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The reflection of a planar impulsive shock wave
at a liquid–gas interface
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The reflection of a shock pulse at a liquid–gas interface occurs in many applications,
from lithotripsy to underwater explosions and additive manufacturing. In linear theory,
reflection and transmission at an interface depend only on the impedance difference, but
this does not hold for a nonlinear pulse. This work develops an analytical framework for
computing the reflection and transmission coefficients for an impulsive shock wave at a
liquid–gas interface. The problem is treated analytically by considering idealised pulses
and solving a series of consecutive Riemann problems. These correspond to the initial
interaction with the interface and important subsequent wave interactions that enable a
complete description of the process to be obtained. Comparisons with numerical and
existing analytical approaches are made for the case of a water–air interface. In the acoustic
limit, the method produces results identical to those of linear acoustic theory. As the
pulse strength increases, the proposed method agrees well with numerical simulation
results, whereas existing analytical methods that consider only the interface fail. We
detail how a reflecting pulse can put water into tension without any incident negative
pressure. It is further shown that the magnitude of the reflection coefficient decreases
with increasing incident shock pressure, and the reflected pulse widens. Reflections of
pulses with positive and negative pressures temporarily create negative pressure regions
with greater magnitude than the incident pulse. Finally, we consider non-idealised waves.
Comparisons with simulations show that the reflection characteristics can be explained
qualitatively using the analytical method, and the reflection coefficients are predicted
accurately.
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1. Introduction

The reflection of a shock wave at a liquid–gas interface is a phenomenon that plays a
critical part in various applications that range from medical treatment procedures such as
lithotripsy (Cleveland & McAteer 2012) and histotripsy (Maxwell et al. 2011; Xu et al.
2024), to underwater explosions (Holt 1977; Yu et al. 2024), additive manufacturing
(Jalaal et al. 2019) and erosion (Obreschkow et al. 2011; Field et al. 2012), among others.
More generally, reflections are ubiquitous in virtually all flows involving shock waves
and interfaces; e.g. atomisation (Dekel et al. 1998; Avila & Ohl 2016; Stan et al. 2016;
Rosselló et al. 2023) or bubble/cavity collapse (Bourne & Field 1992; Johnsen & Colonius
2009; Hawker & Ventikos 2012; Ohl, Klaseboer & Khoo 2015; Bempedelis & Ventikos
2020a; Bokman et al. 2023). These applications cover a large range of shock pressures and
waveforms, including impulsive shock waves that have a short, finite width. In many cases,
particularly in medical applications, having a precise understanding of the shock–interface
interaction and the resulting waves and their amplitudes is of paramount importance.

In shock wave lithotripsy, the secondary cavitation resulting from shock reflections
and interactions is known to promote stone fragmentation, but it is also the dominant
cause of surrounding tissue injury (Cleveland & McAteer 2012); it thus needs to be
controlled carefully. In cavitational histotripsy, mechanical tissue ablation is achieved
through wave-incited cavitation cloud activity (Xu et al. 2024). The formation of the
cavitation cloud, upon which the successful outcome of the treatment depends, relies
strongly on the tension generated by the reflection of the incident waves (Maxwell et al.
2011). The formation of cavitation clouds upstream of a bubble is also observed in boiling
histotripsy. Understanding and controlling these clouds is of paramount importance for
this type of treatment as well. Pahk et al. (2021) used numerical modelling of the
Westervelt equation to investigate how shock scattering off a bubble leads to a cavitation
cloud forming upstream, which grows towards the shock source. The results supported
the hypothesis that the formation of the cloud is related to the sum of the strength of
the scattered shock wave and the incident pressure field, highlighting the importance of
understanding not just the immediate reflection at the interface, but also the subsequent
wave interactions.

Underwater explosions in shallow water lead to shock interactions with the ocean
surface (Holt 1977). In an attempt to mitigate the impact of blast waves on marine life
(but also of high-amplitude noise originating from other processes, such as pile driving for
offshore wind farm installation), engineers make use of bubble curtains (Timofeev et al.
1985; Croci et al. 2014). Bubble curtains reduce wave transmission by partially reflecting
and absorbing the energy of the incoming waves, with their efficiency depending strongly
on the properties and distribution of the bubbles (Smith, Bempedelis & Grech La Rosa
2023).

In laser-induced forward transfer, an additive manufacturing technique that uses laser
pulses to deposit material from a donor film to an acceptor substrate (Arnold, Serra &
Piqué 2007), the reflection of shock waves at the free surface has been suggested as one of
two mechanisms responsible for disrupting printing and resulting in irreproducibility and
uncertainty (Jalaal et al. 2019).

Shock waves in liquid volumes reflect off the liquid–gas interface, leading to tension in
the liquid. Focusing of the reflected waves by the curvature of the liquid volume increases
the tension, resulting in the development of cavitation in the liquid (Obreschkow et al.
2011; Avila & Ohl 2016; Schmidmayer & Biasiori-Poulanges 2023). This can lead to jetting
(Rosselló et al. 2023), fragmentation/atomisation (Avila & Ohl 2016), and eventually
erosion (Obreschkow et al. 2011; Field et al. 2012).
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Reflection of an impulsive shock at an interface

The reflection/transmission of a shock wave at a fluid interface is often approximated by
linear acoustic theory (Ohl 2002; Avila & Ohl 2016; Biasiori-Poulanges & El-Rabii 2021).
In linear theory, the reflection and transmission of a wave at an interface can be described
in terms of the impedance mismatch between the media at either side of the interface.
Partial reflection occurs in the case of media with different impedance values. The problem
can be formulated as a Riemann problem for the linear acoustic equations, and an exact
solution can readily be found (LeVeque 2002). The solution to the Riemann problem is
a left-going wave and a right-going wave, which allows for the following reflection and
transmission coefficients to be derived:

CR = pR
pS

= ZR − ZL

ZR + ZL
, (1.1)

CT = pT
pS

= 2ZR

ZL + ZR
, (1.2)

where p denotes the pressure, and Z = ρc is the impedance of each medium. In the
above, ρ is the density, and c is the sound speed of the media on the left and right
sides of the interface, denoted by the subscripts L and R, respectively. The subscripts
R and T denote reflection and transmission, respectively, and S denotes the incident
shock. The coefficients derived in (1.1)–(1.2) depend only on the impedance mismatch,
and are independent of the amplitude of the incident wave. Considering a one-dimensional
problem involving water and air at atmospheric pressure, (1.1) yields CR = −0.999,
indicating an almost perfect reflection of the incident wave. However, using a linear
approach for a fundamentally nonlinear problem may neglect important elements of the
underlying physics.

In the case of a shock wave with constant post-shock conditions behind its front, the
solution can be found by solving a Riemann problem at the interface for a nonlinear
conservation equation: usually either Burgers’ equation or the Euler equations. This
problem was considered by Henderson (1989), who derived reflection and transmission
coefficients based on the pressure resulting from the interaction of a shock front with a
fluid interface. For an arbitrary equation of state, Henderson (1989) defined

CR = pR − pS
pS − p0

, (1.3)

CT = pT − p0

pS − p0
, (1.4)

where p0 is the ambient pressure. For an air–water interface, this again yields a coefficient
close to −1, giving rise to the idea that a shock wave ‘inverts’ when it reflects off such
an interface. However, by considering only what happens at the interface, it is implicitly
assumed that the incident pulse and the reflected wave do not change as they interact, and
that the fluid pressure can be defined by the ambient pressure plus the contributions of the
relevant waves. This is true for a linear wave and for constant post-shock conditions, but –
as will be shown in this work – a single Riemann problem at the interface is not sufficient
to describe the shock–interface interaction for a finite-duration pulse unless the shock is
very weak. The problem of a finite-duration shock pulse has received far less attention in
the literature from an analytical perspective, but occurs in many practical applications, as
described previously. This problem is also challenging for numerical methods because it
involves multiple interactions with an interface with a high impedance difference. In many
applications, for example those involving shock–bubble interactions, this may involve
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large-scale separations, with shock waves being significantly narrower than the bubble
radius (see Bokman et al. (2023), for example). Analytical methods can therefore be used
to help to validate numerical approaches by providing benchmark tests for such problems.

In this work, we develop an analytical method for computing the reflection and
transmission of a shock pulse at a liquid–gas interface. The problem is treated by
considering the one-dimensional Euler equations and two idealised waveforms: a positive
square pulse, and a pulse with positive and negative parts. The solution is obtained
by solving a series of Riemann problems corresponding to different wave interactions
that take place during the reflection/transmission process. The solution is derived for a
general fast–slow problem, and then examined in more detail for a water–air interface
at atmospheric pressure. In the acoustic limit, M → 1+ (M denoting the Mach number),
the method is shown to be exact. The validity of the method for a wide range of shock
strengths as well as non-idealised waveforms is examined via comparisons with numerical
simulations.

The two idealised waveforms are chosen to represent two different classes of shock
pulses: purely compressive pulses and pulses with both compressive and tensile parts.
These pulses are prototypical of the types of waves found in the applications mentioned
above, but also in many others (see e.g. Bokman et al. 2023). Of practical interest are the
maximum and minimum pressures that occur during and after the reflection/transmission
process. Together with the complete solution structure, these are described in detail for the
idealised waves and then considered both analytically and numerically for two non-square
pulses: a modified Friedlander wave and a lithotripter pulse.

The purpose of this work is threefold. First, it presents a complete analytical framework
for computing the reflection and transmission of a finite-duration shock pulse at an
arbitrary fast–slow interface. Second, the approach is applied to the frequently encountered
problem of a finite-duration shock interacting with a water–air interface. Expressions for
the reflection and transmission coefficients across a wide range of shock pressures are
derived and compared to alternative approaches used in the literature. The discrepancies
between simpler but often-used approaches and the one presented here highlight the
benefits of this new approach. Third, the approach developed can be used to assess the
performance of numerical methods for multiphase flow problems.

The paper is organised as follows. The governing equations and general solution to the
multi-fluid Riemann problem are presented in § 2. Section 3 contains the derivation of the
complete solution for the reflection and transmission of the idealised shock pulses. The
predictions of the developed analytical method are discussed and compared with numerical
simulations in § 4. The reflection of non-idealised shock pulses is then considered in § 5,
before conclusions are presented in § 6.

2. Physical and mathematical background

2.1. Governing equations and thermodynamics
In this study, we use the compressible Euler equations as a model for the fluid dynamics
of both the liquid and gas phases. In one dimension, these are shown in their conservation
form as

∂U
∂t

+ ∂

∂x
F (U) = 0, (2.1)

where U = (ρ, ρu, E)T denotes the vector of conserved variables, and F (U) = (ρu,

ρu2 + p, u(E + p))T denotes the flux vector. In the above, ρ denotes the density, u is the
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Reflection of an impulsive shock at an interface

velocity, and p is the pressure. The total energy E, defined as the sum of the kinetic and
internal energies, is

E = ρ(1
2 u2 + e), (2.2)

where e denotes the specific internal energy. To close the equations, we also require an
equation of state. In this study, the stiffened gas equation of state (SG EoS) is adopted
(Menikoff & Plohr 1989). This is a simplified form of the Grüneisen equation of state,
and essentially treats the liquid as an ideal gas that is under high pressure, as defined by a
constant p∞. The specific internal energy is defined as

e = p + γ p∞
ρ(γ − 1)

. (2.3)

For the gas phase, we may still use the SG EoS since it reduces to the ideal gas law when
p∞ = 0 Pa. For the SG EoS, the speed of sound is defined as

c =
√

γ ( p + p∞)

ρ
. (2.4)

When considering the propagation of shock waves, the Rankine–Hugoniot relations are
most useful for describing the relationship between the states immediately either side of a
shock. These are described in a number of texts (e.g. Sochet 2017) and are presented here
for a stiffened gas. For the case of a shock wave connecting a ‘shocked’ region Ωs to an
‘unshocked’ region Ω0, we have

ps = ( p0 + p∞)
2γ M2 − (γ − 1)

γ + 1
− p∞, (2.5)

ρs = ρ0

(
(γ + 1)M2

(γ − 1)M2 + 2

)
, (2.6)

us = 2c0

γ + 1

(
M2 − 1

M

)
, (2.7)

where M denotes the Mach number of the shock wave, and c0 denotes the speed of sound
in the unshocked fluid.

2.2. The exact solution for a multi-fluid Riemann problem
The Riemann problem is a well established concept in fluid mechanics that forms the
basis of many discretisation schemes, particularly for hyperbolic equations such as the
Euler equations (LeVeque 2002; Toro 2013). In this context, we seek an exact solution to
the Euler equations with piecewise discontinuous initial data, defined as the left and right
initial states. These states are connected by either shock waves or rarefaction waves, and
a contact discontinuity depending on the initial conditions. A detailed exposition of the
problem can be found in a number of textbooks, e.g. LeVeque (2002) and Toro (2013),
and will thus not be given here. A typical solution to the problem in x–t space is shown
in figure 1. The primitive variables w = (ρ, u, p)T vary across both rarefaction and shock
waves. However, it can be shown that pressure and velocity are invariant across the contact
discontinuity (Toro 2013), and it is this invariance that enables us to find a solution to the
problem.
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Rarefaction
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p∗( )
ρL

∗

u∗
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Figure 1. Typical solution to the Riemann problem showing a right-going shock wave and a left-going
rarefaction wave.

While many works consider this problem assuming that the fluid is the same either side
of the initial discontinuity, there is nothing in the formulation of the Riemann problem
that precludes having different fluids or even different equations of state either side of the
interface, provided that the appropriate equation of state is adopted for waves travelling
into each fluid (LeVeque 2002). In this study, it is necessary to solve the Riemann problem
for both single- and multi-fluid cases, so we seek a general solution that permits the left and
right initial states to be different fluids. To this end, the exact solution is derived for the SG
EoS, noting that it reduces to the ideal gas law for p∞ = 0 Pa. The Riemann problem with
the SG EoS was considered by Haller, Ventikos & Poulikakos (2003) to study the wave
structure in a droplet following a high-speed impact with a surface. Here, this approach is
extended to the more general multi-fluid problem where the fluids either side of the initial
interface can have different equations of state.

For a typical Riemann problem, the solution consists of a 1-wave, a contact
discontinuity, and a 3-wave. The 1- and 3-waves can be either a rarefaction wave (denoted
with the subscript r) or a shock wave (denoted with the subscript s) depending on the initial
data. We seek a solution for the flow variables in the so-called star region that lies between
the initial data in the phase plane (see figure 1). To do this, we note that the pressure and
velocity are invariant across the contact discontinuity. Therefore, by deriving expressions
for u∗ in terms of p∗, we can obtain an algebraic expression for computing these variables.
That is, depending on the wave structure, we seek a solution to

φL( p∗) = u∗ = φR( p∗). (2.8)

For a 1- or 3-rarefaction wave, we can derive functions φ( p∗) using the Riemann
invariants. These are quantities that remain constant across a particular wave. In the case
of a rarefaction wave, the following quantities remain constant (Haller et al. 2003):

p + p∞
ργ

, u ± 2c
γ − 1

, (2.9a,b)

where + is for a 1-rarefaction, and − is for a 3-rarefaction. Therefore, for a 1-rarefaction,

φL( p∗) = u∗ = uL + 2(cL − c∗
L)

γL − 1
, (2.10)
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Reflection of an impulsive shock at an interface

where cL is known from the left state data, but c∗
L is not. However, we can use the isentropic

assumption to express c∗
L in terms of a single unknown p∗:

pL + p∞,L

ρ
γL
L

= p∗ + p∗∞
ρ

∗γL
L

. (2.11)

Rearranging this expression yields

ρ∗
L = ρL

(
pL + p∞,L

p∗ + p∞,L

)1/γL

. (2.12)

Hence

c∗
L =

√√√√√ γL( p∗ + p∞,L)

ρL

(
pL + p∞,L

p∗ + p∞,L

)1/γL
. (2.13)

The same approach can be used to derive an expression for a 3-rarefaction wave, yielding

φR( p∗) = u∗ = uR − 2(cR − c∗
R)

γR − 1
, (2.14)

where

c∗
R =

√√√√√ γR( p∗ + p∞,R)

ρR

(
pR + p∞,R

p∗ + p∞,R

)1/γR
. (2.15)

For a 1- or 3-shock, the entropy does change across the wave, so we cannot use the same
approach for computing φ. Instead, following the approaches of Haller et al. (2003) and
Toro (2013), we consider the conservation laws across the shock wave in the frame of
reference moving with the shock:

ûL = uL − cs, û∗ = u∗ − cs. (2.16a,b)

Then the Rankine–Hugoniot relations across the shock can be written as

ρLûL = ρ∗
Lû, (2.17)

ρLû2
L + pL = ρ∗

Lû∗2 + p∗, (2.18)

ûL(Ê + pL) = û∗(Ê∗
L + p∗). (2.19)

Defining the mass flux as
QL = ρLûL = ρ∗

Lû∗, (2.20)

and substituting into (2.18), we obtain

QLûL + pL = QLû∗ + p∗ ⇒ QL = −p∗ − pL

û∗ − ûL
. (2.21)

From (2.16a,b), we have that ûL − û∗ = uL − u∗, so

QL = −p∗ − pL

u∗ − uL
⇒ u∗ = uL − p∗ − pL

QL
. (2.22)

We now seek an expression for QL in terms of only the known initial data and p∗. To do
this, we must rewrite (2.21) in terms of pressure and density, and then use the equation
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of state. By noting ûL = QL/ρL and û∗ = QL/ρ∗
L from (2.20), we have

Q2
L = − p∗ − pL

1
ρ∗

L
− 1

ρL

. (2.23)

To find an expression for the unknown ρ∗
L , we expand (2.19) as

ûL

(
ρLû2

L
2

+ ρLeL + pL

)
= û∗

(
ρ∗

Lû∗2

2
+ ρ∗

Le∗
L + p∗

)
, (2.24)

and by rearranging and using (2.20), we obtain

û2
L

2
+ eL + pL

ρL
= û∗2

2
+ e∗

L + p∗

ρ∗
L
. (2.25)

It is now convenient to introduce the free enthalpy, defined as h = e + p/ρ. Hence

û2
L

2
+ hL = û∗2

2
+ h∗

L. (2.26)

To obtain expressions for û2
L and û∗2

in terms of pressure and density, we combine (2.17)
and (2.18) and rearrange to obtain

û∗2 =
(

ρL

ρ∗
L

) (
pL − p∗

ρL − ρ∗
L

)
, (2.27)

û2
L =

(
ρ∗

ρL

) (
pL − p∗

ρL − ρ∗
L

)
. (2.28)

Rewriting (2.26) with these expressions yields

hL − h∗ = 1
2
( pL − p∗)

(
ρL + ρ∗

L
ρLρ∗

)
. (2.29)

Rewriting in terms of specific internal energy yields

eL − e∗ = hL − h∗ + p∗

ρ∗
L

− pL

ρL
= 1

2
( pL + p∗)

(
ρL − ρ∗

L
ρ∗

LρL

)
. (2.30)

Substituting in the expression for e from the stiffened gas equation (2.3) and manipulating
gives

ρ∗
L = ρL

(
pL(γL − 1) + p∗(γL + 1) + 2γLp∞,L

pL(γL + 1) + p∗(γL − 1) + 2γLp∞,L

)
. (2.31)

Substituting back into (2.23) and tidying up yields

Q2
L = 1

2ρL( pL(γL − 1) + p∗(γL + 1) + 2γLp∞,L). (2.32)

Finally, we can write an expression for φL( p∗) by substituting this into (2.22) to give

φL( p∗) = u∗ = uL − p∗ − pL√
1
2ρL

(
pL(γL − 1) + p∗(γL + 1) + 2γLp∞,L

) . (2.33)
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Reflection of an impulsive shock at an interface

The same process can be followed to obtain the expression for a 3-shock:

φR( p∗) = u∗ = uR + p∗ − pR√
1
2ρR

(
pR(γR − 1) + p∗(γR + 1) + 2γRp∞,R

) . (2.34)

Therefore, using (2.10), (2.14), (2.33) and (2.34), we can solve the algebraic expression

φL( p∗) − φR( p∗) = 0 (2.35)

to obtain p∗. It should be noted that at this stage, we do not know the structure of
the solution, so the choice of which functions to use may at first appear ambiguous.
Fortunately, it can be shown that any of the expressions for the left and right functions
can be used provided that those for the correct phase are applied. This is because there is
only one root of (2.35) (Menikoff & Plohr 1989). The resulting expression is a nonlinear
algebraic equation that must be solved iteratively. The solution is therefore not, strictly
speaking, exact, but given that we can find the solution to an arbitrary degree of accuracy,
it is often considered as such.

Once p∗ has been found, the wave structure becomes obvious. If pL < p∗, then the
left-going wave is a shock. If pL > p∗, then the left-going wave is a rarefaction. The same
holds for the right-going waves. The velocity in the star (*) region can be obtained by
evaluating any of the individual expressions used to obtain p∗, e.g. (2.10). The density in
the left and right star regions can then be found, and these depend on the wave structure for
the specific problem. If the left- or right-going wave is a rarefaction, then we can compute
the density by rearranging the equation for the speed of sound in the left or right star
region, which is given by (2.13) and (2.15). Hence for a left-going rarefaction we have

ρ∗
L = γL( p∗ + p∞,L)

c∗2

L

. (2.36)

In the case of a shock wave, the density in the star region can be computed using (2.31).
Now that all of the variables in the star region have been calculated, we need to

obtain expressions for the evolution of the waves. For a shock wave, we can use the
Rankine–Hugoniot relations. Since we know the pressure either side of the shock, we can
rearrange (2.5) to obtain the Mach number and hence the shock speed. As u∗ is constant
across the contact discontinuity, this must propagate at u = u∗. Finally, we must specify
the structure of any rarefaction waves. Using the approach set out by LeVeque (2002) but
with the SG EoS, we define

ξ = x/t. (2.37)

For a left-going rarefaction, we know that at each point in the rarefaction ξ = u − c, so

c = u − ξ. (2.38)

For a left-going rarefaction, substituting this into the equation for the Riemann invariant
yields

u(ξ) = uL(γi − 1) + 2(cL + ξ)

γi + 1
, (2.39)

where i = l, g denotes the fluid in which the rarefaction wave is propagating. We can use
this expression to obtain an expression for density:

ρ(ξ) =
(

ρL(u(ξ) − ξ)2

γi( pL + p∞,i)

)1/(γi−1)

. (2.40)
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Finally, considering that entropy is constant across a rarefaction, we can obtain the
following expression for the pressure:

p(ξ) =
(

ρ(ξ)

ρL

)γi

( pL + p∞,i) − p∞,i. (2.41)

The above expressions define the velocity, density and pressure in the rarefaction wave.
The domain of this wave is bounded by the speeds of the rarefaction front and tail, which
are denoted by the subscripts F and T , respectively. The front travels at

ζr,F = uL − cL. (2.42)

The speed of the tail is found by solving the velocity equation for u(ξ) = u∗, which yields

ζr,T = 1
2(u∗(γi + 1) − uL(γi − 1) − 2cL). (2.43)

Because the tail will always move more slowly than the head, the rarefaction wave spreads
out over time. A similar process can be followed to obtain the structure of a right-going
rarefaction, to obtain

u(ξ) = uR(γi − 1) − 2(cR − ξ)

γi + 1
, (2.44)

ρ(ξ) =
(

ρR(u(ξ) − ξ)2

γi( pR + p∞,i)

)1/(γi−1)

, (2.45)

p(ξ) =
(

ρ(ξ)

ρR

)γi

( pR + p∞,i) − p∞,i. (2.46)

The front of the right-going rarefaction wave travels at a speed

ζr,F = uR + cR, (2.47)

and the tail speed is

ζr,T = 1
2(u∗(γi + 1) − uR(γi − 1) + 2cR). (2.48)

This provides the complete structure of the wave pattern as a function of space and time
for a Riemann problem where the fluids on either side of the initial discontinuity may be
different but where either the ideal or stiffened gas equations of state apply.

3. Construction of the solution for the reflection of an impulsive shock

Now that the solution to the Riemann problem has been derived for a multi-fluid problem,
we can construct the complete solution for an idealised shock pulse interacting with a
liquid–gas interface. Two pulse types are considered, with the second being an extension
of the first. An illustration of the two pulses is given in figure 2. The first pulse type is a
positive square pulse, denoted a P-type pulse, where a region of shocked fluid is bounded
by a shock and a rarefaction. The initial location of the shock front is x = 0, and the tail is
at x = xT .

The second pulse consists of both positive and negative regions, and is denoted a
PN-type pulse. This is motivated by practical shock pulses in liquids that consist of
a shock front followed by an exponentially decaying pressure, with the pressure going
negative before returning to ambient pressure. An example of this is a lithotripter wave
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Figure 2. Illustration of the two idealised pulses: (a) P-type pulse, (b) PN-type pulse. The dash-dotted
vertical line indicates the initial location of the interface.

(Church 1989; Johnsen & Colonius 2008). The reflection/transmission problem for such a
wave can again be treated analytically by considering the idealised version of this pulse.
This consists of a shock front at x = 0, an (initially) infinitely thin rarefaction wave
(x = xM) and a shock wave at the tail (x = xT ) separating the ambient liquid from the
rarefied liquid. In this work, we derive the solution for a pulse where the positive and
negative parts can have different widths and pressures.

3.1. P-type pulse
The P-type pulse consists of a shock wave and an infinitely thin rarefaction wave separated
by some distance. This distance determines the pulse width ΔS . The region in the middle
is said to be shocked (denoted by the subscript S), and the variables in this region can be
determined via the Rankine–Hugoniot relations provided that either the shock pressure or
Mach number is given.

The solution to the reflection/transmission problem comprises three consecutive
Riemann problems, which are shown in figure 3 and overviewed below. We begin with
an initial state with a liquid on the left and a gas on the right, separated by an interface
at x = 0. Part of the liquid is shocked, and we begin with the shock front arriving at the
liquid–gas interface.

(i) t = t1. The right-going shock reaches the liquid–gas interface. This is the first
Riemann problem, with the left state being wS , and the right state wg,0. The solution
to this Riemann problem is a left-going rarefaction wave and a right-going shock
wave that propagates into the gas phase. We now have two new states corresponding
to the rarefied liquid w∗

L,1 and the shocked gas w∗
R,1.

(ii) t = t2. The left-going rarefaction wave reaches the right-going rarefaction at the tail
of the pulse, creating the second Riemann problem, with left state wl,0 and right state
w∗

L,1. The solution to the second Riemann problem is two rarefaction waves, with the
pressure in the star region being lower than the pressures in the left and right states.
This creates a single rarefied state w∗

2.
(iii) t = t3. The right-going rarefaction wave from the second Riemann problem reaches

the fluid interface, which has been moving rightwards at u∗
1 for t > t1. This creates
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Figure 3. Illustration of the stages of the solution for the reflection/transmission of a P-type pulse. The
Riemann problems occurring at t = t1, t2, t3 are shown on the right-hand side, with their left and right initial
states. Regions of shocked and rarefied fluid are shown in red and blue, respectively. Shock and rarefaction
waves are denoted s and r, respectively.

the third Riemann problem, with left state w∗
2 and right state w∗

R,1. The solution to
the final Riemann problem is a shock wave travelling left into the rarefied liquid,
and a rarefaction wave travelling right into the shocked gas. Two additional states
are created, corresponding to the shocked liquid w∗

L,3 and the rarefied gas w∗
R,3.

For a fast–slow interface such as water–air, the solution structure shown in figure 3
remains the same irrespective of the shock strength. This is shown in Appendix A for a
wide range of shock pressures.

The time at which each Riemann problem takes place is a function of the Mach number
and the width of the shock, and can be used to compute the widths of the transmitted and
reflected pulses. Before considering this, we must first acknowledge a key assumption
made in this work. In practice, a square shock will not remain square because the
rarefaction wave spreads out over time, with its front travelling faster than its tail. In order
to have correctly defined Riemann problems, an assumption is made that, over certain
time scales, the rarefaction wave remains infinitely thin. The validity of this assumption is
central to the analytical approach derived in this work, so is considered in more detail here.
Suppose that we have a right-going rarefaction wave connecting a lower-pressure state wL
to a high-pressure right state wR. The rate at which this wave spreads out can be obtained
by considering the speeds of the front and tail of the rarefaction wave. Defining the width
of the rarefaction wave as Δr, the time rate of change of width is

d
dt

(Δr) = Δ′
r = ζr,F − ζr,T = 1

2
(γi + 1)(uR − uL). (3.1)

In the case of a rarefaction connecting a quiescent fluid to a shocked fluid (as in the case
of a square shock), we have, using the Rankine–Hugoniot relations,

Δ′
r = c0

(
M2 − 1

M

)
. (3.2)

Clearly, Δ′
r → 0 as M → 1, so the rarefaction will remain infinitely thin in this limit.

Figure 4 shows how this changes as we move away from the limit. As the Mach number
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Figure 4. Time rate of change of width of a rarefaction wave moving into a region of shocked water.

increases, the rate of spread of the wave increases, but because of the stiff nature of water,
the shock pressure can rise quite high before this becomes significant. This is why the
method set out in this work can readily be applied only to fast–slow problems and not
slow–fast problems.

This analysis is used to make the following assumptions in the solution process outlined
in figure 3. First, the right-going rarefaction wave at the tail of the square wave remains
infinitely thin over t1 < t ≤ t2. Second, the rarefaction created at time t = t1 is infinitely
thin over t1 < t ≤ t2, and finally, the right-going rarefaction created at t2 remains infinitely
thin over t2 < t ≤ t3. These assumptions are required only when a rarefaction comes into
contact with another wave or discontinuity. Thus for the left-going rarefaction created at
t = t2 and the right-going rarefaction created at t3, we do not make this assumption, and
the wave structures are computed as per § 2.2. It is noted that Grove & Menikoff (1990)
describe the rarefaction wave in the case of the fast–slow interaction of a shock wave in
water with a gas bubble as a ‘rarefaction shock’ on account of how thin it is, so these
assumptions do have some physical basis. The validity of these assumptions is tested later
in this work by comparing with high-order-accurate numerical simulations.

We can now derive the times and locations at which each Riemann problem will take
place, which subsequently allows for the widths of the transmitted and reflected pulses
to be obtained. The time and location of the second Riemann problem can be computed
exactly based on the wave speeds derived from the solution to the first Riemann problem.
Note that the assumption during this time period is that the rarefaction does not spread
out. The time t = t2 is

t2 = −xT

2cS
, (3.3)

and the location is

x2 = (cS − uS)xT

2cS
. (3.4)
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The third Riemann problem takes place when the right-going rarefaction reaches the
interface:

t3 = xT

(us − cS − u∗
1 − c∗

L,1

2cSc∗
L,1

)
. (3.5)

The location x3 is then the position of the interface at this time:

x3 = xlg(t3) = u∗
1t3. (3.6)

This time marks the end of the interaction, leading to a transmitted pulse and a reflected
pulse. The width of the reflected pulse at t = t3 is the distance between the contact and the
left-going rarefaction wave created at time t = t2. Therefore,

ΔR = x3 − (x2 + (ul,0 − cl,0)(t3 − t2))

= −xT

(
(u∗

1 + c∗
L,1 − ul,0 + cl,0)(u∗

1 + cS − uS)

2c∗
L,1cS

)
≥ ΔS . (3.7)

The width of the reflected pulse is therefore at least the width of the incident shock, with
the width increasing as the shock pressure increases due to the higher speed of the interface
following the first Riemann problem. The shocked gas is bounded by the portion of the
incident shock that was transmitted into the gas at t = t1 and the rarefaction wave created
at t = t3. For times t > t1, the position of the right-going shock wave is xS,g(t) = ζS,gt.
Therefore, the width of the shocked region in the gas phase at time t = t3 is

ΔT = ζS,gt3 − x3 = xT

(
(u∗

1 + c∗
L,1 − uS + cS)(u∗

1 − ζS,g)

2c∗
L,1cS

)
. (3.8)

3.2. PN-type pulse
The solution strategy for this problem is similar to that of the P-type pulse, with Riemann
problems being solved each time two waves interact or a wave interacts with the interface.
The solution structure is shown in figure 5 and consists of six Riemann problems. The same
assumptions are made that rarefaction waves remain infinitely thin during the intermediate
stages. This applies only to waves that will subsequently interact with another wave.

(i) t = t1. The right-going shock reaches the liquid–gas interface. This is the first
Riemann problem, with the left state being wS,+ve, and the right state wg,0. As
with the positive square wave, the solution consists of a left-going rarefaction and a
right-going shock. The interface will move with the velocity determined from this
Riemann problem.

(ii) t = t2. The left-going rarefaction created at t = t1 reaches the right-going rarefaction
that separates the positive and negative parts of the incident pulse. The solution is
two rarefaction waves with a constant pressure between them.

(iii) t = t3. The left-going rarefaction created at t2 reaches the shock wave at the tail of
the pulse. The solution is a left-going rarefaction and a right-going shock. Strictly
speaking, this leads to two states, but as will be shown, the density across the
discontinuity is extremely small, so the discontinuity may be considered degenerate.

(iv) t = t4. The right-going rarefaction created at t2 reaches the interface. If the widths
of the two parts of the pulse are similar, then this will likely take place after t3,
but this order does not affect the solution. The solution is a left-going shock and
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Figure 5. Illustration of the stages of the solution for the reflection/transmission of a PN-type pulse. The
Riemann problems occurring at t = t1, . . . , t6 are shown on the right-hand side, with their left and right initial
states. Regions of shocked and rarefied fluid are shown in red and blue, respectively. Shock and rarefaction
waves are denoted s and r, respectively.

a right-going rarefaction. The velocity in the star region is now negative, so the
interface will move leftwards.

(v) t = t5. The right-going shock created at t3 and the left-going shock created at t4 meet,
creating the fifth Riemann problem. The solution is two new shocks propagating in
opposite directions: one going left, and one going right, towards the interface.

(vi) t = t6. The right-going shock created at t5 reaches the interface, which has been
travelling at u∗

L,4 for t > t4. The solution to this Riemann problem is a left-going
rarefaction and a right-going shock.

As with the P-type pulse, it can be shown that this solution structure is always the same
for a water–air interface, but only for certain pressures. In Appendix B, this is shown for
pulses where the magnitude of the pressure in both the negative and positive parts of the
pulse is up to 500 MPa. Beyond this, it will be shown in § 4.5 that a vacuum state can
be created to the right of the interface, and the present model cannot accommodate such
a case. However, this depends on the fluids considered and the value of p∞. Clearly, a
higher value of p∞ will accommodate lower pressures in the liquid, but this may lead to
the gas phase being put into vacuum earlier. Depending on the widths of the two parts
of the pulse, t4 may occur before or after t3. For example, if the positive part is very thin
compared to the negative part, then it is likely that t4 will occur first. However, Appendix B
shows that this will not alter the overall solution. The times and locations of each Riemann
problem can again be derived by considering the speeds at which the different waves and
the interface travel during the process. These are also given in Appendix B, and can be
used to derive the widths of the reflected and transmitted pulses. The reflected pulse is
bounded by the rarefaction wave created at time t = t3 and the rarefaction wave created at
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t = t6. This leads to the expression

ΔR = x6 − x3 − (t6 − t3)(ul,0 − cl,0). (3.9)

The transmitted pulse is bound by the shock front that is transmitted into the gas at t = t1
and the shock created at t6. Therefore,

ΔT = ζR,1t6 − x6. (3.10)

The widths of the parts are discussed in subsequent sections in the context of the different
regimes: the acoustic limit, weak shocks and strong shocks.

4. Interaction of an impulsive shock with a water–air interface

4.1. Comparison with numerical simulations
Thus far, a description of the process of reflection and transmission of two idealised
pulses at a liquid–gas interface has been presented. In this subsection, the analytical
model is compared to numerical simulations to confirm that it is indeed able to describe
the reflection and transmission process. To this end, we employ a well-established
front-tracking framework, FronTier (Glimm et al. 1981, 1998; Chern et al. 1986; Du
et al. 2006; Bempedelis & Ventikos 2020b), that solves the compressible Euler equations
closed with the SG EoS (see § 2.1). The equations are solved on a uniform grid using
a fifth-order WENO scheme and a third-order Runge–Kutta method. In the numerical
results presented, a grid convergence study (see Appendix C) has confirmed that numerical
diffusion effects are negligible. The employed front-tracking solver has been validated
against several experimental and numerical data, as well as benchmark tests, in a wide
range of multiphase flow problems involving shock waves and interfaces (Bempedelis &
Ventikos 2020a,b, 2022; Bempedelis et al. 2021).

Suppose that we have a water–air interface initially at x = 0 m. The primitive variables
in the ambient liquid and gas are

wl,0 =
⎛
⎝ρl,0

ul,0
pl,0

⎞
⎠ =

⎛
⎝ 998

0.0
1 × 105

⎞
⎠ , wg,0 =

⎛
⎝ρg,0

ug,0
pg,0

⎞
⎠ =

⎛
⎝ 1.16

0.0
1 × 105

⎞
⎠ . (4.1a,b)

At time t = t1, a right-going square pulse with width ΔS = 2 × 10−4 m comes into contact
with the interface. For both pulse types considered, the pressure in the positive part is pS =
pS,+ve = 107 Pa. For the PN-type pulse, pS,−ve − pl,0 = −( pS,+ve − pl,0) and ΔS,+ve =
ΔS,−ve = 1 × 10−4 m. The velocity and density in the pulses are determined using the
Rankine–Hugoniot relations. Figures 6 and 7 show the solutions for both cases. The initial
conditions are shown along with intermediate states, and at time t = 2 × 10−7 s, which is
shortly after the process completes in both cases. For the P-type pulse, all intermediate
conditions are shown, and the states are labelled to show that the solution does indeed
follow the process set out in § 3. For the PN-type pulse, a single intermediate condition
is shown for brevity. The agreement between the analytical and numerical predictions is
excellent at all stages, showing that the pulse–interface interaction process can indeed be
approximated via a small number of wave interactions.

For the P-type pulse, the reflected pulse puts the liquid into tension. It can also be seen
that this happens only when the rarefaction wave meets the tail of the incident pulse,
corresponding to the second Riemann problem. Both the numerical and analytical models
predict a slightly lower pressure magnitude in the reflected pulse than is predicted by
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Figure 6. Analytical and numerical predictions for the reflection/transmission of a P-type pulse (pS =
10 MPa) at a water–air interface: (a) initial conditions; (b) t = 5 × 10−8 s (t1 < t < t2); (c) t = 1 × 10−7 s
(t2 < t < t3); (d) t = 2 × 10−7 s (t3 < t).

linear theory. Linear theory predicts pressure −9.89 MPa, whereas the numerical and
analytical approaches lead to reflected pressure −9.71 MPa. Whilst this difference is
relatively small, it will be shown later that the present theory diverges significantly from
linear theory for larger shock pressures. This also means that the pressure in the reflected
pulse is not simply a sum of the strength of the left-going rarefaction wave created
at t1 and the ambient pressure. The reflected pulse is slightly wider than the incident
pulse, and the interface has moved slightly rightwards. This pulse is considered to be
‘weak’, with uS 	 cl,0, and it can be seen from the numerical results that the rarefaction
waves do remain extremely thin over the relevant time scales. This suggests that for weak
shock waves at least, the assumptions made in order to derive the analytical solution
are valid.

For the PN-type pulse, a reflection of the wave can be seen and the magnitude of the
negative pressure is the same as for the P-type pulse. The region in tension is slightly
wider that the initial shocked region, again giving the same result as for the P-type pulse.
The negative part of the incident pulse reflects as a positive part, and the pressure in
this region is higher than would be predicted by linear theory, and also higher than the
incident shock pressure. Linear theory predicts reflected pressure 9.89 MPa, whereas both
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Figure 7. Analytical and numerical predictions for the reflection/transmission of a PN-type pulse
(pS,+ve = 10 MPa) at a water–air interface: (a) initial conditions; (b) t = 8 × 10−8 s (t4 < t < t5);
(c) t = 2 × 10−7 s (t6 < t).

the analytical and numerical models predict 10.09 MPa. Furthermore, while the tension
region in the reflected pulse is wider than the incident shocked region, the shocked
region in the reflected pulse is slightly narrower. Figure 7(b) also shows that a region
with pressure significantly below that of the incident pulse exists in the intermediate
state. Referring to figure 5, this is w∗

2, and it will exist only temporarily (t2 < t < t5).
It comes about when the rarefaction wave created at t1 reaches the rarefaction wave
that separates the positive and negative parts of the pulse. The pressure in this state
will always be more negative than the pressure in either the incident or reflected parts
of the pulse, and should be considered carefully in practical applications as this could
lead to significantly higher levels of cavitation depending on the duration for which
it exists.

These results show that the proposed analytical approach is valid, with the results
closely matching those from high-order numerical simulations of the Euler equations. It
is also clear that there are differences between these results and the predictions of linear
theory. Given that linear theory allows for the derivation of reflection and transmission
coefficients, we will now extend these concepts to the nonlinear problems considered in
this work.
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Figure 8. Reflection and transmission coefficients based on peak pressures for a P-type pulse.

4.2. Reflection and transmission coefficients
In the context of this work, the simplest definition of a reflection and transmission
coefficient is the ratio of the peak pressure in the reflected and transmitted waves relative
to the incident shock pressure. For the P-type pulse, these coefficients are defined as

CR = p∗
2 − pl,0

pS − pl,0
, (4.2)

CT = p∗
1 − pg,0

pS − pl,0
. (4.3)

There are two comparisons that we can make here: first with linear theory, and second with
a solution derived from a single Riemann problem solved at the interface. As discussed
in the Introduction, linear theory results in reflection and transmission coefficients that
depend only on the differences in impedance between the media across the interface. An
alternative approach is to solve a Riemann problem only at the interface to determine
the strength of the right-going shock and the left-going rarefaction. This is what would
be obtained if the approach of Henderson (1989) were to be applied directly to a
finite-width pulse. In this case, the pressure in the reflected pulse is the sum of the
strength of the rarefaction wave and the ambient pressure in the liquid. Figure 8 shows
the reflection and transmission coefficients for a range of shock pressures using the three
different approaches. Numerical solutions are also included for comparison. The results
are presented for the peak over-pressure p′

S = pS − pl,0.
First, it is clear that in the acoustic limit, all methods tend to the same value. Away

from this, significant differences are observed. For the reflection coefficient, the current
analytical approach and the numerical simulations predict a decrease in the magnitude of
the reflection coefficient as the shock pressure increases. This represents a divergence from
linear theory as one might expect for what is a highly nonlinear problem. The reflection
coefficient derived by solving a single Riemann problem also differs significantly from
the present approach, suggesting that the pulse–interface interaction problem cannot be
modelled accurately by only considering what happens at the interface. This is because
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the assumption that wave interactions do not alter the wave properties is not valid. Thus
we must consider how the rarefaction wave is altered as it propagates into the region of
lower pressure behind the shock. For the transmission coefficient, there are no further
interactions, so solving a single Riemann problem at the interface is sufficient. However,
it can again be seen that linear theory fails at large shock pressures. The numerical results
agree very well with the present analytical approach, although some divergence is seen in
the transmission coefficient at higher pressures. This is likely due to the assumptions in
solving the interface interaction, i.e. the coupling of the two fluids at the interface, in the
numerical methods that we use, that include linearisations, isentropic extrapolations and
‘overheating’ effects (for more details, see Fedkiw, Marquina & Merriman 1999; Hu &
Khoo 2004).

For a pulse with both positive and negative parts, it was shown in the previous section
that the two parts reflect differently. It therefore makes sense to consider reflection and
transmission coefficients for the two parts separately to understand how and why these
vary. The coefficients are defined using specific solutions to the Riemann problems that
lead to the reflected and transmitted pulses

CR+ve = p∗
3 − pl,0

pS,+ve − pl,0
, (4.4)

CR−ve = p∗
5 − pl,0

pS,−ve − pl,0
, (4.5)

CT+ve = p∗
1 − pg,0

pS,+ve − pl,0
, (4.6)

CT−ve = p∗
1 − pg,0

pS,−ve − pl,0
. (4.7)

Thus CR,+ve refers to the reflection of the positive part of the incident pulse. We first
consider the case where the magnitudes of the over- and under-pressures in the incident
pulse are the same. The coefficients are shown in figure 9, along with numerical results.
Agreement between the analytical and numerical results is again very good. The reflection
of the positive part of the incident wave is the same as for the P-type pulse. The magnitude
of the reflection of the negative part increases with shock pressure, meaning that the
maximum pressure of the reflected pulse will be greater than the maximum pressure in
the incident pulse. This behaviour is mirrored in the transmission coefficients, and again
the transmission of the positive part of the pulse is the same as for the positive square
wave.

Coefficients (4.4)–(4.7) assume that the reflection and transmission of each part of the
pulse depend only on the magnitude of that particular part. In many practical applications,
the magnitude of the negative part is different from that of the positive part. It is therefore
worth considering how these coefficients change when the peak pressure in the negative
part is different from that in the positive part. This is shown in figure 10. This tells us
two things. First, the reflection of the positive part is independent of the magnitude of
the negative part. This has already partly been shown because the reflection coefficient
for a P-type wave was the same as that derived for the positive part of the PN-type wave.
However, the reflection coefficient of the negative part is dependent on the strength of both
the positive and negative parts of the incident pulse.

For the PN-type pulse, a region of strongly rarefied liquid (w∗
2) results when the

left-going rarefaction wave created at t = t1 reaches the tail of the positive part of the
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Figure 9. Reflection and transmission coefficients based on peak pressures for a PN-type pulse where the
widths of the two incident regions are constant and p′

S,−ve = −p′
S,+ve. Numerical results are shown with

crosses.
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Figure 10. Reflection coefficients for a PN-type pulse where the negative and positive pressure magnitudes
differ.

incident pulse (t = t2). This state exists only for t2 < t < t5. As with the negative part of
the reflected pulse, the magnitude of this negative pressure is also a decreasing function
in the incident shock pressure. By non-dimensionalising by the difference between the
positive and negative pressures in the incident wave so that

CR,tmp = p∗
2 − pl,0

pS,+ve − pS,−ve
, (4.8)

the pressures in this temporary region all collapse onto a single line for weaker shocks,
as shown in figure 11. For shocks where pS,+ve > 100 MPa, small deviations are seen,
with the magnitude of the coefficient reducing for pulses where the relative magnitude of
the negative pressure is greater. This pressure will exist only for a time determined by the
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Figure 11. Coefficient for the minimum pressure that will exist during the reflection process, as defined by
CR,tmp.

width of the negative part of the incident pulse. Depending on the width and the minimum
pressure that exists during this time, this may be of considerable importance as it could
lead to higher levels of cavitation than would be predicted by only considering the final
pressures in the reflected pulse.

The solution (§ 3) and reflection/transmission coefficients have been derived for an
arbitrary set of liquid–gas media modelled with the SG EoS, but their exact values depend
on the EoS parameters. In this work, we consider the values γ = 2.955 and p∞ = 722 MPa
for liquid water, but different values are used in other works, depending on factors such
as the temperature. For example, Haller et al. (2003) use γ = 3, p∞ = 618 MPa, and
Métayer, Massoni & Saurel (2004) use γ = 2.35, p∞ = 1000 MPa. Irrespective of the
particular liquid under consideration, the values of p∞ do have an effect on the reflection
and transmission of the pulse. This is exemplified in figure 12 for a P-type pulse, suggesting
two things. First, the level of ‘stiffness’ of the water influences the results significantly
only for higher pressures, which is expected as compressibility plays a greater role here.
Second, the ‘stiffer’ the water is assumed to be, the smaller the change in the reflection
coefficient as the shock pressure increases. The change in the transmission coefficients can
be explained more readily using either linear theory or an approximate Riemann solver
(e.g. Hu & Khoo 2004) because the change in p∞ alters the speed of sound, which in turn
changes the impedance.

As well as considering the pressure in the reflected and transmitted pulses, it is also of
interest to consider the velocity. This is shown in figure 13 for both pulse types following
the solution to each Riemann problem. For the PN-type pulse, p′

S,−ve = p′
S,+ve in this

example. The particle velocities are remarkably constant as a function of the particle
velocity in the incident pulse. Following the initial interaction of the shock front with
the interface, the interface will move rightwards at u∗

1 ≈ 2uS for all shock pressures. It
is interesting to note that this is the same as the particle velocity obtained for a linear
problem by considering the limit as the difference in impedance becomes very large. This
relationship was also noted by Grove & Menikoff (1990) when considering a similar
fast–slow problem for a shock wave. For the P-type pulse, u∗

1 is the velocity in the
transmitted pulse, and u∗

2 is the velocity in the reflected pulse. Also, u∗
3 is the velocity

of the fluid in between the reflected and transmitted pulses, and it can be seen that this
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Figure 12. (a) Reflection and (b) transmission coefficients for a P-type pulse at a water–air interface with
varying values of p∞, for γl = 2.955 and γg = 1.4.
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Figure 13. Particle velocity in the star regions following each Riemann problem: (a) P-type pulse;
(b) PN-type pulse.

is zero for all shock pressures, again demonstrating that the entire process results in only
a reflected and transmitted pulse with no further changes to either fluid. For the PN-type
pulse, as with the P-type pulse, the interface will initially move at u∗

1 ≈ 2uS , this time over
the interval t1 < t < t4. The solution to the fourth Riemann problem then reverses the
interface, with the magnitude being almost exactly the same for all but the largest shocks.
Finally, the interface is stopped at t6, signifying the end of the process.

4.3. The acoustic limit
To provide further insights into the properties of the reflected and transmitted waves, it is
useful to consider the problem in three different regimes: the acoustic limit, the weak shock
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regime and the strong shock regime. Formally, the acoustic limit is defined by M → 1+.
The particle velocities tend to zero, and the wave speeds all tend to the sound speed in the
relevant fluid. It has already been shown that any rarefaction waves will remain infinitely
thin in the acoustic limit. Since this is the only assumption made in the derivation in § 3,
the method is exact in this limit.

The reflection and transmission coefficients were all shown to tend to the values
predicted by linear theory in figures 8, 9 and 10. Furthermore, we also have that

lim
M→1+

uS = 0, (4.9)

so u∗
i → 0 for both pulses. The sound speeds and wave speeds will all tend to the ambient

speeds in the respective fluids. For a P-type pulse, the width of the reflected wave, ΔR, is
obtained by taking the limit of (3.7):

lim
M→1+

ΔR = −xT = ΔS (4.10)

and
lim

M→1+
t3 = −xT/cl,0. (4.11)

In other words, the width of the reflected pulse is exactly the same as the width of the
incident pulse. The width of the transmitted pulse can be found by taking the limit of
(3.8):

lim
M→1+

ΔT = −xT
cg,0

cl,0
. (4.12)

That is, the width of the transmitted pulse is equal to the width of the incident pulse
multiplied by the ratio of the sound speeds of the two fluids. This is analogous to the
linear case, where the wavelength reduces proportional to the ratio of sound speeds of the
two fluids.

Using the same argument for a PN-type pulse,

lim
M→1+

x6 = 0, (4.13)

so the interface will also remain in the same place in the acoustic limit. The reflected and
transmitted pulse widths are found by taking the limit of (3.9) and (3.10) as M → 1+, and
it is straightforward to show that these lead to the same expressions as for the P-type pulse.

4.4. Weak shocks
Moving away from the acoustic limit, the assumptions that the particle velocities are zero
and the Mach number is M = 1 are no longer valid. This represents a departure from
where linear theory is formally valid. For a weak shock, it is assumed that uS remains
small compared to cl,0. Therefore, the rarefaction waves will remain very thin over the
relevant time scales. For the P-type pulse, the negative pressure in the reflected pulse
comes about following the second Riemann problem. For weak shocks, the pressure behind
the rarefaction wave produced by the initial interaction of the shock and the interface
remains roughly constant at levels slightly above the ambient pressure. Therefore, the
solution to the second Riemann problem is determined primarily by the difference in the
particle velocities. The increasing positive velocity in the right initial state as the incident
shock pressure increases leads to a rarefied region with an increasingly negative pressure.
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For weak shocks, because the solution to the first Riemann problem yields a pressure that
is very close to the ambient pressure, it is possible to derive a closed-form approximate
expression for the reflected and transmitted wave using the solution derived in § 3. The
interface moves with u∗

1 ≈ 2uS for t1 ≤ t ≤ t3, corresponding to the liquid becoming
rarefied and the gas becoming compressed. For a weak incident shock, p∗

1 is only slightly
larger than pl,0, so c∗

L,1 ≈ cl,0. Therefore, using these two approximations, we can rewrite
x3 as

x3 ≈ −uSxT

(
cl,0 + cS + uS

cScl,0

)
. (4.14)

Using the same assumptions and assuming that the ambient liquid is at rest, the width of
the rarefied region at t = t3 is

ΔR ≈ −xT

(
(cl,0 + uS)(cS + uS)

cl,0cS

)
. (4.15)

We now call upon the conservation of mass in the liquid. Comparing the initial state and
that at t = t3, we have∫ xT

−∞
ρl,0 dx +

∫ 0

xT

ρS dx =
∫ x3−ΔR

−∞
ρl,0 dx +

∫ x3

x3−ΔR
ρ∗

2 dx. (4.16)

Evaluating this and rearranging gives

ρ∗
2 = ρl,0(xT + ΔR − x3) − ρSxT

ΔR
= cl,0cSρS

(c0 + uS)(cS + uS)
. (4.17)

The pressure in the rarefied region can be obtained by rearranging the Rankine–Hugoniot
relations (2.5) and (2.6):

p∗
2 = ( pl,0 + p∞)(1 + γl)

1 + γl

(
4ρl,0

ρl,0(1 − γl) + ρ∗
2 (1 + γl)

− 1
) − p∞. (4.18)

Similarly, in the gas we have that∫ ∞

0
ρg,0 dx =

∫ x3+ΔT

x3

ρ∗
R,1 dx +

∫ ∞

x3+ΔT
pg,0 dx. (4.19)

The shock wave that propagates into the gas is very weak in comparison to that in the
liquid, so ζS,g ≈ cg,0. Using this, we can obtain the following expression for ρ∗

R,1, which
again depends only on the initial data:

ρ∗
R,1 = cg,0ρg,0

cg,0 − 2uS
. (4.20)

The pressure in the shocked gas can again be obtained by way of the Rankine–Hugoniot
relations. These expressions enable the reflection–transmission of a shock wave at a
liquid–gas interface to be computed without solving a Riemann problem, potentially
allowing for the approach to be more easily integrated into other applications.

This also has a useful physical interpretation, explaining how a region of rarefied liquid
(where p < pl,0 and ρ < ρl,0) can result from a region of shocked liquid. For a solution
consisting of only a left-going rarefied region (in the liquid), the only way for mass in the
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liquid to be conserved is for the interface to move rightwards to precisely compensate for
the difference in the mass of the incident and reflected pulses. Should this not happen
(e.g. if the interface velocity was altered by some other mechanism), then additional
waves would be created in order to balance out the mass in the liquid. However, in the
case of a weak shock, these differences are balanced by the movement of the interface.
For the PN-type pulse, the interface initially moves rightwards before moving leftwards
for t4 < t < t6. This explains why the negative part of the reflected pulse is wider, and
the positive part is narrower. Noting these changes in the widths of the pulse, it is also
useful to consider the total ‘strength’ of the reflected and transmitted pulses by integrating
the pressure over their respective widths. For the P-type pulse, modified reflection and
transmission coefficients can therefore be defined as

ĈR =

∫
ΔR

( p − pl,0) dx∫
ΔS

( pS − pl,0) dx
, (4.21)

ĈT =

∫
ΔT

( p − pg,0) dx∫
ΔS

( pS − pl,0) dx
. (4.22)

For the PN-type pulse, we again consider the reflection of the positive and negative parts
separately:

ĈR,+ve =

∫
ΔR,−ve

( p − pl,0) dx∫
ΔS,+ve

( pS,+ve − pl,0) dx
, (4.23)

ĈR,−ve =

∫
ΔR,+ve

( p − pl,0) dx∫
ΔS,−ve

( pS,−ve − pl,0) dx
. (4.24)

Similar expressions can be written for the modified transmission coefficients. For the
P-type pulse, the modified reflection coefficient is less sensitive to the incident shock
pressure than the coefficient presented earlier. This is shown in figure 14(a) and is because
the drop in the pressure magnitude in the reflected pulse is partially offset by the increase
in its width. A similar pattern is observed for the PN-type pulse. The wider reflected pulse
offsets the reduction in the pressure magnitude, although by less than for the P-type pulse.
In the weak regime where the rarefaction waves are assumed to not spread out, the modified
reflection and transmission coefficients for the P-type pulse are independent of the incident
pulse width. For the PN-type pulse, this is true only when ΔS,+ve/ΔS,−ve is constant. If
the relative widths vary, then differences are seen in the modified coefficients even for
weak shocks, as shown in figure 14(b). This shows the two modified reflection coefficients
for a range of width ratios. For a water–air interface, the magnitude of ĈR,+ve is always
less than would be predicted by linear theory. Whilst this coefficient is less dependent on
the negative part of the pulse than the negative coefficient is on the positive part, there is
still a weak dependency, because the rarefaction wave at the front of the reflected pulse
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Figure 14. Modified reflection coefficients for: (a) both P-type and PN-type pulses (for the PN-type pulse, the
widths and magnitudes of over- and under-pressures are equal); (b) the PN-type pulse with varying width and
pressure ratios, where p′

S,+ve = 10 MPa.

has interacted with the negative portion of the incident wave. The reflection coefficient
of the negative portion of the pulse is more sensitive to changes in the pulse parameters,
which is to be expected because it depends more strongly on the positive portion as well
as the negative portion. This again highlights the nonlinearity of the process even for weak
shocks.

4.5. Strong shocks
As we move away from the weak shock regime, the assumption made in this study
regarding rarefaction waves starts to break down. Figure 15 shows the pressure,
velocity and density at time t = 2 × 10−7 s for a P-type pulse with pS = 5 × 108 Pa.
The agreement between the analytical approach and the numerical simulations for the
minimum/maximum pressure in the reflected/transmitted pulse is again very good, but
there are discrepancies with the overall shape. This is because the assumption that the
rarefaction waves remain infinitely thin over the relevant time scales becomes increasingly
less valid as the shock pressure increases. The particle velocity in the shock and reflected
waves is 284 m s−1, and this leads to the rarefaction waves spreading out, even over short
time scales. The analytical solution allows for the leftmost rarefaction wave to spread
out for t > t2, so it is not infinitely thin; but because it is not allowed to spread out for
t1 ≤ t ≤ t2, it appears thinner than is predicted by the simulation. The same effect is seen
in the left-going shock that propagates into the rarefied liquid. In the analytical approach,
this is a single shock resulting from the infinitely thin rarefaction arriving at the contact at
t = t3. In the numerical simulation, this wave has spread out slightly, effectively leading
to the formation of a series of shocks that look like an inverse rarefaction wave. It should
be noted that this problem could be ameliorated by splitting up the rarefaction waves into
segments and then treating each segment as an individual wave. This would increase the
number of wave interactions taking place, and hence the number of Riemann problems to
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Figure 15. Pressure, density, and velocity at t = 2 × 107 s following interaction of a P-type pulse with
pS = 5 × 108 Pa with a water–air interface.

be solved. Such an approach is permissible in this framework, but is beyond the scope of
what we consider here.

Because the magnitude of the reflection coefficient reduces with increasing shock
pressure (see figure 8), positive shock pressures greater than p∞ are permissible. From
a mathematical standpoint, a solution can be obtained provided that the pressure does not
drop below −p∞. When using the approach set out in this study, we suggest p∞ as an
appropriate limit for the maximum shock pressure.

For the PN-type pulse, another limiting factor must be considered. At time t = t4, the
negative part of the incident pulse starts to transmit into the gas phase. The solution to the
Riemann problem at this time determines the pressure and density behind the rarefaction
wave that propagates into the gas phase. A pressure or density of zero would imply a
vacuum, and this presents a limit to the model presented in this work. Figure 16 shows
the pressure in the negative portion of the transmitted wave following the solution to
the fourth Riemann problem as a function of the pressure in the negative portion of the
incident pulse. As can be seen, for a water–gas interface at atmospheric pressure, the gas
will be put into a vacuum state once the negative pressure in the incident shock drops
below approximately −500 MPa. However, it can also be seen that this is dependent on the
pressure in the positive part of the incident pulse as well as the negative part. Higher
positive shock pressures require lower negative pressures to put the gas into vacuum.
For p′

S,−ve/p′
S,+ve = −0.5, the model predicts that the pressure in the liquid will drop

below p∞ before the pressure in the gas reaches zero. This further highlights the nonlinear
behaviour that arises from the different wave interactions, particularly as the pressure
magnitudes increase.

It is important to note that the reflection of many of these stronger shocks would likely
induce cavitation, which would radically alter the dynamics of the fluid, and it is beyond
the scope of this work to consider this problem.
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Figure 16. Pressure in the negative portion of the transmitted pulse in the gas phase.

5. Reflection of non-square waves

To demonstrate the applicability of the approach set out in this work, we consider the
reflection of two non-square, i.e. non-idealised, pulses. A modified Friedlander wave and
a lithotripter wave are used for this as they represent practical realisations of the P-type
and PN-type pulses.

The modified Friedlander equation describes a waveform that closely matches
experimental measurements of blast waves (Dewey 2010). Based on the original
Friedlander model (Friedlander 1946), the modified equation was introduced to provide
better agreement for blast waves with larger peak over-pressures. It has the form

p′(t) = p′
S

(
1 − t

tI

)
exp(−bt/tI), (5.1)

where tI is the over-pressure duration, and b is a constant. Besides blast waves, the
Friedlander model was also found to provide a good description for laser-induced shock
waves in water by Bokman et al. (2023), who used it to investigate shock-induced bubble
collapse. The model parameters considered in this work are based on the experiments of
Bokman et al. (2023), with tI = 8.265 × 10−7 s, b = 10, and p′

S = 3, 30 and 300 MPa.
In the context of medical applications, shock waves generated by a lithotripter are often

modelled (Church 1989; Johnsen & Colonius 2008) as

p′(t) = 2p′
S e−at cos (2πft + π/3). (5.2)

This pulse consists of a shock front followed by an exponentially decaying pressure, and
includes a tensile part before returning to atmospheric pressure. The parameters considered
in this work are a = 9.1 × 105 s−1, f = 83.3 kHz (Shams, Bidi & Gavaises 2024), and
p′
S = 1, 10 and 100 MPa.
Figure 17(a) shows the non-dimensional pressure of the incident and reflected

Friedlander waves for each over-pressure level. For the lowest over-pressure, the reflected
waveform is similar to that of the incident wave. At higher over-pressures, the front of
the reflected pulse spreads out and the pressure magnitude reduces, as also predicted by
the analytical model. The reflection coefficients from the numerical simulations are CR =
−0.997, −0.970, −0.778 compared with CR = −0.997, −0.973, −0.780 predicted by the
analytical approach. This agreement suggests something important about the nature of
the reflection process. From an analytical perspective, the reflection of this type of wave
actually consists of an infinite number of Riemann problems. However, it is possible to
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Figure 17. Reflection of (a) a modified Friedlander pulse and (b) a lithotripter pulse, at a water–air interface
for three different peak over-pressures.

predict the peak pressure of the reflected wave with good accuracy by considering only
three.

Similar observations can be made for the reflection of the positive part
of the lithotripter wave (figure 17b). Here, the coefficients predicted by the
simulations are CR,+ve = −0.999, −0.986, −0.910 compared with analytical predictions
CR,+ve = −0.999, −0.990, −0.914. Again, there is good agreement between the
two approaches, and a reducing magnitude of the coefficient is predicted with
increasing shock pressure. The reflection coefficients for the negative part are
CR,−ve = −0.999, −0.992, −0.992 for the numerical simulation, and CR,−ve =
−0.999, −1.000, −1.001 for the analytical model. Whilst the agreement is still fairly good,
with the magnitude being higher than that for the positive part, there is a subtle difference.
Because the negative part is not bounded by a discontinuity, the reflection behaves more
like a linear process, and we do not see a significant change in the coefficient as a function
of pressure.

6. Conclusions

This work has set out an approach for computing the reflection and transmission
coefficients for an impulsive shock wave interacting with a liquid–gas interface. The
problem is described as a series of Riemann problems for an idealised pulse, which allows
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for the pressure, density and velocity in the reflected and transmitted pulses to be computed
analytically. The idealised pulses considered are a positive square wave (P-type pulse) and
a square wave consisting of a positive portion ahead of a negative portion (PN-type pulse).
Comparisons with numerical simulations show that the analytical approach accurately
predicts the solution structure and also the pressure, density and velocity values for a wide
range of incident shock pressures. Good agreement with numerical simulations was also
observed for the reflection of non-idealised waves.

The proposed approach was used to explore the sensitivity of the reflection and
transmission coefficients to changes in shock pressure, pulse width and, for the PN-type
pulse, the ratios of widths and pressure magnitudes. In the acoustic limit, the method yields
the same results as linear theory. Away from the acoustic limit, it was shown that defining
a reflection coefficient using only the solution to a Riemann problem at the interface
will lead to an over-prediction of the negative pressure. At least one additional Riemann
problem must be solved to compute the pressure in the reflected pulse to account for the
additional interactions between the reflected wave and the tail of the pulse.

For both square and non-square waves, the shape of the reflected wave changes as the
shock pressure increases. The most notable change is the shape of the front: the shock front
is a single discontinuity, whereas the front of the reflected wave is a rarefaction that spreads
out as it propagates. This becomes more pronounced as the shock pressure increases due
to the larger particle velocities. Furthermore, the magnitude of the reflection coefficient
decreases as the incident shock pressure increases, and it is shown that this effect can be
captured only by treating the interaction of the initially reflected rarefaction with the tail of
the shock as a Riemann problem. Applying linear superposition of the reflected rarefaction
wave and the ambient pressure will lead to erroneous predictions for all but the weakest
shocks. For a PN-type pulse, it has also been shown how a region of negative pressure with
a magnitude greater than that of the incident shock can exist, but only for a finite period
of time, depending on the width of the negative part of the pulse. Accounting for this is
important for applications where knowing the exact magnitude of the negative pressure is
essential.

Future work should consider in more detail the case of strong shock interactions. In
particular, an understanding of the dynamics where vacuum states are likely is needed.
Non-planar waves should also be considered, as should a non-planar interface such as a
bubble. Additionally, future research may involve analysing the performance of numerical
methods for compressible multiphase flows, with a specific focus on the interaction
between short shocks and interfaces.
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Appendix A

Here, the solution to each Riemann problem is considered for the P-type pulse to
demonstrate the invariance of the solution structure to the incident shock pressure.
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Figure 18. Solution to each Riemann problem for a P-type pulse at a water–air interface. The left-hand axis
shows the difference in pressure between the star region and the left state, and the right-hand axis shows the
same for the right state.

Consider the case of a shock wave in water interacting with air, with both fluids at
atmospheric pressure. The problem thus consists of three initial states, namely the ambient
liquid, the shocked liquid and the ambient gas:

wl,0 =
⎛
⎝ρl,0

ul,0
pl,0

⎞
⎠ =

⎛
⎝ 998

0.0
1 × 105

⎞
⎠ , wS =

⎛
⎝pS

uS
ρS

⎞
⎠ , wg,0 =

⎛
⎝ 1.16

0.0
1 × 105

⎞
⎠ . (A1a–c)

Both fluids are modelled using the SG EoS, where γ = 1.4 and p∞ = 0 Pa for air, and
γ = 2.955 and p∞ = 7.22 × 108 Pa for water. The solution for pressure for the three
Riemann problems is shown in figure 18 for shock pressures ranging from p0 to 104p0.
The shock velocity and density are determined using the Rankine–Hugoniot relations. The
pressure in the star region for each Riemann problem is shown relative to the pressure into
which the left-going and right-going waves will propagate, thus showing what form the
waves will take. A positive value indicates that the wave is a shock, and a negative value
implies a rarefaction. For the first Riemann problem, it is clear that the left-going wave
is always a rarefaction, and the right-going wave is always a shock, albeit a much weaker
one than the incident shock. The second Riemann problem results in two rarefactions,
where the pressure difference relative to the left and right states is constant. Finally,
the Riemann problem resulting from the right-going rarefaction reaching the right-going
interface results in a rarefaction being transmitted into the gas and a shock propagating
back into the liquid.

Appendix B

As with the P-type pulse, it can be shown for the PN-type pulse that the solution structure
is invariant with the initial shock pressure for a water–air interface. This is illustrated in
figure 19. The fluid parameters are the same as for the P-type pulse. This shows that the
reflected pulse will always be an inverse of the incident pulse, with a rarefaction at the front
and tail, and a shock in the middle. The transmitted pulse will have the same structure as
the incident pulse.

The times and locations at which each Riemann problem take place are given below.
These are computed based on the wave speeds in the same way as for the P-type pulse.
This is valid for a general fast–slow problem provided that the rarefaction waves remain
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Figure 19. Solution to each Riemann problem for a PN-type pulse at a water–air interface. The left-hand axis
shows the difference in pressure between the star region and the left state, and the right-hand axis shows the
same for the right state.

‘thin’ during the period over which the reflection takes place. In the expressions below,
ζs,T denotes the speed of the shock at the tail of the pulse:

t2 = −xM

2cS,+ve
, (B1)

x2 = (cS,+ve − uS,+ve)xM

2cS,+ve
, (B2)

t3 = t2(uS,−ve − cS,−ve) + xT − x2

uS,−ve − cS,−ve − ζs,T
, (B3)

x3 = xT + ζs,T t3, (B4)

t4 = t2(u∗
1 − c∗

L,1) − x2

cL,1
, (B5)

x4 = u∗
1t4, (B6)

t5 = x4 + ζL,4t4 − x3 + ζR,3t3
ζR,3 + ζL,4

, (B7)

x5 = x3 + ζR,3(t5 − t3), (B8)

t6 = x5 − x4 − ζR,5t5 + u∗
L,4t4

u∗
L,4 − ζR,5

, (B9)

x6 = x5 + ζR,5(t6 − t5). (B10)
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Figure 20. Grid sensitivity results for a P-type pulse with pS = 5 × 108 Pa; nx denotes the number of cells.

Appendix C

Grid sensitivity results are presented in figure 20 for a P-type pulse with shock pressure
pS = 5 × 108 Pa. These simulations were carried out using FronTier, which is described
at the beginning of § 4. The highest grid resolution is commensurate with the numerical
simulations presented in §§ 4 and 5. The results for the three grid resolutions show
excellent agreement, and the reflection and transmission coefficients are the same to five
significant figures. This demonstrates grid convergence for the numerical simulations.
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