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Effects of liquid fraction and contact angle on
structure and coarsening in two-dimensional
foams
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Aqueous foams coarsen with time due to gas diffusion through the liquid between the
bubbles. The mean bubble size grows, and small bubbles vanish. However, coarsening is
little understood for foams with an intermediate liquid content, particularly in the presence
of surfactant-induced attractive forces between the bubbles, measured by the interface
contact angle where thin films meet the bulk liquid. Rigorous bubble growth laws have
yet to be developed, and the evolution of bulk foam properties is unclear. We present
a quasistatic numerical model for coarsening in two-dimensional wet foams, focusing
on growth laws and related bubble properties. The deformation of bubble interfaces is
modelled using a finite-element approach, and the gas flow through both films and Plateau
borders is approximated. We give results for disordered two-dimensional wet foams with
256 to 1024 bubbles, at liquid fractions from 2 % to 25 %, beyond the zero-contact-angle
unjamming transition, and with contact angles up to 10◦. Simple analytical models for
the bubble pressures, film lengths and coarsening growth rates are developed to aid
interpretation. If the contact angle is non-zero, we find that a prediction of the coarsening
rate approaches a non-zero value as the liquid fraction is increased. We also find that an
individual bubble’s effective number of neighbours determines whether it grows or shrinks
to a good approximation.

Key words: foams, emulsions, computational methods

1. Introduction

Aqueous foams are packings of gas bubbles in liquid, as illustrated in figure 1. They
have elasticity from the surface tension of the interfaces, and plasticity due to bubble
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Figure 1. Simulated foam structure for (a) liquid fraction φ = 10 % and no bubble attraction, and (b) φ = 3 %
and contact angle θ = 10◦, taken from our simulations. The components of the foam are labelled, and the
interface discretisation (schematically), local interface separation h at a mesh vertex, and θ are shown. The
surface tension in the films and Plateau borders is γf and γ∞, respectively, with γf = γ∞ cos θ (Langevin
2020, p. 88).

rearrangements (Weaire & Hutzler 1999). A foam’s properties hence differ substantially
from those of its components (Cantat et al. 2013), and it is a model rheological material
whose microstructure is accessible in experiments (Denkov et al. 2012; Stewart &
Hilgenfeldt 2023). Foams also have a multitude of applications, from foods and drinks
(Weaire & Hutzler 1999) to soil treatment (Géraud et al. 2016) and fire suppression (Martin
2012b).

However, foams are unstable, ageing due to coarsening in addition to film breakage
(Chae & Tabor 1997) – we consider the latter no further, noting that it can be suppressed
in experiments (Roth, Jones & Durian 2013; Pasquet et al. 2023b). Coarsening arises from
the diffusion of dissolved gas through the liquid, primarily through the thin films between
bubbles; the gas is transported from small to large bubbles due to the higher pressures
of the former (Schimming & Durian 2017). Thus, the mean bubble volume increases
as the small bubbles vanish (Lambert et al. 2010). This process may be detrimental in
fire-suppression applications, for example, due to the increased mixing of air and fuel
vapour within larger bubbles (Martin 2012b), and can hasten the perishing of foods (Martin
2012a). While the dynamics of a confined foam under coarsening differ from bulk foams,
the pressure difference required to initiate flow through a porous medium, during soil
treatment for example, is also affected by coarsening (Jones, Getrouw & Vincent-Bonnieu
2018). Additionally, foam coarsening is an accessible model for grain growth in crystalline
solids (Smith 1952).

In the dry limit of small liquid fraction φ, which is the ratio of liquid area to total foam
area (Cantat et al. 2013), the coarsening growth rate of a bubble in a two-dimensional
foam is determined only by its number of neighbours, through von Neumann’s law (von
Neumann 1952) which we discuss in § 3.3.1. Experiments and simulations (Glazier &
Weaire 1992; Stavans 1993) both show that the dry foam approaches a scaling state, in
which the bubble size and neighbour-number distributions scale uniformly with time t
(Mullins 1986; Lambert et al. 2010). For a given bubble, let R be the radius of a circle
with the same area (Princen 1988), i.e. its effective radius. It may be shown that the
mean effective radius increases as 〈R〉 ∼ t1/2 in such a state, since diffusion through thin
films between bubbles is the dominant mode of gas transfer in a dry foam (Mullins 1986).
Similarly, the scaling state of a three-dimensional dry foam is also well established, with
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Structure and coarsening in two-dimensional wet foams

the same behaviour of 〈R〉 (Thomas, de Almeida & Graner 2006; Lambert et al. 2010),
where R is now the radius of a sphere with the same volume. However, the individual
bubble growth rates depend upon their precise geometries in this case (MacPherson &
Srolovitz 2007; Cantat et al. 2013).

But real foams always have non-zero φ, and large values may be encountered in
applications such as fire suppression (Laundess et al. 2011) and the fabrication of solid
foams (Cantat et al. 2013; Galvani et al. 2023). For coarsening in the wet limit φ → 1,
i.e. Ostwald ripening (Stavans 1993), a scaling state is obtained with 〈R〉 ∼ t1/3 in two
and three dimensions (Cantat et al. 2013, p. 77). The exponent differs from the dry case
because diffusion through the bulk liquid is now the dominant gas transfer mechanism
(Mullins 1986). However, less is known about coarsening at moderate φ. Experiments are
difficult to control because drainage of the foam’s liquid under gravity occurs on shorter
time scales than coarsening (Weaire & Hutzler 1999; Born et al. 2021). Nevertheless,
experiments have been performed using diamagnetic levitation of foams (Isert, Maret &
Aegerter 2013), as well as in microgravity on the International Space Station (ISS) (Born
et al. 2021; Galvani et al. 2023; Pasquet et al. 2023a,b). A narrow transition was found
between the limiting growth exponents 1/2 and 1/3 of 〈R〉, over an interval of around
15 % or less in φ (i.e. �φ = 0.15) near the unjamming transition φ = φc at which the
bubbles (in a foam without bubble attraction) lose contact. This occurs at φc ≈ 16 % in
two dimensions, and φc ≈ 36 % in three (Cantat et al. 2013, p. 195).

The theory of coarsening at moderate φ also remains limited. In two dimensions, bubble
growth laws have been developed for foams to which the decoration theorem applies
(Bolton & Weaire 1991; Roth et al. 2013; Schimming & Durian 2017). This theorem
states that a two-dimensional equilibrium wet foam containing only Plateau borders which
meet exactly three films, typically holding when φ � 3 % (Jing et al. 2021), is also an
equilibrium dry foam when the Plateau borders are omitted (Bolton & Weaire 1991). These
growth laws have been compared with experiments in Hele-Shaw cells (Roth et al. 2013;
Chieco & Durian 2021), accounting for the Plateau borders along the bounding plates.
An interpolation between the known growth laws for zero and large φ was proposed,
and found, when averaged, to agree with simulations at intermediate φ (Fortuna et al.
2012). The gas flow rates between adjacent circular or spherical bubbles, present near
the unjamming transition φc (in the absence of bubble attraction), have also been derived
(Schimming & Durian 2017). The latter work has been extended to three-dimensional
bubbles with films, although the growth rates of individual bubbles are not yet predicted
(Durian 2023). We are not aware of any general and rigorous growth laws for 0 < φ < φc,
in either two dimensions (except when the decoration theorem applies) or three. Nor
are we aware of a fully developed theory that predicts quantitatively the transition in
growth exponents observed experimentally, although progress has been made by Durian
(2023).

Several simulations of coarsening in wet foams have been performed (Bolton & Weaire
1991; Gardiner, Dlugogorski & Jameson 2000; Fortuna et al. 2012; Thomas et al. 2015;
Khakalo et al. 2018). Evidence for scaling states has been found over a range of φ, in
two and three dimensions. However, the Potts model simulations (Fortuna et al. 2012;
Thomas et al. 2015) predict a different form for the transition of the growth exponent
of 〈R〉 with φ, compared with experiments (Isert et al. 2013; Pasquet et al. 2023b) and
simulations (Khakalo et al. 2018) using the bubble model (Durian 1995). As φ increases
from zero, an immediate decrease of the exponent from 1/2 is observed in the Potts model
simulations, resulting in a discrepancy for φ < φc. While the bubble-model simulations
qualitatively reproduce the experimental transition (albeit in two dimensions), the relative
rate of diffusion across films and Plateau borders is not predicted.
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Most numerical studies have used models which are suited to simulating large numbers
of bubbles – 3000 to 10 000 for the bubble model (Khakalo et al. 2018), and approximately
105 for the Potts model (Fortuna et al. 2012; Thomas et al. 2015) – but which do not
include accurate bubble deformation. A bubble’s growth rate depends on the portion of its
surface in contact with other bubbles, along with its pressure and those of its neighbours
(Roth et al. 2013), each of which is determined by the bubble geometry. The pressure is
related to interface curvature via the Young–Laplace law (Weaire & Hutzler 1999). To
our knowledge, only Bolton & Weaire (1991), Benzi et al. (2015) and Pelusi, Sbragaglia
& Benzi (2019) have performed numerical coarsening studies that accurately model the
bubble shapes in wet foams. The first study is limited to small φ, while the latter two, which
used a lattice Boltzmann approach, were primarily concerned with bubble rearrangements
during coarsening.

Furthermore, the effect of the foam’s contact angle θ on coarsening has not been
widely investigated. As illustrated in figure 1(b), this is the angle between the tangents
of the film and Plateau-border interfaces where they meet (Ivanov & Toshev 1975;
Denkov, Petsev & Danov 1995), which arises from an imbalance in their surface tensions
(Cantat et al. 2013, p. 49). We neglect for the moment the transition region between
these interfaces (Kralchevsky & Ivanov 1985b). The contact angle is determined by
the surfactant, via the disjoining pressure (Langevin 2020, p. 88), and increases with
the degree of attraction between bubbles (Princen 1983). A characteristic property of
foams with θ > 0 is flocculation, whereby bubbles cluster due to their attraction (Princen
1983; Cox et al. 2018). While θ may be negligible in typical foams (Höhler, Seknagi &
Kraynik 2021), a contact angle of θ ≈ 4◦ is thought to have affected the results of the ISS
coarsening experiments, by delaying the transition in growth exponents to φ > φc (Pasquet
et al. 2023b). Furthermore, experiments have produced films with θ > 10◦ (Princen 1968;
Seknagi 2022). Contact angles also occur in emulsions (Bibette et al. 1993), to which we
expect our results also apply, due to their similar structure to foams (Weaire & Hutzler
1999). Prior work has been done to characterise foam structure at θ > 0 (Cox et al. 2018;
Feng et al. 2021; Jing et al. 2021; Jing & Feng 2023), along with foam rheology (Menon,
Govindarajan & Tewari 2016). We are not aware of numerical studies investigating the
effects of θ > 0 on coarsening, although non-zero θ has been used for technical reasons
(Fortuna et al. 2012; Thomas et al. 2015).

In this article, we present a quasistatic numerical model of coarsening in
two-dimensional wet foams, which accurately models the bubble geometries, and allows
θ > 0. Two-dimensional foams are widely studied as more tractable models of the
real three-dimensional systems (Kähärä, Tallinen & Timonen 2014; Cox et al. 2018;
Khakalo et al. 2018), and can be approximately realised in Hele-Shaw cells (Smith 1952;
Roth et al. 2013). Our approach to the foam structure is adapted from the models of
Kähärä et al. (2014) and Boromand et al. (2018), the latter having been widely applied,
including to foams and emulsions (Boromand et al. 2019; Golovkova et al. 2021). These
methods are suited to relatively small systems, with approximately 1700 bubbles or fewer.
We implement our simulations in Kenneth Brakke’s Surface Evolver software (Brakke
1992, 2013).

We vary θ by altering the attractive component of the disjoining pressure. Droplet
attraction in emulsions has previously (Golovkova et al. 2021) been implemented in the
model of Boromand et al. (2018) using a similar approach.

Our coarsening model is inspired by that applied analytically by Marchalot et al. (2008)
and Schimming & Durian (2017), and approximates the gas flow through both the liquid
films and the Plateau borders.
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Structure and coarsening in two-dimensional wet foams

Our guiding assumption is that results from accurately modelled small systems, for
which the scaling state is likely inaccessible (Thomas et al. 2006), may give insight into
coarsening in macroscopic foams, including by refining the necessary approximations used
in simulations of large systems.

We describe our numerical methods in § 2. Section 3 gives our results from simulating
two-dimensional disordered foams at various φ, for several values of θ comparable to those
observed experimentally (Princen 1968), and we conclude in § 4. Instead of simulating the
time evolution of foams under coarsening, we consider the instantaneous bubble growth
rates, and related properties, in foams at structural equilibrium, due to our relatively small
system sizes of 256 and 1024 bubbles. Analytical approximations are developed to assist
with interpretation, and we give a model for the bubble film lengths in Appendix A.
Methods we use for measuring simulated foam and bubble properties are described in
Appendix B, and a test of foam equilibration is discussed in Appendix C.

2. Numerical methods

We begin by summarising our methods for equilibrating foams, before defining our
coarsening model, and our approach for generating the initial foam structure.

2.1. Structural model

2.1.1. Discretisation
The foam structure is modelled using the approach of Kähärä et al. (2014) and Boromand
et al. (2018). The bubbles are bounded by a closed interface, with arbitrary shape, of mesh
vertices connected by straight edges. This is illustrated schematically in figure 1(b). Hence,
all liquid–gas interfaces are explicitly included – the bubbles are disconnected, and their
rearrangements can occur without adjustments in the discretisation. We emphasise that
vertices and edges refer here (and throughout) to elements of the discretisation, rather than
to the infinitesimal Plateau borders and films, respectively, in a dry foam.

The bubble areas are fixed, unlike in the models of Kähärä et al. (2014) and Boromand
et al. (2018), taking the foam’s gas to be effectively incompressible (Cantat et al. 2013,
p. 27). The liquid is identified with the region outside the bubbles. Since coarsening occurs
on substantially longer time scales than structural equilibration (Thomas et al. 2015), we
use a quasistatic approach like Boromand et al. (2018). This contrasts with Kähärä et al.
(2014), who applied their model to flowing foams. We also neglect gravity, and therefore
choose to measure all pressures relative to the uniform pressure of the liquid (thus taken
to be zero).

Another approach (Bolton & Weaire 1992; Jing et al. 2015; Cox et al. 2018) is
instead to assume that the films separating bubbles have zero thickness, and to treat
them separately from the Plateau-border interfaces. While this likely has advantages in
numerical efficiency, since the interfaces are all circular arcs (Bolton & Weaire 1992),
handling bubble rearrangements in this model is complex for wet foams (Cox et al. 2018),
particularly in three dimensions (Weaire & Hutzler 1999, p. 80). Furthermore, a small
amount of bubble adhesion is often needed for numerical stability (Jing et al. 2015; Cox
et al. 2018), and the criteria for adding or removing a film between slightly contacting
bubbles could induce artefacts near the unjamming transition.

However, a disadvantage of the model we use is that, for numerical convergence, the
film thickness h0 must not be too small, though the minimum thickness can be decreased
by refining the mesh. For the degree of refinement we use (stated in § 3), the minimum
usable film thickness is approximately 10−2〈R〉, where 〈R〉 is the mean bubble radius.
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This is substantially larger than in real foams, for which h0 � 10−4〈R〉 (Cantat et al. 2013,
pp. 18–20). The film thickness is set by the interactions between different interfaces, which
we now describe.

2.1.2. Disjoining pressure
Similarly to Kähärä et al. (2014), we implement bubble interactions through a disjoining
pressure acting between nearby liquid–gas interfaces. This ensures that bubbles do not
overlap at equilibrium. In order to allow θ to be varied, we select a disjoining pressure
inspired by the Derjaguin–Landau–Vervey–Overbeck (DLVO) theory for parallel flat
interfaces with separation h (Cantat et al. 2013, p. 94), which we also use between curved
interfaces. The interface separation in the latter case (see figure 1) is discussed further in
§ 2.1.4.

The DLVO model includes an electrostatic repulsion term dominant at smaller h, which
has the form e−κh for constant κ > 0. A van der Waals attraction proportional to 1/h3 is
present which dominates at larger h (Langevin 2020, pp. 89–93). Since we expect transient
bubble overlaps (h ≤ 0) in the simulations, during structural relaxation only, we alter the
form of the second interaction to he−κh to improve stability. We also select κ = 1/h0,
where h0 is the equilibrium film thickness – a choice which is again made for stability, as
discussed at the end of this subsection. Hence, we use the disjoining pressure

ΠD(h) = A(1 − αh) e−h/h0, (2.1)

where A, α and h0 are positive constants. Positive disjoining pressure corresponds to
interface repulsion. Our aim in selecting this form is a qualitative model for ΠD, which
allows arbitrary θ to be set via the constant α (i.e. by varying the relative strengths of the
attractive and repulsive components). While (2.1) agrees qualitatively with DLVO theory
for h of moderate value and above, it does not reproduce the dominance of van der Waals
attraction over electrostatic repulsion in the latter model at very small h, nor the consequent
local maximum of ΠD(h). This omission corresponds to the assumption that only common
black films, for which ΠD is below this maximum, are present in the foams we simulate
(Cantat et al. 2013, pp. 97–98). We note that the real functional form of ΠD depends upon
the surfactant (Langevin 2020).

We are not aware of prior studies using this form for ΠD. Kähärä et al. (2014) and
Boromand et al. (2018) use a repulsive harmonic interaction. Golovkova et al. (2021)
incorporate attractive interactions, but use a piecewise-linear form for ΠD without relating
its attractive components to a contact angle. We performed test simulations using a similar
piecewise-linear ΠD, varying the range of attractive interactions, to confirm that our results
are not sensitive to the disjoining pressure model.

The constants A and α in (2.1) are set as follows. We enforce that the equilibrium
film thickness h0, which is a parameter of the simulations, is attained by a flat film
separating two bubbles whose pressures equal the foam’s capillary pressure ΠC. This is
the area-weighted mean bubble pressure – if the ith bubble has area Ai and pressure pi,
then (Höhler et al. 2021)

ΠC =
∑

i Aipi∑
i Ai

, (2.2)

recalling that our liquid pressure is zero. Hence, ΠD(h0) = ΠC by balancing the pressures
on the flat film interfaces (Toshev & Ivanov 1975). We note that ΠC is not known before
the simulations are run, so this condition is applied iteratively, as described in § 2.3. Films
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Structure and coarsening in two-dimensional wet foams

Extended film interface

Plateau border arc

θ

Figure 2. Definition of the contact angle θ accounting for the transition region between films and Plateau
borders. A circular arc describing the Plateau-border interface outside the transition region is depicted, along
with a line similarly describing the film interface. Their angle of intersection gives θ (Kralchevsky & Ivanov
1985b; Denkov et al. 1995).

separating bubbles with different pressures will have different equilibrium thicknesses
(Princen 1988), as discussed later.

The remaining degree of freedom is used to obtain the desired θ . Let γ (h) be the surface
tension (in dimensions of force, since our model is two-dimensional) of a liquid–gas
interface in a flat film of thickness h, and let γ∞ be the tension of an isolated interface
outside a film. Then (Langevin 2020, p. 88)

γ (h) = γ∞ + 1
2

∫ ∞

h
ΠD(s) ds, (2.3)

cos[θ(h)] = γ (h)/γ∞. (2.4)

The latter result arises from balancing the surface tension forces at one end of a flat
film (Kralchevsky & Ivanov 1985a), with θ defined as in figure 2. There is strictly no
discontinuity in the tangents of simulated liquid–gas interfaces which corresponds to θ ,
due to the transition regions between films and Plateau borders (Kralchevsky & Ivanov
1985b). An interesting consequence of (2.3) and (2.4) is that ΠD must have an attractive
component even for θ(h) = 0 (Ivanov & Toshev 1975), so that γ (h) = γ∞. This is because
ΠD(h) > 0 in an equilibrium film (Cantat et al. 2013, p. 96). The contact angle is undefined
if γ (h) > γ∞.

The contact angle θm measured by approximating the simulated bubble interfaces by a
collection of circular arcs (Kralchevsky & Ivanov 1985b; Denkov et al. 1995), as described
in Appendix B.3, differs from the value of θ expected from (2.4) with h = h0. When
θ(h0) = 0, we find a typical θm ≈ 3◦ for φ ≈ φc, which manifests the attractive component
of ΠD in this case, while the discrepancy decreases as θ(h0) increases. As discussed
further in § 3.3.2, we find that h > h0 for films in foams near the unjamming transition.
Hence, from (2.3), and the short-range repulsion in ΠD, (2.4) then predicts a larger contact
angle. We parametrise our foams with respect to θ(h0), denoted θ henceforth, which we
recall determines the interface tension in a flat film between bubbles with the capillary
pressure.
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0 1 2 3 4 5 6 7 8

h/h0

−1.0

−0.5

0

0.5

1.0

1.5

2.0

Π
D

(h
)/

Π
C

θ = 0
θ = 10°, ΠC = (0.03)γ∞/h0

θ = 10°, ΠC = (0.01)γ∞/h0
Repulsive ΠD

Figure 3. The form of disjoining pressure ΠD we use, given by (2.5) and (2.6), versus film thickness h (relative
to its equilibrium value h0). For θ > 0, the capillary pressure ΠC does not scale out. The larger value is
representative of a simulated foam with φ = 2 %, and the smaller for a flocculated foam with larger φ (see
§ 3.1). Each curve satisfies ΠD(h0) = ΠC, as stated in the text.

By substituting (2.1) into (2.3) and (2.4) for h = h0, and applying the above condition
ΠD(h0) = ΠC, our disjoining pressure is

ΠD(h) = 2γ∞
h0

[(
1 − cos θ + ΠCh0

γ∞

)

−
(

1 − cos θ + ΠCh0

2γ∞

)
h
h0

]
e1−h/h0 . (2.5)

In order to model foams with no bubble attraction, we also implement a repulsive
disjoining pressure

ΠD(h) = ΠC

e − 1

{
e2−h/h0 − 1, for h ≤ 2h0;
0, otherwise.

(2.6)

This is obtained by omitting the term in α from (2.1), and including a cutoff such that
ΠD(h) = 0 for h > 2h0 (so bubble neighbours can be reliably calculated). A constant is
subtracted for h ≤ 2h0 so ΠD(h) is continuous, and the condition ΠD(h0) = ΠC is then
applied. We note that γ (h) > γ∞ and θ is undefined (inevitable for a repulsive ΠD), by
(2.3) and (2.4). Equations (2.5) and (2.6) are plotted in figure 3.

Equation (2.3) is not exact for curved interfaces, which are ubiquitous in foams,
and a realistic disjoining pressure would depend upon the interface curvature (Denkov
et al. 1995). However, we neglect these effects as a simplifying assumption. This is the
Derjaguin approximation, justified when the radii of curvature of the interfaces are large
compared with their separation h (Denkov et al. 1995). The latter assumption does not
hold in general for our simulations, although it is appropriate for the weakly curved
interfaces of thin films. The mean ratio of film-interface radius of curvature to film
thickness is measured to be approximately 1500 in our simulations (at φ = 2 % and 10 %
for repulsive ΠD, and φ = 2 % and 25 % at θ = 10◦), but the ratio varies from around 9 up
to approximately 105 for individual films. This variation is due to that in curvature rather
than in film thickness. We measure both film properties using the methods described in
Appendix C.
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Old neighbour

vertex

New neighbour

vertex

Vertex vi

(a)

(b)

Vertex

h

n2

n1

d

Neighbour

vertex

Figure 4. Schematic of (a) the local neighbour search, and (b) the piecewise-linear interface extrapolation.
The outward unit normals to the edges adjoining the neighbouring vertex in (b) are n1 and n2, the displacement
of the vertex from its neighbour is d, and h is the extrapolated shortest distance from the vertex to an opposing
interface.

We now explain further the requirement for larger h0 in our simulations than in real
foams, along with our selection of κ = 1/h0 for (2.1). For a given mesh refinement, it
appears necessary for convergence that ΠD not vary too rapidly with h near h0. This may
be related to a discretisation-induced difference between h on the two sides of a film,
discussed later in Appendix C. In the context of the simulations, h0 could in principle be
set arbitrarily small, but, to avoid unphysical interface overlaps at equilibrium, |Π ′

D(h0)|
would need to be correspondingly large (recalling that variations in bubble pressure
correspond to variations in the value of ΠD in equilibrium films). Furthermore, even
allowing for our larger h0, convergence requires that |Π ′

D(h0)| is much smaller than found
in real foams (Bergeron & Radke 1992), giving rise to larger variations in film thickness
between bubbles of different pressure. However, we note that some variations are expected
in real foams (Princen 1988). The derivative |Π ′

D(h0)| is set by the choice of κ , defined
above – we take κ = 1/h0 in (2.1), which is large enough that bubbles do not overlap at
equilibrium, but sufficiently small for the simulations to converge at the mesh refinement
we use (stated in § 3). We discuss the resulting variations in the film thickness of bubbles
in § 3.3.2.

The disjoining pressure ΠD(h) is applied to each mesh vertex on the liquid–gas
interfaces, unlike Kähärä et al. (2014) and Boromand et al. (2018) who apply it to the
edges in their foam models. We set h equal to the shortest distance to another interface
(the local interface separation), as shown in figure 1(b).

2.1.3. Vertex neighbours
To determine the local interface separation h at a mesh vertex vi, neighbour searches are
first performed to find the vertex closest to vi which lies on a different interface, illustrated
in figure 4(a).

In order to improve the efficiency of these searches, compared with a brute-force
approach, we use the fact that all vertices lie on particular bubble interfaces, and their
adjoining vertices thereon do not change. Our nearest-neighbour algorithm is as follows.

(i) Cover each bubble with a circle whose centre is the centroid of its vertices, and
whose radius is the minimum required to cover each of these vertices.
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125 % scaling

Circle covering
considered bubble

Fringe from

Figure 5. Schematic of the covering circles used to determine neighbouring bubbles for the purpose of finding
vertex neighbours. The circle for a particular bubble is shown, including its fringe used to improve numerical
stability, along with the circles of its neighbouring bubbles (i.e. those that overlap the first circle).

(ii) For each bubble, determine the bubbles whose circles overlap its own, illustrated
in figure 5. These are the neighbouring bubbles, and are found by calculating the
distance between each circle centre. This search is sufficiently fast since our systems
contain relatively few bubbles (no more than 1024). For these overlap checks, the
circle radii are scaled by 125 % (an arbitrary value, but sufficiently large). If a
scaling were not performed, then interface overlaps would occur during bubble
rearrangements, as some bubbles would intersect one another before registering as
neighbours.

(iii) For each vertex vi on each bubble, calculate the closest vertex on each neighbouring
bubble. If the latter bubble was a neighbour during the last pass of the algorithm,
then the previously closest vertex provides an initial guess. Otherwise, we take the
vertex closest to the centroid of the bubble on which vi lies (since this vertex need
only be found once for all vertices on the bubble of vi). The closest vertex is then
obtained through a local search along the neighbouring bubble’s interface, starting
at the guessed vertex, and, at each step, moving to an adjoining vertex if it is closer
to vi. This is illustrated in figure 4(a). The process is only guaranteed to give a vertex
at a local minimum of distance, but works well in practice due to the smooth bubble
geometries (see figure 1) and the choice of initial guess.

(iv) For each vertex vi on each bubble, compare the distance to the closest vertex on each
neighbouring bubble. The closest of these is then the nearest neighbour of vertex vi.

We are not aware of descriptions of the nearest-neighbour approaches used in prior
simulations of this type, although we note that Okuda & Hiraiwa (2023a) use octrees in
comparable three-dimensional simulations of biological cells (Okuda & Hiraiwa 2023b).
The efficiency of these algorithms appears to be of importance in scaling such foam
simulations to larger systems and higher mesh refinement.

2.1.4. Interface extrapolation
Having determined the nearest neighbour of each vertex, we then calculate the local
interface separation h. We could set h equal to the distance from the vertex to its neighbour,
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Structure and coarsening in two-dimensional wet foams

Vertex

h = d ∙ n2 h = d ∙ n2

–d ∙ n1

d ∙ n1

d n2 n1

n1n2

d

Neighbour

(a)

Vertex

Neighbour

(b)

Figure 6. Illustrations of (2.7) for (a) convex, and (b) concave, neighbouring interfaces, with notation from
figure 4(b). The edges adjoining the neighbour vertex are shown, as are the infinite extensions thereof (dotted
lines). The considered vertex may in principle lie anywhere relative to the neighbour, including in the shaded
sector of (a) where h would be the distance to the neighbour vertex itself in an exact implementation of the
piecewise-linear extrapolation. The dotted and dashed lines in this sector show a given h contour using the
exact extrapolation and (2.7), respectively.

but this would result in an unrealistic roughness in the interfaces – this approach has
previously been used to model static friction in other materials (Boromand et al. 2018).

Issues of interface extrapolation or interpolation also arise in other fluid dynamics
simulations. For example, Bazhlekov, Anderson & Meijer (2004) use a spherical
interpolation between vertices to obtain the local interface separation in three-dimensional
boundary integral simulations.

Instead, we use a piecewise-linear interface extrapolation, such that the local interface
separation is the minimum distance to the half-infinite extensions of the two edges
adjoining the neighbour vertex, as illustrated in figure 4(b). Let n1 and n2 be outward
unit normals to the edges, and let d be the displacement of the considered vertex from its
neighbour. Then we define

h =
{

max (d · n1, d · n2) , if the neighbouring interface is convex,

min (d · n1, d · n2) , if the neighbouring interface is concave.
(2.7)

The two cases are shown in figure 6. Equation (2.7) ensures that h < 0 if the vertex
overlaps the neighbour interface during structural relaxation, so the disjoining pressure
acts to oppose the overlap. However, (2.7) differs from the exact piecewise-linear interface
extrapolation when the considered vertex is closest to its neighbouring vertex, rather than
another point on the latter’s adjoining edges. In the absence of overlap, this can occur only
for convex neighbouring interfaces, when the considered vertex lies in the shaded sector of
figure 6(a), where the effect on a distance contour is shown: h is underestimated by (2.7)
here.

The difference from the exact extrapolation is expected to cause only small errors in
h, due to the smooth interfaces of equilibrium foams and our degree of mesh refinement.
Hence, the angle of the sector in figure 6(a) is anticipated to be small in practice. For
the 1024-bubble foams discussed in § 3 (for repulsive ΠD and θ = 10◦, and at liquid
fraction 2 % and 25 %), approximately 4 % of vertices are affected by the difference at
liquid fraction φ = 2 %, rising to approximately 22 % at φ = 25 %. For these affected
vertices, the resulting root-mean-square relative error in h is below around 0.2 %, and the
maximum magnitude of the relative error is approximately 2.3 %. These errors are judged
to be small enough to justify using the simplified (2.7).
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We use the above extrapolation due to its closeness to the geometry of the discretisation.
Other approaches might allow improved convergence at lower mesh refinement, and may
avoid the imbalance in h between the interfaces of a curved film noted in Appendix C.
Kähärä et al. (2014) and Boromand et al. (2018) bypass the issue of interface extrapolation
by explicitly calculating the shortest distance between edges. However, we determine
neighbouring vertices, rather than neighbouring edges, under the assumption of greater
efficiency, due to the simpler distance calculations involved.

2.1.5. Implementation
We implement our simulations using the Surface Evolver, developed by Kenneth Brakke
(Brakke 1992, 2013). This software is frequently applied in the study of foams (Kraynik,
Reinelt & van Swol 2003; Jing et al. 2015; Höhler et al. 2021), usually under the
assumption that the liquid films have zero thickness.

The Surface Evolver may be extended using its scripting language. We have
implemented finite film thickness in this manner, via a disjoining pressure and neighbour
searches. Our scripts are not compiled, so it is likely that our simulations could be made
faster by implementing the routines in the software’s public source code. We also do not
take advantage of any significant parallel processing.

We note that pairwise repulsion between vertices already exists in the Surface Evolver
as ‘knot’ energies (Brakke 2013). However, it is not straightforward to adapt these to
our purposes, due to our desire for interface extrapolation and interactions only between
nearest neighbours.

As is usual in the Surface Evolver, local energy minimisation is used to obtain the
equilibrium foam structures. Let ΓF be the union of all liquid–gas interfaces in the
simulated foam. Then the foam’s total energy (recalling that its liquid and gas are treated
as incompressible) is given by

E =
∫

ΓF

γ (h) dl, (2.8)

where γ (h) is obtained from (2.3), and h is the local interface separation from (2.7)
(which varies around ΓF). This quantity is minimised using conjugate gradient iterations,
as implemented in the Surface Evolver (Brakke 1992, 2013).

Let xi be the position of the ith vertex, xi1 and xi2 those of its adjoining vertices on the
same interface, xn that of its nearest neighbour, and xn1 and xn2 those of its neighbour’s
adjoining vertices. We will consider foams with periodic boundary conditions, so these
positions are those of the nearest copies of the vertices to xi. Define li = (|xi1 − xi| +
|xi2 − xi|)/2 as the length of interface associated with the ith vertex (half the length of its
adjoining edges), and hi(xi, xn, xn1, xn2) as the corresponding local interface separation
(calculated as in § 2.1.4). Also, let Li = |xi1 − xi| be the length of the ith edge, between
the ith vertex and its adjoining vertex at xi1 . If there are N vertices, the energy E is hence
expressed in the simulations as

E({xi}) =
N∑

i=1

(
γ∞Li(xi, xi1) + li(xi, xi1, xi2)

2

∫ ∞

hi(xi,xn,xn1 ,xn2 )

ΠD(s) ds

)
, (2.9)

where the integrals are determined explicitly from (2.5) or (2.6). If xk is the kth coordinate
in {xi}, then we approximate the gradient ∇E({xk}) by (in component form)

∂E
∂xk

≈
N∑

i=1

(
γ∞

∂Li

∂xk
− liΠD(h̄i)

∂ h̄i

∂xk

)
, (2.10)
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Structure and coarsening in two-dimensional wet foams

where h̄i(xi) ≡ hi(xi, xn, xn1, xn2) for fixed neighbour positions (i.e. these are taken as
parameters rather than variables). This replacement is made because our implementation
does not allow derivatives of hi with respect to the neighbour coordinates. We compensate
by doubling the second summed term in (2.9) when calculating ∇E, as done in (2.10).
Using Newton’s third law, this is equivalent to including such derivatives under the
approximation that each vertex is the nearest neighbour of its own nearest neighbour, with
each vertex having the same li as its neighbour (these lengths are equal to a tolerance
of 20 % for around half of vertices), and that the corresponding distances hi are those
between the vertices. We find that, of the vertices close enough to their neighbour that
ΠD is not negligible (i.e. hi < 8h0, by figure 3), approximately 3/4 are the neighbour
of their neighbour in our simulations. As an approximation, we have also neglected the
contributions to ∇E from derivatives of li in (2.10), interpreted as corrections from ΠD to
the surface tension in the first summed term of (2.10). These corrections are expected to
be small for our θ � 10◦ (see § 3) by (2.4), and to increase with θ .

The bubble area constraints mentioned in § 2.1.1 are set using Lagrange multipliers via
the Surface Evolver’s usual procedures (Brakke 1992), which gives the gas pressure of
each bubble as the value of the corresponding multiplier.

Equation (2.10), including the mentioned constraint terms and an added restriction that
vertices can move only in the direction normal to their interface, is used to evolve the
vertex coordinates xk at each conjugate gradient iteration, using the Surface Evolver’s
internal routines. Because the bubbles are expected to rearrange slowly, we perform
the time-consuming neighbour searches every 20 iterations. However, the local interface
separations h̄i are recalculated before each iteration, using the current coordinates of the
vertex neighbours. After the same interval of 20 iterations, the edges on each individual
bubble interface are set to a uniform length, with a tolerance of 5 %, by using the Surface
Evolver’s vertex averaging routines (edge elasticity was instead implemented by Kähärä
et al. (2014)). The energy E, obtained from (2.9), is checked every 20 iterations to see
whether it has changed by less than a threshold (specified in § 3) since the last check. If
so, then the foam is considered equilibrated.

Transiently, and usually during the early stages of structural relaxation, the assumptions
of the interface extrapolation may fail. For example, spikes in the discretisation of a
bubble’s interface (i.e. vertices with a large displacement from those adjoining them
on the interface) may result in a large interface overlap (h � 0) being falsely registered
for a vertex. This would cause the vertex to experience an extremely large repulsive
force, resulting in further spikes which may render the mesh unusable. To avoid this,
we detect instances of large overlap (according to the interface extrapolation), and set
the coordinates of the overlapping vertex and its neighbour to the mean coordinates of
the vertices adjoining them on their interfaces. We also detect spikes using the angle
turned by successive edges on an interface, suppressing them by the same method. Small
interface overlaps, which do not result in the overlapping vertex swapping neighbours, can
be resolved without such interventions (see §§ 2.1.2 and 2.1.4).

Our use of the Surface Evolver’s relaxation routines to implement vertex interactions
(we term this method 1 for structural relaxation) have resulted in the following caveat:
the vertex neighbour properties (and hence the h̄i) are not recalculated during a given
conjugate gradient iteration, interfering with the automatic selection of an ideal step size
(Brakke 1992). This slows relaxation, and means the energy is no longer guaranteed to
decrease. In practice, we find that this method is still considerably faster than gradient
descent with a fixed step size (method 2, to which the caveat does not apply), and that
systematic energy increases are rare for our system parameters (with their occurrence also
being reduced at higher mesh refinement). We tried implementing our vertex interactions
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in the Surface Evolver source code to allow an exact use of the conjugate gradient
algorithm (method 3), but we found the result unreliable due to the step size decreasing to
zero prior to convergence being clearly established. This may be due to an incompatibility
between the system energy and its calculated gradient, noting that our vertex interactions
are asymmetric, but the issue remains unresolved. Therefore, we use method 1 in the
results reported here.

We have compared foams equilibrated by each of methods 1 to 3 (for 256 bubbles,
φ = 2 %, and θ = 10◦), and find them consistent, with method 1 resulting in the lowest
final energy (this energy differs by less than 0.002 % among the methods). For method 3,
we included the contributions to ∇E from derivatives of li in (2.9) (recalling that we expect
these contributions to increase with θ ), and so this comparison also tests our mentioned
neglect of these contributions in method 1, which we use hereafter. We provide a further
check of the equilibration of our simulated foams in Appendix C.

2.2. Coarsening model
Having given our methods for structural relaxation, we now describe our coarsening
model.

Coarsening occurs due to the transport of dissolved gas through the foam’s liquid
(Cantat et al. 2013). Let c(r, t) be the gas concentration at position r in the liquid, and
at time t. Following Schimming & Durian (2017), we assume that almost all the gas
transfer between bubbles occurs when the gas concentration is close to equilibrium. Hence,
c satisfies Laplace’s equation

∇2c = 0. (2.11)

Boundary conditions are given by Henry’s law c = Hp on the interface of each bubble,
where p is the bubble’s pressure and H is Henry’s constant, related to the solubility (Cantat
et al. 2013, p. 109). Only differences in c are relevant, so pressures relative to that of the
liquid may be used.

Let δF be the gas flow rate (in dimensions of area per time) across an element δl of a
bubble’s interface, due to a nearby bubble. Using the approach of Marchalot et al. (2008)
and Schimming & Durian (2017), we approximate this rate as that between two infinite,
parallel, straight interfaces, separated by the local interface separation h (the same as used
to determine ΠD). Let the pressure difference between the two bubbles be �p. The solution
of Laplace’s equation is linear between such interfaces, so (Cantat et al. 2013, p. 109)

δF ≈ DH δl�p/h, (2.12)

where D is a diffusion coefficient. The gas flows towards the bubble with lower pressure.
We apply this approximation to each vertex, taking δl to be half the sum of the lengths of
the two adjoining edges (i.e. li for the ith vertex, from § 2.1.5). The relevant quantities are
illustrated in figure 7.

By summing δF over each vertex on a bubble’s interface, we obtain an approximation
to its area growth rate Ȧ, which accounts for gas transfer through both the thin films and
Plateau borders.

Both contributions were previously included in lattice Boltzmann simulations (Benzi
et al. 2015; Pelusi et al. 2019), although these studies were focused on the motion of
bubbles during coarsening, rather than their growth rates. The contributions were also
present in the phase-field simulations of Fan et al. (2002). However, their focus was
not on foam-like systems. Otherwise, to our knowledge, prior simulations of wet foams
with accurate bubble geometries have only included gas flow through the films (Bolton
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Structure and coarsening in two-dimensional wet foams

Pressure p2

Pressure p1

Vertex
h

δl

�p =  p1 – p2

Figure 7. Illustration of the quantities used in (2.12). With these definitions, δF is a contribution to the loss of
gas from the bubble with pressure p1.

& Weaire 1991) – this is the border blocking assumption (Roth et al. 2013). Simulations
using simplified bubble geometries have implemented approximate contributions of both
types (Fortuna et al. 2012; Thomas et al. 2015; Khakalo et al. 2018), although more work
is needed to justify their forms for the Plateau border contributions, which were originally
derived for φ � φc.

Schimming & Durian (2017) compared their approximate gas flow rates through Plateau
borders, obtained by a similar approach to the above, with those given by solving
Laplace’s equation numerically. They obtained close agreement for thin films. However,
our simulations use relatively thick films to ensure convergence, and δl is finite (around one
hundredth of the bubble perimeter), whereas δl → 0 in their analytical results. Therefore,
the error in our bubble growth rates is not fully characterised, though we expect the
approximation to be effective in thin films, since it is based on the solution to Laplace’s
equation between parallel straight interfaces. We also note that each element of interface
can exchange gas with only one neighbouring bubble, which may induce further errors
in the gas flow through Plateau borders, where neighbouring bubbles meet (R. Höhler,
personal communication). However, comparing the predictions of our coarsening model
with existing growth laws in § 3.3, we find fair agreement for the gas flow through Plateau
borders at small and large liquid fractions, thus supporting our approximate approach.

We note that our coarsening model does not conserve the total area of gas in the foams.
Let σ(Ȧ) denote the standard deviation of the bubble growth rate distribution. Since the
mean growth rate satisfies 〈Ȧ〉 = 0 when the gas is conserved (Cantat et al. 2013, p. 105),
a dimensionless measure of non-conservation is |〈Ȧ〉|/σ(Ȧ). For the systems described
later in § 3, this relative error takes a value below 1 % for θ = 10◦. For repulsive ΠD,
the error increases from less than 1 % at φ = 2 % to approximately 2 % when φ ≈ φc. At
φ = 24.5 %, for which the bubbles are out of contact, the error is around 8 %. For small
φ, we believe that this error comes partly from a difference in h between the interfaces of
a thin film, caused by the discretisation, which is discussed in Appendix C.

2.3. Generation of disordered foams
We now describe our process for generating the initial disordered foam structure.
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As is usual (Cox et al. 2018; Jing et al. 2021), we begin with a Voronoi tessellation
of the plane, with a domain containing the desired number of bubbles subject to
periodic boundary conditions. These tessellations are obtained using the vor2fe software
by Kenneth Brakke (Brakke 1986). The resulting dry foam is then equilibrated using
standard techniques (Brakke 1992), with one straight edge per liquid film for efficiency.
Relaxing the dry foam before setting the liquid fraction φ (Jing et al. 2015) is useful for
computational efficiency.

To obtain a more representative bubble area distribution for coarsening foams than that
of a Voronoi tiling, we sample areas A from the distribution fitted by Roth et al. (2013) to
experimental data for quasi-two-dimensional foams (i.e. foams in Hele-Shaw cells). This is
a compressed exponential distribution, defined (up to normalisation) by (Roth et al. 2013)

ρ(A/〈A〉) =
(

A
〈A〉

)β1−1

exp

[
−β2

(
A

〈A〉
)β1

]
, (2.13)

where 〈A〉 is the mean area, β1 = 1.21, and β2 = 0.926. The sampled areas are randomly
assigned to the bubbles in the Voronoi foam (Jing et al. 2015), without regard to their
initial areas. The bubble areas are changed gradually, in tenths of the difference between
the old and new values, with equilibration at each step. We note that the data of Roth et al.
(2013) are for foams with small φ, and may differ from the truly two-dimensional case we
model.

The sampled areas are more polydisperse than those obtained from a Voronoi
tessellation. Let R21 ≡ 〈R2〉/〈R〉 (Cantat et al. 2013, p. 251). Then the bubble distributions
have a polydispersity P = R21/

√
〈R2〉 − 1 (Cox et al. 2018) of 0.093 for the sampled areas

and 0.036 for the Voronoi tessellations. The former value was evaluated numerically from
(2.13), and the latter calculated for a single 16 384-cell tessellation (though P fluctuates for
the relatively small foams we study in § 3). We have not observed qualitative differences
in the foam or bubble properties considered in § 3 when the Voronoi-tessellation areas
are used. The same relationships between growth rate and radius, for example, are
observed at the lower polydispersity, but only over the narrower interval of realised bubble
radii. Hence, even if the sampled area distribution is unrealistic for larger φ, its high
polydispersity remains useful for characterising the relationships for a wider range of
bubble radii.

Next, the system is annealed following the approach of Kraynik et al. (2003), adapted to
two dimensions, so that the distribution of bubble topology better approximates that in a
real foam (Kraynik et al. 2003). By applying linear transformations to the foam’s periodic
domain, along with the mesh vertices therein, a sequence of extensional step strains with
size {6/5, 5/6, 5/6, 6/5} (Kraynik et al. 2003) is applied along both axes in turn, with
relaxation after every strain. Further transformations are then applied to the periodic
domain and the vertices, by applying cycles of simple and extensional shear (Weaire &
Hutzler 1999), to relax the deviatoric stress, measured according to Appendix B.1, to zero
(within a tolerance 10−5 γ∞/〈R〉). We do this by applying small shears of the respective
type to estimate the modulus, before using a shear which would zero the strain given
this modulus and the present stress, were the system linear. Stress relaxation of the initial
structure was performed in the dry foam coarsening simulations of Herdtle & Aref (1992).
We have not investigated the effects of varying this preparation process.

The liquid fraction φ is then set, by duplicating the mesh edges and vertices associated
with each bubble (since these are shared by neighbours in the dry model), and
uniformly expanding the simulation domain to 1/(1 − φ) of its original area. The same
transformation is applied to the bubble centroids, while the bubble shapes and sizes are
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Structure and coarsening in two-dimensional wet foams

maintained. Hence, φ is set by effectively adding liquid to the system, keeping the gas area
fixed (Cox et al. 2018).

We next subdivide all edges on the bubble interfaces m times in order to obtain the
desired mesh refinement. Some of the initial edges are very short, so these are skipped to
improve convergence. The longer edges are further subdivided to compensate. The mean
number of edges (and vertices) per bubble is then ne = 6 × 2m, since 6 is the mean number
of bubble neighbours (and hence mesh edges) in the initial dry foam (Weaire & Hutzler
1999, p. 29). After initial structural relaxation, vertices are added or deleted to ensure small
and large bubbles have acceptable numbers of vertices. The criteria are that we refine once
all edges longer than 1.05/ne of the perimeter of a circle with the mean bubble area (i.e.
not much longer than edges in a typical bubble with its initial refinement), and we delete
half of each bubble’s edges which are shorter than 4.76/ne (approximately 1/20 for m = 4,
as used in § 3) of the perimeter of a circle with the smallest bubble’s area.

The foam’s structure is relaxed using the approach of § 2.1. We recall, from § 2.1.2, that
the strength of ΠD (determining the equilibrium film thickness h0) is set via the foam’s
capillary pressure ΠC, which is not known beforehand. Hence, we initially relax the foam
using a rough estimate of ΠC adapted from Princen (1979). This is the result for hexagonal
foams except with φc shifted to 16 %, suitable for disordered foams (Cantat et al. 2013,
p. 195), and R replaced by R21:

ΠC ≈ γ∞
R21

√
1 − φ

1 − φc

φc

φ
. (2.14)

A measurement of ΠC in the relaxed foam, obtained from (2.2) directly, is used to reset the
strength of ΠD, and the foam is relaxed again. We find that around five iterations of this
process are needed for ΠC to converge to precision 10−2γ∞/

√
AF (where AF is the area of

the foam’s periodic domain). Once this is done, the desired equilibrium film thickness h0
is approximately obtained. However, as mentioned in § 2.1.2, the film thickness will vary
between bubbles, due to their variations in pressure (Princen 1988).

Finally, the deviatoric stress is relaxed again (now with a larger tolerance 10−3γ∞/〈R〉,
due to the extra computational cost for a wet foam), giving an initial wet foam structure
that is intended to be representative of a bulk foam. In the next section, we analyse
coarsening-related bubble properties within such foam samples. We use five distinct
samples containing 256 bubbles, along with a single sample of 1024 bubbles, which are
analysed at different liquid fractions and contact angles, as described below. As noted in
§ 1, we do not coarsen these samples with time (i.e. evolve the bubble areas according to
their growth rates) due to the small system sizes (Thomas et al. 2006).

3. Results

We now present our main results, on coarsening-related properties of two-dimensional
disordered wet foams, for various liquid fractions φ and contact angles θ .

Our simulations follow a similar method to that of Bolton & Weaire (1990) in gradually
increasing φ, and relaxing the foam’s structure at each step (we also relax the film
thickness and applied stress at every φ). Their approach has been applied by Cox et al.
(2018), Jing et al. (2021), Feng et al. (2021) and Jing & Feng (2023). We thereby capture
the flocculation (Cox et al. 2018) discussed in § 3.1, whereas qualitatively different foam
structures result if φ is set to a large value in a single step.

We perform these liquid fraction sweeps from φ = 2 % to 25 %. The upper bound is
arbitrary, and chosen so that data is obtained for foams with liquid fractions above the
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unjamming transition without bubble attraction, i.e. φc ≈ 16 % (Cantat et al. 2013, p. 195).
The lower bound is determined by convergence. Previous simulations (with θ > 0) using
a different structural model have used the same upper bound (Cox et al. 2018; Jing et al.
2021).

Simulations are run for θ ∈ {0, 2.5◦, 5◦, 7.5◦, 10◦}, and for repulsive ΠD. Our range for
θ is comparable to prior numerical studies (Feng et al. 2021; Jing et al. 2021), and does
not exceed contact angles observed in foam experiments (Princen 1968; Seknagi 2022).
Larger values of θ could be studied, but result in slower convergence and require higher
mesh refinement. We also note θ = 10◦ is small enough that sin θ ≈ θ and cos θ ≈ 1. We
use these approximations while obtaining theoretical results below.

We set the equilibrium film thickness h0 to 〈R〉/100. Our simulations cannot converge
for values much below 〈R〉/200 at the selected degree of refinement, stated below, recalling
our comments in § 2.1.

The simulated foams contain 256 or 1024 bubbles. Our energy-change threshold for
halting structural relaxation is 10−6γ∞

√
AF (over 20 conjugate gradient iterations),

where AF is the area of the foam’s periodic domain, and we use m = 4 refinements of
the initial dry-foam mesh. Hence, the mean number of vertices per bubble is initially
96, before the discretisation of large or small bubbles is adjusted. The liquid fraction
is incremented in steps of �φ = 0.5 %. These parameters have been varied to check
convergence. The growth rates at φ = 2 % for m = 4 differ from their values at m = 5
by approximately 10 %. The difference corresponds to a uniform scaling for all bubbles to
a good approximation, and may be related to convergence of the Young–Laplace law as
applied to the films. This is discussed in Appendix C where we describe a convergence
test in detail.

The execution time for one liquid fraction sweep with 256 bubbles is approximately
100 h on a personal computer with a recent 16-core Intel i7 processor, 16 GB of
random-access memory, and a solid-state drive, recalling that no parallel processing is
used. A sweep with 1024 bubbles takes around 700 h. The execution times are usually
lower for smaller θ and larger φ, and when bubble areas are taken directly from the initial
Voronoi tessellation.

In § 3.1 below, we describe the global properties of the simulated foams. Next, in
§ 3.2, we discuss coarsening-related properties of individual bubbles, and develop some
analytical approximations. Section 3.3 concerns the variation of the simulated bubble
growth rates with φ, and their comparison with prior growth laws. Finally, in § 3.4, we
consider the aggregated properties of the foam’s bubbles, in order to better quantify their
variation with φ and θ .

3.1. Foam properties
Let τ̄F be the stress tensor spatially averaged, after Batchelor (1970), over a
two-dimensional foam. Let AF be the foam’s total area, Ak the area and pk the pressure
of the kth bubble, and let t be the unit tangent and γ the surface tension at a point on
the union ΓF of all liquid–gas interfaces in the foam. Also let δij be the Kronecker delta
symbol. Then the components of τ̄F are (Batchelor 1970; Cantat et al. 2013, pp. 175–177)

(τ̄F)ij = 1
AF

(∫
ΓF

γ titj dl −
∑

k

pkAkδij

)
, (3.1)

recalling that we set the liquid pressure to zero. Our means of measuring τ̄F in the
simulations is given in Appendix B.1. The osmotic pressure (Princen 1979) is then given
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Figure 8. Osmotic pressure ΠO versus effective liquid fraction, defined in (3.3), in foams with different contact
angles θ . Data is given for 1024-bubble runs in (a), while (b) gives the variation of

√
ΠO for 256-bubble runs

to clarify the zero of ΠO. The data in (b) is averaged over five different initial foams, with the square root then
being taken, and the error bars give the propagated sample standard deviation of the linear data. For comparison,
the solid (dashed) curve is for a 1500-bubble foam with θ = 10.8◦ (θ = 5.1◦) and h0 = 0, simulated with the
model of Cox et al. (2018). The curves in (b) end when ΠO < 0.

by (Hutzler & Weaire 1995; Höhler et al. 2021)

ΠO = −1
2 Tr τ̄F. (3.2)

This is the average pressure in the foam, above that of the liquid (Höhler et al. 2021). It is
also approximately the pressure that a piston would need to exert on the foam to maintain
its present φ, where this piston is permeable to the liquid but not the bubbles (Princen
1979; Höhler et al. 2021).

In figure 8, we plot the simulated variation of ΠO with effective liquid fraction (defined
below) for several θ . The osmotic pressure is positive for φ up to a threshold value, at all
considered θ . This threshold is approximately the unjamming transition φc ≈ 16 % (Cantat
et al. 2013, p. 195) for small θ , as expected (Hutzler & Weaire 1995), and decreases for
larger θ , as for hexagonal foams (Princen 1979). For φ above the threshold, ΠO ≈ 0, so
the foam is no longer under compression. For repulsive ΠD and θ = 0, the variation of
ΠO with φ is in qualitative agreement with prior simulation results (Hutzler & Weaire
1995), including, via figure 8(b), the apparent scaling ΠO ∼ (φ − φc)

2 near φc. At larger
θ , the greater differences between individual runs at small ΠO, reflected in the error bars
of figure 8(b), are interpreted to arise from an observed dependence on initial conditions,
mentioned below, in the manner in which flocculation progresses.

Alongside our data, we plot that obtained using the same simulation model as Cox et al.
(2018), i.e. the Surface Evolver with h0 = 0. Good agreement is observed. To make the
comparison, we correct for our finite film thickness by plotting against the effective liquid
fraction φeff , instead of φ, obtained by subtracting from the foam’s liquid area a strip of
width h0/2 around the perimeter of each bubble (Princen 1979; Khan & Armstrong 1989).
If 〈P〉 is the mean bubble perimeter (the perimeter P is to be distinguished from the foam
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polydispersity P), and 〈A〉 the mean bubble area, then

φeff = φ − (1 − φ)
h0〈P〉
2〈A〉 . (3.3)

For a 1024-bubble foam with φ = 2 %, we find φeff ≈ 1.14 %, with the deviation
decreasing as φ increases. The contact angle θ does not have a strong effect.
A three-dimensional version of (3.3) was used by Mason et al. (1997).

In figure 9, we show the foam structure at φ = 25 % for several θ . These foams all have
ΠO ≈ 0, recalling figure 8, and so it is clear that a variety of structures can have zero
osmotic pressure. For repulsive ΠD, the osmotic pressure is zero because the bubbles are
not touching. However, when there is bubble attraction the foam flocculates, as found by
Cox et al. (2018) in simulated foams, and as is well known in emulsions (Bibette et al.
1993). A clustered structure with many contacting bubbles is energetically favourable,
due to the decrease of interface tension within films, recalling (2.4) (Princen 1983; Cox
et al. 2018). The presence of bubble attraction, and hence flocculation, for θ = 0 is a
consequence of finite film thickness, as discussed in § 2.1.2. At θ = 10◦, different initial
foam structures result in different manners of flocculation (e.g. some will form a single
fissure, while others form multiple large Plateau borders).

We note, from figure 8, that ΠO < 0 for a range of φ near 16 % at contact angle θ = 10◦
(including for the data with h0 = 0). This would correspond to the foam exerting suction
on the confining piston mentioned above. As φ is further increased, ΠO increases towards
zero. We interpret this behaviour as arising from the energy cost for a bubble to lose a
neighbour at high θ . Bubbles therefore experience some extension before they detach, and
this regime, in which the foam is not fully flocculated, has ΠO < 0. Our interpretation
is supported by the observation that, when φ is decreased again from 25 %, ΠO remains
non-negative (not shown). This hysteresis is in contrast to the behaviour for repulsive ΠD
(Hutzler & Weaire 1995).

Next, in figure 10, we plot the mean number of bubble neighbours 〈n〉. We measure n
for a bubble Bi by counting the distinct bubbles from whose interfaces the vertices of Bi
experience a positive (i.e. repulsive) ΠD. The behaviour of 〈n〉 has been studied in detail
for θ > 0 (Feng et al. 2021; Jing et al. 2021; Jing & Feng 2023), and by Winkelmann et al.
(2017) and Boromand et al. (2019) without bubble attraction (the latter using a comparable
model to ours). Unlike the prior studies that we are aware of, we have used the same model
for both cases.

The simulation data given by Jing et al. (2021), obtained using the PLAT software,
is in good agreement for smaller φeff . The deviation at larger values may be due to our
finite film thickness. In figure 10, we also compare with simulations using the same
model as Jing et al. (2021) for θ > 0. The disagreement is much larger (surprisingly,
given the consistency in figure 8), although the qualitative behaviour (Feng et al. 2021)
is the same. The approximate plateaus to which 〈n〉 decreases are considerably lower in
our simulations, and the failure of the decoration theorem, resulting in 〈n〉 < 6 (Bolton &
Weaire 1990), occurs at smaller φeff . Our deviations from Jing et al. (2021) are slightly
smaller, but still large, and we find less of a difference than them between zero and slight
bubble attraction.

Although the simulations with θ > 0 that we compare with in figure 10 have a much
lower polydispersity (P = 0.008 for θ = 10.8◦ and P = 0.041 for θ = 5.1◦, for P as
defined in § 2.3) than we use, we do not believe that this can account for the whole
discrepancy. For identical initial dry foam structures, we found in tests that the variation
of 〈n〉 still showed a large difference between the predictions of the simulations described
here, and of those following the techniques of Jing et al. (2021) (which have zero film
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(a) (b)

(c)

Figure 9. Simulated structure of 256-bubble periodic foams at φ = 25 %, for (a) repulsive ΠD, (b) θ = 0 and
(c) θ = 10◦. A square subset of each foam, with area equal to that of the periodic domain, is shown. Since
the latter domain is deformed due to stress relaxation (§ 2.3), some simulated bubbles may be omitted or may
appear twice. Each foam was generated from the same initial dry structure.

thickness h0). Instead, we suggest that the cause may be the finite size of the transition
region (Kralchevsky & Ivanov 1985b) between films and Plateau borders when h0 > 0,
which should limit the minimum film length (which is zero for h0 = 0) to finite values,
and thus decrease the maximum attractive force that a bubble may exert on a neighbour.
Attractive contributions to the force come from the ends of the film, where the interface
separation passes through the minimum of ΠD (see figure 3), while the contributions
from the rest of the film are repulsive since ΠD > 0 there (Denkov et al. 1995). The
contributions from the film ends are constant for fixed θ (see Appendix A), whereas
the repulsive contribution increases (in magnitude) with film length, as it is given by
integrating ΠD along the film. Hence, the maximum attractive force decreases with
increasing minimum film length. A reduction in the maximum force would result in earlier
detachment of adhered bubbles for h0 > 0 as φ is increased, thus lowering 〈n〉 compared
with the case for h0 = 0.

Finally, we note that care is needed when increasing φ in our simulations with bubble
attraction, due to the fragility of the bubble clusters, which can easily be broken apart if
the step �φ is too large. This would decrease 〈n〉, although our convergence tests imply
that this is not the cause of our differences from prior data.
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Figure 10. Mean number of neighbours 〈n〉 versus effective liquid fraction, defined in (3.3), for foams with
various degrees of bubble attraction. Data from single runs are plotted for 1024-bubble foams, while the data
for 256-bubble foams is averaged over five runs (the error bars give the sample standard deviation). The solid
curve is the PLAT data at θ = 0 and h0 = 0 given by Jing et al. (2021), and we also compare with h0 = 0
simulations at θ = 10.8◦ (dashed curve) and θ = 5.1◦ (dotted curve) using the approach of Jing et al. (2021)
and Cox et al. (2018) – the same runs as in figure 8.

3.2. Bubble properties
We now turn to the properties of individual bubbles. As noted in § 1, the growth rate of a
bubble is determined partly by its pressure p and the length L of its perimeter along which
it is in contact with its neighbours, i.e. its film length (Lemlich 1978; Roth et al. 2013).
Therefore, we focus on these properties, before considering the growth rates themselves in
§ 3.3.

3.2.1. Bubble pressures
In figure 11, we plot the scaled pressures of the bubbles against their effective radii R. Let
rPB be the radius of curvature of a bubble’s Plateau borders, given via the Young–Laplace
law p = γ∞/rPB (Weaire & Hutzler 1999). Then the plotted property is pR/γ∞ = R/rPB,
which is a measure of bubble deformation. From the figure, this ratio approaches unity
as R → 0, i.e. the smallest bubbles are circular and undeformed. These are analogous
to ‘rattlers’ which exist in the Plateau borders of a polydisperse foam (Khakalo et al.
2018; Galvani et al. 2023). At smaller liquid fractions, R/rPB increases with R, so larger
bubbles experience relatively more deformation (Bolton & Weaire 1991). This is illustrated
in figure 12. At higher liquid fractions, R/rPB ≈ 1 for all R, as expected for repulsive ΠD,
because all bubbles are approximately circular at φ near and above that of the unjamming
transition (Durian 1995). However, we see from figure 11(b) that R/rPB ≈ 1 also holds in
foams with bubble attraction at large φ (i.e. flocculated foams), consistent with theory for
ordered foams (Princen 1979), although there is a greater spread in R/rPB for larger θ at
all φ.

The relationship between R and pR/γ∞ appears linear to a good approximation. To
interpret this, we use the approach of Höhler et al. (2021). They generalised to arbitrary
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Figure 11. Scaled pressure pR/γ∞ = R/rPB versus effective radius R, where rPB is the Plateau border
curvature radius, for individual bubbles in 1024-bubble foams at various liquid fractions. Data for (a) repulsive
ΠD and (b) θ = 10◦ is shown, and compared with (3.8) using the osmotic pressure measured in the simulations.
We also compare with a version of (3.8) for which the factor 1/(1 − φ) mentioned in the text is retained.

Figure 12. Illustration of the observation that larger bubbles are more deformed in a wet foam (Bolton &
Weaire 1991), using a simulation with φ = 3.5 % and repulsive ΠD. The smallest bubbles are almost circular.

polydispersity an established relation (Princen 1988) between the osmotic and capillary
pressures in three-dimensional monodisperse foams. The same proof in two dimensions,
extended from θ = 0 to our considered contact angles θ � 10◦, for which cos θ ≈ 1, gives

ΠC ≈ ΠO

1 − φ
+ γ∞

R21
. (3.4)

This incorporates an approximation of each bubble’s perimeter by that of a circle with
equal area (Kraynik et al. 2012). A verification that (3.4) holds in our simulations is given
in figure 13. We now adapt the argument of Höhler et al. (2021), which they apply over the
entire foam, to a single bubble of effective radius R and pressure p, and make additional
simplifying assumptions. Let τ̄ be the stress tensor spatially averaged over the considered
bubble, including its interface Γ . Let h be the local interface separation at a point on Γ ,
with γ (h) the corresponding surface tension and t the unit tangent. Let A = πR2 be the
bubble’s area. Hence, in component form, (Batchelor 1970; Cantat et al. 2013, pp. 175–177)

τ̄ij = 1
A

∮
Γ

γ (h)titj dl − pδij, (3.5)
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Figure 13. Capillary pressure versus liquid fraction for 1024-bubble foams with repulsive ΠD and θ = 10◦.
Comparison is made to (3.4) for both cases, using ΠO as measured in the simulations at each liquid fraction
step. The prediction of ΠC is linearly interpolated between these steps for clarity.

where δij is the Kronecker delta. We note that averaged stresses over individual bubbles in
a dry foam were considered by Kraynik et al. (2012). Also let p̄ = −1

2 Tr τ̄ be the bubble’s
reduced pressure, defined analogously to ΠO (Höhler et al. 2021). This reduced pressure
differs from the bubble’s gas pressure p. Using (3.5), we obtain

p̄ = p − 1
2πR2

∮
Γ

dl γ (h). (3.6)

Next, we evaluate the integral, using that γ (h) ≈ γ∞ in the films, from (2.4) and recalling
that we have cos θ ≈ 1 since θ � 10◦. We also approximate the bubble perimeter as that of
a circle with the same area. The error in doing so is around 6 % for a simulated dry foam
(Kraynik et al. 2012), and expected to be smaller for larger φ. Hence, we obtain

p̄ ≈ p − γ∞
R

. (3.7)

As a first approximation, we take the reduced pressure p̄ to be the same for all bubbles.
Since p̄ is related to the forces applied externally to the bubble (Landau et al. 1986, p. 7),
as shown in Appendix A, this corresponds to a mean-field assumption (Lemlich 1978;
Feitosa et al. 2006) that the environment of each bubble is comparable. Substituting (3.7)
into (3.4), and using (2.2) for ΠC, gives p̄ = ΠO/(1 − φ). Hence, for θ � 10◦,

p ≈ ΠO + γ∞
R

, (3.8)

omitting the factor of 1 − φ for simplicity, which we find is a good approximation for all
considered φ in two dimensions (see figure 11). This is the single-bubble analogue of the
more rigorous (3.4). Its agreement with the data, shown in figure 11, indicates that bubbles
approximately obey an effective Young–Laplace law, with a mean-field external pressure
ΠO (whose value is currently taken from the simulations, but not fitted). Agreement also
exists when the bubble areas are taken directly from a Voronoi tessellation (data not
shown). We therefore suggest that the pressure environment of the bubbles, determined by
their neighbours, is comparable throughout the foam (Jorjadze, Pontani & Brujic 2013),
and does not have a strong systematic variation with the bubble size.
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Figure 14. Ratio of film length to perimeter versus effective radius for individual bubbles (with n neighbours)
in a 1024-bubble foam, (a) at φ = 2 % with repulsive ΠD, and (b) at φ = 25 % with θ = 10◦. Comparison is
made with (3.9), with ΠO taken from the simulations in (a), and assumed to be zero in (b) due to flocculation.
The relative length per film L/(nP) is plotted in (b), since this is predicted directly by (3.9) for ΠO = 0.

We are not aware of prior discussions of (3.8) for polydisperse wet foams in the
literature, although a comparable exact result for dry foams (when approximated as having
straight films) is known (Li et al. 2023). The osmotic pressure diverges in this limit, so the
relation is between the radius of a bubble and its pressure relative to some zero. It would be
interesting to see, through similar simulations, whether this type of simple approximation
also holds in three-dimensional polydisperse wet foams. As shown in the next section,
(3.8) may be applied to develop models for other bubble properties.

3.2.2. Film lengths
We now consider the total length L of the thin films adjoining a given bubble in the
simulated foams, which we recall is another determinant of the bubble’s growth rate.
Noting figure 1(b), L is the length of the bubble’s liquid–gas interface in contact with
other bubbles, and we describe our method for measuring L in Appendix B.3. Comparably
to Denkov et al. (1995), we measure L in our simulations by approximating each film
interface with a circular arc, and determining the latter’s intersection with (or closest
approach to) circular arcs approximating the two adjoining Plateau-border interfaces (cf.
figure 2). These interfaces are expected to approach circular arcs for high levels of mesh
refinement, by the Young–Laplace law (Weaire & Hutzler 1999). The bubble film lengths
are plotted in figure 14 for small and large φ. We plot the ratio of L to the bubble perimeter
P in figure 14(a), i.e. the proportion of bubble interface adjoining a thin film. The length
per film, relative to P, is given in figure 14(b).

At φ = 2 %, figure 14(a) shows that L/P decreases with decreasing bubble radius R, in
agreement with the observation that smaller bubbles experience less deformation (Bolton
& Weaire 1991). As R increases, L/P appears to saturate. No qualitative variation in this
behaviour with θ was observed. At large φ, where L is smaller due to decreased bubble
deformation, the film proportion depends strongly on θ due to flocculation, as shown in
§ 3.4.1.

Certain features of L/P may be captured by an analytic approximation, as for the bubble
pressures. Let R̄ ≡ R/R21 and Π̄ ≡ ΠOR21/γ∞ (Princen 1988) be dimensionless measures
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of bubble size and osmotic pressure, respectively. In Appendix A, we argue that

L
P

≈ 2
Π̄ R̄ + nθ/π

1 + (
2Π̄ + 1

)
R̄

. (3.9)

This is derived by relating the reduced bubble pressure p̄ to the forces applied to the
bubble’s interface by its neighbours, and approximating this pressure by ΠO as previously.
We assume θ � 10◦, as considered in our simulations, so that sin θ ≈ θ and cos θ ≈ 1.
The predictions of this equation are compared with the simulated values of L in figure 14.

The general variation of L with R at low liquid fractions and for repulsive ΠD is captured,
although the spread at a given R is not. The approximations used to derive (3.9) effectively
average the explicit dependence upon n. In particular, we neglect the detailed geometry of
a bubble’s films, which we expect to vary with n due to constraints from Plateau’s laws
(Weaire & Hutzler 1999; Roth et al. 2013), at small φ where the decoration theorem holds
(Bolton & Weaire 1991). Hence, the bands in figure 14(a) are not reproduced.

An isotropic model (Roth et al. 2013) might predict the spread in L at small φ, including
the bands for different neighbour numbers n. However, its reliance on the decoration
theorem precludes applicability to moderate φ, which is our regime of interest.

For foams with θ > 0, an approximate relation between n and R in wet foams is needed
for (3.9) to predict L as a function of R only. This is beyond our scope, and so we gauge
(3.9) via L/(nP) (the relative length per film) in flocculated foams for which ΠO ≈ 0.
Again, a broad agreement with the data is seen in figure 14(b). We emphasise that, in
general, the explicit n term does not account for the whole dependence of L on n, such as
the bands in figure 14(a), due to the mentioned averaging. These bands are present at small
φ for all θ in the considered range.

Equation (3.9) predicts that L/P increases with n (all else being fixed) when θ > 0,
whereas figure 14(a) shows a decrease with n for repulsive ΠD. The latter pattern is still
present for θ > 0, at small φ (data not shown). We interpret it as follows. Consider an
idealised Plateau border adjoining n bubbles, each of which has equal pressure so that the
border has n-fold rotational symmetry. The area of this Plateau border grows with n for
fixed pressures, and so a bubble with given radius R will experience less deformation (i.e.
will have smaller L/P) when inserted into the border if n is larger. However, this level
of geometric detail is omitted from the derivation of (3.9), as noted above. Hence, the
remaining dependence on n in (3.9) should be interpreted as an approximate correction for
θ > 0, increasing the length of the films due to attraction between the bubbles (Feng et al.
2021), as discussed further in § 3.4.1.

The behaviour of L appears more complex than that of p, described previously.
Nevertheless, we show in § 3.4.1 that an approximate averaging of (3.9) over all bubbles
describes the mean film lengths very well.

3.3. Bubble growth rates
We now summarise the simulated bubble growth rates, recalling that these include gas
transfer across films and through Plateau borders, as described in § 2.2. We describe in
§ 3.3.1 how the growth rates change as φ is increased. We then compare our simulations
with prior models: in § 3.3.2, we consider the relationship between a bubble’s growth rate
and its effective number of neighbours neff (Fortuna et al. 2012), before studying the gas
flow through Plateau borders in § 3.3.3.
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3.3.1. Effects of liquid fraction
At φ = 0, which is inaccessible to our simulations, the growth rate of a bubble with n
neighbours obeys von Neumann’s law (von Neumann 1952),

Ȧ = 2πDH γ (h0)

3h0
(n − 6) , (3.10)

where D and H are, respectively, a diffusion coefficient and Henry’s constant (see § 2.2),
and γ (h0) is the film-interface tension from (2.4). The prefactor multiplying n − 6, which
is constant for a particular foam, is derived, for example, by Cantat et al. (2013, p. 109).
Hence, a bubble’s growth rate is determined only by its neighbour number n in a dry foam,
so that the growth rates fall into discrete bands.

When φ is increased to small values, such that almost all Plateau borders still connect
exactly three films (i.e. the decoration theorem is approximately satisfied (Bolton & Weaire
1991)), the growth rates remain predominantly determined by n, although the reduction of
gas flow by the Plateau borders induces a dependence upon bubble size and shape (Bolton
& Weaire 1991; Roth et al. 2013). In figure 15(a), we plot the bubble growth rates at
φ = 2 %, noting that a sequence of bands, as predicted by (3.10) for φ = 0, is still apparent
at this small liquid fraction. These plotted growth rates are in qualitative agreement with
experiments and theory for quasi-two-dimensional foams – in particular, for fixed n, the
absolute growth rates tend to increase slightly with increasing bubble size (Roth et al.
2013). This implies that larger bubbles experience less blocking of gas transfer by the
Plateau borders (Bolton & Weaire 1991), again consistent with their greater observed
deformation. As discussed in § 3.3.2, the absolute growth rates of the smallest bubbles
are enhanced by their thinner films in our simulations.

When φ is increased further, the Plateau borders grow, and the degree of border blocking
increases (Roth et al. 2013). The primary effect of this is to reduce the absolute growth
rates, as shown in figure 15(b). However, the decoration theorem also fails for more
bubbles as they detach from their neighbours with increasing φ. The geometric constraints
from Plateau’s laws (Weaire & Hutzler 1999) are relaxed for such bubbles, resulting in
growth rates that lie between the bands hitherto occupied.

Eventually, φ is high enough that most of the bubbles adjoin at least one Plateau border
which connects more than three films. As shown in figure 15(c), banding in the growth
rates is no longer discernible.

The absolute growth rates continue to decrease with increasing φ, except in the presence
of adhesion, where they eventually decrease to a plateau due to flocculation. This is
considered further in § 3.4.2. Due to the inclusion of gas flow through the Plateau borders
in our model, the growth rates do not shrink to zero at the unjamming transition φc ≈ 16 %
for repulsive ΠD. Instead they continue to decrease in magnitude as the bubbles move
apart. We expect that our approximation for the growth rates, (2.12) from § 2.2, declines in
accuracy as φ increases beyond this transition, as the gas dissolved in the bulk liquid
becomes the main source and sink for bubbles, rather than pairwise transfer between
adjacent bubbles (Fortuna et al. 2012). However, as justified in § 3.3.3, we believe that
the coarsening approximation remains valid for flocculated foams, since bubbles remain
in contact.

3.3.2. Effective neighbour number
We now compare our simulated growth rates with results from the literature. Fortuna et al.
(2012) introduced the effective number of neighbours neff of a bubble in a two-dimensional
wet foam, defined as follows. Let Θ be the angle turned by the bubble interface’s tangent as
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Figure 15. Individual bubbles growth rates versus effective radius in a particular 1024-bubble foam at different
liquid fractions φ, with repulsive ΠD. The number of neighbours n of each bubble is shown. In (a) φ = 2 %; in
(b) φ = 6.5 %; and in (c) φ = 15.5 %. The growth rates are scaled so that the rates from von Neumann’s law,
(3.10), are the integers. A bubble with n = 14 lies outside the plotted domain in (a), to better show the banding
of the growth rates.

its film interfaces are traversed, illustrated in figure 16. Contributions to Θ from a convex
interface, as in this figure, are positive. Then (Fortuna et al. 2012)

neff = 6 − 3Θ/π. (3.11)

This is equivalent to the bubble’s actual number of neighbours n for φ = 0, and is equal to
6 in a wet foam when n = 0 (Fortuna et al. 2012). If neff < 6, then (3.11) implies that the
film interfaces of the bubble tend to be convex, and so its pressure tends to be larger than
those of its neighbours, i.e. it is smaller than average, in a loose sense, from (3.8). The
converse is true for neff > 6. In fact, by repeating the derivation (von Neumann 1952) of
von Neumann’s law in a wet foam, assuming small uniform film thickness h0 and θ = 0,
it can be shown that the border-blocking growth rate of a bubble (i.e. including only gas
flow through the films) is exactly

ȦBB = 2πγ∞DH
3h0

(neff − 6). (3.12)

This is von Neumann’s law with n replaced by neff , and was derived in a slightly different
form by Bolton & Weaire (1991). Fortuna et al. (2012) validate this result, in conjunction
with an approximation for the Plateau border gas flow, using Potts model simulations. For
θ > 0, the only change to (3.12) is that γ∞ becomes γ (h0) from (2.4). Since we consider
θ � 10◦, for which cos θ ≈ 1, we have γ (h0) ≈ γ∞.
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jth film interface

of bubble i

ith bubble

Θ = 	j Θj
for bubble i

Θj > 0

Figure 16. Schematic of the definition of the angle Θ (Fortuna et al. 2012), described in the text.
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Figure 17. Bubble growth rate versus neff in a 1024-bubble foam (a) at φ = 2 % for repulsive ΠD, and (b) at
φ = 25 % for different θ . A large bubble with n = 14 neighbours is omitted from (a), for clarity. The black
lines are (3.12) for the set film thickness h0.

We measure Θ , and hence neff , by noting that the contribution to Θ from a bubble’s
jth film is lj/rj (Fortuna et al. 2012), where lj is the film’s length (Appendix B.3), and
rj is its radius of curvature. The latter is positive if the film is convex with respect to
the bubble, and is defined using the augmented Young–Laplace equation (Kralchevsky &
Ivanov 1985b; Denkov et al. 1995) according to Appendix B.2.

Figure 17 shows our bubble growth rates Ȧ plotted against neff (including contributions
from gas flow through the Plateau borders). The two quantities are closely related at all
φ and θ we have investigated, provided that the bubbles have neighbours (including in
flocculated foams). Otherwise neff = 6 identically, while the growth rates still vary.

This close relationship between Ȧ and neff (with the sign of Ȧ being well determined by
the sign of neff − 6) was not apparent to us from the simulations performed by Fortuna
et al. (2012), likely due to the fact that the Potts model does not accurately capture
bubble geometry. In principle, deviations from (3.12) give the gas transfer through Plateau
borders, although the following caveats should be considered.

A separate group of bubbles may be observed in figure 17 at φ = 25 % and θ = 0,
with neff < 6 and growth rates considerably smaller than other bubbles at the same neff
(close to the vertical line). These are interpreted to result from difficulties in defining and
measuring film lengths and radii of curvature in extremely short films with a film thickness
comparable to their length, due to the transition regions between films and Plateau borders
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Figure 18. Simulated border-blocking bubble growth rates in a 1024-bubble foam with repulsive ΠD at φ =
2 %, compared with their scalings to approximately account for film thickness variations between bubbles. Here
〈hf 〉 is a bubble’s mean film thickness – a representative thickness is measured (according to Appendix B.2)
for each of its films, and the mean of these thicknesses is calculated. The black line is (3.12) with h0 replaced
by h.

(Kralchevsky & Ivanov 1985b). The group is smaller at higher mesh refinement, but is not
practical to eliminate.

We previously mentioned film thickness variations due to our form for ΠD, in § 2.1.2.
The effect of these on the bubble growth rates is shown in figure 18, where we plot our
simulated border-blocking growth rates against (3.12), for which the thickness of each film
is the set value h0. We measure the border-blocking growth rate of a bubble with pressure
p as follows. Let the bubble’s jth film (of n) have length lj (Appendix B.3), thickness hj
(Appendix B.2), and adjoin a bubble with pressure pj. Then (Bolton & Weaire 1991; Cantat
et al. 2013)

ȦBB = DH
n∑

j=1

lj
hj

( pj − p). (3.13)

We observe from figure 18 that large deviations from (3.12) are mainly restricted to small
bubbles. We interpret this by noting that smaller bubbles have higher gas pressure by
(3.8), and so the disjoining pressure in their films must be larger to maintain equilibrium,
recalling § 2.1.2 (Toshev & Ivanov 1975). Hence, by figure 3, these films are thinner than
those of larger bubbles, enhancing the absolute growth rates of small bubbles (Princen
1988). Bubble pressure increases nonlinearly with decreasing size, so large bubbles do not
show a decrease in their absolute growth rates to the same degree.

We approximately correct for the film thickness variations by scaling the growth rates
with the measured mean film thickness 〈hf 〉 (see caption of figure 18), reducing the
differences for small bubbles. This simple scaling cannot be done for the total growth
rates, since the dependence on film thickness of Plateau border transfer is different, as
seen in the next section. While discrepancies are still present, part of which we expect to
come from thickness variations between the individual films of each bubble (agreement
is not substantially improved at higher mesh refinement), our results are consistent with
(3.12).
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In figure 17(b) at φ = 25 %, the growth rates are also affected by the fact that the
foam-wide mean film thickness is larger than the set value h0 (by a factor of approximately
1.59 for θ = 0). We interpret this by observing that the interfaces of short films between
bubbles with equal pressure retain curvature over their whole lengths in our simulations,
interpreted as being due to the finite transition regions between films and Plateau borders
(Kralchevsky & Ivanov 1985b). The augmented Young–Laplace equation (Kralchevsky
& Ivanov 1985b; Denkov et al. 1995), given in Appendix B.2, then requires a weaker
disjoining pressure than for zero curvature, and hence a thicker film.

3.3.3. Gas transfer through Plateau borders
Schimming & Durian (2017) derive a bubble growth law in two-dimensional wet foams
at small φ (satisfying the decoration theorem), which accounts for gas flow through
the Plateau borders. It is assumed that θ = 0, and the geometry is simplified by taking
each side of each border to have equal curvature. Let rPB be the radius of curvature of
a bubble’s Plateau border interfaces (given by the Young–Laplace law in terms of the
bubble pressure p), let rj be the signed radius of curvature of its jth film (measured as in
Appendix B.2), and define the circularity C = (R/n)

∑n
j=1 1/rj (Roth et al. 2013) where

n is the bubble’s number of neighbours. Then the contribution to the bubble’s growth rate
from Plateau-border transfer, termed border crossing, is (Schimming & Durian 2017)

ȦBC ≈ −2πγ∞DH
nC
R

√
rPB

h0
. (3.14)

We believe that a typographical error resulted in an extra factor of 1/
√

3 for Schimming &
Durian (2017), which we have corrected. We plot a comparison between this approximation
and our results for a repulsive disjoining pressure at φ = 2 % in figure 19. Part of
the difference is believed to come from the transition regions at the ends of the films
(Kralchevsky & Ivanov 1985b) – the approach we use to measure the film lengths
(Appendix B.3) tends to include part of these regions, which are omitted in the derivation
of (3.14). Therefore, the film lengths are overestimated in the simulations, and thus also
the proportion of the growth rates due to gas transfer through the films. We note that
the definition of film length is ambiguous for finite film thickness, due to these transition
regions. Other contributions to the difference in figure 19 come from the approximations
made in our coarsening model (see § 2.2) and in (3.14) from Schimming & Durian (2017).
Agreement is not improved at higher mesh refinement (and is worse for the smallest
bubbles, in the cluster with smallest ȦBC).

We also recall that our selected h0 is large compared with real foams. This is instead
expected to exaggerate the border-crossing rates relative to the gas flow through the films
in our simulations (Schimming & Durian 2017), which is a separate effect from the
underestimation at a given h0, discussed above.

Near to the unjamming transition, at which the film lengths decrease to zero (Cantat
et al. 2013, p. 195), the bubble growth rate due to one neighbour was given by Schimming
& Durian (2017) for θ = 0. Let Ri be the effective radius of the bubble’s ith neighbour,
and hi the minimum distance between their interfaces. By adding contributions from each
neighbour, and neglecting the effect of other neighbours on each contribution, which
would tend to reduce the absolute growth rates (Evilevitch et al. 2002),

Ȧ ≈ πγ∞DH
n∑

i=1

√
2
hi

R − Ri√
RRi(R + Ri)

. (3.15)
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Figure 19. Border-crossing growth rate, defined as the difference between the total and border-blocking rates,
versus neff in a 1024 bubble foam at φ = 2 % with repulsive ΠD. The simulations are compared with (3.14).
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Figure 20. Total bubble growth rates plotted against (3.15) (Schimming & Durian 2017) for a 1024-bubble
foam at φ = 16 % (set in one step, rather than increased gradually) with repulsive ΠD. We do not expect the
means of setting φ to have a large effect for this ΠD. The contacting and nearby bubbles are as specified in the
main text. The black line has unit gradient.

This is compared with our simulations in figure 20, which show good agreement, provided
that contributions from all nearby bubbles are included – not just those in contact, but also
those nearly in contact. Nearby bubbles are taken here to be those counted as neighbours
by the vertex neighbour algorithm (see § 2.1.3 and figure 5), and contacting bubbles are
those which exert ΠD > 0 on a vertex of the considered bubble.

While the issue of accounting for long-range gas transfer in simulations (R. Höhler,
personal communication) remains unresolved (for which our approximation described
in § 2.2 is likely poor), and may be particularly important due to our thick films, we
observe here that the two different approaches to the bubble gas flow rates are consistent.
Equation (3.15) uses an approximation for small hi, although we find the exact prediction
(Schimming & Durian 2017), which gives larger absolute growth rates, differs by less
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than 10 % for h1 ≤ 2R when R1 ≤ 10 R and n = 1. We expect that most of the difference
between the two datasets plotted in figure 20 is due to bubbles which are only just out of
contact, noting from figure 5 that the vertex neighbour algorithm can count fairly distant
bubbles as neighbours.

Our use of the growth rate approximation (§ 2.2) for flocculated foams, in which bubbles
retain close contacts as φ is increased, is also supported by the above results for foams
with repulsive ΠD near unjamming. This is because the geometry is similar except for
the retention of short films in the flocculated foams, while we expect the coarsening
approximation to be effective for films as noted in § 2.2.

3.4. Statistics of bubble properties
We now give averaged properties of the bubbles in the simulated foams, in order to
quantify some of our observations regarding their variation with φ and θ .

3.4.1. Film lengths
First, we consider the averaged bubble film lengths L. Recalling our approximation, (3.9),
we may estimate its prediction of the mean ratio of film length to perimeter, for θ � 10◦,
as 〈

L
P

〉
≈ Π̄ + 〈n〉θ/π

1 + Π̄
(3.16)

by setting R = R21 and n = 〈n〉 on the right-hand side. For θ = 0, this has an equivalent
form to an existing approximation for the film areas in a monodisperse three-dimensional
foam (Höhler et al. 2021; Pasquet et al. 2023b).

Equation (3.16) is compared with our simulations in figure 21(a), and we observe a
very close agreement, including in flocculated foams. We note that our simulations with
repulsive ΠD, rather than θ = 0, should be compared with the predictions of (3.16) for
θ = 0, since the simulations with θ = 0 include some bubble attraction due to our finite
film thickness h0. We have assumed h0 → 0 in the derivation of (3.9) (see Appendix A),
and thus (3.16). From figure 21, the film lengths initially decrease with liquid fraction, as
the bubbles become less deformed. For repulsive ΠD, the lengths vanish as the bubbles
separate at the unjamming transition, while they decrease to an approximate plateau for
θ ≥ 0 due to flocculation. Our results for θ > 0 are in qualitative agreement with those of
Feng et al. (2021), who measured the total length of all films in foams simulated using a
different model, and are consistent with the interpretation that θ > 0 caused films to be
retained at φ > φc in the ISS coarsening experiments (Pasquet et al. 2023b).

We note that (3.16) predicts that the plateau satisfies 〈L/P〉 ≈ 〈n〉 θ/π, since ΠO ≈ 0 in
a flocculated foam (Princen 1983). Similar predictions of the mean film area in flocculated
three-dimensional foams have been made, which instead vary as θ2 (Durian 2023; Pasquet
et al. 2023b).

The error in (3.16) is larger for smaller φ, likely due to the greater deformation of
bubbles, and the geometric simplifications made while deriving (3.9) (see Appendix A).
We note that the exact mean 〈L/P〉 predicted by (3.9) behaves similarly, although is a
slightly worse approximation to the data in the plateau.

3.4.2. Growth rates
Next, we consider the averaged bubble growth rates. Noting that 〈Ȧ〉 ≡ 〈dA/dt〉 = 0
because the system is closed and the gas is taken as incompressible (neglecting that our
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Figure 21. Mean ratio of film length to perimeter versus φ, for repulsive ΠD alongside various θ . In (a),
simulations with 1024 bubbles are compared with (3.16), and error bars give the standard deviation of the
simulated L/P distribution. The values of Π̄ and 〈n〉 in (3.16) are taken from the simulations at each liquid
fraction step, with linear interpolation of the predicted 〈L/P〉 between these steps. In (b), single runs with 1024
bubbles are shown alongside the mean of five runs with 256 bubbles. Error bars in (b), giving the sample
standard deviation of 〈L/P〉 in the latter simulations, are omitted since they are close to the markers in size.
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Figure 22. Root-mean-square growth rate versus φ, for repulsive ΠD and various θ . Results for single
1024-bubble runs are shown, along with the mean of five runs with 256 bubbles (the error bars give the sample
standard deviation).

coarsening approximation does not conserve the gas exactly, as discussed in § 2.2), we
consider the root-mean-square growth rate

√
〈Ȧ2〉 ≡

√
〈(dA/dt)2〉. Since this measures

typical instantaneous bubble growth rates (in absolute value), we use it as a proxy for the
rate at which the foam would coarsen at early times.

In figure 22, we plot the variation of
√

〈Ȧ2〉 with φ, for several values of θ . As expected,
the coarsening rate decreases with increasing φ for small liquid fractions, since the Plateau
borders grow larger and further frustrate the flow of gas (Roth et al. 2013). The contact
angle does not have a strong effect in this regime.

For repulsive ΠD, the coarsening rate decreases for all φ, since the gas flow between
separated bubbles (see figure 9) decreases as their separation increases (Schimming &
Durian 2017). However, as observed for the film lengths, the presence of bubble attraction
causes the coarsening rate to decrease to a plateau. As noted in § 3.1, the bubbles flocculate
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(Cox et al. 2018), thereby retaining films that allow for efficient gas transfer. The typical
film length increases with θ , and so the plateau values likewise increase. We recall that
there is bubble attraction for θ = 0 in our model, due to the finite film thickness. Hence,
we are consistent with reports that flocculation in emulsions increases the coarsening rate
(Djerdjev & Beattie 2008), along with the interpretation that θ > 0 caused the 〈R〉 growth
exponent (see § 1) to remain equal to 1/2 (i.e. its value for dry foams) at higher φ than
expected in experiments on the ISS (Pasquet et al. 2023b). However, obtaining growth
exponents from our simulations would require following coarsening through time, which
is not feasible for large enough systems at present.

For similar reasons, we have not investigated the relationship between
√

〈Ȧ2〉 and the
coarsening rate at early times t. For a system with many bubbles, and a sufficiently coarse
time resolution, the discontinuous increases of 〈A〉 when bubbles vanish, with d〈A〉/dt = 0
between these events, are averaged to give a differentiable function 〈A〉 of time (Cantat
et al. 2013, p. 105). In this limit, the coarsening rate could be measured by d〈A〉/dt for
example, whereas 〈Ȧ〉 = 0 as noted above.

The early-time coarsening rate might differ qualitatively from
√

〈Ȧ2〉 in its dependence
on φ, since, for example, it has been suggested that the structure of flocculated foams may
change substantially under coarsening (Pasquet et al. 2023b). Furthermore, based on a
comparison with simulations using bubble areas directly from a Voronoi tessellation, we
believe that the variation shown in figure 22 depends quantitatively on polydispersity, but
not qualitatively. Since we expect the foam’s polydispersity to initially change with time
during coarsening (Thomas et al. 2006), we do not believe that

√
〈Ȧ2〉 will be constant in

time.
Finally, we recall (3.13) for a bubble’s border-blocking growth rate, which states that the

contribution from each film is proportional to the pressure difference between a bubble
and its neighbour, multiplied by the ratio of film length to thickness (Bolton & Weaire
1991; Cantat et al. 2013). Equation (3.8) can be used to approximate the bubble’s pressure
p, and we estimate the neighbour pressures as equal and constant throughout the foam
(Pasquet et al. 2023b). Again using (3.8), the neighbour pressure is expressed in terms of
a critical radius R0 (Lemlich 1978; Chieco & Durian 2023), whose value is obtained as
described below. Equation (3.9) approximates the bubble’s total film length L, and we use
P ≈ 2πR (Kraynik et al. 2012) therein. Hence, we obtain an approximate border-blocking
bubble growth law

ȦBB ≈ 4πγ∞DH
h0

(
R
R0

− 1
)

Π̄ R̄ + n θ/π

1 + (2Π̄ + 1)R̄
, (3.17)

where the foam’s critical bubble radius R0 is determined by the condition 〈ȦBB〉 = 0
mentioned above (Lemlich 1978; Pasquet et al. 2023b). We assume θ � 10◦ in (3.8)
and (3.9), and hence also in (3.17). This gives the growth rate solely in terms of the
bubble radius and foam properties, notwithstanding the aforementioned need to relate n
to R, and thus is a (two-dimensional) generalisation of the Lemlich (1978) approach to
allow for a variation in relative film length with bubble size. Recalling figure 14, smaller
bubbles have shorter films relative to their size, and thus experience a larger degree
of border blocking (Bolton & Weaire 1991). While (3.17) does not accurately give the
growth rates of individual bubbles, as shown in figure 23, it may be fruitful to analyse
the size distributions it predicts in the coarsening scaling state (Lemlich 1978; De Smet,
Deriemaeker & Finsy 1997; Yarranton & Masliyah 1997), particularly whether it can
reproduce the large population of small bubbles observed recently by Galvani et al. (2023)
through the enhanced border blocking of such bubbles.
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Figure 23. Border-blocking growth rates versus effective radius in a 1024-bubble foam with repulsive ΠD. The
liquid fraction is (a) φ = 2 % and (b) φ = 10 %. Comparison is made with (3.17), where R0 is fitted as stated
in the text, and ΠO is as measured in the simulations. The simulated growth rates are scaled by the average
film thickness 〈hf 〉 for each bubble, as described in § 3.3.2, and h0 is replaced by 〈hf 〉 in (3.17), to improve
agreement for small bubbles.

In proposing (3.17), we follow the suggestion of Pasquet et al. (2023b) to investigate
growth laws which generalise the Lemlich (1978) approach by accounting for correlations
between bubble pressures and film lengths. A three-dimensional growth law of a different
form, derived by considering gas flow through the bulk liquid (rather than the films), but
which also incorporates correlations between pressure and efficiency of diffusion, was
studied numerically by Yarranton & Masliyah (1997). Another three-dimensional growth
law, again of a form different to (3.17), was studied by De Smet et al. (1997).

4. Conclusions

We have described simulations for studying coarsening in two-dimensional wet aqueous
foams, with a structural model based upon the work of Kähärä et al. (2014) and Boromand
et al. (2018), and a coarsening approximation inspired by the analytical work of Marchalot
et al. (2008) and Schimming & Durian (2017). Our methods allow for arbitrary liquid
fractions φ, and support contact angles θ up to approximately 10◦. The interfaces interact
through a model disjoining pressure, although our selected form could be swapped for
another.

We have applied this model to polydisperse foams, containing 256 or 1024 bubbles. The
liquid fraction φ has been varied by gradually increasing its value within particular foam
samples, following the approach of Bolton & Weaire (1990) and Cox et al. (2018), but
using a different structural model. We have analysed the coarsening-related properties of
these foams. For the considered range of contact angles θ � 10◦, the bubble pressures p
were found to obey an effective Young–Laplace law relating them to the osmotic pressure
ΠO, and we derived an approximation for the bubble film lengths L. When the averaged
film length is estimated from the latter result, it takes an equivalent form to a previously
proposed approximation in three dimensions for θ = 0 (Höhler et al. 2021; Pasquet et al.
2023b), and also agrees well with our simulations.

Turning to the coarsening-induced bubble growth rates, we showed that their
root-mean-square values decrease to a plateau with increasing φ in foams with attractive
bubble interactions, due to the previously simulated (Cox et al. 2018) flocculation of
bubbles. The effective neighbour number neff of Fortuna et al. (2012) was found to be
closely related to the growth rate (determining whether bubbles grow or shrink to a good
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approximation) whenever bubbles had films between them, caused by either the osmotic
pressure or flocculation.

We also compared our simulations of gas flow through Plateau borders with existing
predictions (Schimming & Durian 2017). Qualitative agreement was found for bubbles at
small φ, along with quantitative agreement at the unjamming transition for zero bubble
attraction. An underestimate of the border gas flow rates at small φ is believed to arise
partly from ambiguity in the film lengths due to our finite film thickness. Approximations
made in our coarsening model and in the predictions of Schimming & Durian (2017) also
contribute.

Our simulations remain computationally expensive, and so we have not considered
the time-dependence of foams under coarsening here. However, it may be possible to
obtain the time scale over which coarsening occurs in small systems, and to observe its
relationship to the root-mean-square growth rates we considered. Such time scales have
been investigated by Khakalo et al. (2018), without bubble attraction.

The approach we use seems most suited to accurately simulating foams on a small
scale (with around 1000 bubbles), in order to develop models of their properties. These
could then be implemented in large-scale coarsening simulations using the bubble model
(Durian 1995), for example. The analytical approximations we have presented here may
be a starting point for this process, recalling that our expressions for the bubble pressures
and film lengths can be combined to give an approximate growth law. As noted above,
the properties of the resulting scaling states could be analysed (Lemlich 1978; De Smet
et al. 1997; Yarranton & Masliyah 1997), which may contribute to the interpretation of
experiments of coarsening in wet foams performed in microgravity (Born et al. 2021;
Galvani et al. 2023; Pasquet et al. 2023b).

As noted in § 2.1.5, the implementation of our simulation model could be improved,
including the equilibration algorithm, which may result in larger foams becoming feasible
to simulate. The coarsening approximation could also be tested against accurate solutions
of Laplace’s equation within the foam’s liquid, partly to gauge the importance of
long-range gas transfer (R. Höhler, personal communication) for which the approximation
is expected to be poor. The equilibrium film thickness h0 could be varied to determine
its effect on our results, along with our small derivative of the disjoining pressure at h0.
These changes to the disjoining pressure could be investigated using smaller systems at
higher mesh refinement, to improve convergence. An alternative interface extrapolation or
interpolation might also resolve the imbalance in film thickness noted in Appendix C. We
expect our large h0 to have increased the proportion of gas transfer through Plateau borders
(Schimming & Durian 2017).

Our analytical approximations could be extended by investigating the relationship
between bubble radius and neighbour number (Durand et al. 2011), and between the
osmotic pressure and the mean neighbour number. By using an independent empirical
expression for the osmotic pressure, similar to those described by Höhler et al. (2021),
these approximations could be made fully predictive. Finally, as noted by Pasquet et al.
(2023b), coarsening in flocculated foams and emulsions at large φ has not been widely
studied. We note that the structure of flocculated systems differs greatly as the contact
angle is varied (Bibette et al. 1993).

Another extension is to perform similar studies of three-dimensional wet foams (albeit
for fewer bubbles). We have adapted the simulation model to this case, noting that the
approach of Boromand et al. (2018) has been similarly adapted by Wang et al. (2021).
A comparable three-dimensional approach for biological cells was also used by Van
Liedekerke et al. (2020). Such models have not yet been applied to the simulation of foams,

999 A10-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

75
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.756


J. Morgan and S. Cox

to our knowledge, although simulations with zero film thickness have been performed by
A. M. Kraynik (personal communication).
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Appendix A. Analytical model for film lengths

We now derive the approximation for a bubble’s film length L used in § 3.2.2, assuming
mechanical equilibrium (as holds in our simulations). The approach was inspired by
Höhler et al. (2021), and is based upon a standard equilibrium result relating the stress
tensor τ̄ , averaged in the manner of Batchelor (1970) over a domain S of area A as in
(3.5), to the force per unit length f that the domain’s surroundings apply to its boundary
Γ (Landau et al. 1986, pp. 6–7):

τ̄ij = 1
2A

∮
Γ

dl( firj + fjri), (A1)

where r is the displacement of a point on Γ from an arbitrary fixed origin. Let S be the
domain of a bubble of effective radius R and pressure p, including its interface (which
is then equivalent to Γ ). Our definition of the bubble’s reduced pressure p̄ = −1

2 Tr τ̄
(§ 3.2.1) then gives

p̄ = − 1
2πR2

∮
Γ

dl f · r. (A2)

This relates the reduced pressure to the forces applied to the bubble’s interface. Let n
be the outward unit normal to Γ , and ΠD the corresponding disjoining pressure. Then
f = −ΠDn since we set the liquid pressure to zero (§ 2.1.1). Let us take the limit of small
film thickness h0. Therefore, where Γ adjoins Plateau borders, f = 0. On the interface
of a film shared with a bubble of pressure pi, we have ΠD = ( p + pi)/2 (Exerowa &
Kruglyakov 1998, p. 90). Under a mean-field approximation (Lemlich 1978), let pi be the
foam’s capillary pressure ΠC. This is given in turn by (3.4) (Höhler et al. 2021), again
dropping the factor 1/(1 − φ). We also use (3.8) for p. Thus, adjoining the film interfaces,

ΠD ≈ γ∞
2R

[
1 + (2Π̄ + 1)R̄

]
, (A3)

where γ∞ is the isolated interface tension from § 2.1.2, Π̄ = ΠO/(γ∞/R21) (Princen 1988)
with ΠO the foam’s osmotic pressure and R21 ≡ 〈R2〉/〈R〉 (Cantat et al. 2013, p. 251), and
R̄ = R/R21.

At the points of Γ where the films and Plateau borders meet, a transversal line tension
acts to maintain equilibrium for contact angle θ > 0 (Kralchevsky & Ivanov 1985a). This
is exerted by the medium-range attraction in ΠD (see figure 3). We model this interaction
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as a singular contribution to f , i.e. as forces F = γ∞n sin θ ≈ γ∞θn (Kralchevsky &
Ivanov 1985a) applied at the film-border transition points (again using sin θ ≈ θ as we
consider θ � 10◦).

Substituting the above expressions for f = −ΠDn into (A2), and making the rough
approximation r ≈ Rn (i.e. that the bubble is circular), we obtain

p̄ ≈ γ∞
2πR

{[
1 + (2Π̄ + 1)R̄

] L
2R

− 2nθ

}
, (A4)

where L is the bubble’s total film length, and n is its number of neighbours. Finally, we
approximate p̄ by the osmotic pressure ΠO, as discussed in § 3.2.1. Rearranging (A4), and
using that the perimeter P ≈ 2πR (Kraynik et al. 2012), then gives our approximation for
the bubble’s film length L, (3.9).

Appendix B. Measurement of foam and bubble properties

We describe here our methods for measuring various properties of the simulated foams
and bubbles. In Appendix B.1, we define the averaged stress of the foam in terms of
the discretisation, before giving our approaches for measuring the radius of curvature
(Appendix B.2), length and contact angle (Appendix B.3) of a thin film between two
bubbles.

B.1. Foam stress
For the purposes of stress relaxation (§ 2.3) and calculating the foam’s osmotic pressure
ΠO, we use the spatial average of the foam’s stress tensor τ̄F, defined in (3.1) (Batchelor
1970; Cantat et al. 2013, pp. 175–177). We discretise the integral according to the
simulation mesh. Let AF be the foam’s area (i.e. the area of the periodic domain), and
let the nth mesh edge have length ln and unit tangent vector tn = (tn1, tn2). We take the
surface tension γn on this edge to be the mean of that at its two vertices, obtained from
(2.3). Let the kth bubble have area Ak and pressure pk (the latter obtained as a Lagrange
multiplier, by § 2.1.5). Then we evaluate the components of the stress from

(τ̄F)ij = 1
AF

⎛
⎝∑

edge n

γntnitnjln −
∑

bubble k

pkAkδij

⎞
⎠ , (B1)

where δij is the Kronecker delta. The deviatoric stress obtained from this equation is also
used to relax the stress of our initial dry foams (§ 2.3), for which each edge corresponds to
a film and γn = 2γ∞.

B.2. Film radius of curvature
Consider a thin film between bubbles labelled A and B, with gas pressures pA and pB,
respectively. Let the radius of curvature of the respective liquid–gas interface of the film
be rA or rB. The radius is positive if the respective interface is convex relative to the
adjoining bubble. Let, respectively, the surface tensions of the interfaces be γA and γB,
calculated from (2.3), and let their disjoining pressures be ΠA and ΠB, obtained from
(2.5) or (2.6). We measure the interface properties by averaging over the middle third of
vertices experiencing positive disjoining pressure inside the film. At least one vertex is
used, and often no more for the interfaces of short films. By averaging over the central
part of the film only, we aim to reduce the effects of the transition regions at its ends.
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The film thickness is larger in these regions, and so the interface tension and disjoining
pressure differ from their values in the interior of the film. The augmented Young–Laplace
equation gives (Kralchevsky & Ivanov 1985b; Denkov et al. 1995)

pA = γA/rA + ΠA, (B2)

and likewise for the B interface. Rearranging (B2) for the interface curvature radius, we
measure the radius of curvature r of the simulated film itself as 1/r = (1/rA − 1/rB)/2,
i.e. using the mean of the two interface curvatures, taken to be positive if the interface is
convex with respect to bubble A. The negative sign arises since rB is defined as positive if
the corresponding interface is convex with respect to bubble B, in which case it is concave
with respect to A. When determining the properties of bubble A, such as neff (§ 3.3.2),
we correct for the film thickness by subtracting half the measured interface separation hA
from r (we expect this correction to be small). We measure hA according to § 2.1.4, and
average it in the same manner as γA and ΠA.

B.3. Film length and contact angle
The length of the thin film between any contacting bubbles A and B (adopting the notation
of Appendix B.2) is defined as follows, using a similar construction to that applied by
Denkov et al. (1995) when a transition region exists between films and Plateau borders,
as in our simulations. More precisely, we quantify the length l of liquid–gas interface on
bubble A which adjoins the film. The same construction is used to measure the contact
angle θm.

First, a vertex is found which lies in the middle third of the collection of vertices on the
interface of bubble A which experience positive disjoining pressure ΠD from bubble B,
i.e. a vertex which lies towards the middle of the considered film. The position of this film
vertex and its outward unit normal relative to bubble A (taken as the mean outward normal
of the adjoining edges) are noted. Using these, along with the film radius of curvature r
from Appendix B.2 (incorporating the film thickness correction), a circular arc of radius
|r| is found which passes through the vertex’s position and has the same normal vector
there (outward from the corresponding circle if r > 0, otherwise oriented inward). This
arc is taken to describe the film interface.

The interface of bubble A is then traversed in both directions from the film vertex to
find vertices located near the middle of the Plateau-border interfaces adjoining the film.
The border vertices selected are those at the first local maximum of interface separation
h (§ 2.1.4) encountered outside the film (i.e. for which ΠD ≤ 0) in the two directions.
Arcs are constructed in the above manner, now with radius rPB = γ∞/pA > 0 by the
Young–Laplace law.

The construction described above is illustrated in figure 24 for repulsive ΠD and θ =
10◦. If, as in the latter case, the border arcs intersect with the film arc, the film-interface
length l is taken as the length of the film arc between the outer intersections with the
border arcs. The contact angle θm is also directly obtained as the angles at which these
intersections occur. When defining θm for a film, we use the mean of the angles measured
at both outer intersections.

If the arcs do not intersect, as in figure 24(b) for repulsive ΠD, then we take l to be the
arclength between points on the film arc which are closest to the border arcs. The contact
angle θm is then undefined. This is as expected for repulsive ΠD, but an intersection can be
absent for individual films when the set contact angle is θ ≥ 0, due, for example, to film
thickness variations or interface discretisation. Since the set angles θ � 10◦ are small, we
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Film vertex

Plateau border arc

Plateau border vertex

l

Film arc

θm

(b)

(a)

Figure 24. Diagram of the construction used to measure film-interface length l and contact angle θm, for the
bubble at the upper left-hand side. Arcs describing the film and Plateau border interfaces are shown, along
with the vertices used to position these arcs. In (a), the set contact angle is θ = 10◦. The inset (b) illustrates the
film-border transition region when the film and border arcs do not intersect, for repulsive ΠD.

expect fluctuations in θm due to the mesh to be fairly large for individual films. We take
θm = 0 in the absence of an intersection.

The length l and angle θm can be derived straightforwardly from the above definitions.
We omit the equations for brevity, but note that care is needed in treating short films at
large θ , where the border arcs may overlap to the extent that the ordering of their centres
of curvature, relative to the film, is reversed compared with that of the corresponding
Plateau borders.

A bubble’s total film length L is given by the sum of l over each of its films.

Appendix C. The Young–Laplace law in the simulated foams

We describe here a validation of the relaxed foam structure predicted by our simulations.
Similarly to Kähärä et al. (2014), we verify that the Young–Laplace law holds for the
liquid–gas interfaces, although we focus on those adjoining the thin liquid films between
bubbles. Since such interfaces experience a considerable disjoining pressure ΠD from the
other film interface, they satisfy the augmented Young–Laplace equation, i.e. (B2).

Consider the thin film discussed in Appendix B.2. Let the curvature of the liquid–gas
interfaces of the film be χA = 1/rA and χB = 1/rB. Then taking the difference of
the augmented Young–Laplace equation as applied to both interfaces gives a pressure
difference

�p = pA − pB = χAγA − χBγB + ΠA − ΠB, (C1)

for this film. We suppose that the bubbles are labelled so bubble A has the higher pressure.
In figure 25, we compare this prediction of �p with that measured directly from a
simulation at liquid fraction φ = 2 % and contact angle θ = 10◦, for which we expect
convergence of the foam structure to be hardest to achieve. We define a film as existing
between a pair of bubbles whenever both have vertices experiencing positive ΠD from the
other bubble. The interface properties, such as the surface tensions γA and γB, are obtained
by the same averaging as described in Appendix B.2. However, the curvature at a vertex is
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Figure 25. Comparison of measured and predicted pressure differences, denoted �pm and �pp, respectively,
for every film in a 256-bubble foam at 2 % liquid fraction and 10◦ contact angle. Convergence parameters are as
in § 3. Predictions are taken from the augmented Young–Laplace equations for the film interfaces and from the
film Young–Laplace equation, i.e. (C1) and (C2), respectively. We take �pm > 0 for each film, and scale the
pressure differences by the capillary pressure ΠC. The inset magnifies the data for small pressure differences –
approximately 70 % of the films lie within its frame. The black line has unit gradient.

instead obtained from the Surface Evolver mean_curvature attribute (Brakke 2013), i.e. in
magnitude, the maximum relative rate of change in total adjoining edge length as the vertex
is moved. The curvature used here therefore differs from that defined in Appendix B.2, to
make it independent of the simulated bubble pressures.

We see close agreement between the predictions of the augmented Young–Laplace
equation for the film pressure differences, and those measured in the simulation. This
suggests that the methods we use do provide equilibrated foams. The root-mean-square
error between the predicted and measured pressure differences, divided by the mean
measured pressure difference, is 1.8 %.

One further mesh refinement than we use in § 3 is required to obtain similar agreement
with the Young–Laplace law applied to each film treated as a single interface, i.e.

�p = γf χf , (C2)

where γf is the film’s tension and χf is its curvature. We take χf = (χA − χB)/2 as in
Appendix B.2, and (Cantat et al. 2013, p. 49)

γf = γA + γB + (hAΠA + hBΠB)/2, (C3)

where hA and hB are the local interface separations (§ 2.1.4) averaged in the same way
(stated in Appendix B.2) as the other properties of interfaces A and B, respectively. We
recall, from the same appendix, that γA and γB are the tensions of the film’s two liquid–gas
interfaces, given by (2.3). The other term in (C3) accounts for the effect on the film tension
γf of the finite-thickness layer of liquid in the film, which has lower pressure than the gas
on either side (Platikanov & Exerowa 2019). We have averaged between the two sides of
the film to reduce discretisation effects.

The predictions of (C2) are also plotted in figure 25 for our level of mesh refinement.
We attribute the systematic deviation to an imbalance in the disjoining pressures ΠA and
ΠB of (C1), arising from coarseness in the mesh – the sketch in figure 26 shows that the
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Vertex

Bubble B

Edge

Bubble A
Liquid

hB

hA

Figure 26. Sketch of a discretised thin film between two bubbles, where hA is a typical local interface
separation for a vertex of bubble A, obtained according to § 2.1.4, and hB is a typical separation for a vertex
of bubble B. We exaggerate the curvature of the film relative to the edge length for clarity. The vertices are
staggered for the same reason.

vertices of the higher-pressure bubble (A) have smaller interface separation than those
of the lower-pressure bubble (B), so ΠA > ΠB (see figure 3). This imbalance does not
necessarily occur if the vertices are exactly lined up (which is a special case), due to an
approximation in our interface extrapolation described in § 2.1.4 (see figure 6). Outliers in
figure 25 are believed to be caused by very short films. The relative error, defined above,
with these predicted pressure differences is 27 % at our refinement, and 7.3 % in the same
foam at one further refinement.

The results are similar for repulsive ΠD, though agreement with (C2) is better. There is
reduced scatter, and the systematic deviation is decreased, interpreted as due to the smaller
derivative of ΠD at h0 in this case (see figure 3). Recalling the discussion in § 2.1.2, this is
another reason to avoid a rapidly varying ΠD(h), and the imbalance between ΠA and ΠB
might cause the convergence problems in such a case. The relative error at our refinement
for repulsive ΠD is 17 %, and that at one further refinement is 3.0 %, for the same foam.
Agreement with (C2) improves at higher φ for both θ = 10◦ and repulsive ΠD.

We do not find it practical to use a higher refinement than that chosen for § 3 except
in test systems, due to the computation time required. The results here suggest that this
refinement is sufficient for the augmented Young–Laplace equation to be well satisfied, in
addition to providing evidence that our numerical methods provide relaxed foams. While
agreement with the film Young–Laplace equation, formulated as in (C2), is poorer, its
improvement with refinement suggests that our simulations approach the correct limit.
Finally, we note that convergence of the results in § 3 has been checked with respect to
refinement, indicating that they do not exhibit the sensitivity of (C2).
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