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Abstract
With the excellent characteristic of intrinsic compliance, pneumatic artificial muscle can improve the interaction
comfort of wearable robotic devices. This paper resolves the safety tracking control problem of a pneumatically
actuated lower limb exoskeleton system. A single-parameter adaptive fuzzy control strategy is proposed with high
control precision and full state constraints for the safe gait training tasks. Based on the barrier Lyapunov function,
all signals in the closed-loop system can be bounded in finite time, which guarantees the deviation of the exoskele-
ton’s moving trajectory within a bounded range. Furthermore, with the proposed single-parameter adaptive law, the
computational burden and the complexity of the control are reduced significantly. Finally, numerical simulations,
no-load tracking experiments, and passive and active gait training experiments with healthy subjects validate the
effectiveness of the proposed method.

1. Introduction
The pneumatic artificial muscle (PAM) has been extensively investigated in the application of rehabil-
itation robotics for its unique characteristics of high power-to-weight ratio and intrinsically compliant
movement in human-robot interaction tasks [1]. Numerical research on PAM-driven exoskeletons has
emerged in the past several years. Ferris et al. designed a pneumatically actuated ankle-foot orthosis
for the assistance of ankle flexion [2]. He et al. proposed a pneumatic upper limb rehabilitation robot
with four degrees of freedom (DOF), and each DOF is powered by the antagonistic PAMs [3]. Recently,
Cao et al. designed a lower limb exoskeleton with the antagonistic PAMs actuating both the hip and
knee joints to assist passive gait training tasks and proposed a single-layer learning control strategy
to achieve high precision tracking control [4, 5]. Since the PAM only provides unidirectional actuation
force, antagonistic configurations are commonly utilized in the existing PAM-driven exoskeleton design.
Furthermore, in most previous research, the PAM actuators are positioned parallel to the human limb to
drive the joint rotation, which increases the weight of these pneumatic exoskeletons and also makes the
high precision control a challenging task. In this paper, a pneumatically actuated lower limb exoskeleton
is newly designed. The actuation force of the PAM is transmitted through the Bowden cable to separate
the PAM actuator module from the wearable exoskeleton module. With an elastic spring installed at
the exoskeleton generating antagonistic directional tension, the exoskeleton can drive the movement of
a hip joint with only one PAM. The proposed exoskeleton design significantly reduces the weight of
the wearable parts of the exoskeleton system while maintaining the advantage of the PAM’s intrinsic
compliance.
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Despite the advantages mentioned above, the PAM actuator possesses highly nonlinear dynamics
with hysteresis and time-varying model parameters, which makes the control of PAM-driven systems
a challenging problem. Various control strategies have been investigated to achieve satisfactory control
performances in the past two decades, such as PID-based control [6, 7], proxy-based sliding mode control
[8], fuzzy control [9], and neural network-based control [10]. In ref. [11], Cao et al. proposed a predictive
control strategy based on the echo state network and successfully reduced the relative error to 3.0%. In
ref. [12], Zhu et al. proposed an adaptive control strategy to tackle the high-frequency motion control
problem of the PAM and achieved a 10% relative error at 2 Hz motion frequency. With the techniques
of the neural network, robust control, adaptive control, etc., the high tracking control precision of PAM-
driven systems has been achieved.

However, it is worth noting that few studies have paid attention to the safety of such PAM-driven
systems theoretically. During the last decade, researchers have considered introducing the modeling
and control of the PAM’s compliance into the trajectory tracking control to enhance the mechanism
safety of PAM-driven systems. In ref. [13], a sliding mode control was proposed to track the desired
trajectory and simultaneously vary the average pressure of the antagonistic PAMs. The compliance of
the mechanism can be adjusted by varying the average pressure inside the PAMs. In ref. [14], Cao et al.
proposed a multi-input-multi-output sliding mode controller to simultaneously control angular trajectory
and compliance of a pneumatically actuated knee joint rehabilitation exoskeleton. In ref. [15], Choi et al.
proposed a control strategy for a pneumatic manipulator to control the joint compliance and associated
positions independently, which enhanced human safety during collisions. These studies could achieve
accurate control of the position and compliance of the PAM-driven exoskeleton, laying the foundation
for further assist-as-needed training. However, as pointed out in ref. [14], what kind of compliance or
average pressure can ensure the exoskeleton is safe is unknown, and no reference compliance or average
pressure could be provided.

Actually, only the desired trajectory is known as the ideal signal in the exoskeleton control. Therefore,
constraining the states of the exoskeleton system to keep the tracking trajectories within a predefined
range is a possible way to theoretically achieve the safety control of the exoskeleton system. If the track-
ing error e between the actual movement trajectory of the exoskeleton and the desired trajectory can
be ensured within a prescribed range, the overshoot of the actual trajectory can be limited, and thus,
the safety of the exoskeleton system can be guaranteed. If the derivative of the tracking error ė can be
restricted to a specified range, then the oscillations of the exoskeleton can be limited to a certain extent,
thus improving the safety of the exoskeleton system. In ref. [16], Li et al. proposed an adaptive finite time
control strategy for the nonlinear strict-feedback system with full state constrained and dead-zone. In ref.
[17], He et al. proposed an adaptive neural network control strategy based on the barrier Lyapunov func-
tion and successfully prevented the violation of the full state constraints in the control of the uncertain
n-link robot. In the past several years, the barrier Lyapunov function has emerged as a powerful method
to constrain the system states theoretically. Nevertheless, adaptive control based on fuzzy systems or
neural networks, which are essential parts of these methods, usually requires updating the full weights
of the neural network or the full consequent parameters of the fuzzy system. When the neurons or fuzzy
rules are increased, the adaptive parameters are also increased, which inevitably increases the complex-
ity of the algorithm. Therefore, this paper proposes a novel single-parameter adaptive fuzzy control
(SAFC) strategy based on the barrier Lyapunov function and investigates the safe control of the PAM-
driven lower limb exoskeleton. With the proposed SAFC method, the exoskeleton system states could
be constrained in the predefined ranges so that the exoskeleton’s movement would not largely deviate
from the desired trajectory, and thus, the safe control of the exoskeleton can be achieved. Furthermore,
in the proposed SAFC, a novel single-parameter adaptive law is proposed in the fuzzy system design,
which can effectively reduce the complexity of the control design. Numerical simulations and practical
experiments with no-load validate that the proposed SAFC method can effectively achieve the tracking
control of the designed pneumatic lower limb exoskeleton. In the control process, all the signals of the
exoskeleton system are guaranteed to be bounded in a predefined range, which ensures the safety of the
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Figure 1. The mechanical design of the lower limb exoskeleton.

exoskeleton’s movement. In addition, both passive and active gait training experiments are conducted
to verify the feasibility of the proposed exoskeleton system in rehabilitation.

In summary, the contributions of this paper can be concluded as follows:

(1) A lightweight pneumatically actuated lower limb exoskeleton with a Bowden cable transmitting
the actuation force is newly designed.

(2) For the safety tracking control of the exoskeleton system, a novel SAFC method considering
full state constraints is proposed. With only one single adaptation parameter, the algorithm
complexity of the controller design is significantly reduced.

(3) Based on the barrier Lyapunov function, the stability of the closed-loop system is theoreti-
cally guaranteed. Numerical simulations and practical gait training experiments validate the
effectiveness of the proposed SAFC method and the feasibility of the exoskeleton system.

The rest of this paper is organized as follows. The development of the lower limb exoskeleton and the
dynamic modeling are presented in Section 2. The controller design is given in Section 3. In Sections 4
and 5, numerical simulations and experimental results are provided. Section 6 draws the conclusions.

2. Development of the lower limb exoskeleton system
A pneumatically actuated lower limb exoskeleton assisting the movement of the hip joint is proposed
in this paper. By separating the actuating part from the exoskeleton, the weight of the entire wearable
exoskeleton is reduced to about 5 kg. Using the PAMs as actuators and Bowden cables to transmit the
driving force, the exoskeleton weight is reduced while the compliance of the movement is ensured. In
this section, the mechanical design of the exoskeleton is described in detail. Then, the dynamic model
of the exoskeleton is extracted.

2.1. Mechanical design
The mechanical design of the proposed 1-DOF hip exoskeleton is represented in Fig. 1. The main compo-
nents of the exoskeleton include the Bowden cable, the elastic spring, the thigh linkage, the thigh support
part, the torso support part, the sliding block, the angle sensor, and the force sensor. The pulling force
FP generated by the PAMs is transmitted through the Bowden cable to drive the thigh linkage to rotate
counterclockwise, and the force FT generated by the spring actuates the linkage to rotate clockwise. The
Bowden cable transmission allows remote placement of the PAM actuators so as to minimize gravita-
tional and inertial loading on the user. The sliding block connected with the torso support component
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(a) (b)

Figure 2. The side view of the exoskeleton.

and the thigh support components can be adjusted to match the height of the subject before the exoskele-
ton is put on, which enables the rotation axis of the robot to be aligned with the axis of the human hip
joint. Furthermore, there is a sliding block at the back of the torso support component so that the width
of the exoskeleton can be adjusted to match the width of the subject’s trunk.

The side view of the exoskeleton is represented in Fig. 2. When the exoskeleton is at the flexion state
shown in Fig. 2(a), the elastic spring is at the original length, and the thigh linkage is at the end of the
swing phase. When the exoskeleton is at the extension state shown in Fig. 2(b), the thigh linkage is at
the beginning of the swing phase and also the ending of the standing phase.

When the pneumatic actuating part acts on the thigh linkage through the Bowden cable, the thigh link-
age of the exoskeleton rotates counterclockwise, and the spring is stretched to store the elastic potential
energy. When the pneumatic muscle is deflated, the force in the Bowden cable is released. Thus, the
spring releases its elastic potential energy to actuate the thigh linkage rotates clockwise and returns to
the initial position.

2.2. Control architecture
As represented in Fig. 3, an xPC control system is constructed in this paper to realize the real-time control
of the proposed lower limb exoskeleton. The control architecture consists of the following three parts:
(1) the compressed air part (yellow); (2) the driving force part (green); (3) the circuit part (blue). In the
compressed air part, the air compressor (Fusheng, SA08+) provides the compressed air to the propor-
tional valve (Festo, VPPM-6L-L-1-G18-0L10H-V1N), and the proportional valve gives the compressed
air with the desired air pressure to the PAMs (Festo, DMSP-40-600N-RM-RM). The air pressure of the
valve is proportional to the control signal. In the driving force part, the PAMs actuated by the compressed
air generate a pulling force transmitted by the Bowden cable to actuate the exoskeleton hip joints’ move-
ment. In the control circuit part, the control strategy is programmed in the host PC with the Simulink
module of Matalb2013b, and the xPC target (Advantech, IPC-610L) downloads the control strategy in
the form of machine codes from the host PC. Then, the xPC target equipped with the data acquisition
card (NI, PCI-6229) receives the real-time data of the angle sensors (Rep-avago,18S-1024-2MD-2-15-
00E) and calculates the control signal. The control signal is then sent to the proportional valve, and
the inside air pressure of the PAMs can be controlled. Thus, the real-time control of the exoskeleton’s
movement is realized.

2.3. Dynamic model
To facilitate the dynamic analysis, we construct the schematic diagram of the exoskeleton represented
in Fig. 4. The motion of the thigh linkage is equated as a rigid, uniformly distributed mass connecting
linkage BC rotating around the fixed axis O.
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valve

Figure 3. The real-time control architecture of the lower limb exoskeleton system.

Figure 4. The schematic diagram of the exoskeleton dynamics.

The black dotted line segments AB, BC, and DE represent the positions of the elastic spring, the thigh
rod, and the Bowden cable at the initial flexion state, respectively. The point O is the axis of rotation of
the thigh linkage. lT denotes the length of OB, and m represents the mass of the whole thigh linkage. The
dotted line OZ denotes the reference line perpendicular to the ground. θ0 denotes the angle between the
thigh linkage and OZ at the initial state, and θ indicates the rotation angle of the thigh linkage relative
to the initial state. According to Lagrange’s theorem, the dynamics of this single-link model can be
expressed as:

τhip = mθ̈ (lP + lT)2 + Iθ̈ + �G, (1)

where the first term is related to the linear velocity, the second term is associated with the angular
velocity, and the third term is related to the gravitational potential energy. The effect of friction on the
joint motion would be regarded as modeling uncertainties later.

The mass of a unit length of the linkage can be expressed as:

λ = m

lP + lT

. (2)
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The moment of inertia I can be expressed as:

I =
∫ lT

−lP

λx2dx

= m

3(lP + lT)
(l3

P + l3
T)

(3)

The gravitational potential energy term �G can be expressed as:

�G = [ cos θ0 − cos (θ − θ0)]
mglP(lP − lT)

2(lP + lT)
, (4)

where mP and mT denote the mass of the OB part and the mass of the OC part with the axis O as the
dividing line. Thus, mP and mT can be expressed as:

mP = mlP

lP + lT

, (5)

mT = mlT

lP + lT

. (6)

The simplified single-link dynamic model of the exoskeleton can be expressed as:

τhip = mθ̈ (lP + lT)2 + mθ̈

3(lP + lT)
(l3

P + l3
T) + [ cos θ0 − cos (θ − θ0)]

mglP(lP − lT)

2(lP + lT)
. (7)

The moments produced by the Bowden cable pulling force and the elastic spring force on the joint are
analyzed below. AB’, B’C’, and DE’ represent the current positions of the elastic spring, the exoskele-
ton thigh rod, and the Bowden cable when the PAMs are inflated and the Bowden cable actuates the
exoskeleton to rotate at an angle θ . FP and FT in the red part of the figure represent the force transmitted
by the Bowden cable and the force generated by the spring stretching, respectively. The red dashed lines
represent the force arm dT of the force FP and the force arm dP of the spring force FT , respectively. It
can be found that the force arm dT of the spring hardly changes during the rotation, so it is assumed that
the force arm dT of the spring is constant and dT = lT . The approximate length of the spring stretch is
expressed as:

�x = θ lT . (8)

Then, the moment generated by the force of the spring can be expressed as:

τT = �xkTdT

= θkTl2
T .

(9)

For the force arm dP of the Bowden cable, approximated here as OD = OE, the force arm of the
Bowden cable can be calculated as:

dP = lP

2
cos

(
θ1 − θ

2

)
, (10)

where θ1 is the angle between OC and OD at the initial state.
The tension in the Bowden cable FP can be obtained through the three-element PAM model which

has been extensively used in the previous research [18, 19]. Therefore, FP can be expressed as:

FP = F(P) − B(P)�ẋ − K(P)�x, (11)

where P is the internal air pressure of the PAM, B(P) denotes the damping coefficient, K(P) denotes the
elasticity coefficient, and the values of B(P) and K(P) are related to the states of the PAM. �x denotes
the displacement of the PAM, which is also the contraction length of the Bowden cable. Therefore, the
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relationship between �x and the rotation angle θ can be expressed as:

�x = lP

(
sin

θ1

2
− sin

θ1 − θ

2

)
, (12)

and:

�ẋ = 1

2
θ̇ cos

(θ1 − θ )

2
. (13)

Substituting (12) and (13) into (11), the pulling force in the Bowden cable can be expressed as:

FP = F(P) − B(P)
1

2
θ̇ cos

(θ1 − θ )

2
− K(P)lP

(
sin

θ1

2
− sin

θ1 − θ

2

)
. (14)

Therefore, the torque generated by the Bowden cable can be expressed as:

τP = FPdP

= lP

2
cos

(
θ1 − θ

2

) [
F(P) − B(P)

1

2
θ̇ cos

(θ1 − θ )

2
− K(P)lP

(
sin

θ1

2
− sin

θ1 − θ

2

)]
.

(15)

The total torque generated by the Bowden cable and the antagonistic elastic spring can be
expressed as:

τhip = τP − τT . (16)

Substituting (7), (9) and (15) into (16) yields:

Mẋ2 = H1(x1, x2) + H2(x1, x2)u, (17)

where

M =
(

4

3
l2
P + 4

3
l2
T + 5

3
lPlT

)
m, (18)

H1(x1, x2) = lP

2
cos

θ1 − x1

2

[
F0 − B0x2

2
cos

θ1 − x1

2
− K0lP

(
sin

θ1

2
− sin

θ1 − x1

2

)]

− mglP(lP − lT)

2(lP + lT)
[cos θ0 − cos (x1 − θ0)] − x1kTl2

T ,

(19)

H2(x1, x2) = lP

2
cos

θ1 − x1

2

[
F1 − B1

1

2
x2 cos

θ1 − x1

2
− K1lP

(
sin

θ1

2
− sin

θ1 − x1

2

)]
. (20)

In summary, the dynamic model of the exoskeleton can be expressed as follows:⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x2

ẋ2 = f (x̄) + g(x̄)u(t) + d(t)

y = x1,

(21)

g(x̄) = H1(x1, x2)/M, (22)

f (x̄) = H2(x1, x2)/M, (23)

where y denotes the output of the system, x1 and x2 are system states and x̄ = [x1, x2]T . Due to the different
sizes of the subjects, the human-robot interaction, and the errors of the system parameter identification,
there exist errors in the above constructed dynamic model, and d(t) denotes a lumped term including
the dynamic modeling uncertainties of the exoskeleton system and the external disturbances.
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3. Controller design
The target of the trajectory tracking control is to make the joints of the exoskeleton move with a desired
trajectory. The desired trajectory of the joint movement is obtained from the angle data of the hip joint
during normal human walking. If the tracking error is too large, that is, the exoskeleton moves at an
angle that exceeds the proper angle of movement of the hip joint for normal human walking, then there
is a risk of injury to the human joint. If the tracking error between the actual movement trajectory
of the exoskeleton and the desired trajectory can be ensured within a prescribed range, the safety of
the exoskeleton system can be guaranteed. Therefore, the target of the controller design is to make the
output of the system track the desired trajectory yr guarantee that all the states of exoskeleton system
(21) are constrained in predefined compact sets, that is, |xi| < kci, where kci (i = 1, 2) are predefined
positive constants in finite time. Furthermore, the lumped term d(t) is approximated and compensated
by a designed adaptive fuzzy system with only one adaptation parameter.

3.1. Preliminaries

Lemma 3.1. [20] For a continuous unknown function f (x) defined on a compact set �, there exists a
fuzzy system �T�(x) such that for any given constant ε > 0, the following inequality holds:

sup
x∈�

|f (x) − �T�(x)| ≤ ε. (24)

Lemma 3.2. [21] For zk ∈R, k = 1, 2, . . . , n, 0 < l < 1, the following inequality holds:(
n∑

k=1

|zk|
)l

≤
n∑

k=1

|zk|l ≤ n1−l

(
n∑

k=1

|zk|
)l

. (25)

Lemma 3.3. [22, 23] Considering the system ς̇ = f (ς , u), for smooth positive definite function V(ς ), if
there exist scalar c > 0, 0 < l < 1 and � > 0, such that:

V̇(ς ) ≤ −cVl(ς ) + �, t ≥ 0, (26)

the nonlinear system ς̇ = f (ς , u) is semi-global practical finite time stable (SGPFS).

3.2. The single-parameter adaptive fuzzy controller (SAFC) design
According to Lemma 3.1, the lumped term d(t) can be expressed in the form of a fuzzy system as follows:

d(t) = �∗T�(x̄) + ε, (27)

where ∗ means the ideal fuzzy consequence parameter value, x̄ denotes the vector containing the system
states, and ε is the approximation error.

The fuzzy system approximating the actual d(t) is expressed as:

d̂ = �̂T�(x̄), (28)

whereˆdenotes the approximate fuzzy consequence parameter value.
We define the single adaptation parameter as:

ω̂ = �̂T�̂. (29)

The approximate error can be expressed as:

d̃(t) = d(t) − d̂

= �∗T�(x̄) − �̂T�(x̄) + ε

= �̃T�(x̄) + ε.

(30)

The main results of the controller are summarized in the following theorem.
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Theorem 3.4. For the nonlinear system (21) with full state constraints, the lumped term d(t) can be
approximated and compensated by a fuzzy system with one adaptation parameter ω̂, all signals of the
close-loop system are SGPFS in a finite time with the following virtual control signal α1, controller u(t)
and adaptive law ˙̂ω:

α1 = ẏr − e2l−1
1

(k2
b1 − e2

1)l−1
− e1

2(k2
b1 − e2

1)
, (31)

u(t) = 1

g(x̄)
[ − f (x̄) + α̇1 − e2l−1

2

(k2
b2 − e2

2)l−1
− e2

2(k2
b2 − e2

2)
− ω̂�(x̄)T�(x̄)e2

2l2
1(k2

b2 − e2
2)

− e2

2
(k2

b2 − e2
2)], (32)

˙̂ω = γ [
�(x̄)T�(x̄)e2

2

2l2
1(k2

b2 − e2
2)2

− l2ω̂], (33)

where 0 < l < 1, l1 > 0, l2 > 0 are parameters to be designed, and kb1 > 0 and kb2 > 0 are constraints of
the errors e1 and e2.

Proof. We define the error terms as follows:

e1 = x1 − yr, (34)

e2 = x2 − α1, (35)

where α1 denotes the virtual control signal of x2.
Taking the derivative of e1 yields:

ė1 = x2 − ẏr. (36)

The first Lyapunov function with a barrier function disposing of the constraint of e1 is designed as:

V1 = 1

2
log

k2
b1

k2
b1 − e2

1

, (37)

where log denotes the nature logarithm function, kb1 > 0 denotes the constraint of e1.
Taking the derivative of V1 yields:

V̇1 = e1(ẏr − ẋ1)

k2
b1 − e2

1

= e1(ẏr − x2)

k2
b1 − e2

1

.

(38)

Substituting (35) into (38) yields:

V̇1 = e1(ẏr − e2 − α1)

k2
b1 − e2

1

. (39)

Substituting the virtual signal α1 into (39) yields:

V̇1 = e1e2

k2
b1 − e2

1

−
[

e2
1

k2
b1 − e2

1

]l

− e2
1

2(k2
b1 − e2

1)2
. (40)

According to Young’s inequality, we have:
e1e2

k2
b1 − e2

1

≤ e2
1

2(k2
b1 − e2

1)2
+ 1

2
e2

2. (41)

Substituting (41) into (40), we get:

V̇1 ≤ −
[

e2
1

k2
b1 − e2

1

]l

+ 1

2
e2

2. (42)
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It is obvious that log k2
b1

k2
b1−e2

1
≤ e2

1
k2

b1−e2
1

when |e1| < kb1, which proves that [ log k2
b1

k2
b1−e2

1
]l ≤ [ e2

1
k2

b1−e2
1
]l holds for

0 < l < 1. Then, we can obtain:

V̇1 ≤ −Vl
1 + 1

2
e2

2. (43)

We design another Lyapunov function as:

V2 = log
k2

b2

k2
b2 − e2

2

+ 1

2γ
ω̃Tω̃, (44)

where ω∗ = �∗T�∗, ω̃ = ω∗ − ω̂, γ > 0, and kb2 > 0 denotes the constraint of e2.
Taking the derivative of V2 and substituting ẋ2 into the result yield:

V̇2 = e2ė2

k2
b2 − e2

2

− 1

γ
ω̃ ˙̂ω

= e2(ẋ2 − α̇1)

k2
b2 − e2

2

− 1

γ
ω̃ ˙̂ω

= e2(f (x̄) + g(x̄)u(t) + d(t) − α̇1)

k2
b2 − e2

2

− 1

γ
ω̃ ˙̂ω.

(45)

Substituting the control signal (32) and (27) into (45) yields:

V̇2 = e2

k2
b2 − e2

2

{
f (x̄) +

[
− f (x̄) + α̇1 + −e2l−1

2

(k2
b2 − e2

2)l−1
− e2

2(k2
b2 − e2

2)
− ω̂�(x̄)T�(x̄)e2

2l2
1(k2

b2 − e2
2)

− e2

2
(k2

b2 − e2
2)

]
+ �∗T�(x̄) + ε − α̇1)

}
− 1

γ
ω̃ ˙̂ω

= e2

k2
b2 − e2

2

{
−e2l−1

2

(k2
b2 − e2

2)l−1
− e2

2(k2
b2 − e2

2)
− ω̂�(x̄)T�(x̄)e2

2l2
1(k2

b2 − e2
2)

− e2

2
(k2

b2 − e2
2) + �∗T�(x̄)

+ ε

}
− 1

γ
ω̃ ˙̂ω

= −
[

e2
2

k2
b2 − e2

2

]l

− e2
2

2(k2
b2 − e2

2)2
− ω̂�(x̄)T�(x̄)e2

2

2l2
1(k2

b2 − e2
2)2

− e2
2

2
+ e2�

∗T�(x̄) + e2ε

k2
b2 − e2

2

− 1

γ
ω̃ ˙̂ω.

(46)

With Young’s inequality, we have:

e2�
∗T�(x̄)

k2
b2 − e2

2

≤ ω∗�(x̄)T�(x̄)e2
2

2l2
1(k2

b2 − e2
2)2

+ l2
1

2
, (47)

e2ε

k2
b2 − e2

2

≤ e2
2

2(k2
b2 − e2

2)2
+ ε2

2
. (48)

Then, we can obtain:

V̇2 ≤ −
[

e2
2

k2
b2 − e2

2

]l

+ ω̃�(x̄)T�(x̄)e2
2

2l2
1(k2

b2 − e2
2)2

+ l2
1

2
+ ε2

2
− e2

2

2
− 1

γ
ω̃ ˙̂ω. (49)

Substituting the adaptive law (33) into (49) yields:

V̇2 ≤ −
[

e2
2

k2
b2 − e2

2

]l

+ l2
1

2
+ ε2

2
− e2

2

2
− l2ω̂ω̃. (50)
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Using the relationship of ω̂ = ω∗ − ω̃ and Young’s inequality, we have:

ω̃ω̂ = ω̃(ω∗ − ω̃) = −ω̃2 + ω̃ω∗ ≤ −1

2
ω̃2 + 1

2
ω∗2. (51)

Then, we can obtain:

V̇2 ≤ −
[

e2
2

k2
b2 − e2

2

]l

+ 1

2
ω∗2 − 1

2
ω̃2 + 1

2
l2
1 + 1

2
ε2 − 1

2
e2

2

≤ −Vl
2 + 1

2
ω∗2 + 1

2
l2
1 + 1

2
ε2 − 1

2
e2

2.

(52)

Define the final Lyapunov function as:

V = V1 + V2. (53)

Taking the derivative of V and substituting (43) and (52) into it, we get:

V̇ = V̇1 + V̇2

≤ −Vl
1 − Vl

2 + 1

2
ω∗2 + 1

2
l2
1 + 1

2
ε2.

(54)

Applying Lemma 3.2, we obtain:

V̇ ≤ −(V1 + V2)l + 1

2
ω∗2 + 1

2
l2
1 + 1

2
ε2

≤ −Vl + ρ,

(55)

where ρ = 1
2
ω∗2 + 1

2
l2
1 + 1

2
ε2 is a positive constant.

Define T∗ as:

T∗ = 1

η(1 − l)

[
V1−l(0) −

(
ρ

(1 − η)
1−l

l

)]
, (56)

where 0 < η < 1, V(0) is the initial value of V(t). According to Lemma 3.3, for ∀t > T∗, Vl ≤ ρ

(1−η)∗1
, that

is, all the signals of the closed-loop system are SGPFS. Furthermore, based on the definition of V(t) in
ref. [16], for ∀t > T∗, we have:

|y − yr| ≤ kb1

[
1 − e−2( ρ

(1−η) )
1
l

] 1
2

, (57)

which implies that after the finite time T∗, the tracking error remain in a small neighborhood of the
origin. We assume that |yr| < B0 ,and thus, it is obvious that |x1| ≤ |e1| + |yr| < kb1 + B0. We define that
kb1 = kc1 − B0, and then, it has |x1| < kc1. Similarly, with the assumption that ẏr < B1, we can finally
get |x2| < kc2 and kc2 = kb2 + B1. Consequently, the system states are confined to the predefined regions
effectively. This completes the proof. �

4. Numerical simulation results
To validate the proposed SAFC method, numerical simulations are conducted based on the developed
dynamic model of the exoskeleton (21). The desired trajectory yr is generated by the recorded human
hip motion data which has been successfully applied to the gait training of ref. [4].

The initial states of the exoskeleton model are set as: x(1) = 1.0 deg, x(2) = 1.0 deg/s. The designed
parameters of the controller are set as: kb1 = 0.5, bb2 = 50.0, l = 0.5, l1 = 1.0, l2 = 1.0, ω = 10.0, γ =
10.0. We apply a standard adaptive fuzzy controller (AFC) based on the backstepping method [24] to
the same exoskeleton dynamic model to further demonstrate the effectiveness of the proposed SAFC.
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Figure 5. Tracking trajectory.

The standard AFC controller design with the backstepping technique is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 = x1 − yr,

x2d = ẏr − k1e1,

z2 = x2 − x2d,

d̂(t) = θ̂ T�(x̄),

u(t) = 1

g
(f − z1 − k1ż1 − k2z2 − d̂(t) + ÿr),

˙̂
θ = μ(z2�(x̄) − ζ θ̂ ),

(58)

where x1 and x2 denote the system states, yr denotes the desired trajectory, x2d denotes the virtual control
signal of x2, d̂(t) denotes the output of the fuzzy system, ˙̂

θ denotes the adaptive law updating all the
fuzzy consequence parameters, and k1 > 0, k2 > 0, μ > 0, and ζ > 0 are designed control parameters.
In the simulations, the control parameters of the standard AFC are set as k1 = 17, k2 = 19, μ = 1, and
ζ = 1.

The tracking trajectories of these two controllers are represented in Fig. 5. It can be seen that the actual
trajectories of the exoskeleton joint with the control of AFC and SAFC are nearly overlapped with the
desired trajectory, which means that the proposed SAFC and the standard AFC can both effectively
realize the trajectory tracking task of the lower limb exoskeleton. The tracking errors are represented in
Fig. 6. The tracking errors of the proposed SAFC and the AFC are all small enough and are constrained in
the predefined bound kb1. Therefore, the exoskeleton system state x(1) would not violate the predefined
constraint in movement, which validates the effectiveness of the proposed SAFC method in ensuring
safety. In addition, the value of the adaptation parameter ω̂ and the control signal u(t) is respectively
represented in Figs. 7 and 8, from which we can see that these signals are ensured bounded.

To verify the effectiveness of only one single adaptation parameter in reducing computational cost,
we conduct four sets of numerical simulations to compare the running time of the proposed SAFC and
the standard AFC. The number of fuzzy rules in the proposed SAFC and the standard AFC is set as 49.
In addition, to further show the effectiveness of the proposed SAFC with a single adaptation parameter
in reducing computational burden, the standard AFC with 121 rules is added to the simulations. The
simulation times are set as 50, 100, 200, and 300 s. The program runs on Matlab2013b, installed on a
Win 10 OS equipped with 16 GB RAM and an Intel Core i7-10875H processor. Table I represents the
running time results. It can be observed that the proposed SAFC with a single adaptation parameter
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Table I. Time consuming comparison between the proposed SAFC and the standard AFC (UNIT: S).

Simulation time Proposed SAFC Standard AFC Standard AFC with 121 rules
50 16.51 20.10 24.16
100 33.17 39.34 48.28
200 67.87 83.58 96.56
300 99.19 120.19 144.94

Figure 9. The practical exoskeleton system.

can effectively reduce the simulation running time. As the number of fuzzy rules increases to 121, the
adaptive parameters of the standard AFC increase, and thus, the running time of the AFC increases a
lot, which validates the advantage of the proposed SAFC method in computational speed.

5. Experimental results
5.1. Experiment platform setup
The practical exoskeleton experiment platform is represented in Fig. 9. The main components of the
system include an air compressor, an xPC target, a host PC, PAM actuators, Bowden cables, a treadmill,
a healthy subject wearing the exoskeleton, and a body weight support system compensating for the sub-
ject’s weight. In addition, two pairs of airbags are placed on the front and back sides of the exoskeleton
leg straps part to detect the subject’s intention to move forward or backward. The mechanism and control
system details have been explained in Section 2.

5.2. Trajectory tracking experiments with no-load
First of all, we conduct a set of experiments with no-load to validate the feasibility of the proposed
SAFC method in practical implementation. The no-load experiments can protect the subjects from ter-
rible control results. Then, the proposed SAFC method is applied to the exoskeleton control in healthy
subjects’ passive and active gait training tasks, and the supplementary video file shows the experimental
results. The sampling time of the real-time system is set as 0.0005 s. The desired trajectory yr of the
exoskeleton is obtained by fitting the human lower hip motion data with 1.0m/s walking speed on the
treadmill.

It is worth noting that since the proposed SAFC in this paper and the standard AFC in the above
numerical simulation show similar control performances, and the proposed SAFC achieves better
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Figure 10. Trajectories of experiments with no-load.
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Figure 11. Tracking errors of experiments with no-load.

computational efficiency, the standard AFC is not considered in the experimental comparison. A con-
ventional PID controller commonly utilized in practical engineering applications is adopted to compare
with the SAFC to further investigate its control performance.

The designed parameters of the proposed SAFC are set as: kb1 = 5, bb2 = 300.0, l = 0.5, l1 = 10.0,
l2 = 1.0, γ = 10.0. The initial adaptation parameter ω0 = 10.0. The parameters of the PID controller
are set as: P = 1050.0, I = 305.0, D = 10.0. For a fair comparison, we have tried to adjust the control
parameters so that the controllers can perform their best in experiments.

The tracking trajectories are represented in Fig. 10, and the corresponding tracking errors are shown
in Fig. 11. Only the tracking results of the right hip joint are presented here, since the left and right
limbs of the exoskeleton conduct symmetrical movements. We can find that the tracking trajectory of
the proposed SAFC nearly overlapped with the desired trajectory in Fig. 10, while that of PID deviates a
lot from the desired trajectory, especially in the areas of peaks and bottoms of waves. From Fig. 11, we
can find that the maximum tracking error of the proposed SAFC is less than 5 deg, which is bounded by
the predefined boundary kb1, while that of PID is more than 5 deg and the maximum error is about 8 deg.
Obviously, the proposed SAFC performs better than the conventional PID controller in the practical
experiments with no-load. Therefore, we can conclude that the proposed SAFC method can precisely
track the desired gait trajectory of the pneumatic lower limb exoskeleton to conduct the following gait
training tasks, which indicates that this theoretically safe method guaranteeing the full state constraints
can ensure training security of the exoskeleton in practical implementation.
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Table II. The information of the healthy subjects and the gait training performances.

Subject Height (cm) Weight (kg) MAE (deg) RMSE (deg)
S1 171.0 82.0 3.45 1.17
S2 167.0 55.0 4.11 1.61
S3 174.0 71.0 4.39 1.80
S4 178.0 83.0 4.08 1.56
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Figure 12. Trajectories of passive gait training.

5.3. Passive gait training
From Figs. 10 and 11, we can find that the tracking trajectory of PID variated a lot from the desired
trajectory and the maximum tracking error of PID was larger than 5 deg, which indicated that the PID
was unable to constraint the tracking error to a predefined range and achieve safety control compared
to the proposed SAFC. Therefore, the PID was not adopted for the poor tracking performance in the
following gait tracking experiments.

To further validate the effectiveness of the proposed SAFC method in the task of passive gait training,
four healthy volunteer subjects are invited to participate in our experiments. The subjects are asked to
remain relaxed and walk on the treadmill with as much assistance as possible from the exoskeleton,
thus achieving the effect of simulating hemiplegic patients. It is worth noting that here we consider
the influence of the subject’s participation on the exoskeleton mechanism and modify the constraint
kb1 to 8, thus allowing a slightly larger tracking error than the no-load experiments for the successful
implementation of the gait training experiments. In addition, we use the maximum absolute error(MAE)
and the root mean square error (RMSE) in 10 ∼ 30 s to evaluate the control performance of the proposed
method. The RMSE is defined as:

RMSE =
√√√√1

n

n∑
t=1

e2
t , (59)

where et denotes the tracking error at the tth sampling time point.
The information of these four subjects and the details of the tracking errors are represented in Table II.

The tracking results of the exoskeleton in the passive gait training are represented in Figs. 12 and 13.
It can be clearly found that the tracking error is large in the first 10 s, while the tracking error can be
maintained within 5 deg in the following 20 s, which indicates that after two gait periods of adjustment,
the subjects can adapt well to the exoskeleton assistance to complete the passive gait training. Therefore,
with the control results represented above, we can also conclude that although the four subjects vary in
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Figure 13. Tracking errors of passive gait training.

Figure 14. The block diagram of the active gait training control strategy.

their heights and weights, the proposed SAFC method can still achieve effective tracking control to
conduct the passive gait training task.

5.4. Active gait training
For the rehabilitation of partial patients, increasing the patient’s participation in the rehabilitation will
be more beneficial than purely passive gait training [25–27]. Therefore, in this section, we conduct an
active gait training experiment on one healthy subject to verify the feasibility of the proposed pneumatic
lower limb exoskeleton with the SAFC method. The active control diagram is based on a zero-force
control strategy, and the corresponding control diagram is represented in Fig. 14. The air bags detect
the subject’s movement intention, the admittance model generates the desired trajectory �xref based
on the interaction force Fint and the desired force Fd, and the proposed SAFC method is used to
control the joint angle of the exoskeleton to achieve active control. Here we assume that the interac-
tion force Fint between the air bags and the subject’s leg and the air pressure difference between the
air bag pairs are proportional, and the proportionality gain is κ . We set Fd = 0 and xref = 0 so that the
exoskeleton is completely passive and the subject is completely active. The parameters of the admittance
model are set as: m = 1/500, b = 0.05, and k = 0.01. The subject walks on the treadmill at a speed of
1.0 m/s.

The pressure difference of the air bags is represented in Fig. 15, and the trajectories are represented in
Fig. 16. From Fig. 15, we can find that the air pressure difference of the air bags varied periodically, indi-
cating that the subject’s intention of movement can be successfully detected by the air bags positioned
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Figure 15. Pressure difference of the air bags.
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Figure 16. Trajectories of active gait training.

in both the front and back of the subject’s legs. From Fig. 16, we can find that the trajectory generated by
the active control strategy shown in the blue curve is close in magnitude and frequency to the reference
trajectory in the passive gait training mentioned previously, which indicates that the admittance model
can successfully generate the desired reference trajectory used in active training. The red curve shows
the movement trajectory of the subject wearing the exoskeleton under the active control strategy. It can
be found that the exoskeleton with the SAFC method can effectively track the trajectory generated by
the admittance model to achieve the active gait training task.

6. Conclusions
Incorporating the PAM actuator and the Bowden cable, this paper proposes a lightweight pneumatically
actuated lower limb exoskeleton. First of all, we construct the dynamic model of the exoskeleton based on
the three-element model of the PAM. Then, utilizing the barrier Lyapunov function, we propose a SAFC
for the safe control of the pneumatic system considering full state constraints. Furthermore, with the
proposed single-parameter adaptive law, we reduce the adaptive parameters of the fuzzy system to one,
which significantly reduces the complexity of the control design. In the numerical simulations and no-
load experimental results, the tracking errors of the exoskeleton with the proposed SAFC are successfully
bounded in the predefined ranges. Compared with the standard AFC, the simulation time of the proposed
SAFC is significantly reduced, which validates the effectiveness of the single-parameter adaptive law.
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Furthermore, both passive and active gait training tasks with healthy volunteer subjects validate the
effectiveness of the designed exoskeleton and the proposed SAFC method in practical implementations.
In the future, the function named “assist as needed” between fully active and passive gait training is the
ideal function we should achieve in the exoskeleton, which will facilitate increased patient participation
in rehabilitation training.
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