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Abstract

Let S = {s1, s2, . . .} be an unbounded sequence of positive integers with sn+1/sn approaching α as
n→ ∞ and let β > max(α, 2). We show that for all sufficiently large positive integers l, if A ⊂ [0, l]
with l ∈ A, gcd A = 1 and |A| ≥ (2 − k/λβ)l/(λ + 1), where λ = �k/β�, then kA ∩ S � ∅ for 2 < β ≤ 3 and
k ≥ 2β/(β − 2) or for β > 3 and k ≥ 3.
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1. Introduction

For two sets A, B of integers and a ∈ Z, define

A + B = {a + b : a ∈ A, b ∈ B},
and

a − B = {a − b : b ∈ B}.
For a positive integer h ≥ 2, let

hA = {a1 + · · · + ah : a1, . . . , ah ∈ A}.
A set A of nonnegative integers is called normal if 0 ∈ A and the greatest common
divisor of all elements of A is 1.

In 1990, Erdős and Freiman [2] proved a conjecture of Erdős and Freud: if a set A of
integers is a subset of [1, n] and |A| > n/3, then a power of 2 can be written as the sum
of elements of A. In 1989, Nathanson and Sárközy [6] improved this result by showing
that 3504 elements of A is enough. Finally, Lev [4] obtained the best possible result
that a power of 2 is the sum of at most four elements of A. In 2004, Abe [1] extended
Lev’s result to a power of m. In 2006, Pan [7] generalised the results of Lev and Abe.
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THEOREM 1.1 [7, Theorem 1]. Let k, m, n ≥ 2 be integers. Let A be a normal subset of
[0, n] satisfying

|A| > 1
l + 1

((
2 − k

lm

)
n + 2l

)
,

where l = �k/m�. If m ≥ 3, or m = 2 and k is even, then kA contains a power of m.

Pan conjectured that Theorem 1.1 still holds for m = 2 and k is odd. In 2012, Wu
and Chen [8] made some progress towards this conjecture.

In 2010, Kapoor [3] extended Pan’s result for 2A to general sequences. He proved
the following two results.

THEOREM 1.2 [3, Theorem 1]. Let {a1, a2, a3, . . .} be an unbounded sequence of
positive integers. Assume that an+1/an approaches some limit α as n→ ∞, and let
β > 2 be some real number greater than α. Then for sufficiently large x ≥ 0, if A is a
set of nonnegative integers less than or equal to x containing 0 and satisfying

|A| ≥
(
1 − 1
β

)
x,

then 2A contains an element of {an}.

THEOREM 1.3 [3, Theorem 2]. Let {a1, a2, a3, . . .} be an unbounded sequence of
positive integers such that an+1/an ≤ β for some constant β ≥ 2. Then for any x ≥ 0,
if A is a set of nonnegative integers less than or equal to x containing 0 and satisfying

|A| >
(
1 − 1
β

)
x +

1
β
·
⌊a1 − 1

2

⌋
+ 1,

then 2A contains an element of {an}.

We extend Pan’s result for kA (k ≥ 3) to general sequences that grow like the powers
of a real number greater than or equal to 2.

THEOREM 1.4. Let β > 2 be a real number and let S = {s1, s2, . . .} be an unbounded
sequence of positive integers such that limn→∞ sn+1/sn = α < β. Let k ≥ 3 be a positive
integer. For large enough l, let A be a normal subset of [0, l] with l ∈ A such that

|A| ≥ 1
λ + 1

(
2 − k
λβ

)
l,

where λ = �k/β�. If 2 < β ≤ 3, then kA ∩ S � ∅ for all k ≥ 2β/(β − 2). If β > 3, then
kA ∩ S � ∅ for all k ≥ 3.

THEOREM 1.5. Let β > 2 be a real number and let S = {s1, s2, . . .} be an unbounded
sequence of positive integers such that sn+1/sn ≤ β. Let k ≥ 3 and l be positive integers
such that

l
( k
β
− λ + 1

)
≥ 2
β

⌊s1 − 1
2

⌋
+ 1. (1.1)
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Let A be a normal subset of [0, l] with l ∈ A satisfying

|A| > 2
λβ(λ + 1)

(⌊s1 − 1
2

⌋
+
β

2

)
+

1
λ + 1

((
2 − k
λβ

)
l + 2λ

)
, (1.2)

where λ = �k/β�. If 2 < β < 3, then kA ∩ S � ∅ for all k ≥ 2β/(β − 2). If β ≥ 3, then
kA ∩ S � ∅ for all k ≥ 3.

2. Lemmas

LEMMA 2.1 [5, Corollary 1]. If A is a normal subset of [0, l] with l ∈ A and
ρ = �(l − 1)/(|A| − 2)� − 1, then

|hA| ≥
⎧⎪⎪⎨⎪⎪⎩

Bh(|A|) if h ≤ ρ,
Bρ(|A|) + (h − ρ)l if h ≥ ρ,

where Bh(x) = 1
2 h(h + 1)(x − 2) + h + 1.

LEMMA 2.2. Let β ≥ 2 be a real number. Let S = {s1, s2, . . .} be an unbounded
sequence of positive integers such that sn+1/sn ≤ β. Let a, b be two positive integers.
Suppose A and B are sets of integers satisfying A ⊆ [0, a], B ⊆ [0, b] and 0 ∈ A ∩ B. If

|A| + |B| > 3 +
2
β

⌊s1 − 1
2

⌋
+max

{
a, b,
(
1 − 1
β

)
(a + b)

}
, (2.1)

then (A + B) ∩ S � ∅.

PROOF. We may assume that a ≤ b. If 0 ≤ b < s1, put x0 = 
(s1 − 1)/2�. If b < x0, then

|A| + |B| > 2 +
2
β

⌊s1 − 1
2

⌋
+

(
1 − 1
β

)
(a + b)

> 2 +
1
β

(a + b) +
(
1 − 1
β

)
(a + b) = 2 + a + b,

which is a contradiction since |A| + |B| ≤ a + b + 2. Thus, x0 ≤ b < s1. If a + b < s1,
then

|A| + |B| > 3 +
2
β

⌊s1 − 1
2

⌋
+

(
1 − 1
β

)
(a + b)

≥ 3 +
1
β

(s1 − 2) +
(
1 − 1
β

)
(a + b)

≥ 3 +
1
β

(a + b − 1) +
(
1 − 1
β

)
(a + b)

≥ 3 − 1
β
+ a + b > a + b + 2,
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which is again impossible. Thus, a + b ≥ s1. Then,

|A| + |B| > 3 +
1
β

(s1 − 2) +
(
1 − 1
β

)
(a + b)

≥ 3 +
1
β

s1 −
2
β
+

(
1 − 1
β

)
s1

= 3 − 2
β
+ s1 ≥ s1 + 2.

Since B, s1 − A ⊆ [0, s1], we must have s1 ∈ A + B.
Next, we consider b ≥ s1. Choose r such that sr ≤ b < sr+1. We proceed by induction

on a + b.
If a + b = s1 + 1, then A ⊆ [0, 1] and B ⊆ [0, s1]. Since s1 − A, B ⊆ [0, s1] and

|A| + |B| > 3 +
1
β

(s1 − 2) +
(
1 − 1
β

)
(a + b)

= 3 − 3
β
+ s1 + 1 > s1 + 2,

we have s1 ∈ A + B.
Now, assume that a + b > s1 + 1 and that the lemma holds for the sets A′ ⊆ [0, a1]

and B′ ⊆ [0, b1] with a1 + b1 < a + b. Suppose that (A + B) ∩ S = ∅.

Case 1: a < sr. Write A1 = sr − A. Thus, A1 ⊆ [sr − a, sr] ⊆ [0, b]. If |A1| + |B| > b + 1,
then

|A1 ∩ B| = |A1| + |B| − |A1 ∪ B| ≥ b + 2 − (b + 1) = 1.

Thus, sr ∈ A + B, which is impossible. Hence, |A| + |B| = |A1| + |B| ≤ b + 1, which
contradicts the hypothesis (2.1).

Case 2: a ≥ sr and a + b > sr+1. Write

A1 = [0, b] ∩ (sr+1 − A), B1 = [sr+1 − a, b] ∩ B,

A2 = [0, sr+1 − b − 1] ∩ A, B2 = [0, sr+1 − a − 1] ∩ B.

Then,

|B| = |B1| + |B2| (2.2)

|A| = |A2| + |[sr+1 − b, a] ∩ A|
= |A2| + |sr+1 − ([sr+1 − b, a] ∩ A)|
= |A2| + |[sr+1 − a, b] ∩ (sr+1 − A)|
= |A1| + |A2|. (2.3)

Since A1, B1 ⊆ [sr+1 − a, b] and sr+1 � A1 + B1,

|A1| + |B1| ≤ b − sr+1 + a + 1. (2.4)
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If b = sr+1 − 1, then |A2| = 1 and |B2| ≤ sr+1 − a. By (2.2)–(2.4),

|A| + |B| ≤ sr+1 − a + 1 + b − sr+1 + a + 1 = b + 2,

which contradicts the hypothesis (2.1). Thus, b ≤ sr+1 − 2.
Since (A + B) ∩ S = ∅, we have (A2 + B2) ∩ S = ∅. Noting that

sr+1 − b − 1 + sr+1 − a − 1 < 2(a + b) − a − b − 2 < a + b,

it follows from the hypothesis that if

max
{
sr+1 − b − 1, sr+1 − a − 1,

(
1 − 1
β

)
(2sr+1 − a − b − 2)

}
= sr+1 − a − 1,

then

|A2| + |B2| ≤ sr+1 − a − 1 + 3 +
2
β

⌊s1 − 1
2

⌋
. (2.5)

By (2.2)–(2.5),

|A| + |B| ≤ b − sr+1 + a + 1 + sr+1 − a − 1 + 3 +
2
β

⌊s1 − 1
2

⌋
= b + 3 +

2
β

⌊s1 − 1
2

⌋
,

which contradicts (2.1). If

max
{
sr+1 − b − 1, sr+1 − a − 1,

(
1 − 1
β

)
(2sr+1 − a − b − 2)

}

=

(
1 − 1
β

)
(2sr+1 − a − b − 2),

then

|A2| + |B2| ≤
(
1 − 1
β

)
(2sr+1 − a − b − 2) + 3 +

2
β

⌊s1 − 1
2

⌋
. (2.6)

By (2.2)–(2.4) and (2.6),

|A| + |B| ≤ b − sr+1 + a + 1 +
(
1 − 1
β

)
(2sr+1 − a − b − 2) + 3 +

2
β

⌊s1 − 1
2

⌋

= sr+1 −
2
β

sr+1 +
1
β

(a + b) +
2
β
+ 2 +

2
β

⌊s1 − 1
2

⌋

≤ a + b − 2
β

(a + b) +
1
β

(a + b) +
2
β
+ 2 +

2
β

⌊s1 − 1
2

⌋

=

(
1 − 1
β

)
(a + b) +

2
β
+ 2 +

2
β

⌊s1 − 1
2

⌋

≤
(
1 − 1
β

)
(a + b) + 3 +

2
β

⌊a1 − 1
2

⌋
,

which again contradicts (2.1).
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Case 3: a ≥ sr and a + b ≤ sr+1. Write

A1 = [0, sr] ∩ A, B1 = [0, sr] ∩ B,

A2 = (sr, a] ∩ A, B2 = (sr, b] ∩ B.

Since (A + B) ∩ S = ∅, it follows that (A1 + B1) ∩ S = ∅ and so |sr − A1| + |B1| ≤ sr + 1.
Thus,

|A| + |B| ≤ a + b − 2sr + sr + 1 = a + b − sr + 1.

However, by (2.1),

|A| + |B| > 2 +
(
1 − 1
β

)
(a + b)

= a + b − 1
β

(a + b) + 2

≥ a + b − 1
β

sr+1 + 2

≥ a + b − sr + 2,

which is a contradiction. Hence, we have (A + B) ∩ S � ∅.
This completes the proof of Lemma 2.2. �

REMARK 2.3. If s1 is odd, this lower bound can be improved to

|A| + |B| > 2 +
2
β

⌊s1 − 1
2

⌋
+max

{
a, b,
(
1 − 1
β

)
(a + b)

}
.

3. Proof of Theorem 1.5

Let k1 = 
k/2� and k2 = �k/2�. Then,

k1A ⊆
[
0,
⌊k
2

⌋
l
]
, k2A ⊆

[
0,
⌈k
2

⌉
l
]
.

Since β > 2, if k ≥ β/(β − 2), then
⌈ k
2

⌉
≤ (β − 1)

⌊ k
2

⌋
.

In particular, if β ≥ 3, then

k ≥ 3 ≥ 1 +
2
β − 2

=
β

β − 2
.

https://doi.org/10.1017/S0004972723000904 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723000904


426 M. Chen and M. Tang [7]

Hence, if 2 < β < 3 and k ≥ β/(β − 2), or β ≥ 3, then �k/2� ≤ (β − 1)
k/2�. So,
⌊k
2

⌋
≤
⌈k
2

⌉
≤
(
1 − 1
β

)(⌈ k
2

⌉
+

⌊ k
2

⌋)
. (3.1)

Since 0 ∈ A,

k1A + k2A =
(⌊k

2

⌋
+

⌈k
2

⌉)
A = kA.

To show kA ∩ S � ∅, by Lemma 2.2 and (3.1), it is sufficient to show that

|k1A| + |k2A| > 3 +
2
β

⌊s1 − 1
2

⌋
+

(
1 − 1
β

)
kl.

By (1.2),

(λ + 1)(|A| − 2) >
2
λβ

(⌊s1 − 1
2

⌋
+
β

2

)
+

(
2 − k
λβ

)
l − 2. (3.2)

Noting that λ ≥ k/β,

(λ + 1)(|A| − 2) >
(
2 − k
λβ

)
l − 2 ≥ l − 2. (3.3)

Write

ρ = �(l − 1)/(|A| − 2)� − 1.

Then by (3.3),

ρ <
l − 1
|A| − 2

≤ λ + 1. (3.4)

If β > 2 and k ≥ 2β/(β − 2), then

k
(1
2
− 1
β

)
≥ 1 >

⌈ k
β

⌉
− k
β

and so k/2 > �k/β�. If β ≥ 3 and 3 ≤ k < 2β, then �k/β� ≤ k/2. If β ≥ 3 and k ≥ 2β,
then

λ =
⌈ k
β

⌉
<

k
β
+ 1 =

k
2
− (β − 2)k

2β
+ 1 ≤ k

2
.

Thus, λ ≤ k/2 for β ≥ 3 or 2 < β < 3 and k ≥ 2β/(β − 2). Hence, by (3.4),

ρ ≤ λ ≤
⌊k
2

⌋
= k1.

By Lemma 2.1,

|kiA| ≥ Bρ(|A|) + (ki − ρ)l for i = 1, 2. (3.5)
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If λ = ρ, then by (3.2) and (3.5),

|k1A| + |k2A| ≥ λ(λ + 1)(|A| − 2) + 2λ + 2 + (k − 2λ)l

> λ
( 2
λβ

(⌊s1 − 1
2

⌋
+
β

2

)
+

(
2 − k
λβ

)
l − 2
)
+ 2λ + 2 + (k − 2λ)l

= 3 +
2
β

⌊s1 − 1
2

⌋
+

(
1 − 1
β

)
kl.

Now suppose that ρ ≤ λ − 1. Then, 0 ≤ ρ ≤ �k/β� − 1. Hence, by (1.1),

|k1A| + |k2A| ≥ ρ(ρ + 1)(|A| − 2) + 2ρ + 2 + (k − 2ρ)l
≥ ρ(l − 1) + 2ρ + 2 + (k − 2ρ)l
= kl − ρ(l − 1) + 2

> kl −
( k
β
+

⌈ k
β

⌉
− k
β
− 1
)
l + 2

= kl − k
β

l +
( k
β
−
⌈ k
β

⌉
+ 1
)
l + 2

≥
(
1 − 1
β

)
kl + 3 +

2
β

⌊s1 − 1
2

⌋
.

This completes the proof of Theorem 1.5.

4. Proof of Theorem 1.4

Let β− be some constant satisfying α < β− < β, and assume that
sn+1

sn
≤ β− for all n ≥ 1. (4.1)

Then for any l so large that

1
λ + 1

(
2 − k
λβ

)
l ≥ 1
λ + 1

((
2 − k
λβ−

)
l + 2λ

)
+

2
λ(λ + 1)β−

(⌊s1 − 1
2

⌋
+
β−

2

)
,

we see that Theorem 1.5, using the constant β−, gives the conclusion of Theorem 1.4. If
(4.1) does not hold for all n ≥ 1, then as sn+1/sn ≤ β− for sufficiently large n, a simple
relabelling of the terms of the sequence, omitting finitely many terms at the beginning,
would suffice.

This completes the proof of Theorem 1.4.
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