc/dr ≈ 1. Now, based on our previous findings
that the finger width is well accounted for by the horizontal size of the fastest growing
mode whenever ε � 1 (recall figure 8), we have

|RaT |
[

Le
Rρ

(
1 + ΔbΞ

′

λb

)
− 1 − ΔbΘ

′

λb

]
∼ |RaT |

(
Le
Rρ

− 1
)

, (3.30)

which leads to
ΔbΘ

′

λb
∼ ε

Le2γ −1 − 1
, (3.31)

in which the ratio of ΔbΞ
′/ΔbΘ

′ has been estimated using (3.9).
Making use of the definitions (2.22a–c) then allows us to relate the ratio ΔbΘ

′/λb to its
boundary layer counterpart, namely

ΔbΘ
′

λb
= ΔoΘ

′

λo

λo + λi(ΔiΘ
′/ΔoΘ

′)
1 − λi − λo

≈ ΔoΘ
′

λo
λo[1 + (ri/ro)

−3/2], (3.32)

where the latter equality has been derived using our previous findings regarding
the boundary layer asymmetry (3.4)–(3.5). Noting that Nu − 1 ≈ (ro/ri)ΔoΘ

′/λo and
substituting the above expression in (3.31) yields

Nu − 1 ∼ f (ri/ro)λ
−1
o

ε

Le2γ −1 − 1
, (3.33)

where f (ri/ro) = (ri/ro)
−1[1 + (ri/ro)

−3/2]−1 accounts for the dependence on the radius
ratio ri/ro inherent in the spherical-shell geometry. Beside these geometrical factors, this
expression is strictly equivalent to (5.10) derived by Radko & Stern (2000) in bounded
Cartesian domains under the assumption of tall laminar fingers in the fluid bulk.

The end of the derivation, however, differs from Radko & Stern (2000), in that they
consider a boundary layer model where the buoyancy term is retained, while we have
shown earlier that the compositional boundary layers rather adhere to the Prandtl–Blasius
model (see (3.12) and figure 6).

To eliminate the Péclet number Pe in (3.12), one can simply assume that viscous
dissipation is well approximated by Dν ∼ (Repol/Lh)

2. The power balance (2.17) (see also
Appendix B) then directly yields

Pe ∼ Lh|RaT |1/2Le(Nu − 1)1/2(γ −1 − 1)1/2. (3.34)

Hence, combining (3.12), (3.33) and (3.34), the scaling relation for Nu − 1 reads

Nu − 1 ∼ ε6/5|RaT |3/10Le2/5(γ −1 − 1)3/10

(γ −1Le2 − 1)6/5 , (3.35)

where the order-one geometrical factors have been omitted. To end up with a scaling
relation which solely depends on control quantities, one can further approximate the
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Figure 10. (a) Vertical convective transport of heat Nu − 1 as a function of the theoretical weakly nonlinear
scaling (3.36) for all the simulations with ε < 1. (b) Vertical convective transport of composition as a function
of the scaling (3.37). (c) Convective velocity as a function of the scaling (3.38). The dashed lines correspond
to the best fits obtained for the numerical simulations with Pr ≥ 1 and ε < 0.5.

flux ratio by γ ≈ Rρ/Le, or equivalently assume that γ −1 − 1 ≈ ε. Noting that this
latter assumption is more restrictive than (3.28) and that Rρ/Le = 1 − ε, the first-order
contribution leads to

Nu − 1 ∼ ε3/2|RaT |3/10Le−2, (3.36)

while the corresponding scaling behaviour for Sh − 1 then reads

Sh − 1 ≈ Le2(Nu − 1) ∼ ε3/2|RaT |3/10. (3.37)

The scaling for the vertical velocity (3.34) then becomes

Pe ∼ ε|RaT |2/5 . (3.38)

Equations (3.36)–(3.38) form the weakly nonlinear scaling behaviour for bounded
fingering convection. The scaling exponents on the supercriticality parameter ε differ
from those derived by Radko & Stern (2000) due to different boundary layer models.
Figure 10 shows an evaluation of these predictive scaling laws for the 47 simulations with
ε < 1. Among those, the 25 simulations with Pr ≥ 1 are reasonably well accounted for by
the weakly nonlinear laws. Best fits using the 22 simulations with ε < 0.5 yield scaling
exponents of ≈ 1.1 for the heat and composition transport, moderately larger than the
expected slope of one, while the vertical velocity follows an exponent closer to unity. In
contrast, the remaining 22 simulations with Pr < 1 are more scattered, they significantly
depart from the asymptotic laws and seem to demand an extra dependence on the Prandtl
number. This is particularly obvious for the scaling of the Sherwood number shown in
figure 10(b).

The previous derivation rests on several assumptions that become questionable in the
limit of small Prandtl numbers. Among the most likely shortcomings, one can think of:
(i) the approximation of the flux ratio by γ ≈ Rρ/Le getting more uncertain on decreasing
Pr; (ii) the relation between the finger width and the size of the fastest growing mode
breaking down at low Pr or involving a more intricate dependence on ε (Schmitt 1979b;
Radko 2010); and (iii) inertia becoming sizeable, thus invalidating the laminar tall finger
hypothesis. All in all, these additional hurdles hamper the derivation of predictive scaling
laws for bounded domains that would hold in the small Prandtl number limit.
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Fingering convection in a spherical shell

For the purpose of comparison with the local unbounded computations by Brown et al.
(2013) when Pr < 1, we nevertheless show in Appendix C that adjusted diagnostics which
incorporate the modification of the background profiles into account can be described by
simple polynomials fits on Pr and ε�/Le, where ε� = Le/R�

ρ − 1.

3.5.2. The rρ � 1 regime
Turning our attention to the second limit, we retain arbitrarily those 41 simulations with
rρ < 0.1, which cover all values of Pr from 0.03 to 7.

Figure 11(a) shows Sh − 1 versus Raξ for these simulations, alongside the 31 bounded
Cartesian simulations of Yang et al. (2016) that satisfy rρ > 0. A least-squares fit of Sh − 1
as a function of Raξ yields Sh − 1 ∼ Ra0.27

ξ for our dataset and Sh − 1 ∼ Ra0.31
ξ for that

of Yang et al. (2016). The extension of the theory of Grossmann & Lohse (2000) for
Rayleigh–Bénard convection to fingering convection by Yang et al. (2015) predicts Sh ∼
Ra1/3

ξ in the Raξ � 1 limit when dissipation occurs in the fluid bulk. However, for the
range of Raξ covered in this study, a non-negligible fraction of dissipation is expected
to happen within the boundary layers. In addition, our mixture of Prandtl numbers above
and below unity may result in superimposed transport regimes. As such, the smaller value
of the scaling exponent, as well as the larger spread of the data, compared with those of
Yang et al. (2016) over a comparable range of Raξ , are not surprising: Yang et al. (2016)
consider a single combination of parameters (Pr = 7, Le = 100) that makes it possible
to reach values of rρ smaller than ours. We only retained the simulations by Yang et al.
(2016) that satisfied the criterion rρ > 0, viz. Rρ > 1; yet fingers in their case remain stable
down to Rρ ≈ 0.1, where the scaling Sh − 1 ∼ Ra0.31

ξ still holds (not shown). Finally, we
note that the chemical transport for the Pr < 1 data shown in figure 11(a) also follows the
Ra0.27

ξ law, in stark contrast to the predictions of a constant Sh for a fixed (Le, Pr) pair
derived by Brown et al. (2013) in unbounded planar models with Pr � 1.

Using (3.34), the definition of the flux ratio (2.19) and the scaling for Sh − 1 with Raξ

just discussed, and assuming that [γ (1 − γ )]1/2 can be considered constant, we expect

Pe ∼ Ra2/3
ξ |RaT |−1/4, (3.39)

in the asymptotic Sh ∼ Ra1/3
ξ regime. Figure 11(b) shows Pe|RaT |1/4 as a function of Raξ

for our dataset and that of Yang et al. (2016). Least-squares fits yield scaling exponents that
are remarkably close to 2/3 for both subsets, and a spread of our data along the best-fit line
less pronounced than in figure 11(a). The difference in the prefactors of the best-fit lines
describing our dataset and that of Yang et al. (2016) can be ascribed to the differences in
model set-ups (Cartesian vs spherical geometry and constant gravity vs gravity increasing
with r).

A few comments are in order with regard to (3.39): operating at fixed Le = 100, Yang
et al. (2016) propose a scaling for the vertical velocity in terms of the Reynolds number Re

Re ∝ R−1/4
ρ Ra1/2

ξ ∝ Ra3/4
ξ |RaT |−1/4Le−1/4, (3.40)

which, in light of their figure 4(b), does not yield as good an agreement with their data
as the scaling proposed here for Pe, and shown in figure 11(b). Expressing our proposed
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Figure 11. (a) Value of Sh − 1 as a function of Raξ for our numerical simulations with rρ < 0.1 alongside
the data from Yang et al. (2016) that fulfil Rρ > 1. (b) Value of Pe|RaT |1/4 as a function of Raξ . In both
panels, dashed and dotted lines correspond to least-square fits to our data and to those of Yang et al. (2016),
respectively.

scaling in terms of Re gives

Re ∼ Ra2/3
ξ |RaT |−1/4Sc−1, (3.41)

which exhibits a slightly smaller dependency on Raξ than the one put forward by Yang
et al. (2016), and does a better job of fitting their data (not shown). Yang et al. (2016)
acknowledged that additional dependency on Pr and Sc (or Le) might occur since only
one combination is considered in their study, in particular when discussing the scaling
Re ∼ Raξ |RaT |−1/2 proposed by Hage & Tilgner (2010) based on their experimental
data with Pr ≈ 9 and Sc ≈ 2200. The exponents found by Hage & Tilgner (2010) are
markedly different from the ones inferred from our analysis. It should be noted, however,
that their experimental data cover a region of parameter space where the density ratio
is mostly smaller than unity, in which fingers can be gradually replaced by large-scale
convection. Under those circumstances, the hypothesis that dissipation can be expressed
by Dν ∼ (Repol/Lh)

2, with Lh the typical finger width, breaks down.

4. Toroidal jets

In a substantial subset of simulations, a secondary instability develops on top of the
radially oriented fingers, in the form of large-scale horizontal flows. Jets formation has
been observed in 2-D unbounded simulations by Radko (2010) and Garaud & Brummell
(2015) for Pr < 1 fluids. More recently, Yang et al. (2016) reported the formation of
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alternating zonal jets in a 3-D bounded geometry with Pr = 7 and Le = 100 when Raξ >

1010. The purpose of this section is to characterise the spatial and temporal distributions
of jets forming in spherical-shell fingering convection.

4.1. Flow morphology
Figure 12 shows 3-D renderings of snapshots of the azimuthal velocity for four selected
numerical simulations. Upper panels (a,b) correspond to simulations which share the same
parameters Pr = 0.3, |RaT | = 108, Le = 10 and only differ in the values of the density
ratio Rρ , Rρ = 6 in figure 12(a) and Rρ = 5 in figure 12(b). To highlight the spatial
distribution of the toroidal jet, figure 12(a,b) also shows streamlines of the large-scale
component of the flow truncated at spherical harmonic degree � = 7. In both simulations,
the large-scale component of the flow takes the form of one single jet which reaches its
maximum amplitude around mid-shell (red thick streamline tubes). We note in passing that
the 22 simulations with Pr < 1 of our dataset which develop toroidal jets systematically
feature one singly oriented jet that spans most of the spherical-shell volume. The absence
of background rotation precludes the existence of a preferential direction in the domain,
and the axis of symmetry of the jet has the freedom to evolve over time. In panel (a), the
toroidal Reynolds number reaches 24, comparable to the velocity of the fingers Repol = 41.
The fivefold increase of the buoyancy power between figures 12(a) and 12(b) results in a
stronger jet, which now reaches Retor = 87, a value slightly larger than the finger velocity
Repol = 77. Interestingly, a further decrease of Rρ to 3.25 (not shown) results in the
decrease of Retor and the eventual demise of toroidal jets for lower Rρ . This is suggestive
of a minimum threshold value of Rρ favourable to trigger jet formation.

The numerical models shown in the lower panels (c,d) of figure 12 share the same values
of Pr = 3, Le = 10 and Rρ = 1.5 but differ in their values of Raξ and RaT . In the case
shown in figure 12(c) with Raξ = 1010, faint multiple jets of alternated directions develop.
Their amplitudes remain, however, weak compared with the finger velocity with Retor = 14
and Repol = 72. As can be seen in the equatorial plane (colatitude θ = π/2), jets do not
exhibit a perfectly coherent concentric nature over the entire fluid volume but rather adopt
a spiralling structure with significant amplitude variations. As shown in figure 12(d), an
increase of the convective driving to Raξ = 5 × 1010 goes along with the formation of
a stack of 6 alternated jets. Although their amplitude remains smaller than the fingering
velocity (Retor = 45 and Repol = 134), toroidal jets now adopt a quasi-concentric structure
with well-defined boundaries. This latter configuration is reminiscent of the simulations
of Yang et al. (2016), who also report the formation of multiple jets in local Cartesian
numerical models with Pr = 7 and Rρ = 1.6 when Raξ ≥ 1011. Similarly to Yang et al.
(2016), we also observe that toroidal jets develop in configurations with Pr ≥ 1 for small
values of Rρ and sufficiently large values of Raξ . Critical values of those parameters
required to trigger jet formation are further discussed below.

4.2. Time evolution
To illustrate the growth of toroidal jets, we show in figure 13 the time evolution of the
poloidal and toroidal kinetic energy alongside kinetic energy spectra for two illustrative
numerical simulations which feature jets with RaT = −108, Pr = 0.3, Le = 10 and Rρ =
4 (upper panels, simulation 53 in table 3) and RaT = −1.5 × 108, Pr = 1, Le = 10 and
Rρ = 1.3 (lower panels, simulation 72). For the case with Pr = 0.3 (figure 13a), Ek,tor
is initially 25 times weaker than Ek,pol. Beyond t ≈ 4.2, Ek,tor grows exponentially over
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Figure 12. Three-dimensional renderings of the instantaneous longitudinal velocity uϕ for four simulations.
The inner and outer spherical surfaces correspond to ri + 0.03 and ro − 0.04. (a,b) The two simulations share
Pr = 0.3, Le = 10 and RaT = −108 (simulations 57 and 53 in table 3). The value of Rρ is equal to 6 in
(a) and 4 in (b). Streamlines correspond to the large-scale component of the flow, truncated at a spherical
harmonic degree � = 7. The width and the colour of the streamlines vary according to the local squared
velocity. The two simulations on the bottom row (c,d) share Pr = 3, Le = 10 and Rρ = 1.5 (simulations
84 and 80). The simulation shown in (c) has (RaT , Raξ ) = (−1.5 × 109, 1010), while that shown in (d) has
(RaT , Raξ ) = (−7.5 × 109, 5 × 1010).

approximately one viscous diffusion time and saturates at a value which exceeds Ek,pol.
In contrast, the case with Pr = 1 (figure 13c) exhibits a much slower growth of the
toroidal energy: Ek,tor gains one order of magnitude in more than 3 viscous diffusion
times. At the saturation of the instability around t ≈ 9, Ek,tor remains a factor 3 smaller
than Ek,pol in this case. The growth of the toroidal energy goes along with the formation
of one or several large-scale jets (see figure 12), which are clearly visible in the kinetic
energy spectra. Figures 13(b)–13(d) show the kinetic energy spectra as a function of the
spherical harmonic degree at three different times: before the start of the instability (blue
lines), during the exponential growth of the jets (yellow lines) and at the saturation of the
instability (red lines). In both cases, the initial spectral distributions of energy are typical of
fingering convection with a well-defined maximum around the average spherical harmonic
degree �h which corresponds to the mean horizontal size of the fingers (recall figure 3d).
The growth of Ek,tor manifests itself in an increase of several orders of magnitude of the
energy at the largest scale � = 1. In the saturated state, the kinetic energy spectra now
reach their maxima at � = 1 and feature a secondary peak of smaller amplitude at � = 3.
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Figure 13. (a,c) Time evolution of the poloidal (toroidal) kinetic energy Ek,pol (Ek,tor). (b,d) Kinetic energy
spectra as a function of the spherical harmonic degree � shown at three distinct times which correspond to the
vertical dotted lines in the left panels. Panels (a,b) correspond to a simulation with RaT = −108, Pr = 0.3,
Le = 10 and Rρ = 4 (simulation 53 in table 3), while panels (c,d) correspond to a simulation with RaT =
−1.5 × 108, Pr = 1, Le = 10 and Rρ = 1.3 (simulation 72). In panels (b,d), the vertical lines correspond
to �h.

The toroidal energy at degree � = 1 E1
k,tor is hence a good measure of the energy contained

in the jets. Beyond � � 6, the spectra remain quite similar to their distribution prior to the
onset of jet formation. This indicates a limited feedback of the growth of the jets on the
horizontal size of the fingers.

To further characterise the physical parameters propitious to the formation of toroidal
jets, figure 14 shows the time evolution of the toroidal kinetic energy contained in the
� = 1 degree at a given radius around ≈0.8 ro for two series of simulations. Figure 14(a)
shows simulations with RaT = −108, Pr = 0.3, Le = 10 and increasing r�

ρ . For the case
with the smallest r�

ρ = 0.47, jets do not form since the toroidal energy at � = 1 oscillates
but does not grow over time. For r�

ρ ≥ 0.5, E1
k,tor grows exponentially over one viscous

diffusion time before reaching saturation. The amplitude of E1
k,tor reaches its maximum
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Figure 14. (a) Time evolution of the toroidal kinetic energy contained in the � = 1 harmonic degree at a given
radius r for simulations with RaT = −108, Pr = 0.3, Le = 10 and a varying r�

ρ (simulations 50, 52, 53, 56 and
58 in table 3). For all of them but one, r = 0.793 ro. The simulation with r�

ρ = 0.40 is shown for r = 0.858 ro.
(b) Same for simulations with RaT = −3.66 × 109, Pr = 7, Le = 3 (simulations 106, 107, 109, 110 and 112)
and r = 0.785 ro.

for the cases with r�
ρ ≈ 0.5–0.55 and then decreases for larger values. The growth rate

of the instability remains, however, markedly similar over the range of r�
ρ considered here.

The simulation with r�
ρ = 0.80 is the last one of the series that features jets. For the models

with Pr = 0.3, jets hence only develop on a bounded interval of r�
ρ . Figure 14(b) shows

simulations with RaT = −3.66 × 109, Pr = 7 and Le = 3. All the numerical models with
r�
ρ < 0.86 present an exponential growth of E1

k,tor with once again comparable growth
rates. In contrast to the Pr < 1 cases, jets appear to form below a threshold value of r�

ρ ,
while displaying a monotonic trend: the lower r�

ρ below the threshold, the stronger the jets.
Once the toroidal jets have saturated, Pr < 1 and Pr ≥ 1 simulations exhibit distinct

time evolutions: cases with Pr < 1 are dominated by one single jet with a well-defined
rotational symmetry with no preferred axis (see figure 12a,b), while Pr ≥ 1 cases usually
feature a more complex stack of multiple alternated jets with different axes of symmetry.
The latter are also more prone to time variations than the former. To illustrate this
phenomenon, figure 15 shows the time evolution of the longitudinal average of uφ in the
equatorial plane for a simulation with Pr = 3, Rρ = 1.5, Le = 10 and Raξ = 2 × 1010. For
this simulation, the � = 1 toroidal energy is mostly axisymmetric, and the inspection of
the azimuthally averaged velocity thus provides a good insight into the jet dynamics. The
zonal flow pattern in the first half of the time series consists of three pairs of alternated jets.
Jets are nucleated in the vicinity of the bottom boundary before slowly drifting outwards
with a constant speed until reaching the outer boundary after ≈0.3 viscous diffusion
times. In between, another jet carrying the opposite direction has emerged forming a
quasi-periodic behaviour. This oscillatory phenomenon is gradually interrupted beyond
t ≈ 6.6. The mid-shell westward jet then strengthens and widens, while the surrounding
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Figure 15. Longitudinal average of the longitudinal velocity in the equatorial plane (colatitude θ = π/2), UJ ,
as a function of radius r and time t. Control parameters for this simulation are Pr = 3, Le = 10, Raξ = 2 × 1010

and Rρ = 1.5 (simulation 81 in table 3).

eastward jets vanish. The multiple drifting jets therefore transit to a single jet configuration
within less than one viscous diffusion time. The long-term stability of the multiple jet
configuration when Pr ≥ 1 is hence in question. Since the jets merging seems to occur on
time scales commensurate with the viscous time scale, a systematic survey of the stability
of the multiple jet configuration is numerically daunting. We decided to instead focus on
a selected subset of multiple jet simulations with Pr ≥ 1 which were integrated longer
to examine the merging phenomenon. As stated above, the 5 multiple jet cases whose
integration is too short to assess a possible merger feature an additional ‘NS’ in the last
column of table 3. It is, however, striking to note that all the simulations that have been
pursued longer eventually evolve into a single jet configuration; the merging time taking up
to twice the viscous diffusion time. This phenomenon is reminiscent of the 2-D numerical
models by Xie et al. (2019) who also report jets merging over time scales 4 orders of
magnitude larger than the thermal diffusion time at the scale of a finger. For comparison
purposes, the time integration of the case shown in figure 15 corresponds to roughly 7000
thermal diffusion times at the finger scale.

4.3. Instability domain
Jet formation systematically leads to the growth of the toroidal kinetic energy content at the
largest scales (recall figure 13). To distinguish jet-producing simulations from the others,
we introduce the following empirical criterion:

ζ =
(

1 −
∑�=5

�=1 E�
k,tor∑�=11

�=1 E�
k,tor

)−1

> 20, (4.1)

whose purpose is to reveal the emergence of large-scale toroidal energy, for spherical
harmonic degrees � in the range [[1, 5]], using a baseline defined by the spherical harmonic
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Figure 16. (a) Location of the 123 simulations computed in this study in the r�
ρ − Raξ plane. (b) Same in

the r�
ρ − Repol plane. Stars and discs denote Pr < 1 and Pr ≥ 1, respectively. Grey symbols correspond to

models without jets. Conversely, symbols corresponding to simulations with single or multiple jets according
to the criterion (4.1) are coloured according to the value of the Lewis number Le. Symbol size is proportional
to Re1

tor/Repol, where Re1
tor is the Reynolds number constructed from the spherical harmonic degree � = 1

component of the toroidal flow. The 5 simulations with jets whose symbol has a grey rim were not integrated for
a long enough time to witness the possible merging of their multiple jets, which may lead to an underestimation
of Re1

tor/Repol. The white star with a yellow rim corresponds to the simulation further discussed in figure 19.

degrees � in the range [[6, 11]], whose level is immune to jet formation, see figures 13(b)
and 13(d). The threshold of 20 is arbitrary and enables a clear separation to be made
between those simulations producing jets and the others.

Figure 16 shows the location of the 123 simulations in the r�
ρ − Raξ (a) and r�

ρ − Repol
(b) planes. In order to highlight the models which develop jets, the coloured symbols in
figure 16 correspond to cases with toroidal jets and the symbol size scales to the relative
energy content in E1

k,tor. Configurations prone to jet formation are only observed beyond
Raξ ≈ 108 for Pr < 1 and beyond Raξ ≈ 109 for Pr ≥ 1, which indicates that a minimum
level of convective forcing is required to trigger the onset of jet formation. This is in line
with the findings of Yang et al. (2016), who also found jets forming beyond Raξ ≥ 1011 in
their models with Pr = 7, Le = 100 and Rρ = 1.6.

For the numerical models with Pr < 1 (yellow and red stars), jets form over a bounded
domain of r�

ρ . The instability domain grossly spans r�
ρ ∈ [0.4, 0.8] but also features

an additional dependence on RaT . The three quasi-horizontal branches of yellow stars
correspond to numerical simulations with |RaT | = 108, 109 and 1010, respectively. For
each value of |RaT |, the largest relative energy content in the large-scale jets is attained
close to the lower boundary of the instability domain. Increasing |RaT | goes along with
a gradual shift of the instability domain towards larger values of r�

ρ . Simulations with
Pr = 0.1 and Le = 30 (red stars) feature a smaller instability domain than Pr = 0.3,
Le = 10 (yellow stars). For the lowest Pr = 0.03 configurations considered here, not a
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single model satisfies the criterion employed to detect jets. We note, however, that two
simulations with Pr = 0.03 and r�

ρ ≈ 0.8 feature a sizeable increase in E1
k,tor, such that

E1
k,tor ≈ 10E2

k,tor, yet insufficient to fulfil the criterion. This indicates that the instability
domain for jet formation shrinks upon decreasing Pr, with a concomitant decrease of jet
amplitude. Jets are hence unlikely to form in the Pr � 1 regime (Garaud & Brummell
2015).

For the models with Pr ≥ 1 (disks in figure 16), jets develop for Raξ ≥ 109 for Pr = 3
(yellow disks) and for Raξ ≥ 1010 for Pr = 7 (blue disks) for a range of r�

ρ which roughly
spans [0, 0.5]. At a given convective forcing Raξ , the largest relative jet amplitude seems
to correspond to the smallest values of r�

ρ . Because of the slow merging of the multiple
jet configuration when Pr ≥ 1, their final amplitude is, however, hard to assess for those
5 simulations that have not reached saturation and are represented by symbols with a grey
rim in figure 16.

It is clear from figure 16(a) that the sole value of Raξ does not provide a reliable
criterion for jet formation, since its critical value depends on both Pr and Le. As an attempt
to devise a more generic criterion, figure 16(b) shows the distribution of simulations
in the r�

ρ − Repol plane. Series of simulations with a fixed value of |RaT | now define
inclined branches, along which the amplitude of Repol increases upon decreasing r�

ρ .
All the configurations prone to jet formation satisfy Repol > 30. This is of course not a
sufficient condition, since, as discussed earlier, the Pr � 1 configurations also demand
r�
ρ ∈ [0.4, 0.8], while the Pr ≥ 1 require r�

ρ < 0.5 to develop jets. Overall, this stresses
the need for a sufficiently vigorous background of fingering convection to trigger the
secondary instability leading to jet formation.

To better characterise the mechanism of jet formation, we now focus on one particular
model with Pr = 0.3, Le = 10, Raξ = 2 × 108 and Rρ = 5, where only one single jet
develops (simulation 55 in table 3). To ease the analysis, the axis of symmetry of the jet has
been enforced to perfectly align with the z-axis by imposing a twofold azimuthal symmetry.
Figure 17 shows two snapshots of the convective flow close to the equatorial plane prior
to the jet formation and at the saturation of the instability. Before the jets start to grow
(figure 17a), fingers present an almost tubular structure. After almost two viscous diffusion
times, a strong jet aligned with the z-axis (colatitude θ = 0) has developed and reaches a
velocity which exceeds the radial flow (figure 17b). Fingers have lost their vertical structure
and are now distorted in the direction of the background shear. This is reminiscent of the
analysis by Holyer (1984), who showed that fingering convection is prone to developing
secondary instabilities that can be either oscillatory or non-oscillatory. The latter take the
form of horizontal motions perpendicular to the axis of the fingers (see her figure 1). This
secondary instability shears the initially tubular fingers, while distorted fingers yield a
correlation between the convective flow components that can, in turn, feed the shear by
Reynolds stress (see Stern & Simeonov 2005, § 3.1). The 2-D numerical models by Shen
(1995) with Pr = 7, Le = 100 and Rρ = 2 showed that this secondary instability saturates
once the fingers are disrupted by shear.

In the case of Pr < 1 where only one single jet develops, it is always possible to define
without loss of generality a local frame (er, eϑ, eϕ) in which the jets velocity can be
expressed along eϕ only. The time and azimuthal average of the azimuthal component
of the Navier–Stokes equations (2.3) expressed in this frame of reference then yields a
balance between Reynolds and viscous stresses given by

1
r2

∂

∂r

(
r2〈uruϕ

〉
ϕ

)
+ 1

r sin ϑ

∂

∂ϑ

(
sin ϑ

〈
uϑuϕ

〉
ϕ

)
= ∇2UJ − 1

r2 sin2 ϑ
UJ, (4.2)
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Figure 17. Renderings of the velocity for a numerical model with Pr = 0.3, Le = 10, Raξ = 2 × 108 and
Rρ = 5 (simulation 55 in table 3) at t = 3.98 (a) and at t = 5.68 (b). The equatorial plane shows the azimuthal
component of the velocity uφ , while the red and blue surfaces correspond to the iso-levels of the radial velocity
ur = ±80 in the vicinity of the equatorial plane.

where 〈· · · 〉ϕ denotes an azimuthal average and UJ = 〈uϕ

〉
ϕ

corresponds to the radial
profile of the toroidal jets. Since the initial fingers are predominantly radial with |ur| �
|uϑ | and the jets are almost concentric with little ϑ dependence (see figure 12), (4.2) can
be simplified as follows:

1
r2

∂

∂r

(
r2〈uruϕ

〉
ϕ

)
∼ 1

r2
∂

∂r

(
r2 ∂UJ

∂r

)
. (4.3)

To examine this balance in more detail, we compute the volume average of the Reynolds
stress tensor via

Qij = 2π

V

∫ ro

ri

∣∣∣∣∫ π

0

〈
uiuj
〉
ϕ

sin ϑ dϑ

∣∣∣∣ r2 dr, (i, j) ∈ {r, ϑ, ϕ}2. (4.4)

Figure 18 shows the time evolution of the Reynolds stress tensor for the numerical
model already shown in figure 17. Initially, the flow takes the form of elongated fingers
with a strong radial coherence, Qrr being two orders of magnitude larger than Qrϑ and
Qrϕ and one order of magnitude larger than the horizontal components Qϑϑ and Qϕϕ .
When the secondary instability sets in around t ≈ 4, horizontal jets develop and Qϕϕ

increases exponentially over one viscous diffusion time to finally exceed Qrr beyond
t ≈ 5. The correlation Qrφ increases concomitantly, while the other Reynolds stress
terms remain unchanged. Similarly to the tilting instabilities observed in Rayleigh–Bénard
convection (e.g. Goluskin et al. 2014), the horizontal shear flow grows from the
correlation between the radial and the azimuthal component of the background flow,
which here corresponds to the tilt of the fingers. Let us stress here that we observe
that the same mechanism is at work for Pr > 1 fluids, leading to the formation of
multiple alternated jets, in agreement with the Cartesian analysis of Holyer (1984, her
figure 1).

Interestingly, close to the lower boundary of the instability domain for jet formation for
Pr < 1 simulations (figure 16), we found one numerical model (highlighted by a white
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Figure 18. Time evolution of the Reynolds stress tensor Qij (4.4) for a simulation with Pr = 0.3, Le = 10,
Rρ = 5 and Raξ = 2 × 108 (simulation 55 in table 3), and subjected to the enforcement of a twofold azimuthal
symmetry, such that the jet that forms has no component along eθ . The two vertical lines correspond to the
snapshots shown in figure 17.

star with a yellow rim) for which the interplay between shear and fingers via Reynolds
stresses drives relaxation oscillations. Those are visible in figure 19, which shows the time
evolution of the poloidal and toroidal kinetic energy (a) alongside that of the Sherwood
number (b) for a numerical model with RaT = −109, Pr = 0.3, Le = 10 and Rρ = 4. It
comes as no surprise that the temporal evolution of the poloidal energy Ek,pol is strongly
correlated with that of the chemical transport Sh. Relative changes of the two quantities
are actually comparable, reaching approximately 5 % of their mean values. This numerical
model features a single jet, whose axis of symmetry changes over time. This manifests
itself by the relative variations of the axisymmetric toroidal energy, which suddenly grow
beyond t ≈ 9 when the jet comes in better alignment with the z-axis. Toroidal and poloidal
energies oscillate over time with a typical period close to the viscous diffusion time, a
behaviour that resembles that of the 2-D models by Garaud & Brummell (2015). Strong
toroidal jets disrupt the fingers, hence reducing the efficiency of the radial flow and heat
transport. This in turn is detrimental to feeding the jets via Reynolds stresses. The shear
subsequently decays, permitting a more efficient radial transport. Repeating this cycle
yields out-of-phase oscillations for Ek,pol and Ek,tor. In agreement with the findings by
Xie et al. (2019), relaxation oscillations disappear when increasing Rρ while keeping all
the other parameters constant. Conversely, we do not observe jets forming for lower values
of Rρ . This indicates that relaxation oscillations likely mark the boundary of the secondary
instability domain.

5. Summary and conclusion

We investigate the properties of fingering convection in a non-rotating spherical shell of
radius ratio ri/ro = 0.35 using a catalogue of 123 three-dimensional simulations, one
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Figure 19. (a) Time evolution of the poloidal kinetic energy (solid blue), the toroidal kinetic energy (solid red)
and the axisymmetric toroidal energy (dashed red) for a simulation performed with RaT = −109, Pr = 0.3,
Le = 10 and Rρ = 4 (simulation 39 in table 3). (b) Time evolution of Sh for that simulation, that is represented
with the white star with a yellow rim in figure 16.

of our aims being to examine the extent to which predictions derived in local Cartesian
domains would be adequate in a global spherical context. We focus on scaling laws for
the transport of composition, heat and momentum, and studied the possible occurrence of
jet-forming secondary instabilities, over a broad range of Prandtl numbers, from Pr = 0.03
to Pr = 7.

In spherical shells, curvature and the linear increase of the gravitational acceleration
with radius yield asymmetric boundary layers. A dedicated analysis of the chemical
boundary layers enables us to show that (i) the boundary layer asymmetry can be
rationalised by assuming that the boundary layers are marginally unstable; (ii) the
thickness of the boundary layers is well described by the laminar Prandtl–Blasius
model.

A single horizontal scale, defined in practice at mid-depth, suffices to describe the lateral
extent of fingers, which does not show substantial variations with radius in the fluid bulk.
We show that the typical finger width is controlled by a balance between buoyancy and
viscous forces, and that its expression can be derived by making the classical ‘tall finger’
assumption, whereby along-finger (radial) derivatives are neglected against cross-finger
(horizontal) derivatives (see e.g. Taylor & Bucens 1989; Smyth & Kimura 2007). The
excellent agreement between the prediction and the dataset seen in figure 7(b) stresses the
crucial importance of the correction factor involving the flux ratio γ , compared with the
original |RaT |−1/4 scaling proposed by Stern (1960), even though this correction implies
the loss of predictivity.

While the law expressing the finger width is adequate for all cases, establishing scaling
laws for transport requires us to distinguish between cases close to onset and cases that
were strongly driven. To stress the differences and similarities with planar models, table 2
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Fingering convection in a spherical shell

Quantity Unbounded Cartesian Bounded Cartesian This study

Weakly nonlinear (Pr > 1)
Lh ε−1/4|RaT |−1/4 (R10) ε−1/4|RaT |−1/4 (RS00) ε−1/4|RaT |−1/4

Nu − 1 ε2Le−2 (R10) ε13/10|RaT |3/10Le−2 (RS00) ε3/2|RaT |3/10Le−2

Sh − 1 ε2 (R10) f (Rρ, Le, Pr)Ra1/3
ξ (T67) ε3/2|RaT |3/10

PeLh ε (R10) ε3/4 (RS00) ε|RaT |3/20

Pe ε5/4|RaT |1/4 (R10) ε|RaT |1/4 (RS00) ε|RaT |2/5

γ Rρ/Le (R10) Rρ/Le (S79) Rρ/Le

Weakly nonlinear (Pr < 1)

Lh ε−1/4|RaT |−1/4 (B13) — [(γ −1 − 1)|RaT |]−1/4

Nu� − 1 ε2Le−2 (B13) — ≈ (ε�Le−1Pr1/2)1.4

Sh� − 1 ε2 (B13) — ≈ (ε�Le−1Pr1/2)1.4Le2

PeLh ε (B13) — PeLh

Pe|RaT |−1/4 ε5/4 (B13) — ≈ ε�0.95Pr0.17Le0.30

γ Rρ/Le (B13) — R�
ρ/Le

Strongly driven, 0 < rρ � 1

λξ Not relevant

⎧⎨⎩Pe−1/3L2/3
h (Y16)

Pe−1/2L1/2
h (HT10)

Pe−1/3L2/3
h

Lh f (Le, Pr)|RaT |−1/4 (B13)

⎧⎨⎩Ra−1/4
ξ R−1/8

ρ (Y16)

|RaT |−1/3Ra1/9
ξ (HT10)

[(γ −1 − 1)|RaT |]−1/4

Sh − 1

{
f (Pr, Le) (B13)

(Rρ − 1)−1/2 (RS12)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ra1/3

ξ (Y16)

f (Rρ, Le, Pr)Ra1/3
ξ (T67)

Ra4/9
ξ |RaT |−1/12 (HT10)

Ra1/3
ξ

Pe LePr1/2L−1
h (B13)

⎧⎪⎨⎪⎩Ra3/4
ξ |RaT |−1/4 Sc

Le1/4 (Y16)

Raξ |RaT |−1/2Sc (HT10)
Ra2/3

ξ |RaT |−1/4

γ

{
Rρ(1 + LePr)1/2 (B13)

≈ α1e−α2Rρ + α3 (RS12)
≈ f (Raξ )R

−1/4
ρ (Y16) f (Pr, Le)?

Table 2. Comparison of the scaling laws reported in unbounded and bounded Cartesian models with the ones
obtained in this study. For an easier comparison with existing scaling laws, we define a Péclet number based
on the finger width PeLh = PeLh. The abbreviation B13 corresponds to Brown et al. (2013), HT10 to Hage &
Tilgner (2010), RS00 to Radko & Stern (2000), R10 to Radko (2010), RS12 to Radko & Smith (2012), S79 to
Schmitt (1979b), T67 to Turner (1967) and Y16 to Yang et al. (2016). The ≈ signs correspond to numerical fits
where no theoretical derivation could be provided. The question mark in the last row accounts for an uncertainty
on the scaling for γ .
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T. Tassin, T. Gastine and A. Fournier

summarises all the scaling laws established in § 3 alongside those reported in unbounded
and bounded Cartesian models.

For the weakly nonlinear scalings corresponding to the two first sections of table 2,
we introduce a small parameter, ε = Rρ/Le − 1, which measures the distance to onset.
We provide novel predictive theoretical scaling laws of the form εα1 |RaT |α2Leα3 for
transport in bounded domains by making use of two cornerstone assumptions: (i) the
finger width relates to the width of the fastest growing mode when ε � 1 (Schmitt
1979b); (ii) compositional boundary layers are well described by the Prandtl–Blasius
model. Our scaling laws differ – unsurprisingly – from the theoretical derivations
carried out in unbounded models but also from the ones derived in bounded models
(Radko & Stern 2000). This latter discrepancy originates from the different assumption
retained to model the compositional boundary layer. Our simulations with Pr > 1
and ε < 1 are found to nicely adhere to these new theoretical scalings, while Pr < 1
models show less of an agreement. For the latter, several assumptions entering the
derivation, such as neglecting the effect of shear and inertia, likely become dubious
on decreasing Pr. We nonetheless show that adjusted diagnostics, which incorporate
the modification of the background profiles into account for the Pr < 1 spherical-shell
data, favourably compare with the local unbounded models by Brown et al. (2013)
and can be described by simple polynomial fits provided in the middle section of
table 2. While those numerical fits merely provide a heuristic description of the
scaling behaviour of the transport of heat and chemical composition, they have the
merit to better describing the Pr < 1 data and could prove beneficial for future
studies.

For strongly driven cases, corresponding to the last section of table 2, we show that
the Sherwood number trends towards the asymptotic dependency of Ra1/3

ξ , regardless
of the value of Pr, even if a direct numerical verification of this scaling is beyond our
computational reach. Our strongly driven cases are not perfectly in the Raξ � 1 regime,
which implies that a non-negligible fraction of dissipation occurs inside the boundary
layers. In addition, the mixture of Prandtl numbers within the ensemble of simulations
leads to variety of transport mechanisms, and consequently to some residual scatter in
figure 11(a). The analysis of the power balance in conjunction with Sh ∼ Ra1/3

ξ prompts
us to propose a novel scaling law for the velocity Pe that accounts extremely well for
our data and those of Yang et al. (2016). This law is adequate for regimes where fingers
dominate the dynamics, regardless of the geometry. Conversely, this law may prove of
limited value to account for data obtained for Rρ < 1 (or equivalently rρ < 0), i.e. when
overturning convection can also occur. Among the most salient differences between the
scaling behaviours shown in table 2 in this regime, we would like to stress that our
simulations with Pr � 1 feature scaling behaviours for the chemical transport that grow
as Ra1/3

ξ , in stark contrast with the predictions from unbounded domains which predict a
constant value for any given (Pr, Le) pair (Brown et al. 2013).

A secondary instability may develop in the form of large-scale toroidal jets. These
features have been observed in both unbounded and bounded planar models which –
by construction – deal with low aspect ratios, so it was far from clear that they could
actually grow in a global geometry. Here, we report for the first time on large-scale
toroidal jets that develop in non-rotating spherical shells. If the properties and evolution
of those jets depend on the Prandtl number being larger or smaller than unity, their
formation is in any event contingent upon a minimum level of driving. For low Pr
fluids, a single jet develops and we find that the level of forcing leading to jet formation
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Fingering convection in a spherical shell

is bounded, meaning that jets might disappear in the Raξ � 1 limit, all other control
parameters remaining fixed. In addition, our results indicate that the interval of forcing
over which jet formation occurs shrinks as Pr decreases. Consequently, we do not expect
toroidal jets to form in spherical geometry in the Pr � 1 limit, in agreement with the
conclusion drawn by Garaud & Brummell (2015) in Cartesian geometry. For Pr above
unity, multiple alternated jets form, and our numerical results suggest that there is no
upper bound on the level of forcing that favours jet formation. We were not able to
study the possible merging of those multiple jets in a systematic manner, due to the
computational cost of such an investigation, as the merging and subsequent saturation
may occur on a time scale commensurate with the viscous time scale. The analysis
and characterisation of the merging process appear as pending issues worthy of future
examination. As envisioned by Holyer (1984) and Stern & Simeonov (2005), jets draw
their energy from the Reynolds stress correlations that come from the sheared fingers, a
mechanism akin to the tilting instabilities found in classical Rayleigh–Bénard convection
(e.g. Goluskin et al. 2014). The nonlinear saturation of this secondary instability can
yield relaxation oscillations with a quasi-periodic exchange of energy between fingers
and jets. We finally note that a more detailed description of the region of parameter
space where jets may develop would entail a linearisation to be performed around the
fingering convection state, a task which is not straightforward in a global spherical
geometry.

Fingering convection can eventually lead to the formation of compositional staircases.
Staircases were found by Stellmach et al. (2011) in a triply periodic domain, and more
recently by Yang (2020) in a bounded Cartesian configuration, upon reaching Raξ �
1012, slightly above the maximum value considered in this work (Raξ = 5 × 1011).
Future work should seek confirmation of spontaneous layer formation in a spherical
shell.

Finally, let us recall that this study ignored the effect of background rotation from the
outset, on account of parsimony. In view of planetary applications, and in light of the
studies by Monville et al. (2019) and Guervilly (2022), a sensible next step is to add
background rotation to the physical set-up and to analyse how it affects the understanding
developed here in the non-rotating case.

Acknowledgements. We thank the three anonymous referees for their thorough and insightful comments
that helped improve the quality of manuscript. Figures were generated using matplotlib (Hunter 2007) and
paraview (https://www.paraview.org) using the colour schemes from Thyng et al. (2016).

Funding. Numerical computations were performed on GENCI resources (grants A0090410095 and
A0110410095) and on the S-CAPAD/DANTE platform at IPGP.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Thomas Gastine https://orcid.org/0000-0003-4438-7203;
Alexandre Fournier https://orcid.org/0000-0003-3276-0496.

Appendix A. Numerical database

988 A18-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

42
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://www.paraview.org
https://orcid.org/0000-0003-4438-7203
https://orcid.org/0000-0003-4438-7203
https://orcid.org/0000-0003-3276-0496
https://orcid.org/0000-0003-3276-0496
https://doi.org/10.1017/jfm.2024.422


T. Tassin, T. Gastine and A. Fournier

|R
a T

|
(λ

i,
λ

o)

#
(×

10
7 )

(N
r,

�
m

ax
)

R
ρ

R
� ρ

γ
E

% k,
to

r
N

u
Sh

(×
10

−1
)

(Δ
iΞ

,
Δ

oΞ
)

Re
po

l
Re

1 to
r

�
h

P
r

=
0.

03
,
Le

=
33

.3
1

6.
6

(5
13

,
42

6)
1.

10
2.

86
0.

42
22

.0
0

1.
33

31
.3

1
(0

.0
6,

0.
07

)
(0

.4
3,

0.
06

)
12

01
.4

17
.3

74
2

6.
6

(2
41

,
21

3)
8.

25
13

.2
6

0.
61

12
.4

8
1.

02
10

.2
3

(0
.1

2,
0.

14
)

(0
.2

9,
0.

04
)

29
0.

3
5.

0
61

3
6.

6
(2

17
,
21

3)
15

.4
0

19
.9

8
0.

71
8.

96
1.

01
4.

90
(0

.1
8,

0.
21

)
(0

.2
0,

0.
03

)
14

0.
4

3.
2

54
4

6.
6

(1
93

,
21

3)
22

.4
4

25
.3

2
0.

81
5.

84
1.

00
2.

39
(0

.3
0,

0.
33

)
(0

.1
6,

0.
02

)
67

.3
2.

1
47

5
6.

6
(1

93
,
21

3)
23

.0
0

25
.7

6
0.

81
5.

60
1.

00
2.

26
(0

.3
2,

0.
35

)
(0

.1
6,

0.
02

)
62

.9
2.

4
46

6
6.

6
(1

93
,
21

3)
27

.5
0

29
.0

4
0.

88
4.

89
1.

00
1.

47
(0

.0
0,

0.
00

)
(0

.0
0,

0.
00

)
32

.6
4.

6
40

7
6.

6
(1

93
,
21

3)
28

.0
0

29
.4

2
0.

89
4.

38
1.

00
1.

41
(0

.0
0,

0.
00

)
(0

.0
0,

0.
00

)
29

.7
3.

9
39

8
0.

66
(2

01
,
21

3)
1.

10
3.

95
0.

43
20

.2
3

1.
19

18
.0

3
(0

.1
2,

0.
14

)
(0

.5
0,

0.
07

)
52

8.
9

13
.6

40
9

0.
66

(1
29

,
12

8)
2.

95
8.

23
0.

51
15

.5
7

1.
06

12
.1

3
(0

.1
6,

0.
19

)
(0

.4
6,

0.
07

)
28

5.
5

7.
7

37
10

0.
66

(1
29

,
12

8)
8.

25
15

.7
8

0.
64

11
.0

0
1.

01
6.

59
(0

.2
5,

0.
28

)
(0

.3
7,

0.
05

)
12

8.
5

4.
3

32
11

0.
66

(1
29

,
12

8)
15

.4
0

21
.7

6
0.

73
7.

74
1.

00
3.

46
(0

.3
7,

0.
40

)
(0

.2
9,

0.
04

)
63

.0
2.

5
28

12
0.

66
(1

29
,
12

8)
22

.4
4

26
.3

9
0.

82
4.

89
1.

00
1.

91
(0

.7
2,

0.
66

)
(0

.2
7,

0.
04

)
30

.8
1.

4
24

13
0.

06
6

(9
7,

13
3)

1.
10

5.
99

0.
43

17
.5

3
1.

09
9.

86
(0

.2
5,

0.
29

)
(0

.5
6,

0.
08

)
22

3.
0

10
.2

22

P
r

=
0.

1,
Le

=
30

14
73

.3
4

(3
85

,
42

6)
6.

80
10

.8
6

0.
61

7.
43

1.
06

21
.6

7
(0

.0
5,

0.
07

)
(0

.2
8,

0.
04

)
28

5.
8

2.
9

11
8

15
7.

33
4

(3
21

,
21

3)
1.

10
3.

49
0.

48
13

.2
9

1.
52

37
.9

0
(0

.0
5,

0.
06

)
(0

.4
7,

0.
07

)
49

3.
3

6.
2

73
16

7.
33

4
(2

41
,
21

3)
6.

80
13

.0
1

0.
63

6.
35

1.
04

14
.0

2
(0

.1
1,

0.
13

)
(0

.3
6,

0.
05

)
12

7.
6

2.
9

64
17

7.
33

4
(2

17
,
21

3)
8.

00
14

.3
1

0.
65

5.
79

1.
03

12
.1

9
(0

.1
2,

0.
14

)
(0

.3
3,

0.
05

)
10

9.
3

2.
2

63
18

7.
33

4
(2

17
,
21

3)
10

.0
0

16
.2

3
0.

68
5.

07
1.

02
9.

76
(0

.1
3,

0.
16

)
(0

.3
0,

0.
05

)
86

.3
3.

0
60

19
∗

7.
33

4
(2

41
,
21

3)
11

.0
0

16
.7

7
0.

69
38

.6
2

1.
02

8.
45

(0
.1

4,
0.

17
)

(0
.2

8,
0.

04
)

76
.4

58
.0

59
20

∗
7.

33
4

(2
41

,
21

3)
12

.6
0

18
.2

0
0.

71
40

.0
9

1.
01

7.
05

(0
.1

5,
0.

18
)

(0
.2

5,
0.

04
)

64
.2

50
.9

57
21

∗
7.

33
4

(2
17

,
21

3)
14

.0
0

19
.3

8
0.

73
36

.4
3

1.
01

6.
07

(0
.1

6,
0.

19
)

(0
.2

3,
0.

04
)

55
.4

40
.4

56
22

∗
7.

33
4

(2
17

,
21

3)
15

.0
0

20
.1

6
0.

75
32

.4
0

1.
01

5.
47

(0
.1

7,
0.

20
)

(0
.2

2,
0.

03
)

49
.9

33
.1

55
23

∗
7.

33
4

(2
17

,
21

3)
16

.0
0

20
.9

1
0.

76
27

.5
7

1.
01

4.
93

(0
.1

8,
0.

21
)

(0
.2

1,
0.

03
)

44
.9

27
.1

54
24

∗
7.

33
4

(2
17

,
21

3)
17

.0
0

21
.6

7
0.

78
22

.2
8

1.
01

4.
44

(0
.1

9,
0.

23
)

(0
.2

0,
0.

03
)

40
.4

20
.9

53
25

∗
7.

33
4

(2
17

,
21

3)
18

.4
0

22
.6

9
0.

80
13

.8
8

1.
00

3.
85

(0
.2

1,
0.

24
)

(0
.1

8,
0.

03
)

34
.7

13
.4

51
26

0.
73

34
(1

29
,
12

8)
1.

10
5.

27
0.

49
10

.9
9

1.
27

20
.4

3
(0

.1
2,

0.
12

)
(0

.5
5,

0.
07

)
20

6.
5

4.
6

40
27

0.
73

34
(1

29
,
12

8)
6.

80
15

.7
4

0.
66

5.
13

1.
02

8.
46

(0
.2

2,
0.

26
)

(0
.4

3,
0.

07
)

54
.2

1.
7

33
28

0.
73

34
(1

29
,
12

8)
12

.6
0

20
.5

6
0.

75
3.

19
1.

01
4.

80
(0

.3
1,

0.
35

)
(0

.3
4,

0.
05

)
28

.0
1.

1
30

29
0.

73
34

(1
29

,
12

8)
18

.4
0

24
.1

7
0.

83
1.

71
1.

00
2.

82
(0

.4
4,

0.
46

)
(0

.2
7,

0.
04

)
15

.1
0.

6
26

30
0.

73
34

(1
29

,
12

8)
24

.2
0

27
.0

7
0.

90
0.

40
1.

00
1.

57
(0

.0
0,

0.
00

)
(0

.0
0,

0.
00

)
6.

6
0.

2
22

Ta
bl

e
3.

Fo
rc

ap
tio

n
se

e
on

ne
xt

pa
ge

.

988 A18-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

42
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.422


Fingering convection in a spherical shell
|R

a T
|

(λ
i,
λ

o)

#
(×

10
7 )

(N
r,

�
m

ax
)

R
ρ

R
� ρ

γ
E

% k,
to

r
N

u
Sh

(×
10

−1
)

(Δ
iΞ

,
Δ

oΞ
)

Re
po

l
Re

1 to
r

�
h

31
0.

07
33

(4
9,

85
)

1.
10

7.
81

0.
48

8.
35

1.
13

10
.7

3
(0

.2
5,

0.
27

)
(0

.6
0,

0.
09

)
83

.4
3.

2
22

32
0.

00
73

(4
1,

85
)

1.
10

10
.6

6
0.

44
6.

26
1.

06
5.

64
(0

.5
2,

0.
55

)
(0

.6
4,

0.
09

)
33

.1
2.

0
12

P
r

=
0.

3,
Le

=
10

33
∗

10
00

(4
33

,
68

2)
5.

00
5.

75
0.

72
80

.9
6

1.
14

10
.8

6
(0

.0
4,

0.
05

)
(0

.1
1,

0.
02

)
25

3.
6

51
0.

2
20

0
34

∗
10

00
(3

21
,
59

7)
7.

30
7.

69
0.

82
79

.6
7

1.
03

3.
70

(0
.0

7,
0.

08
)

(0
.0

6,
0.

01
)

10
3.

7
20

4.
1

17
4

35
∗

10
00

(3
21

,
59

7)
9.

30
9.

42
0.

95
1.

98
1.

01
1.

51
(0

.0
0,

0.
00

)
(0

.0
0,

0.
00

)
30

.2
3.

9
13

4
36

20
2

(5
41

,
68

2)
1.

01
1.

99
0.

60
12

.2
3

4.
12

53
.7

4
(0

.0
3,

0.
03

)
(0

.3
8,

0.
05

)
87

9.
5

5.
9

13
9

37
15

0
(4

33
,
51

2)
1.

50
2.

74
0.

62
9.

34
2.

54
38

.5
5

(0
.0

4,
0.

04
)

(0
.3

5,
0.

05
)

56
3.

1
3.

8
13

4
38

10
0

(2
89

,
34

1)
3.

50
5.

03
0.

69
5.

51
1.

30
16

.1
0

(0
.0

6,
0.

07
)

(0
.2

3,
0.

03
)

21
0.

1
6.

0
11

9
39

∗
10

0
(2

41
,
34

1)
4.

00
5.

36
0.

70
52

.9
0

1.
21

12
.7

7
(0

.0
7,

0.
08

)
(0

.2
0,

0.
03

)
17

3.
9

18
7.

0
11

5
40

∗
10

0
(2

41
,
34

1)
5.

00
6.

08
0.

74
77

.6
1

1.
11

8.
18

(0
.0

8,
0.

10
)

(0
.1

6,
0.

02
)

12
1.

4
22

9.
9

10
9

41
∗

10
0

(1
93

,
34

1)
6.

00
6.

87
0.

77
72

.1
9

1.
06

5.
50

(0
.1

0,
0.

12
)

(0
.1

2,
0.

02
)

86
.3

13
8.

1
10

3
42

∗
10

0
(1

93
,
34

1)
7.

00
7.

69
0.

82
54

.9
1

1.
03

3.
70

(0
.1

2,
0.

14
)

(0
.1

0,
0.

02
)

59
.7

65
.2

97
43

∗
10

0
(1

93
,
34

1)
8.

00
8.

50
0.

87
7.

20
1.

02
2.

64
(0

.1
5,

0.
18

)
(0

.0
9,

0.
01

)
40

.2
11

.2
90

44
10

0
(1

93
,
34

1)
9.

00
9.

36
0.

93
1.

10
1.

01
1.

66
(0

.0
0,

0.
00

)
(0

.0
0,

0.
00

)
20

.5
1.

5
76

45
30

(2
57

,
34

1)
1.

50
3.

15
0.

62
8.

31
2.

08
27

.3
9

(0
.0

6,
0.

07
)

(0
.4

0,
0.

06
)

31
6.

9
3.

2
90

46
22

(2
57

,
34

1)
1.

10
2.

61
0.

61
9.

69
2.

62
30

.8
3

(0
.0

6,
0.

07
)

(0
.4

4,
0.

06
)

36
6.

4
4.

1
82

47
20

.2
(2

89
,
34

1)
1.

01
2.

48
0.

60
10

.1
2

2.
80

31
.7

0
(0

.0
6,

0.
07

)
(0

.4
5,

0.
06

)
38

0.
6

4.
3

79
48

18
(1

29
,
17

0)
9.

00
9.

49
0.

94
0.

42
1.

01
1.

48
(0

.0
0,

0.
00

)
(0

.0
0,

0.
00

)
11

.1
0.

3
46

49
10

(1
93

,
21

3)
1.

50
3.

51
0.

63
7.

44
1.

84
21

.4
3

(0
.0

9,
0.

09
)

(0
.4

3,
0.

06
)

21
1.

7
2.

9
68

50
10

(1
61

,
21

3)
3.

00
5.

27
0.

69
5.

31
1.

26
12

.5
1

(0
.1

1,
0.

14
)

(0
.3

3,
0.

05
)

11
1.

2
5.

0
65

51
∗

10
(1

29
,
17

0)
3.

25
5.

40
0.

70
54

.6
8

1.
21

11
.0

0
(0

.1
2,

0.
14

)
(0

.3
1,

0.
05

)
10

0.
2

96
.4

64
52

∗
10

(1
29

,
17

0)
3.

50
5.

62
0.

71
56

.2
7

1.
18

10
.0

7
(0

.1
2,

0.
15

)
(0

.3
0,

0.
04

)
91

.9
89

.3
63

53
∗

10
(1

29
,
17

0)
4.

00
5.

99
0.

72
55

.8
0

1.
13

8.
47

(0
.1

4,
0.

16
)

(0
.2

7,
0.

04
)

77
.9

81
.5

62
54

∗
10

(1
29

,
17

0)
4.

50
6.

43
0.

74
52

.1
6

1.
10

7.
16

(0
.1

5,
0.

17
)

(0
.2

5,
0.

04
)

66
.4

57
.1

60
55

∗
10

(1
29

,
17

0)
5.

00
6.

78
0.

76
45

.3
0

1.
08

6.
10

(0
.1

6,
0.

19
)

(0
.2

2,
0.

03
)

56
.8

50
.8

59
56

∗
10

(1
29

,
17

0)
5.

50
7.

17
0.

78
36

.7
5

1.
06

5.
18

(0
.1

7,
0.

20
)

(0
.2

1,
0.

03
)

48
.5

31
.5

57
57

∗
10

(1
29

,
17

0)
6.

00
7.

50
0.

80
25

.1
7

1.
05

4.
42

(0
.1

8,
0.

22
)

(0
.1

9,
0.

03
)

41
.3

21
.8

56
58

10
(1

29
,
17

0)
7.

00
8.

20
0.

85
5.

04
1.

03
3.

21
(0

.2
2,

0.
26

)
(0

.1
6,

0.
02

)
29

.1
5.

3
52

59
10

(1
29

,
17

0)
8.

00
8.

91
0.

89
1.

41
1.

01
2.

22
(0

.3
2,

0.
33

)
(0

.1
5,

0.
02

)
18

.6
1.

1
46

60
10

(1
29

,
17

0)
9.

00
9.

47
0.

94
0.

32
1.

00
1.

42
(0

.0
0,

0.
00

)
(0

.0
0,

0.
00

)
8.

9
0.

2
39

Ta
bl

e
3.

Fo
rc

ap
tio

n
se

e
on

ne
xt

pa
ge

.

988 A18-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

42
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.422


T. Tassin, T. Gastine and A. Fournier

|R
a T

|
(λ

i,
λ

o)

#
(×

10
7 )

(N
r,

�
m

ax
)

R
ρ

R
� ρ

γ
E

% k,
to

r
N

u
Sh

(×
10

−1
)

(Δ
iΞ

,
Δ

oΞ
)

Re
po

l
Re

1 to
r

�
h

61
3

(1
29

,
17

0)
1.

50
3.

96
0.

64
6.

70
1.

62
16

.0
8

(0
.1

2,
0.

14
)

(0
.4

7,
0.

07
)

13
4.

7
3.

7
47

62
2.

2
(1

29
,
17

0)
1.

10
3.

37
0.

61
7.

69
1.

89
17

.5
4

(0
.1

2,
0.

14
)

(0
.5

0,
0.

07
)

15
3.

7
3.

1
46

63
2.

06
(1

29
,
17

0)
1.

03
3.

26
0.

61
7.

91
1.

95
17

.8
1

(0
.1

2,
0.

14
)

(0
.5

1,
0.

07
)

15
7.

9
3.

0
45

64
2.

02
(1

29
,
17

0)
1.

01
3.

22
0.

61
7.

99
1.

98
17

.8
9

(0
.1

2,
0.

14
)

(0
.5

1,
0.

07
)

15
9.

1
3.

1
45

65
1

(6
5,

12
8)

5.
00

7.
47

0.
79

2.
68

1.
05

4.
26

(0
.3

2,
0.

36
)

(0
.3

1,
0.

05
)

24
.7

1.
0

30
66

0.
3

(6
5,

12
8)

1.
50

5.
00

0.
65

5.
20

1.
33

9.
03

(0
.2

5,
0.

30
)

(0
.5

2,
0.

08
)

55
.0

1.
8

26
67

0.
03

(6
5,

12
8)

1.
50

5.
39

0.
64

3.
95

1.
16

4.
97

(0
.5

3,
0.

58
)

(0
.5

7,
0.

09
)

22
.0

1.
1

14
68

0.
01

(6
5,

85
)

5.
00

7.
86

0.
81

0.
58

1.
01

1.
81

(1
.7

3,
1.

51
)

(0
.5

6,
0.

09
)

4.
0

0.
2

8

P
r

=
1,

Le
=

10
69

30
0

(6
01

,
79

4)
1.

50
3.

22
0.

63
3.

63
3.

33
57

.2
0

(0
.0

3,
0.

03
)

(0
.4

1,
0.

06
)

25
5.

8
1.

6
16

5
70

15
0

(4
33

,
62

9)
1.

50
3.

44
0.

63
3.

36
3.

00
48

.9
4

(0
.0

4,
0.

04
)

(0
.4

3,
0.

06
)

19
8.

5
2.

0
13

9
71

15
(2

57
,
34

1)
1.

10
3.

57
0.

63
3.

19
2.

76
32

.7
9

(0
.0

7,
0.

08
)

(0
.5

1,
0.

07
)

10
7.

4
2.

1
77

72
∗

15
(2

57
,
34

1)
1.

30
3.

85
0.

63
25

.2
6

2.
35

29
.6

3
(0

.0
7,

0.
08

)
(0

.4
9,

0.
07

)
93

.1
51

.8
77

73
∗

15
(2

57
,
34

1)
1.

50
4.

23
0.

64
30

.2
1

2.
10

27
.4

2
(0

.0
7,

0.
09

)
(0

.4
8,

0.
07

)
82

.5
58

.6
77

74
15

(2
57

,
34

1)
2.

00
5.

26
0.

68
3.

94
1.

77
24

.0
0

(0
.0

8,
0.

10
)

(0
.4

6,
0.

07
)

64
.5

8.
6

77
75

15
(2

57
,
34

1)
5.

00
8.

12
0.

83
0.

80
1.

15
10

.3
4

(0
.1

2,
0.

15
)

(0
.2

9,
0.

05
)

23
.0

0.
8

63
76

15
(2

57
,
34

1)
7.

00
8.

97
0.

89
0.

25
1.

05
4.

99
(0

.1
7,

0.
19

)
(0

.1
9,

0.
03

)
11

.5
0.

2
54

77
15

(2
57

,
34

1)
8.

00
9.

27
0.

92
0.

09
1.

02
3.

00
(0

.2
2,

0.
23

)
(0

.1
5,

0.
02

)
7.

2
0.

1
49

78
15

(2
57

,
34

1)
9.

00
9.

59
0.

95
0.

02
1.

01
1.

58
(0

.0
0,

0.
00

)
(0

.0
0,

0.
00

)
4.

1
0.

0
30

79
1.

5
(1

21
,
17

0)
1.

50
6.

09
0.

70
1.

57
1.

65
15

.7
4

(0
.1

5,
0.

19
)

(0
.5

4,
0.

09
)

32
.8

0.
8

41

P
r

=
3,

Le
=

10
80

∗N
S

75
0

(7
69

,
93

8)
1.

50
3.

58
0.

62
10

.6
2

4.
48

85
.4

8
(0

.0
2,

0.
02

)
(0

.4
4,

0.
06

)
13

4.
3

39
.2

21
8

81
∗N

S
30

0
(5

41
,
68

2)
1.

50
3.

98
0.

63
15

.1
9

3.
85

69
.4

9
(0

.0
3,

0.
03

)
(0

.4
7,

0.
06

)
94

.9
39

.5
17

4
82

∗
15

0
(5

41
,
68

2)
1.

05
3.

25
0.

61
48

.6
3

4.
84

68
.3

2
(0

.0
3,

0.
03

)
(0

.5
1,

0.
07

)
99

.2
95

.6
13

9
83

∗
15

0
(5

41
,
68

2)
1.

20
3.

57
0.

61
51

.8
0

4.
15

63
.6

4
(0

.0
3,

0.
04

)
(0

.4
9,

0.
07

)
87

.7
90

.2
14

2
84

∗
15

0
(4

33
,
59

7)
1.

50
4.

40
0.

64
3.

65
3.

46
58

.9
2

(0
.0

4,
0.

04
)

(0
.4

9,
0.

07
)

72
.6

9.
6

14
5

85
∗

15
0

(4
81

,
62

9)
2.

00
5.

13
0.

67
7.

55
2.

59
49

.0
4

(0
.0

4,
0.

05
)

(0
.4

5,
0.

07
)

56
.0

15
.4

14
5

86
15

0
(4

81
,
62

9)
3.

00
7.

44
0.

79
0.

44
2.

03
40

.3
8

(0
.0

4,
0.

06
)

(0
.4

3,
0.

07
)

37
.6

1.
3

12
7

87
15

0
(4

81
,
62

9)
5.

00
8.

64
0.

86
0.

21
1.

37
22

.7
1

(0
.0

6,
0.

08
)

(0
.3

1,
0.

05
)

19
.7

0.
5

11
2

88
15

0
(4

81
,
51

2)
7.

00
9.

12
0.

91
0.

03
1.

12
10

.1
8

(0
.0

7,
0.

09
)

(0
.1

8,
0.

03
)

9.
9

0.
1

97
89

15
0

(3
85

,
62

9)
8.

00
9.

32
0.

93
0.

01
1.

05
5.

48
(0

.0
9,

0.
11

)
(0

.1
2,

0.
02

)
6.

2
0.

0
90

90
15

0
(4

81
,
62

9)
9.

00
9.

56
0.

95
0.

00
1.

01
2.

26
(0

.1
7,

0.
16

)
(0

.0
8,

0.
01

)
2.

9
0.

0
81

Ta
bl

e
3.

Fo
rc

ap
tio

n
se

e
on

ne
xt

pa
ge

.

988 A18-40

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

42
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.422


Fingering convection in a spherical shell
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Appendix B. Heat sources in spherical geometry

This appendix demonstrates how the time-averaged buoyancy powers Pξ and PT can be
related to Raξ (Sh − 1)/Sc2 and RaT(Nu − 1)/Pr2 in spherical geometry. In contrast to the
planar configuration, where those quantities match each other, gravity changes with radius
and curvature prohibit such an exact relation in curvilinear geometries (see the derivations
by Oruba 2016). Here, we detail the main steps involved in the approximation of Pξ only,
keeping in mind that the derivation PT would be strictly the same with simple exchanges
of Raξ by RaT , Sh by Nu and Sc by Pr.

To provide an approximation of the time-averaged buoyancy power of chemical origin
Pξ , we first start by noting that

Pξ = Raξ

Sc
〈gurξ〉V = 3Raξ

Sc(r3
o − r3

i )

∫ ro

ri

g〈urξ〉S r2 dr. (B1)

Using the definition of the Sherwood number at all radii given in (2.15a,b), we obtain

Pξ = 3Raξ

Sc(r3
o − r3

i )

[
−Sh

Sc

∫ ro

ri

g
dξc

dr
r2 dr + 1

Sc

∫ ro

ri

g
dΞ

dr
r2 dr

]
. (B2)

At this stage, it is already quite clear that only the peculiar configuration of g ∝ r−2 would
allow a closed form for the buoyancy power (see Gastine et al. 2015). Noting that the
conducting background state reads dξc/dr = −riro/r2 and that here g = r/ro, one gets

Pξ = 3Raξ

Sc(r3
o − r3

i )

[
1
2
(r2

o − r2
i )ri

Sh
Sc

+ 1
Sc

∫ ro

ri

g
dΞ

dr
r2 dr

]
. (B3)

Splitting the time-averaged radial profile of composition into the mean conducting state
and a fluctuation such that Ξ = ξc + Ξ ′ yields

Pξ = Raξ

Sc2

[
3
2

ri(ro + ri)

r2
o + rori + r2

i
(Sh − 1) + 3

ro(r3
o − r3

i )(Sh − 1)

∫ ro

ri

dΞ ′

dr
r3 dr

]
. (B4)

The chemical composition being imposed at both boundaries Ξ ′(ri) = Ξ ′(ro) = 0, an
integration by part of the above expression yields

Pξ = Raξ

Sc2

[
3
2

ri(ro + ri)

r2
o + rori + r2

i
(Sh − 1) − 3

ro(Sh − 1)
〈Ξ ′〉V

]
. (B5)

The second term in the brackets is proportional to the volume- and time-averaged
fluctuations of chemical composition. With the choice of imposed composition at both
spherical-shell boundaries, this quantity remains bounded within −1 ≤ 〈Ξ ′〉V ≤ 1. This
second term is hence expected to play a negligible role when Sh � 1. A fair approximation
of Pξ in the spherical shell when g = r/ro thus reads

Pξ ≈ 3
2

ri(ro + ri)

r2
o + rori + r2

i

Raξ

Sc2 (Sh − 1) ≈ 4π

V
rirm

Raξ

Sc2 (Sh − 1), (B6)

where V is the spherical-shell volume and rm = (ri + ro)/2 is the mid-shell radius. This
approximation was already derived by Christensen & Aubert (2006) in the case of thermal
convection.

988 A18-43

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

42
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.422


T. Tassin, T. Gastine and A. Fournier

104 105 106 107 108 109 1010 1011
P ξ

Sc
2
/
Ra

ξ 
(S

h 
−

 1
)

104 105 106 107 108 109 1010 1011

(Raξ/Sc2)(Sh − 1)(Raξ/Sc2)(Sh − 1)

104

105

106

107

108

109

1010

1011

Pξ

0.483 Raξ/Sc2(Sh − 1)

0.48

0.50

0.52

0.54

0.56

Pr = 0.03

Pr = 0.1

Pr = 0.3

Pr = 1.0

Pr = 3.0

Pr = 7.0

0

0.2

0.4

0.6

0.8

1.0
rρ(a) (b)

Figure 20. (a) Value of Pξ as a function of Raξ Sc−2(Sh − 1). The dashed line corresponds to a linear fit to
the data. (b) Compensated scaling of Pξ Ra−1

ξ Sc2(Sh − 1)−1 as a function of Raξ Sc−2(Sh − 1). The horizontal
line corresponds to the theoretical value derived in (B6) for spherical shells with ri/ro = 0.35.

Figure 20(a) shows Pξ as a function of Raξ Sc−2(Sh − 1) for the simulations computed
in this study. A numerical fit to the data yields

Pξ = 0.483
Raξ

Sc2 (Sh − 1), (B7)

in excellent agreement with the approximated prefactor of 0.481 obtained in (B6) for
spherical shells with ri/ro = 0.35. To highlight the deviations to this approximated
scaling, figure 20(b) shows the compensated scaling of Pξ Ra−1

ξ Sc2(Sh − 1)−1 as a
function of Raξ Sc−2(Sh − 1). As expected, the time-averaged buoyancy power gradually
tends towards the scaling (B6) for increasing values of Raξ (Sh − 1).

Appendix C. A comparison with local unbounded simulations for Pr < 1

To compare our computations with local Cartesian unbounded models, we introduce
adjusted diagnostics which take the modification of the background profiles into account.
This practically defines effective quantities on the fluid bulk only

ε� = Le
R�

ρ

− 1, Nu� − 1 = Nu − 1
dΘ/dr(rm)

, Sh� − 1 = Sh − 1
|dΞ/dr(rm)| , (C1a–c)

where the background radial gradients of Θ and Ξ are evaluated at the mid-shell radius.
The introduction of these bulk gradients prevents the derivation of scaling laws that solely
depend on control quantities, but this is the price to pay to make a comparison with local
unbounded models possible. Assuming boldly that the convective and compositional heat
transport Nu� − 1 and Sh� − 1 can be described by polynomial scaling laws of the form
ε�α1Prα2Leα3 and conducting a 3-parameter least-squares fit on the exponents α1, α2 and
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Figure 21. (a) Convective heat transport Nu� − 1 as a function of ε�Le−1Pr1/2 for our simulations with Pr < 1
alongside the unbounded Cartesian simulations from Brown et al. (2013). (b) Convective transport of chemical
composition (Sh� − 1)/Le2 as a function of ε�Le−1Pr1/2. The dashed lines correspond to best fits for the
simulations with ε�/Le < 0.05. Data from Brown et al. (2013) come from their table 1.

α3 for all the simulations with Pr < 1 and ε�/Le < 0.05 yields

Nu� − 1 ∼ ε�1.43Pr0.68Le−1.40, (Sh� − 1)/Le2 ∼ ε�1.33Pr0.69Le−1.39. (C2a,b)

These numerical fits are suggestive of a simpler parameter dependence of the form

Nu� − 1 ∼ (Sh� − 1)/Le2 ∼
(
ε�Le−1Pr1/2

)α1
. (C3)

To illustrate this parameter dependence, figure 21 shows Nu� − 1 and (Sh� − 1)/Le2 as
a function of ε�Le−1Pr1/2 for all our 68 numerical simulations with Pr < 1 (coloured
symbols) alongside 43 local computations from Brown et al. (2013) (grey symbols). It
is striking to note that our spherical-shell data almost perfectly collapse with the local
Cartesian unbounded computations. Weakly nonlinear models with the smallest ε� values
are compatible with the simple power law (C3) with a scaling exponent α1 ≈ 1.40, while
a gradual steepening of the slope is observed on increasing supercriticalities. The scaling
behaviour of (Sh� − 1)/Le2 also shows more scatter when ε�Le−1Pr1/2 > 10−2. This
likely comes from the approximation of the flux ratio γ ≈ R�

ρ/Le being too crude far from
onset. A quick look at figure 9(b) indeed reveals that another limit assuming a constant
value of γ instead could likely perform better on increasing ε�.

Using the power balance (3.34) combined with (C3) allows us to derive the
corresponding scaling for Pe

Pe ∼ |RaT |1/4ε�α1/2+1/4Prα1/4Le1−α1/2 ≈ |RaT |1/4ε�0.95Pr0.17Le0.30, (C4)

where α1 = 1.4 has been used.
Although we acknowledge the fact that figure 21 merely provides empirical fits to the

data, it is worth stressing that the simple polynomial fits considered here provide a better
agreement with the actual data than the weakly nonlinear theory derived in § 3.5.1.
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