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Abstract. We show that for a Salem number β of degree d, there exists a positive constant
c(d) where βm is a Parry number for integers m of natural density ≥ c(d). Further, we
show c(6) > 1/2 and discuss a relation to the discretized rotation in dimension 4.

Key words: beta expansion, periodicity, Salem number, discretized rotation
2020 Mathematics Subject Classification: 37E05, 37B10, 11K16 (Primary)

1. Introduction
Let β > 1. Rényi [25] introduced the beta transformation on [0, 1) by

Tβ(x) = βx − �βx�.

This map has long been applied in many branches of mathematics, such as number
theory, dynamical system, coding theory, and computer sciences. The dynamical system
([0, 1), Tβ) admits the ‘Parry measure’ μβ : a unique invariant measure equivalent to
the Lebesgue measure [23]. The system is ergodic with respect to μβ and gives an
important class of systems with explicit invariant density. The transformation Tβ gives a
representation of real numbers in a non-integer base (cf. [14]). Defining xn = �βT n−1

β (x)�,
we obtain the ‘greedy’ expansion:

x = x1

β
+ x2

β2 + · · · ,

which is a generalization of decimal or binary (β = 10, 2) representations by an arbitrary
base β > 1. The word dβ(x) := x1x2 . . . corresponding to x is an infinite word over
A = {0, 1, . . . , �β� − 1}. An infinite word x1x2 . . . ∈ AN is eventually periodic if it
is written as x1x2 . . . xm(xm+1 . . . xm+p)∞. We choose the minimum m and p when
such m and p exist and call it (m, p)-periodic. The dynamical properties of a piecewise
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linear map are governed by the orbit of discontinuities. For Tβ , there exists essentially
only one discontinuity corresponding to the right end point 1. The expansion of 1 is the
word dβ(1) := limε↓0 dβ(1 − ε) = c1c2 . . .. For a fixed β, an element x1x2 . . . ∈ AN is
realized as dβ(x) with some x ∈ [0, 1) if and only if

σn(x1x2 . . .) <lex c1c2 . . .

for any n ∈ N. Here the shift is defined as σ((xi)) := (xi+1) for a (one-sided or two-sided)
infinite word (xi) ∈ AN ∪ AZ and <lex is the lexicographic order. We say that x1x2 . . . ∈
AN is admissible if this condition holds. A finite word x1 . . . xn ∈ A∗ is admissible if
x1 . . . xn0∞ is admissible. An element of c1c2 . . . ∈ AN is realized as dβ(1) with some
β > 1 if and only if

σn(c1c2 . . .) <lex c1c2 . . . (1)

for any n ≥ 1, see [18, 23] for details. Given β > 1, the beta shift (Xβ , σ) is a subshift
consisting of the set of bi-infinite words (ai)i∈Z over A such that every subword
anan+1 . . . am is admissible. Beta shift Xβ is sofic if and only if dβ(1) is eventually
periodic, and Xβ is a subshift of finite type if and only if dβ(1) is purely periodic, that
is, dβ(1) is (0, p)-periodic, see [2, 9]. (In [23], expansion of one is defined formally
by (�βT nβ (1)�)n∈N and the purely periodic expansion dβ(1) = (c1c2 . . . cp−1cp)

∞ is
expressed as a finite expansion c1c2 . . . cp−1(1 + cp)0∞.) The β is called a Parry number
in the former case, and a simple Parry number in the latter case. When the topological
dynamics (Xβ , σ) is sofic, Tβ belongs to an important class of interval maps; Markov
maps by finite partition (see [10, 24]).

A Pisot number is an algebraic integer> 1 so that all of whose conjugates have modulus
less than one. A Salem number is an algebraic integer > 1 so that all of whose conjugates
have modulus not greater than one and at least one of the conjugates has modulus one.
If β is a Pisot number, then {T iβ(x) | i ∈ N} is finite for x ∈ Q(β), that is, the word
dβ(x) is eventually periodic, see [8, 26]. Consequently, a Pisot number is a Parry number.
Schmidt [26] proved that if dβ(x) is eventually periodic for every x ∈ Q ∩ [0, 1), then β
is a Pisot or Salem number. Determining periodicity/non-periodicity of dβ(x) by a Salem
number β and x ∈ Q(β) remains a difficult problem. The main obstacle is that we do
not have any idea until present to show that dβ(x) is not eventually periodic when β is
a Salem number. Boyd [11] showed that a Salem number of degree 4 is a Parry number
by classifying all shapes of dβ(1). Since then, apart from a computational or heuristic
discussion like Boyd [12], Hichri [15–17], we have very few results on the beta expansion
by Salem numbers. In this paper, we make some additions to this direction.

THEOREM 1. For a Salem number β of degree d, there exist infinitely many positive
integers m where βm is a Parry number. More precisely, there exists a positive constant
c(d) depending only on d where

lim inf
M→∞

Card{m ∈ [1, M] ∩ Z | dβm(1) is (1, p)-periodic with some p ∈ N}
M

≥ c(d).

Note that c(4) = 1 was shown in [11]. Our method gives a rather small bound c(d) =
(3d)−d , see Remark 6. We can give a good lower bound when d = 6.
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THEOREM 2. Given a sextic Salem number β, for more than half of the positive integers m,
βm is a (1, p)-periodic Parry number for some p ∈ N.

Finally, we discuss an interesting connection to four-dimensional discretized rotation.

2. Preliminary
We review the basic results on Salem numbers (cf. [7, 28]). It is easy to show that a Salem
number has even degree 2d ≥ 4 and its minimal polynomial is self-reciprocal. Thus dβ(1)
cannot be purely periodic for a Salem number β, see [1]. Let P(x) ∈ Z[x] be a monic
irreducible self-reciprocal polynomial of even degree 2d . Putting Q(x) := P(x)/x2d ,
we have Q(x) ∈ R[x + x−1]. We write Q(x) = G(y) with y = x + x−1. Then P(x)

is a minimum polynomial of a Salem number if and only if G(2) < 0 and G(y) has
d − 1 distinct roots in (−2, 2). Here, G is coined a trace polynomial of P in [12]. The
factorization

G(y) = (y − γ )(y + α1) . . . (y + αd−1)

with γ > 2 and αi ∈ (−2, 2) corresponds to the factorization of P(x) in R[x]:

P(x) = (x − β)

(
x − 1

β

) d−1∏
i=1

(x2 + αix + 1), (2)

where γ = β + 1/β and x2 + αix + 1 gives a root exp(θi
√−1) = cos(θi)± sin(θi)

√−1
of P(x) with αi = −2 cos(θi) and θi ∈ (0, π). It is well known that 1, θ1/π , θ2/π , . . . ,
θd−1/π are linearly independent over Q, that is, exp(θi

√−1) (i = 1, . . . , d − 1) are
multiplicatively independent. This is shown by applying a conjugate map to the possible
multiplicative relation among them, cf. [13]. Note that this fact guarantees that βm (m =
1, 2, . . .) are Salem numbers of the same degree 2d . Applying this linear independence,
we see that (

mθ1

2π
, . . . ,

mθn

2π

)
mod Zn (3)

is uniformly distributed in (R/Z)n, that is, for any parallelepiped

I = [a1, b1] × [a2, b2] × · · · × [an, bn],

we have

lim
M→∞

1
M

M∑
m=1

χI

((
mθ1

2π
, . . . ,

mθn

2π

)
mod Zn

)
=

n∏
i=1

(bi − ai),

where χI is the characteristic function of I. Indeed, this is shown by the higher dimensional
Weyl criterion [20]. Note that it is understood as unique ergodicity of the action

x �→ x +
(
θ1

2π
, . . . ,

θn

2π

)

on (R/Z)n. Since (R/Z)n is a compact metric group, minimality and unique ergodicity are
equivalent [30], and minimality is a little easier to show.
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3. Our strategy
Our idea is to find a nice region so that if complex conjugates of a Salem number β > 1
fall into this region and β is sufficiently large, then dβ(1) is eventually periodic. We realize
this idea in a general form which can be applied to the dominant real root of self-reciprocal
polynomials, not only Salem numbers. The statement seems useless for a single β (because
it is easier to compute dβ(1) directly) but we will find a nice application in the following
sections.

LEMMA 3. Let us fix constants u, v with 0 < u < v < 1. If a monic polynomial f (x) ∈
Z[x] of degree 2n+ 2 satisfies

f (β) = 0, f (0) = 1, β > max
{

2
u

,
1

1 − v

}

and

f (x)

(x − β)(x − 1/β)
= x2n + 1 +

2n−1∑
i=1

gix
i

with u < gi < v for i = 1, . . . , 2n− 1, then f (x) is self-reciprocal and dβ(1) is
(1, 2n+ 1)-periodic.

Proof. Set g0 = g2n = 1. Putting

f (x) = x2n+2 + 1 −
2n+1∑
i=1

cix
i ,

we obtain

c1 = β + 1/β − g1, c2n+1 = β + 1/β − g2n−1,

and

ci = (β + 1/β)gi−1 − gi−2 − gi

for i = 2, . . . , 2n. Since ci ∈ Z, g1 and g2n−1 are uniquely determined by β + 1/β, and
thus g1 = g2n−1 and c1 = c2n+1. Moreover by induction, we see ci = c2n+2−i for every
i = 1, . . . , 2n+ 1, that is, f (x) is self-reciprocal. By assumption, we have

ci ≥ βu− 2 > 0, c1 − ci ≥ (β + 1/β)(1 − v)− 1 > 0

for i = 2, . . . , 2n. Therefore, we have

ci ∈ Z, c1 > cj > 0 (j = 2, . . . , 2n).

One can write

β2n+2 + 1 −
2n+1∑
i=1

ciβ
i = 0

as a representation of zero in base β:

(−1), c1, c2, . . . , cn, cn+1, cn, . . . , c2, c1, (−1).
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Adding its 2n+ 1 shifted form, we see

(−1), c1, c2, . . . , cn+1, . . . , c2, c1 − 1, c1 − 1, c2, . . . , cn+1, . . . , c2, c1, (−1)

is another representation of zero. Iterating this shifted addition, we obtain an infinite
expansion of 1:

c1(c2, c3, . . . , cn, cn+1, cn, . . . , c2, c1 − 1, c1 − 1)∞,

which satisfies the lexicographic condition in equation (1). (This implies c1 < �β� − 1 as
well.) Therefore, dβ(1) is (1, 2n+ 1)- periodic.

Logically we have to fix u, v at first. However, this is often impractical. When we apply
Lemma 3 to a Salem number β of degree 2d , we take a self-reciprocal monic polynomial
R(x) ∈ Z[x] and study f (x) = R(x)P (x) of degree 2n+ 2, where P(x) is the minimum
polynomial of β. Note that one can take R(x) = 1 as well. We check if there exist u and v
which satisfy our requirements. Since

f (x)

(x − β)(x − 1/β)
=

2n∑
i=0

gix
i = R(x)

d−1∏
i=1

(x2 + αix + 1)

with αi ∈ (−2, 2), for a fixed R(x), the problem is reduced to the set of solutions
(α1, . . . , αd−1) ∈ Rd−1 for the system of inequalities

0 < gi < 1 (i = 1, 2, . . . , 2n− 1), −2 < αj < 2 (j = 1, . . . , d − 1),

over d − 1 variables α1, . . . , αd−1. A self-reciprocal monic polynomial R(x) gives a
certain choice of u, v if and only if the set of solutions contains an inner point in the
space Rd−1, and for every inner point, we can find u, v. Solving this set of inequalities
is not an easy task in general, but it is feasible for degree 6 since all the inequalities are
quadratic. In §5, we use this method to find good regions for β. It is also useful to solve a
slightly wider set of inequalities:

0 < gi ≤ 1 (i = 1, 2, . . . , 2n− 1), −2 < αj < 2 (j = 1, . . . , d − 1). (4)

The solution may contain the case gi = 1. The proof of Lemma 3 works in the same way
under a little more involved assumptions and we have the following lemma.

LEMMA 4. Let us fix constants u, v with 0 < u < v < 1. If a monic polynomial f (x) ∈
Z[x] of degree 2n+ 2 satisfies

f (β) = 0, f (0) = 1, β > max
{

2
u

,
1

1 − v

}

and

f (x)

(x − β)(x − 1/β)
= x2n + 1 +

2n−1∑
i=1

gix
i

with

u < gi < v
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or

(gi = 1 and g1 < gi−1 + gi+1)

or

(gi = 1 and g1 = gi−1 + gi+1 and g1 − gi+1 > u)

hold for i = 1, . . . , 2n− 1, then f (x) is self-reciprocal and dβ(1) is (1, 2n+ 1)-periodic.

Proof. If gi = 1 and g1 < gi−1 + gi+1 holds, then c1 − ci+1 = gi−1 + gi+1 − g1 > 0. If
gi = 1 and g1 = gi−1 + gi+1 and g1 − gi+1 > u hold, then c1 = ci+1 and c2 − ci+2 =
(β + 1/β)(g1 − gi+1)− 1 − g2 + gi + gi+2 > βu− 2 > 0. Therefore, the lexicographic
condition in equation (1) holds in all cases.

We shall see later that the effect of this small extension of Lemma 3 is pretty large both
in theory and in practice. Indeed, Lemma 4 works very well with a discretized rotation
algorithm, see the discussion in §6.

4. Proof of Theorem 1
We start with the following lemma.

LEMMA 5. For a positive even integer 2n, all roots of the self-reciprocal polynomial

P(x) = x2n + d2n−1x
2n−1 + · · · + d1x + 1 (d2n−i = di)

with di ∈ R and |di | < 1/(2n− 2) are on the unit circle.

Proof. Let G0(y) := (x2n + 1)/xn and G1(y) := P(x)/xn with y = x + x−1. Since

G0(2 cos(πk/n)) = 2(−1)k

for k = 0, 1, 2, . . . , n, G0(y) has n real roots ψi (i = 1, 2, . . . , n) with

2 > ψ1 > 2 cos
(
π

n

)
> ψ2 > 2 cos

(
2π
n

)
> ψ3 > · · ·

· · · > 2 cos
(
(n− 2)π

n

)
> ψn−1 > 2 cos

(
(n− 1)π

n

)
> ψn > −2.

From |di | < 1/(2n− 2), we have G1(2 cos(πk/n)) < 0 for odd k and G1(2 cos(πk/n))
> 0 for even k. By intermediate value theorem, G1(y) has n real roots ψ ′

i (i = 1, . . . , n)
in (−2, 2) satisfying the same inequality as ψi . Therefore, we have

G1(y) =
n∏
i=1

(y − ψ ′
i ).

Coming back to P(x), we get the assertion.

For degree 4, we have nothing to do since Boyd [11] showed that every Salem number
of degree 4 is a (1, p)-periodic Parry number for some p ∈ N. Consider a polynomial

h(x) = x2n + 1
4(n− 1)

2n−1∑
i=1

xi + 1.
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By Lemma 5, we have

h(x) =
n∏
i=1

(x − exp(ηi
√−1))(x − exp(−ηi

√−1))

with

2 > 2 cos(η1) > 2 cos
(
π

n

)
> 2 cos(η2) > 2 cos

(
2π
n

)
> 2 cos(η3) > · · ·

· · · > 2 cos
(
(n− 2)π

n

)
> 2 cos(ηn−1) > 2 cos

(
(n− 1)π

n

)
> 2 cos(ηn) > −2.

(5)

This type of discussion is called ‘interlacing’ and efficiently used in the construction of
Salem numbers having desired properties, see [6, 22, 27] and its references.

Considering coefficients as a continuous function of roots, there exists a constant ε > 0
that if

ψi ∈ [ηi − ε, ηi + ε]

for i = 1, 2, . . . , n, then we have

n∏
i=1

(x − exp(ψi
√−1))(x − exp(−ψi

√−1)) = x2n + 1 +
2n−1∑
i=1

gix
i (6)

with 1/6(n− 1) < gi < 1/3(n− 1). See Remark 6 for the choice of ε.
Let β be a Salem number of degree 2n+ 2 with n ≥ 2 and let θi ∈ (0, π) (i = 1, . . . , n)

be the arguments of the conjugates of β on the unit circle determined as in equation (2).
Since 1, θ1/π , . . . , θn/π are linearly independent over Q, by Kronecker’s approximation
theorem, we find infinitely many positive integers m such that

mθi

2π
(mod Z) ∈ [ηi − ε, ηi + ε] (7)

hold for i = 1, 2, . . . , n. For an integer m with this property, the minimum polynomial of
βm has the form

(x − βm)

(
x − 1

βm

)(
x2n + 1 +

2n−1∑
i=1

g
(m)
i xi

)

and 1/6(n− 1) < g
(m)
i < 1/3(n− 1) for i = 1, 2, . . . , 2n− 1. By Lemma 3, we see that

dβm(1) is (1, 2n+ 1)-periodic for sufficiently large m. Finally, we show that

{m ∈ N | dβm(1) is (1, 2n+ 1)-periodic}
has positive lower natural density. Using the fact that equation (3) is uniformly distributed
in (R/Z)n, we have

lim inf
M→∞

1
M

Card{m ∈ [1, M] ∩ N | dβm(1) is (1, 2n+ 1)-periodic} ≥ (2ε)n

in view of equation (7), giving the lower bound of the natural density.
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Remark 6. We give a lower bound of c(d) from the above proof. First, we compute the
asymptotic expansion of ηi with respect to n, when ηi is close to π/2 (cf. [3]). If n is odd,
then we have

η�n/2� = π

2
+ 1

8n2 + 9
64n3 +O

(
1
n4

)
,

which leads to tan(η�n/2�) = −8n2 +O(n). Further, we have

η�n/2�±1 = π

2
± π

n
+ 1

8n2 + 9 ∓ 8π
64n3 +O

(
1
n4

)

and

tan(ηi) = O(n)

for |i − �n/2�| > 1 in light of equation (5). If n is even, then we have

ηn/2±1 = π

2
± π

2n
+ 1

8n2 + 9 ∓ 4π
64n3 +O

(
1
n4

)
.

Thus, tan(ηi) = O(n) is valid for all i by equation (5).
Second, comparing the coefficients of

∏n
i=1(x

2 + 2 cos(ηi + ν)x + 1) and those of∏n
i=1(x

2 + 2 cos(ηi)x + 1), we see that the desired inequality of equation (6) holds if

2
3
<

n∏
i=1

∣∣∣∣cos(ηi + ν)

cos(ηi)

∣∣∣∣ < 4
3

(8)

for |ν| < ε. Using an easy inequality

1 − |tan(x)y| − y2

2
<

∣∣∣∣cos(x + y)

cos(x)

∣∣∣∣ < 1 + |tan(x)y|

for cos(x) �= 0 and the above estimates on ηi , we see that there exists a positive constant
κ so that if |ε| < κ/n2, then equation (8) holds. Thus we obtain c(d) ≥ (κ/n2)n with d =
2n+ 2. Making explicit the implied constants of Landau symbols, we see that κ = 1/32
suffices. Thus we have c(d) ≥ (32(d/2)2)−d/2 > (3d)−d .

5. Proof of Theorem 2
For the rest of this paper, we deal with a Salem number β of degree 6. For simplicity of
presentation, we prove that c(6) ≥ 0.458. To show that c(6) exceeds 0.5, we have to use
more polynomials and the computation becomes much harder, see Appendix A.

To apply the discussion after Lemma 3, there exists an efficient practical way to find
R(x) which is similar to the shift radix system (cf. [4]). Pick a random (α1, α2) ∈ (−2, 2)2

and start with a coefficient vector (1, c1, c2, c1, 1) of

(x2 + α1x + 1)(x2 + α2x + 1) = x4 + c1x
3 + c2x

2 + c1x + 1,

that is, c1 = α1 + α2, c2 = α1α2 + 2. We wish to iterate the shifted addition as

(1, c1, c2, c1, 1) → (1, c1, c2, c1, 1, 0)+ k(0, 1, c1, c2, c1, 1)

= (1, c1 + k, c2 + c1k, c1 + c2k, 1 + c1k, k),
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with k = −�c1 − 1�, to find a longer coefficient vector where all entries except the first
and the last ones fall in (0, 1], as in Lemma 4. To make this idea into an algorithm, set
z−1 = (0, 0, 0, 0) and for zn = (tn(1), tn(2), tn(3), tn(4)), we define

zn+1 := (tn(2)+ c1kn+1, tn(3)+ c2kn+1, tn(4)+ c1kn+1, kn+1) (9)

with kn+1 = −�tn(1)− 1�. Thus we see k0 = 1 and z0 = (c1, c2, c1, 1). We stop this
iteration when 0 < tn(i) ≤ 1 for i = 1, 2, 3 and tn(4) = 1 (that is, kn = 1) and obtain a
candidate R(x) = ∑n

i=0 kix
i . It is natural to set kn+1 = kn+2 = kn+3 = kn+4 = 0 and we

obtain

(x4 + c1x
3 + c2x

2 + c1x + 1)R(x) =
n+4∑
i=0

gix
i

with g0 = gn+4 = 1 and gi = ti−1(1)+ ki ∈ (0, 1] (i = 1, . . . , n+ 3). If n became larger
than a given threshold, then we restart with a different (α1, α2). Applying this random
search, we find polynomials Ri(x) (i = 1, . . . , 18) so that Lemma 3 gives relatively large
regions Ri (i = 1, . . . , 18) defined by equation (4).

R1 = 1,

R2 = 1 + x,

R3 = 1 + x2,

R4 = 1 + 2x + x2,

R5 = 1 + x + x2 + x3,

R6 = 1 + 2x + 2x2 + x3,

R7 = 1 − x + x2 − x3 + x4,

R8 = 1 + 2x + 2x2 + 2x3 + 2x4 + x5,

R9 = 1 + x − x2 − x3 + x4 + x5,

R10 = 1 + 2x2 + 2x4 + x6,

R11 = 1 + x + x2 + 2x3 + x4 + x5 + x6,

R12 = 1 + x + x2 + 2x3 + 2x4 + x5 + x6 + x7,

R13 = 1 + x + 2x2 + 2x3 + 2x4 + 2x5 + x6 + x7,

R14 = 1 + 2x + x2 − x3 − x4 + x5 + 2x6 + x7,

R15 = 1 + x2 − x3 + x4 − x5 + x6 + x8,

R16 = 1 − 2x + 2x2 − x3 + x4 − 2x5 + 3x6 − 2x7 + x8 − x9 + 2x10 − 2x11 + x12,

R17 = 1 + 3x + 4x2 + 3x3 + x4,

R18 = 1 + 3x + 4x2 + 2x3 − 2x4 − 4x5 − 2x6 + 2x7 + 4x8 + 3x9 + x10.

For example,

(x4 + c1x
3 + c2x

2 + c1x + 1)R8 = x9 + (c1 + 2)x8 + · · · + (c1 + 2)x + 1
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gives the coefficient vector

(1, c1 + 2, 2c1 + c2 + 2, 3c1 + 2c2 + 2, 4c1 + 2c2 + 3, 4c1 + 2c2 + 3, 3c1 + 2c2 + 2,

2c1 + c2 + 2, c1 + 2, 1)

which gives rise to a system of linear inequalities

0<c1 +2 ≤ 1, 0< 2c1 +c2 + 2 ≤ 1, 0< 3c1 +2c2 +2 ≤ 1, 0< 4c1 +2c2 +3 ≤ 1.

Solving this system, we obtain a triangular region:

• c1 >
−2c2 − 3

4
if c2 ∈

(
1
2

,
5
2

)
;

• c1 ≤ −1 if c2 ∈
(

1
2

, 1
]

;

• c1 ≤ −2c2 − 1
3

if c2 ∈
(

1,
5
2

)
.

This collection of three sentences with • reads c2 must be in at least one of the intervals,
and we take the logical ‘and’ of the three. Replacing (c1, c2) by (α1 + α2, α1α2 + 2), we
can confirm that −2 < αi < 2 for i = 1, 2 hold in this triangle. (For a general R(x), we
compute the intersection with the region −2 < αi < 2 (i = 1, 2). If this intersection is
empty, then we have to restart with a different (α1, α2).) Thus we find the two curvilinear
triangles R8 in Figure 1 bounded by segments and hyperbola. We also found polynomials
Li (i = 1, . . . , 5) giving large regions Li (i = 1, . . . , 5) where Lemma 3 does not apply
and Lemma 4 is necessary.

L1 = 1 − x2 + x3 + x4 − x5 + x7,

L2 = 1 − x + x3 − x5 + x6,

L3 = 1 − x2 + x3 + x6 − x7 + x9,

L4 = 1 − 2x + 2x2 − 2x4 + 3x5 − 2x6 + 2x8 − 2x9 + x10,

L5 = 1 − x + x3 − x6 + x7 + x8 − x9 + x12 − x14 + x15.

For example, the coefficients of x3 and x8 in

(x4 + c1x
3 + c2x

2 + c1x + 1)L1

= 1 + c1x − x2 + c2x
2 + x3 + 2x4 + c1x

4 − c2x
4 − x5 + c2x

5 − x6 + c2x
6

+ 2x7 + c1x
7 − c2x

7 + x8 − x9 + c2x
9 + c1x

10 + x11

are equal to 1, so we have to use Lemma 4.
We can check directly that those 23 sets are mutually disjoint. We will see later in §6 that

Lemma 4 works fine for any period and this disjointness is natural. Indeed, if two period
cells share an inner point, then their periods of the corresponding discretized rotations must
coincide, since dβm(1) for a Salem number β is uniquely determined by m. This implies
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FIGURE 1. Period cells in (α1, α2) coordinate.

that the period cells must be identical. See Figure 1 and the explicit computation of period
cells below.

Choose a small ε > 0 and consider the subset Ri (ε) of solutions of the system of
inequalities

ε < gi < 1 − ε (i = 1, 2, . . . , 2n− 1), −2 < αj < 2 (j = 1, . . . , d − 1)

for a polynomial Ri (i = 1, . . . , 18). We also define Li (ε) by the system of inequalities

ε < gi < 1 − ε (i ∈ {j ∈ [1, 2n− 1] | gj �= 1}), −2 < αj < 2 (j = 1, . . . , d − 1)

for a polynomial Li (i = 1, . . . , 5). Since gi ∈ Z + (α1 + α2)Z + α1α2Z, gi is a constant
if and only if gi = 1. Therefore, unless gi = 1, the boundary equalities gi = ε and gi =
1 − ε give one-parameter families of (linear or hyperbolic) curves, which continuously
move along ε. In light of Lemmas 3 and 4, there exist m0 = m0(ε) ∈ N where if m ≥ m0

and (−2 cos(mθ1/2π), −2 cos(mθ2/2π)) falls into

S(ε) :=
( 18⋃
i=1

Ri (ε)

)
∪

( 5⋃
i=1

Li (ε)
)

,
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then dβm(1) is (1, p)-periodic with some p ∈ N. Since (mθ1/2π , mθ2/2π)(mod Z2) is
uniformly distributed and S(ε) is Jordan measurable, the induced probability measure is
computed by

1
π2

∫ ∫
S(ε)

dα1dα2√
(4 − α2

1)(4 − α2
2)

,

since the normalized Lebesgue measure 1/2πdθ on the unit circle is projected 2 to 1 to
the interval [−2, 2] by the map θ �→ −2 cos(θ) =: α and

2
2π
dθ = 1

π
d(arccos(−α/2)) = 1

π
d(π − arccos(α/2)) = 1

π

dα√
4 − α2

.

Let

S :=
( 18⋃
i=1

Ri

)
∪

( 5⋃
i=1

Li
)

and μ be the two-dimensional Lebesgue measure. Since both S(ε) and S have piecewise
smooth boundaries, we have

μ(S \ S(ε)) → 0

as ε → 0. Thus the above measure converges to

1
π2

∫ ∫
S

dα1dα2√
(4 − α2

1)(4 − α2
2)

≈ 0.458895

which proves our theorem. The explicit forms of the regions Ri (i = 1, 2, . . . , 18) and
Li (i = 1, 2, . . . , 5) are listed below, using the coordinate (x, y) = (α1, α2) with y < x.
Each collection of sentences with • is read in the similar way as before.

R1:

• y ≤ − 1
x

if x ∈
[

1,
1 + √

5
2

]
;

• y ≤ 1 − x if x ∈
[

1 + √
5

2
, 2

]
;

• y > −x if x ∈ [1,
√

2];

• y > − 2
x

if x ∈ [
√

2, 2].

R2:
• y ≤ −1 if x ∈ [0, 1];

• y ≤ −x if x ∈ [1,
√

2];

• y > −1 − x if x ∈
[

0,

√
5 − 1
2

]
;

• y > −2 + x

1 + x
if x ∈

[√
5 − 1
2

,
√

2
]

.
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R3:

• y ≤ −2
x

if x ∈
[√

2,
1 + √

33
4

]
;

• y ≤ 1
2

− x if x ∈
[

1 + √
33

4
, 2

]
;

• y > −x if x ∈ [
√

2,
√

3];

• y > −3
x

if x ∈ [
√

3, 2].

R4:

• y ≤ −3 + 2x
2 + 2x

if x ∈
[

0,

√
3 − 1
2

]
;

• y ≤ −1 − x if x ∈
[√

3 − 1
2

,

√
5 − 1
2

]
;

• y > −3 + 2x
2 + x

if x ∈
[

0,

√
5 − 1
2

]
.

R5:

• y ≤ −2 + x

1 + x
if x ∈

[√
5 − 1
2

,
√

2
]

;

• y ≤ −x if x ∈ [
√

2,
√

3];

• y > −3 + 2x
2 + x

if x ∈
[√

5 − 1
2

,
√

3
]

.

R6:

• y ≤ −3 + 2x
2 + x

if x ∈
[

− 1,

√
5 − 1
2

]
;

• y > −2 − x if x ∈
[

− 1,

√
2 − 2
2

]
;

• y > −5 + 3x
3 + 2x

if x ∈
[√

2 − 2
2

,

√
5 − 1
2

]
.

R7:

• 1 − x < y ≤ 2 − x

2 + x
if x ∈

[√
5 + 1
2

, 2
)

.

R8:

• y ≤ −5 + 3x
3 + 2x

if x ∈
[√

2 − 2
2

,

√
5 − 1
2

]
;

• y ≤ −1 − x if x ∈
[√

5 − 1
2

,

√
7 − 1
2

]
;

• y > −7 + 4x
4 + 2x

if x ∈
[√

2 − 2
2

,

√
7 − 1
2

]
.

R9:
• − 1 < y ≤ −x if x ∈ (0, 1].
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R10:

• y ≤ −3
x

if x ∈
[√

3,
1 + √

193
8

]
;

• y ≤ 1
4

− x if x ∈
[

1 + √
193

8
, 2

]
;

• y > −x if x ∈ [
√

3,
√

7
2 ];

• y > −7
2x

if x ∈ [
√

7
2 , 2].

R11:

• y ≤ −5 + 2x
2 + 2x

if x ∈
[√

111 − 3
8

,

√
33 − 1

4

]
;

• y ≤ −3 + 2x
2 + x

if x ∈
[√

33 − 1
4

,
√

3
]

;

• y > −4 + 3x
3 + x

if x ∈
[√

111 − 3
8

,

√
41 − 1

4

]
;

• y > −3 + x

1 + x
if x ∈

[√
41 − 1

4
,
√

3
]

.

R12:

• y ≤ −4 + 3x
3 + x

if x ∈
[√

5 − 1
2

,

√
19 − 1

3

]
;

• y > −1 − x if x ∈
[√

5 − 1
2

,

√
7 − 1
2

]
;

• y > −6 + 3x
3 + 2x

if x ∈
[√

7 − 1
2

,

√
19 − 1

3

]
.

R13:

• y ≤ −3 + x

1 + x
if x ∈

[√
41 − 1

4
,
√

3
]

;

• y ≤ −x if x ∈ [
√

3,
√

7
2 ];

• y > −7 + 4x
4 + 2x

if x ∈
[√

41 − 1
4

,
√

7
2

]
.

R14:

• − 3 + 2x
2 + x

< y ≤ −1 if x ∈ [−1, 0].

R15:

• 1
2

− x < y ≤ 3 − x

1 − x
if x ∈

[√
41 + 1

4
, 2

)
.

R16:

• 6 − 3x
3 − x

< y ≤ 7 − 4x
4 − 3x

if x ∈
[

11 + √
61

10
, 2

)
.
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R17:

• y ≤ −8 + 5x
5 + 3x

if x ∈
[

− 1,

√
2 − 3
3

]
;

• y ≤ −2 − x if x ∈
[√

2 − 3
3

,

√
2 − 2
2

]
;

• y > −6 + 3x
3 + x

if x ∈
[

− 1,

√
13 − 7

6

]
;

• y > −5 + 3x
3 + 2x

if x ∈
[√

13 − 7
6

,

√
2 − 2
2

]
.

R18:

• y ≤ −2 − x if x ∈
[

− 1,
−1
2

]
;

• y > −8 + 5x
5 + 3x

if x ∈
[

− 1,

√
21 − 11

10

]
;

• y > −7 + 5x
5 + 4x

if x ∈
[√

21 − 11
10

,
−1
2

]
.

L1:
• − x < y ≤ 1 if x ∈ (0, 1].

L2:
• 0 < y ≤ 2 − x if x ∈ (1, 2).

L3:

• − 1
x
< y ≤ 1 − x if x ∈

(
1,

1 + √
5

2

]
.

L4:
• y ≤ 1 if x ∈ [1, 2];

• y > 2 − x if x ∈
[

1,
3 + √

2
3

]
;

• y > 6 − 4x
4 − 3x

if x ∈
[

3 + √
2

3
, 2

]
.

L5:
• y ≤ 0 if x ∈ [1, 2];

• y > 1 − x if x ∈
[

1,
1 + √

5
2

]
;

• y > 2 − x

1 − x
if x ∈

[
1 + √

5
2

, 2
]

.

Remark 7. By examining the beta expansion of 23 899 Salem numbers of degree 6 and
trace at most 19, there are 18 250 (approximately 76%) Salem numbers that satisfy

−2 < α1 < 0 < α2 < 2.

They are Parry numbers with relatively small orbit size (max(m, p) < 1000).
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A heavy computational effort may be required to substantially improve Theorem 2 (or
Proposition B.2 in Appendix B. For example, for −r < α1 < 0 < α2 < r < 2 < γ with
r > 1 quite close to 1, the orbit size starts taking many different values. For instance, the
following polynomials:
x6 − 7x5 − 3x4 − 11x3 − 3x2 − 7x + 1, x6 − 9x5 − x4 − 11x3 − x2 − 9x + 1 and

x6 − 8x5 + 10x4 − 15x3 + 10x2 − 8x + 1 satisfy respectively: α1 ≈ −1.08, α1 ≈ −1.05
and α2 ≈ 1.1, but (m, p) equals to (6, 23), (6, 35) and (1, 119), respectively.

6. Four-dimensional discretized rotation
Substituting the variables of the algorithm (9) in §5 by

⎛
⎜⎜⎝
tn(1)
tn(2)
tn(3)
tn(4)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 c1 c2 c1

0 1 c1 c2

0 0 1 c1

0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
kn−3

kn−2

kn−1

kn

⎞
⎟⎟⎠ ,

we obtain an integer sequence (kn)n≥−4 which satisfies

0 < kn+4 + c1kn+3 + c2kn+2 + c1kn+1 + kn ≤ 1, (10)

where c1 = α1 + α2 and c2 = α1α2 + 2. Here αi ∈ (−2, 2) are arbitrary chosen constants.
The bijective map T on Z4:

(kn, kn+1, kn+2, kn+3) �→ (kn+1, kn+2, kn+3, −�c1kn+3 + c2kn+2 + c1kn+1 + kn − 1�)
is conjugate to equation (9). By bijectivity, the orbit is purely periodic if and only if it
is eventually periodic. Moreover, the periodicity is equivalent to the boundedness of the
orbit. We are interested in the recurrence of the orbit of (k−4, k−3, k−2, k−1) = (0, 0, 0, 0)
by T. This map approximates a linear map � defined by

⎛
⎜⎜⎝
x1

x2

x3

x4

⎞
⎟⎟⎠ �→

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

−1 −c1 −c2 −c1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
x1

x2

x3

x4

⎞
⎟⎟⎠

for (x1, x2, x3, x4)
T ∈ R4. The map � has four eigenvalues exp(±θi

√−1) with αi =
−2 cos(θi) for i = 1, 2. Therefore, the map T : Z4 → Z4 is understood as a discretized
version of rotation. A simpler case: the discretized rotation in Z2 is extensively studied in
the literature. It is defined similarly by a recurrence

0 ≤ an+2 + λan+1 + an < 1, an ∈ Z, (11)

with a fixed λ ∈ (−2, 2). A notorious conjecture states that any sequence produced by this
recursion is periodic for any initial vector (a0, a1) ∈ Z2. The validity is known only for 11
values of λ, see [5, 19, 21].

Note that if α1 = α2, then there is an unbounded real sequence (bn)n∈N which satisfies

bn+4 + c1bn+3 + c2bn+2 + c1bn+1 + bn = 0
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because of the shape of general terms of this recurrence. In particular, if α1 = α2 ∈
{−1, 0, 1}, then {T n(0, 0, 0, 0)| n ∈ N} is unbounded. Thus we can not expect the
boundedness of the orbits of T when α1 = α2. (However, there are points with α1 = α2

where the T-orbits of (0, 0, 0, 0) are periodic, e.g., (α, α) with α ∈ (1 − √
3, −2/3] ∪

[−1/4, −2/9].) Excluding these cases, a natural generalization of the above conjecture for
equation (11) would be the following conjecture.

Conjecture 8. If c2 > 2|c1| − 2 and c2 − 2 < c2
1/4 < 4, then for any initial vector

(k1, k2, k3, k4) ∈ Z4, the sequence satisfying equation (10) is periodic.

This is because c2 > 2|c1| − 2 and c2 − 2 < c2
1/4 < 4 is equivalent to αi ∈ (−2, 2) for

i = 1, 2 and α1 �= α2.
We are pessimistic about its validity, due to the existence of very large orbits. However,

even if Conjecture 8 may not hold, it could be true for almost all cases.
Let us restrict ourselves to the orbit of the origin. Since periodic orbits are often

dominant in zero entropy systems, unbounded orbits may not give a contribution of positive
measure in §5 and period cells would exhaust the total square (−2, 2)2 in measure. We
propose a weaker conjecture.

Conjecture 9. Letting (k−4, k−3, k−2, k−1) = (0, 0, 0, 0), the sequence satisfying equa-
tion (10) is periodic for all most all (α1, α2) ∈ (−2, 2)2 in measure.

Here our measure is equivalent to the two-dimensional Lebesgue measure. See Figure 2
for period cells. Black dots are the points where the orbit of the origin might be unbounded.

Note that once we find a period of T starting from the origin, Lemmas 3 and 4 give us
a (possibly degenerated) period cell. This fact is clear when gi does not visit 1 and we can
apply Lemma 3 with

u = 1
2 min

i
gi , v = 1

2 (1 + max
i
gi).

For Lemma 4, it looks like we have additional constraints. We shall show that this is not the
case. Taking the period p ∈ N with T p((0, 0, 0, 0)) = (0, 0, 0, 0) = (k−4, k−3, k−2, k−1),
we have

gn = tn−1(1)+ kn = kn−4 + c1kn−3 + c2kn−2 + c1kn−1 + kn

for n = 0, . . . , p and

k0 = 1, k1 = −�c1 − 1�.

If gi = 1 occurs as a polynomial of Z[α1, α2] with 1 ≤ i ≤ p − 1, then ki−2 = ki−3

+ ki−1 = 0 and ki−4 + ki = 1. From gi±1 ∈ (0, 1], we have

0 < gi−1 = ki−5 + c1ki−4 + (c2 − 1)ki−3 ≤ 1

and

0 < gi+1 = (1 − c2)ki−3 + c1(1 − ki−4)+ ki+1 ≤ 1.

These imply

ki−5 = −�c1ki−4 + (c2 − 1)ki−3 − 1�
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FIGURE 2. Period cells occupy more than half in measure. The orbit of the origin does not form a period until 50
000 iterations at the black dots.

and

ki+1 = −�(1 − c2)ki−3 + c1(1 − ki−4)− 1�.

We see

k1 ≤ ki−5 + ki+1

from an easy fact

�x� + �y� − �x + y + 1� ∈ {−1, 0}
for any x, y ∈ R. Therefore, when gi = 1, we have

gi−1 + gi+1 = ki−5 + c1 + ki+1 ≥ c1 + k1 = g1.

Since g1 = gi+1 + gi−1 implies g1 > gi+1, we can apply Lemma 4 in any case with

u = 1
2 min

(
min
i
gi , min

gi=1
g1=gi−1+gi+1

(g1 − gi+1)

)
, v = 1

2

(
1 + max

gi �=1
gi

)
.

Therefore, we can apply Lemma 4 for every period starting from the origin. Since we
expect such period cells to cover (−2, 2)2 in measure, as in Conjecture 9, for any ε > 0,
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we will find a finite union of period cells whose measure is not less than 1 − ε. Following
the same proof as Theorem 2, we arrive at a plausible

Conjecture 10. c(6) = 1.

For general Salem numbers β, we numerically observe many (m, p)-periodic dβ(1)
with m > 1. Interestingly, we find no role of (m, p)-periods with m > 1 in the above
discussion. Every period of T gives rise to (1, p)-periodic dβm(1) and other orbits of T
are aperiodic if they exist. Of course this does not cause any contradiction, since we are
studying sufficiently large β with respect to the location of the conjugates.

Acknowledgments. We would like to thank the anonymous referee for the careful reading
of the manuscript. This research was partially supported by JSPS grants (20K03528,
17K05159, 21H00989).

A. Appendix
Additional polynomials to improve c(6):

R19 = 1 + 3x + 5x2 + 5x3 + 3x4 + x5,

R20 = 1 + 3x + 5x2 + 6x3 + 5x4 + 3x5 + x6,

R21 = 1 + 3x + 5x2 + 6x3 + 6x4 + 5x5 + 3x6 + x7,

R22 = 1 + 3x + 5x2 + 6x3 + 6x4 + 6x5 + 6x6 + 5x7 + 3x8 + x9,

R23 = 1 + 3x + 4x2 + 4x3 + 4x4 + 4x5 + 3x6 + x7,

R24 = 1 + 3x + 4x2 + 3x3 + 2x4 + 3x5 + 4x6 + 3x7 + x8,

R25 = 1 + x + x2 + 2x3 + 2x4 + 2x5 + 2x6 + x7 + x8 + x9,

R26 = 1 + x + x2 + 2x3 + 2x4 + 2x5 + 3x6 + 2x7 + 2x8 + 2x9 + x10 + x11 + x12,

R27 = 1 + 4x + 8x2 + 11x3 + 11x4 + 8x5 + 4x6 + x7,

R28 = 1 + x + 2x2 + 2x3 + 2x4 + 3x5 + 2x6 + 2x7 + 2x8 + x9 + x10,

R29 = 1 + x + 2x2 + 2x3 + 3x4 + 3x5 + 3x6 + 3x7 + 2x8 + 2x9 + x10 + x11,

R30 = 1 + x + 2x2 + 3x3 + 3x4 + 4x5 + 4x6 + 4x7 + 4x8 + 3x9 + 3x10

+ 2x11 + x12 + x13,

R31 = 1 + 2x2 − x3 + 2x4 − 2x5 + 2x6 − 2x7 + 2x8 − x9 + 2x10 + x12,

R32 = 1 + 2x + 2x2 + 2x3 + 3x4 + 3x5 + 2x6 + 2x7 + 2x8 + x9,

R33 = 1 + 2x + 2x2 + 3x3 + 4x4 + 4x5 + 4x6 + 4x7 + 3x8 + 2x9 + 2x10 + x11,

L6 = 1 − 3x + 5x2 − 5x3 + 3x4 − 2x6 + 2x7 − 2x9 + 3x10 − 2x11 + 2x13 − 2x14

+ 3x16 − 5x17 + 5x18 − 3x19 + x20,

L7 = 1 − 3x + 6x2 − 8x3 + 8x4 − 5x5 + 5x7 − 7x8 + 5x9 − 5x11 + 8x12 − 8x13

+ 6x14 − 3x15 + x16.
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One can check that these 40 regions are mutually disjoint by symbolic computation.
This gives the estimate c(6) ≥ 0.505254, see Figure 2.

In the list of the regions in §5, all the inequalities defining the period cells in y < x are
of the form A < y or y ≤ B with some A and B. This is no longer true for the polynomials
L6 and L7. The cell for L6 is an open set, and the common boundary of the two cells
belongs to the one for L7. Thus, an inequality of the form A ≤ y is required for the cell
for L7 in y < x. The point (α1, α2) = ((11 + √

2)/7, (11 − √
2)/2) is the end point of the

common boundary but belongs to neither of them. Applying our algorithm at this point,
we obtain a polynomial of degree 412 and the corresponding cell in y < x degenerates to
a singleton (α1, α2).

B. Appendix
Our strategy in this paper is to study sufficiently large β. However, for regions R9 and L1,
we can remove the adjective ‘sufficiently large’. Indeed, at the beginning of this study, we
found Proposition B.2 below and then generalized it to our current setting. In particular,
the formulation of Lemma 4 is inspired by the second case of Proposition B.2. Let P be
the minimum polynomial of a sextic Salem number:

P(x) = x6 − ax5 − bx4 − cx3 − bx2 − ax + 1. (B.1)

We denote by Q its trace polynomial:

Q(y) = y3 − ay2 − (b + 3)y − (c − 2a) = (y − γ )(y − α1)(y − α2). (B.2)

We say that β is well-posed if its trace polynomial Q(y) has three roots γ , α1, α2

such that

−1 < α1 < 0 < α2 < 1 < 2 < γ .

Then we have the following lemma.

LEMMA B.1. A real number β > 1 is a well-posed Salem number of degree 6 if and only
if β is the dominant root of the polynomial in Z[x] of the form given by equation (B.1)
satisfying the following conditions:

(i) 2 − 2b < 2a + c;
(ii) c < 2a;

(iii) |b + 2| < c − a.

Proof. Since Q is cubic, thewell-posedness is equivalent toQ(−1)<0, Q(0)>0,Q(1)<0,
Q(2) < 0. We see (i) ⇔ Q(2) < 0, (ii) ⇔ Q(0) > 0, and Q(±1) < 0 ⇔ (iii).

Classifying into b < −1 and b ≥ −1, we obtain the following Proposition, which gives
a partial response to Problem 1 in [29].

PROPOSITION B.2. Let β be a well-posed Salem number of minimum polynomial P in
equation (B.1). Then β is Parry number and we have:
• if 2 ≤ −b < c − a + 2, then

dβ(1) = a − 1(a + b + 1, c − a + b + 1, c − a − 1, 2a − c − 1,

2a − c − 1, c − a − 1, c − a + b + 1, a + b + 1, a − 2, a − 2)∞; (B.3)
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• if a − c + 2 < −b ≤ 1, then

dβ(1) = a(b + 1, c − a − 1, a − 1, 2a + b − c + 1, c − a − 1,

c − a − 1, 2a + b − c + 1, a − 1, c − a − 1, b + 1, a − 1, a − 1)∞. (B.4)

Proof. Lemma B.1(iii) implies c − a ≥ 1 and Lemma B.1(ii) gives a ≥ 2 and c ≥ 3.
Starting from the representation of zero in base β:

−1, a, b, c, b, a, −1,

we can construct another representation as

−1 a b c b a −1
−1 a b c b a −1

1 −a −b −c −b −a 1
1 −a −b −c −b −a 1

−1 a b c b a −1
−1 a b c b a −1

−1 a−1 a+b+1 c−a+b+1 c−a−1 2a−c−1 2a−c−1 c−a−1 c−a+b+1 a+b+1 a−1 −1

Performing recursive shifted addition of this new representation in base β, we obtain
the infinite representation in equation (B.3). We can check the condition in eqation (1)
from Lemma B.1. Similarly, we have

−1 a b c b a −1
1 −a −b −c −b −a 1

−1 a b c b a −1
−1 a b c b a −1

1 −a −b −c −b −a 1
−1 a b c b a −1

−1 a b+1 c−a−1 a−1 2a+b−c+1 c−a−1 c−a−1 2a+b−c+1 a−1 c−a−1 b+1 a −1

By recursive shifted addition, we obtain the representation in equation (B.4). The
condition in equation (1) follows from Lemma B.1.
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