ON DIAGRAMS OF VECTOR SPACES
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We record here two further remarks about the systems, studied in
[1] and [2], consisting of a vector space U and a set K of subspaces of U.
In § 1, we show that such a system may be viewed as a module over a suitable
artinian ring; the results of [1] and [2] thus serve to illustrate the complexity
of structure of these modules. The main idea, a little wider than one intro-
duced by Mitchell in Chapter IX of {3], is to view a diagram of vector spaces,
with a small category as the scheme of the diagram, as a module over the
‘category ring’ of the category.

In § 2, we answer negatively the question, raised in [1], as to whether
each associative algebra E with identity, over a field @, can be represented
as the endomorphism algebra of a @-vector space system U, K with |K| = 4.
Specifically, we show that the ring 4, of ‘hollow triangular #-th order
matrices over @’ is so representable if and only if » = 5.

1. Vector space systems as modules

Let X be a small category, @ an associative ring with identity, and
M 5 the category of right @-modules. A covariant functor D : X — #4
will be called a 2-diagram of ®-modules. These diagrams are the objects
of a category ¥ = 2(X, @), the morphisms of & being the natural trans-
formations between diagrams. Since .# is abelian, so also is Z.

Consider the category 2, ; associated in the normal way with the
partially ordered set depicted in the figure

(=)

2

Thus 2, ; has »n+1 objects 1,2, -, #, co, and morphisms ¢, :7 — ¢,
€oooo - O — 0, and ¢, 11— 00 for 1 <7 < n. Let & be a field. Then a
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diagram D : X, ., — A 4 in which each D(e, ) is injective may be regarded
as a vector space U = D(o0) and an indeved family K = {Im D(e, )}
of n subspaces of U. In particular, End D is just the endomorphism algebra,
in the sense of [1], of the system U, K.

In [3, Chapter IX], Mitchell shows that the category ¥ = 2(%, @)
is equivalent to the category .# 45, where 2 is the category associated
with a finite partially ordered set, and @ () is a suitable ring of matrices
over @. This identification may be made for any small category X. Let
I be its object set and M its morphism set. The appropriate ring @ (Z2)
may be taken to be the ¥-algebra having M as a free basis, the multiplica-
tion of basis elements ¢, ¢’ being defined by the rule

, {their product in X, if defined,
ee' =
0 otherwise.

This construction thus generalises that of the group ring of a group. Notice
that each object ¢ determines an idempotent ¢;; in @(ZX), and that @(X)
has an identity, namely >,.;e,, if and only if I is finite. It is easy to
describe Mitchell’s identification of & with # 45 . Let D e P; define
M (D) = ®,.; D(i) and, for e : | — k, define the action of ¢ on M (D) to be
0 on summands D(¢) with ¢ 7 4, and D(e) on the summand D(j). This
yields a functor from & to .# 45 . Conversely, for each @ (2)-module M,
define D : 2 — A to be the diagram with values D{z) = Me,(i el), and
D(e) : D(j) - D(k) to be the map induced by right multiplication by
e : ] — k. These two functors give the required equivalence of categories.

In the case of the category X, depicted above, ®(Z,,,) is generated
by the 2n+1 morphisms e;;, and these satisfy the usual matrix identities
;i€ = O;xyy. We call @(2,,,) the ring A, = A,,,(P) of open hollow
triangular (n--1)-th order matrices over @.

Let @ be a field. Then 4, is artinian, and of quite simple type. The
results of [1] may be interpreted as statements about A4,,;-modules in
which all the morphisms in the associated vector space diagrams are injective.
In fact, it is easy to see that each 4, ,-module is the direct sum of one of
this type and of an injective module.

We draw attention to the module versions of two results in [1] and [2].

(1) Let » = 5. Each associative @-algebra E with identity may be
represented as the endomorphism ring of a 4, ,, (®)-module, of @-dimension
at most 7(dim E)2.

(2) Let » = 5, and let ¢ be any finite or infinite cardinal. There is a
A, p1(P)-module of P-dimension greater than or equal to ¢ with endomor-
phism ring isomorphic to &.

We show in § 2 that (1) fails for n = 4. The 4,, 45, 4,, and Az-modules
of finite @-dimension and endomorphism ring @ are listed (in vector space
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form) in [1]. We do not know whether @ can be realised as endomorphism
ring of a A;-module of infinite dimension.

A modification of (2) may be obtained for an arbitrary ring @, in the
following form. Let ¢ be a finite (countable) cardinal, and » = 4 (» = 5).
Then, there exists a A,,,(®)-module which has the opposite ring of @
as endomorphism ring, and is free as a @-module, on a basis of cardinality
= ¢. Indeed, we can give an explicit presentation of such a module, or more
conveniently, of the corresponding ®@-module system U, K. If ¢is countable,
take U, K, -+, K; to be the free @-modules on the following bases:

U has basis {xr}rgl U {yr}rgl
K, has basis {z,},>,

K, has basis {¢,},2,

K has basis {,4¥,},51

K4 has basis {xr+yr+1}rgl
K has basis {z,}.

A very easy computation shows that the endomorphisms of U, K are induced
by maps of the form z, - z,¢, ¥y, > y,¢ (r = 1), for ¢ € @; so the endo-
morphism ring of U, K is isomorphic to the opposite ring of @. For ¢ finite,
similar presentations of suitable systems U, K, with |K| = 4, are contained
in the Appendix to [1]. One of their essential features is that the matrices
expressing the given bases of the submodules K in terms of the given basis
of U contain zeros and ones only.

2. Non-representability of some algebras

As in [1], let &(U, K) denote the ring of all endomorphisms of the
@-vector space U which leave invariant each member of the set K of
subspaces of U. It was shown in [1] that, if |[K| = 5, and E is any associative
@-algebra with identity, of finite @-dimension, then there exist a finite
dimensional space U, and K, such that &(U, K) @ E. In case K| = 4,
it was shown that this result could fail for some basefields @. We shall now
show that it fails for any field ®.

By a hollow triangular n-th order matrixz over the field @, we meanan
n-th order matrix (¢,;) with entries in @ such that ¢,; = 0 unless either
i =1, or 2=1, or § = n. The set of all such matrices forms a ring 4,.
We assert that

there exists a pair U, K with dim U finite, |K| = 4, and
EU,K) ~ A, if and only if n < 5.
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Nevertheless, if @ is infinite, it may be shown that, for all #, 4, can be
represented as the endomorphism ring of some A;-module; of course, for
#n > 5, such a module cannot correspond to a pair U, K. However, a modifi-
cation of the argument below shows that the ring direct sum of 45 and @
cannot be the endomorphism ring of a A;-module.

The proof of the assertion above involves much tedious and elementary
case checking, and we merely outline it. Let U be a ®-space and K a set of
subspaces of U such that &(U, K) = 4,. Let d,, be the element of &(U, K)
corresponding to the matrix in 4,, with 1 at the place (7, s) and 0 elsewhere
(r=s,0orr=1, or s = n). The elements d,, form a ®-basis of &(U, K),
and d,.d,, = 0,4d,,.

Write U, = Ud,, and K, = {Kd,, : K € K}. Then K, is a set of subspaces
of U,,and U = @}_,U,. Let

H,,= Hom ((U,, K,), (U,, K,))
= {heHom (U,,U,) : VK e K, Kd,.h C Kd_,}.

Each element % of H,, may be extended to an element of &(U, K) by
defining it to be 0 on U,, for ¢ 7= ». However, the only element of & (U, K)
which maps U, into U, is O unless r = s, or » = 1, or s = #, in which cases
it must be a scalar multiple of 4,,. Hence
. lifr=s,orr=1,0rs =mn,
) dim H7,, — | .
0 otherwise.

In particular, H,, = &(U,, K,) ~ ®.

Now let dim U be finite and |K| = 4. The possible systems U,, K,
with H,, @ @ are listed in the Appendix to [1], and an examination of the
homomorphisms between them shows that the conditions (*) cannot be
satisfied if # > 5. On the other hand, for » < 5, the conditions (*) may be
satisfied in such a way that there exist #,, € H,, such that kA, = 6,4,,.
So 4, is representable in the form &(U, K) provided #» =< 5.

The condition that dim U be finite could be omitted if it is true that
&V, L) @ @ and |L| = 4 implies that dim V is finite.
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