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1. Introduction
It is a central question in quasiconformal geometry to classify fractal sets up to quasi-
conformal homeomorphisms. For fractal sets that emerge in conformal dynamics, ample
evidence suggests that it is possible to quasiconformally distinguish Julia sets and limit
sets. It is summarized as the following conjecture in [LLMM23].

Conjecture 1.1. [LLMM23] Let J be the Julia set of a rational map and � be the limit
set of a Kleinian group. Suppose that J and � are connected, and not homeomorphic to a
circle or a sphere. Then, J is not quasiconformally homeomorphic to �.

In this paper, we will study this quasiconformal non-equivalence phenomenon for some
classes of Julia set and limit set. Our first result is the following theorem.

THEOREM 1.2. No Julia set of a rational map is quasiconformally homeomorphic to the
Apollonian gasket.

Remark 1.3. We remark that there exist Julia sets that are homeomorphic to the Apollonian
gasket (see Figure 1). The Apollonian gasket is the limit set of the Apollonian group
[GLMWY05]. In fact, for the limit set of any geometrically finite Kleinian group that
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(a) (b)

FIGURE 1. (a) The Apollonian gasket and (b) the Julia set that is homeomorphic to an Apollonian gasket. The two
sets are not quasiconformally homeomorphic as Fatou components touch at an angle in panel (b) (colour online).

is homeomorphic to the Apollonian gasket, it is quasiconformally homeomorphic to the
Apollonian gasket (see [McM90] or §2). Therefore, Theorem 1.2 can be restated as no Julia
set is quasiconformally homeomorphic to an Apollonian gasket limit set of a geometrically
finite Kleinian group.

More generally, we define a gasket K as a closed subset of Ĉ so that:
(1) each complementary component is a Jordan domain;
(2) any two complementary components touch at most at 1 point;
(3) no three complementary components have a common boundary point;
(4) the contact graph (or the nerve), obtained by assigning a vertex to complementary

component and an edge if two touch, is connected.
The Apollonian gasket provides one example of gaskets. Gaskets also arise naturally as

Julia sets of rational maps and limit sets of Kleinian groups (see §2), and appear frequently
in the literature. For example, any polyhedral circle packing defined in [KN19] gives a
gasket limit set. Many rational maps have gasket Julia sets that are homeomorphic to gasket
limit sets (see [LLM22a, LLM22b]). Our second result shows the following theorem.

THEOREM 1.4. No Julia set of a quadratic rational map is quasiconformally homeomor-
phic to a gasket limit set of a geometrically finite Kleinian group.

For higher degree rational maps, the combinatorics become more complicated. How-
ever, we believe it is possible to generalize our method to higher degrees and prove
Conjecture 1.1 in the gasket case.

1.1. Historical background. Our study of quasiconformal non-equivalence between
Julia sets and limit sets is motivated by the study of rigidity of quasisymmetries of a
Sierpiński carpet in [BKM09, BM13, Mer14, BLM16]. Using the rigidity, it is proved in
[BLM16, Corollary 1.2] that a Sierpiński carpet Julia set of a post-critically finite rational
map has a finite quasisymmetry group. Since the quasisymmetry group is a quasiconformal
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Quasiconformal non-equivalence 3

invariant and the limit set has a large conformal symmetry group, we have immediately the
following theorem (cf. [Mer14, Corollary 1.3]).

THEOREM 1.5. [BLM16, Corollary 1.3] No Julia set of a post-critically finite rational map
is quasiconformally homeomorphic to a Sierpiński carpet limit set of a Kleinian group.

This result is generalized in [QYZ19] to semi-hyperbolic rational maps.
However, using David surgery, it is proved in [LLMM23] that there exists some rational

map f so that:
• the Julia set J is homeomorphic to the Apollonian gasket; and
• the quasisymmetry group QS(J ) equals the homeomorphism group Homeo(J ).
The homeomorphism � : J −→ � between the Julia set J and the Apollonian gasket �

is not quasiconformal. Yet, it induces an isomorphism

�∗ : QS(J ) −→ QS(�) = Conf(�).

Thus, in this case, the quasisymmetry groups do not distinguish the Julia set J and the
Apollonian gasket �. The same phenomenon can also occur for other general gaskets (see
[LLMM23] for more details).

Although the Sierpiński carpet and gasket both arise as a limit set of an acylindrical
hyperbolic 3-manifold [McM90], the two cases are quite different. We use the combina-
torics of the gaskets to study the quasiconformal non-equivalence problem.

1.2. Strategy and techniques. In §2, we recall a characterization of finitely generated
Kleinian groups with gasket limit sets (see Theorem 2.3). If the Kleinian group is geomet-
rically finite, then the corresponding hyperbolic 3-manifold M = H3/� is acylindrical in
the sense of Thurston. It follows that � is quasiconformally conjugate to a Kleinian group
with a totally geodesic convex hull boundary. Thus, � is quasiconformally homeomorphic
to an infinite circle packing (see Corollary 2.4).

Note that the degree of tangency at the intersection point of two complementary
components of � is a quasiconformal invariant. Thus, a necessary condition for a gasket
Julia set J to be quasiconformally homeomorphic to � is that:
• the boundary of each Fatou component contains no cusps;
• two Fatou components are tangent to each other if they touch.
We shall call such a Julia set J a fat gasket (see Figure 2).

Let G be the contact graph of a fat gasket Julia set J of f, which we shall also call the
Fatou graph of f. We show that the local quasiconformal structure puts a global constraint
on G. In particular, we prove the following theorem.

THEOREM 1.6. The Fatou graph G of a fat gasket Julia set is bipartite.

We remark that Theorem 1.6 allows one to show that many gasket Julia sets are
quasiconformally different from gasket limit sets. For example, Theorem 1.2 follows
immediately from it as the contact graph of the Apollonian gasket contains a cycle of
length 3, so it is not bipartite.
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FIGURE 2. An example of a fat gasket Julia set. The Fatou graph is bipartite as one can see by the coloring of the
Fatou set (colour online).

However, there are plenty of rational maps with fat gasket Julia set and we use Thurston
theory of rational maps to obtain a characterization (see Theorem 4.1). In particular, for
degree 2, we have the following theorem.

THEOREM 1.7. Let f be a quadratic rational map with a fat gasket Julia set. Then either:
(1) the Fatou graph is a tree; or
(2) the Fatou graph is not a tree and f is a root of a captured type hyperbolic component

with an attracting cycle of period 2.
Moreover:
• in case (1), if f is geometrically finite, then f is a mating of the fat basilica with a

Misiurewicz polynomial;
• in case (2), any root of a captured type hyperbolic component with an attracting cycle

of period 2 has a fat gasket Julia set.

Remark 1.8. We recall that a hyperbolic component H of a quadratic rational map is called
captured type if only one critical point is in the immediate basin of a periodic point. A
rational map f is called a root of H if f ∈ ∂H and the dynamics on the Julia set J (f ) is
topologically conjugate to that of g ∈ H.

We also recall that a quadratic polynomial f (z) = z2 + c is called a Misiurewicz
polynomial if the critical point 0 is strictly pre-periodic. The Julia set of a Misiurewicz
polynomial is a dendrite. We remark that not every Misiurewicz polynomial f is mateable
with the fat basilica. In fact, f is mateable with the fat basilica if and only if f is not in the
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1/2-limb of the Mandelbrot set [Tan92]. We also remark even if f is mateable with the fat
basilica, the Fatou graph of their mating may not be a tree. In this case, by Theorem 1.7,
the mating is not a fat gasket Julia set.

To prove Theorem 1.4, we first note that the contact graph of a gasket limit set of a
geometrically finite Kleinian group is not a tree (see Theorem 2.3). Thus, we can assume
the Fatou graph G is not a tree. We then show the homeomorphism group Homeo(G) is
very restrictive (see §6). This allows us to distinguish G from the contact graph of a gasket
limit set.

1.3. Notes and discussions. The Apollonian gasket or the Apollonian circle packing
and its arithmetic, geometric, and dynamical properties have been extensively studied in
the literature (for a non-exhaustive list, see e.g. [GLMWY03, GLMWY05, BF11, KO11,
OS12, BK14, Zha22]).

More recently, there have been many new and exciting developments in the study of
other gasket or circle packings coming from the limit set of Kleinian groups [KN19, KK23,
BKK24, LLM22a].

It is shown in [LLM22a] that many of these gaskets are homeomorphic to Julia sets of
rational maps. In the same paper, many other pairs of a homeomorphic Julia set and limit
set are constructed. It would be interesting to study the quasiconformal non-equivalence
problem for such Julia sets and limit sets.

1.4. Structure of the paper. We study Kleinian groups with gasket limit sets in §2. The
induced dynamics on the Fatou graph of a rational map with a fat gasket Julia set is studied
in §3, where Theorem 1.6 is proved. The realization of rational maps with fat gasket Julia
sets are studied in §4. In particular, Theorem 1.7 is proved there. Finally, the combinatorics
of Fatou graphs for quadratic fat gasket Julia sets are studied in §5 and Theorem 1.4 is
proved in §6.

2. Kleinian groups with gasket limit set
In this section, we recall some results on geometrically finite Kleinian groups, especially
those with gasket limit sets. We refer to [LZ23, Appendix B] for details. Throughout the
section, let � ⊂ PSL(2, C) be a Kleinian group, � ⊂ Ĉ its limit set, and � = Ĉ − � its
domain of discontinuity. Up to a finite-index subgroup, we may assume � is torsion-free.
We also denote by M = �\H3 the corresponding hyperbolic three-manifold.

2.1. Geometric finiteness and acylindricity. Recall that the convex core of M is given by

core(M) := �\ Cvx Hull(�),

where Cvx Hull(�) denotes the convex hull of � in H3. We say M (and the corresponding
Kleinian group �) is geometrically finite if the unit neighborhood of core(M) has finite
volume.
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Let (N , P) be a pared manifold, where N is a compact oriented 3-manifold with
boundary and P ⊂ ∂N is a submanifold consisting of incompressible tori and annuli. See
[Thu86] for a precise definition in arbitrary dimension.

Set ∂0N = ∂N − P . We say (N , P) is acylindrical if ∂0N is incompressible, and every
cylinder

f : (S1 × [0, 1], S1 × {0, 1}) → (N , ∂0N)

whose boundary components f (S1 × {0}) and f (S1 × {1}) are essential curves of ∂0N

can be homotoped rel boundary into ∂N .
For a geometrically finite M, let coreε(M) be the convex core of M minus ε-thin

cuspidal neighborhoods for all cusps. Here, ε is chosen small enough, say smaller than
the Margulis constant in dimension 3. Let P ⊂ ∂ coreε(M) be the union of boundaries of
all cuspidal neighborhoods. Then, (coreε(M), P) is a pared manifold, and we say M (and
the corresponding Kleinian group �) is acylindrical if (coreε(M), P) is.

One can recognize acylindricity from the limit set in the geometrically finite case. The
following characterization is well known; see for example [LZ23, Proposition B.2].

PROPOSITION 2.1. (Characterization of geometrically finite acylindrical Kleinian groups)
Suppose � is non-elementary and geometrically finite of infinite volume. Then, � is
acylindrical if and only if any connected component of the domain of discontinuity �

is a Jordan domain, and the closures of any pair of connected components share at most
one point. Moreover, any common point of the closures of two connected components is a
parabolic fixed point, and any rank-1 parabolic fixed point arises this way.

One ingredient in the proof is the following lemma, essentially from [Mas74,
Theorem 3].

LEMMA 2.2. Let � be any non-elementary Kleinian group, and �1, �2 two connected
components of its domain of discontinuity �. Let �i be the stabilizer of �i in � and assume
Xi := �i\�i is a Riemann surface of finite type. Suppose �1 ∩ �2 consists of one point p.
Then:
(1) p is a parabolic fixed point;
(2) let σi be a curve on Xi that is not null-homotopic in M := �\{H3 ∪ �}. Then, σ1

and σ2 are not homotopic in M .

A quasiconformal deformation of � is a discrete and faithful representation ξ : � →
PSL(2, C) that preserves parabolics, induced by a quasiconformal map f : Ĉ → Ĉ (that
is, ξ(γ ) = f ◦ γ ◦ f −1 for all γ ∈ �). In particular, the limit sets of � and ξ(�) are
quasiconformally homeomorphic via f.

The quasiconformal deformation space of � is defined by

QC(�) := {ξ : � → PSL(2, C) is a quasiconformal deformation}/∼,

where ξ ∼ ξ ′ if they are conjugate by a Möbius transformation. This space is naturally
identified with the quasi-isometric deformation space of the corresponding hyperbolic
manifold M (see e.g. [Sul81]).

https://doi.org/10.1017/etds.2025.10191 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2025.10191


Quasiconformal non-equivalence 7

When � is acylindrical, there exists a unique �′ ∈ QC(�) so that the convex core
of M ′ = �′\H3 has totally geodesic boundary [McM90, Corollary 4.3]. Thus, the limit
set of any geometrically finite and acylindrical Kleinian group is quasiconformally
homeomorphic to a circle packing.

2.2. Gasket limit sets. The following characterization of Kleinian groups with gasket
limit sets was proved in [LZ23].

THEOREM 2.3. Suppose the limit set � of a finitely generated Kleinian group � is a
gasket and let G be its contact graph. Then, the corresponding hyperbolic 3-manifold M is
homeomorphic to the interior of a compression body N. If furthermore M is geometrically
finite, then G is not a tree, M is acylindrical, and the compression body N has empty or
only toroidal interior boundary components.

Here, a compact orientable irreducible manifold with boundary (N , ∂N) is a compres-
sion body if the inclusion of one boundary component ∂eN induces a surjection on π1;
we refer to this component as the exterior boundary. All other boundary components of
N are incompressible; we refer to them as interior boundary components. In fact, when �

contains no rank-2 parabolic fixed points, the compression body N has no interior boundary
component, so it is a handlebody. However, when G is a tree, M is homeomorphic to S × R
for some surface S of finite type, and has one geometrically infinite end.

The following result then follows from this characterization and discussion in the
previous subsection.

COROLLARY 2.4. Let � be a gasket limit set of a geometrically finite Kleinian group �.
Then, � is quasiconformally homeomorphic to an infinite circle packing.

In particular, to prove our main result, Theorem 1.4, we may restrict our attention to
Kleinian groups with circle packing limit sets.

3. Induced dynamics on the Fatou graph
Recall that a gasket Julia set J is a fat gasket if:
• the boundary of each Fatou component contains no cusps;
• two Fatou components are tangent to each other if they touch.
In this section, we shall prove that dynamics of a rational map with a fat gasket Julia set is
restricted.

THEOREM 3.1. Let f be a rational map with a fat gasket Julia set. Let G be the Fatou graph
for f. Then, f induces a simplicial map

f∗ : G −→ G,

and there exists a unique fixed edge E0 ⊆ G of f∗ so that every edge is eventually mapped
to E0.
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Here, we recall that a map is called simplicial if it maps an edge to an edge. It follows
that the two boundary points ∂E0 are either both fixed, or form a periodic cycle of period 2.
Thus, Theorem 1.6 follows immediately from Theorem 3.1.

Proof of Theorem 1.6. After passing f∗ to the second iterate if necessary, we may assume
that the boundary points ∂E0 = {x, y} are both fixed. Then, we can divide the vertex set
into two groups Ux , Uy depending on whether the vertex is eventually mapped to x or y.
This division gives the bipartite structure of the graph G.

The proof of Theorem 3.1 consists of several lemmas.

LEMMA 3.2. Let f be a rational map with a fat gasket Julia set. Then, no critical point is
on the boundary of a Fatou component.

Proof. Suppose for contradiction that f has a critical point c on the boundary of a Fatou
component U. Let V = f (U). Then, f (c) ∈ ∂V . Let e > 1 be the multiplicity of the
critical point c, and μ be the number of Fatou components attached at f (c). Then, there
are eμ Fatou components attached at c. Since at most 2 Fatou components are attached to
c, e = 2 and μ = 1. Since the two Fatou components touch tangentially at c and f behaves
like z2 near c, the boundary of V has a cusp at f (c). This is a contradiction and the lemma
follows.

We have the following as an immediate corollary.

COROLLARY 3.3. Let f be a rational map with a fat gasket Julia set. Then, f induces a
simplicial map

f∗ : G −→ G.

Moreover, every edge of G is pre-periodic.

Proof. Since vertices in G are in bijective correspondence with Fatou components of f,
f naturally induces a map f∗ on the vertex set of G. By Lemma 3.2, there are no critical
points on the boundary of a Fatou component. Thus, if v, w are adjacent in G, then f∗(v) �=
f∗(w). Hence, f∗(v) and f∗(w) are adjacent. Therefore, we can extend the map f∗ to G by
sending an edge E = [v, w] to the edge [f∗(v), f∗(w)]. By construction, the induced map
is simplicial.

Since each vertex is pre-periodic, by construction, each edge is also pre-periodic.

Let x be a parabolic fixed point of f. Let q be the smallest positive integer so that
(f q)′(x) = 1. Then, near x, we have

f q(z) = (z − x) + a(z − x)k+1 + · · · .

We call k the parabolic index of x and k + 1 the multiplicity of the parabolic fixed point.
Note that q must divide k (see [Mil06, Ch. 7]).
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LEMMA 3.4. Let f be a rational map with a fat gasket Julia set. Let x be a common
boundary point of two Fatou components U , V . Then, x is eventually mapped to a unique
parabolic fixed point with parabolic index 2.

Proof. Assume first that x is periodic. Suppose for contradiction that x is a repelling
periodic point. Then, the two Fatou components must touch at an angle at x. This is a
contradiction. Thus, x is a parabolic fixed point.

Note that the parabolic index at x is at most 2, as there are at most two attracting petals at
x. Suppose for contradiction that the parabolic index is 1. Then, there is only one attracting
petal at x. Interchanging the role of U and V if necessary, we assume that U contains the
attracting petal of x. Then, ∂U has a cusp at x, which is a contradiction. Thus, the parabolic
index at x is 2. We claim the following.

CLAIM 3.5. There is a unique periodic point, which is necessarily a fixed point, on the
intersection of the boundaries of two Fatou components.

Proof of the claim. Suppose for contradiction that there are two distinct periodic points
xi ∈ ∂Ui ∩ ∂Vi , i = 1, 2, where Ui �= Vi are different Fatou components. After passing
to an iterate, we may assume that Ui and Vi are fixed. Let ui , vi be the corresponding
vertices in G. Since the Fatou graph G is connected, there is a path containing u1, u2, v1, v2.
Let C be the shortest path containing u1, u2, v1, v2 with respect to the edge metric on G.
Note that in particular, C must be a simple path. Since ui , vi are fixed by f∗, f∗(C) still
contains u1, u2, v1, v2. Since we assume C has the shortest length, f∗(C) is a simple path.
By induction, f n∗ (C) is a simple path for any n.

Since every vertex is pre-periodic, replace C by f k∗ (C) for some k if necessary, we
assume that all the vertices on C are fixed. Since x1 �= x2, the length of C is at least 2.
Let a, b, c be three consecutive vertices on C and let Ua , Ub, Uc be the corresponding
Fatou components. Let xab ∈ ∂Ua ∩ ∂Ub and xbc ∈ ∂Ub ∩ ∂Uc. Then, xab and xbc are
both fixed points. By the previous argument, xab and xbc are parabolic fixed points with
parabolic index 2. Thus, Ub contains both the attracting petals for xab and xbc, which is a
contradiction.

By Corollary 3.3, every common boundary point of two Fatou components is
pre-periodic. By the previous claim, it is eventually mapped to the unique parabolic
fixed point with parabolic index 2.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. By Corollary 3.3, f induces a simplicial map f∗ : G −→ G. By
Lemma 3.4, every edge of G is eventually mapped to a fixed edge E0.

4. Construction of fat gasket Julia set
In this section, we prove the realization theorem of a fat gasket when there are no critical
points on the Julia set. We will then consider the quadratic case and prove Theorem 1.7.

Let G be a simple plane graph, that is, an embedded simple graph in Ĉ. Two simple
plane graphs are said to be isomorphic if there is a homeomorphism of Ĉ inducing the
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graph isomorphism. Let F : G −→ G be a map. We say F is a simplicial branched covering
on G if:
• F is a simplicial map;
• F is the restriction of a branched covering F̃ on Ĉ with critical points contained in the

vertex set of G.
We say F has degree d if the branched covering F̃ has degree d. We apply Thurston theory
of rational maps to prove the following key result of this section.

THEOREM 4.1. Let G be a connected simple plane graph. Let F : G −→ G be a degree d
simplicial branched covering. Let E0 = [a, b] be an edge of G. Suppose that:
• G is backward invariant;
• E0 is fixed and any edge E of G is eventually mapped to E0;
• both a, b are contained in critical cycles;
• G − Int(E0) is connected.
Then, F : G −→ G can be realized as the dynamics on a Fatou graph of a rational map
with fat gasket Julia set.

Remark 4.2. We remark that the first three conditions are necessary by Theorem 3.1. When
there are no critical points on the Julia set, then it is not hard to see that if G − Int(E0) is
disconnected, then there exists a simple closed curve γ separating the post-critical points
in the two components of G − Int(E0), and γ is a Levy cycle. So, the topological branched
covering is Thurston obstructed. Therefore, the last condition is also necessary when no
critical points are on the Julia set.

4.1. Finite core. In this subsection, we shall see that this infinite simple plane graph in
Theorem 4.1 can be constructed from its finite core.

Let F : G −→ G be a degree d simplicial branched covering as in Theorem 4.1. Let
H ⊆ G be a finite connected graph containing all critical values and the fixed edge
E0. Since every edge is eventually mapped to E0, there exists a constant N so that
FN(H) = E0.

Define G0 = ⋃N
k=0 Fk(H) and G1 = F−1(G0). We shall call F : G1 −→ G0 a finite

core of F : G −→ G. We remark that since the subgraph H in the construction is not
unique, finite cores are not unique.

LEMMA 4.3. Let F : G −→ G be a degree d simplicial branched covering as in
Theorem 4.1. Let F : G1 −→ G0 be its finite core. Then:
• G0 ⊆ G1;
• G1 is connected;
• G = ⋃∞

k=0 Gk , where Gk = F−1(Gk−1);
• G1 − Int(E0) is connected.

Proof. Since F(G0) ⊆ G0, we have that G0 ⊆ G1.
Since G0 contains all critical values, G1 contains all critical points. Since G1 =

F̃−1(G0), F̃ is a homeomorphism between a face of G1 and a face of G0. Therefore, each
face of G1 is simply connected, so G1 is connected.
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Applying the above argument inductively, we have a sequence of finite connected simple
plane graphs

G0 ⊆ G1 ⊆ G2 ⊆ · · · ,

where Gk = F−1(Gk−1). Since every edge of G is eventually mapped to E0, we have
G = ⋃∞

k=0 Gk .
Suppose G1 − Int(E0) is not connected. Then, let U be the unique open face of G1

whose boundary contains E0. Note that U has access to two sides of E0. Let V = F̃ (U).
Note that ∂V is a union of edges in G0. Since E0 is fixed and U is a face of G1, we have
U ⊆ V . In particular, V has access to two sides of E0. Since F̃ : U −→ V is a homeo-
morphism, F̃−1|U−→V (U) ⊆ U is a face of G2 with access to two sides of E0. Therefore,
G2 − E0 is not connected. Thus, inductively, we have Gk − Int(E0) is not connected for
all k. This implies G − Int(E0) is not connected, which is a contradiction.

Conversely, one can easily show that if we start with two finite connected simple plane
graphs G0 ⊆ G1, a degree d simplicial branched covering

F : G1 −→ G0,

and an edge E0 = [a, b] of G0 so that:
• E0 is fixed and any edge E of G1 is eventually mapped to E0;
• G1 − Int(E0) is connected,
then we can construct a degree d branched covering F on the union

F : G =
∞⋃

k=0

Gk −→ G,

where Gk = F̃−1(Gk−1) so that it satisfies the assumptions for Theorem 4.1.

4.2. Thurston theory of rational maps. In this subsection, we shall briefly summarize
some basics of Thurston theory of rational maps.

A post-critically finite branched covering of a topological 2-sphere S2 is called a
Thurston map. We denote the post-critical set of a Thurston map f by P(f ). Two Thurston
maps f and g are equivalent if there exist two orientation-preserving homeomorphisms
h0, h1 : (S2, P(f )) → (S2, P(g)) so that h0 ◦ f = g ◦ h1, where h0 and h1 are isotopic
relative to P(f ).

A set of pairwise disjoint, non-isotopic, essential, simple, closed curves � on S2 \ P(f )

is called a curve system. A curve system � is called f -stable if for every curve σ ∈ �, all
the essential components of f −1(σ ) are homotopic rel P(f ) to curves in �. We associate
to an f -stable curve system � the Thurston linear transformation

f� : R� −→ R�

defined as

f�(σ) =
∑

σ ′⊆f −1(σ )

1
deg(f : σ ′ → σ)

[σ ′]� ,
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where σ ∈ � and [σ ′]� denotes the element of � isotopic to σ ′, if it exists. The curve
system is called irrreducible if f� is irreducible as a linear transformation. It is said to be
a Thurston obstruction if the spectral radius λ(f�) ≥ 1.

We refer the readers to [DH93] for the definition of hyperbolic orbifold, but this is the
typical case as any map with more than four postcritical points has hyperbolic orbifold.
Thurston’s topological characterization of rational maps says the following.

THEOREM 4.4. [DH93, Theorem 1] Let f be a Thurston map which has hyperbolic
orbifold. Then, f is equivalent to a rational map if and only if f has no Thurston’s
obstruction. Moreover, if f is equivalent to a rational map, the map is unique up to Möbius
conjugacy.

An arc λ in S2 \ P(f ) is an embedding of (0, 1) in S2 \ P(f ) with end-points in P(f ).
It is said to be essential if it is not contractible in S2 fixing the two end-points. A set
of pairwise non-isotopic essential arcs � is called an arc system. The Thurston linear
transformation f� is defined in a similar way and we say that it is irreducible if f� is
irreducible as a linear transformation.

For a curve system � (respectively, an arc system �), we set �̃ (respectively, �̃) as the
union of those components of f −1(�) (respectively, f −1(�)) which are isotopic relative
to P(f ) to elements of � (respectively, �). We will use � · � to denote the minimal
intersection number between them. We will be using the following theorem excerpted and
paraphrased from [PT98, Theorem 3.2].

THEOREM 4.5. [PT98, Theorem 3.2] Let f be a Thurston map, � an irreducible Thurston
obstruction in (S2, P(f )), and � an irreducible arc system in (S2, P(f )). Assume that �

intersect � minimally, then either:
• � · � = 0; or
• � · � �= 0 and for each λ ∈ �, there is exactly one connected component λ′ of f −1(λ)

such that λ′ ∩ �̃ �= ∅. Moreover, the arc λ′ is the unique component of f −1(λ) that is
isotopic to an element of �.

With this preparation, we are ready to show the following lemma.

LEMMA 4.6. Let F : G −→ G be a degree d simplicial branched covering satisfying the
conditions in Theorem 4.1. Let F̃ be the corresponding Thurston map on S2 ∼= Ĉ. Then, F̃

is equivalent to a rational map f.
Moreover, the induced dynamics on the Fatou graph of f is conjugate to F : G −→ G.

Proof. It is easy to verify that f has hyperbolic obifold. Thus, by Theorem 4.4, it suffices
to show there are no Thurston obstructions.

Suppose for contradiction that there is a Thurston obstruction �. After passing to a
subset, if necessary, we may assume that � is irreducible.

Let � = {E0}. Then, � is an irreducible arc system. Isotoping �, we may assume that
� intersects � minimally. Let �̃n be the union of those components of f −n(�) which are
isotopic to elements of �.
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We claim that �̃n does not intersect f −n(E0) − E0. Indeed, applying Theorem 4.5 to
f n, we are led to the following two cases. In the first case, � ∩ E0 = ∅, so f −n(�) ∩
f −n(E0) = ∅ and the claim follows. In the second case, since f (E0) = E0, we conclude
that E0 is the unique component of f −n(E0) that is isotopic to E0. Thus, the only
component of f −n(E0) intersecting �̃n is E0, and the claim follows.

Since G − E0 is connected, there exists a finite graph H ⊆ G so that H − E0 is a
connected graph containing the post-critical set. Since every edge is eventually mapped to
E0, there exists N so that H ⊆ f −N(E0). Therefore, by the claim, �̃N does not intersect
H − E0. Thus, � does not intersect H − E0. This forces � to be empty, which is a
contradiction.

The moreover part follows directly from a standard pull-back argument.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. By Lemma 4.6, there exists a post-critically finite rational map f
whose induced dynamics on the Fatou graph is conjugate to F : G −→ G.

To get a fat gasket from the post-critically finite rational map f, we can perform a
standard simple pinching deformation (see [CT18] or [HT04]) to create a double parabolic
fixed point at the common boundary of the two fixed Fatou components of f. Let us
denote this new map f̃ . Note that f̃ is geometrically finite and f̃ : J (f̃ ) −→ J (f̃ ) is
topologically conjugate to f : J (f ) −→ J (f ).

By the local Fatou coordinate at the double parabolic fixed point, it is easy to see the
two fixed Fatou of f̃ are tangent to each other. By inductively pulling back this tangent
point, we see that J (f̃ ) is a fat gasket. Since f̃ and f have the same Julia dynamics, the
induced dynamics of f̃ on the Fatou graph is conjugate to F : G −→ G.

4.3. The quadratic case. We will now consider the quadratic case and prove
Theorem 1.7.

Proof of Theorem 1.7. Let G be the Fatou graph. By Theorem 3.1, there exists a unique
fixed edge E0 = [a, b] ⊆ G. Note that a, b are not fixed, as any quadratic rational map with
two fixed Fatou components has its Julia set homeomorphic to a circle. Thus a, b form a
periodic 2-cycle under f∗.

Note that the Fatou components Ua ∪ Ub contain exactly one critical point. Let c /∈
Ua ∪ Ub be the other critical point. We have two cases.

Case 1: If c is on the Julia set, then it is easy to see that the Fatou graph G is a tree, as c
is not on the boundary of a Fatou component.

Case 2: If c is contained in the Fatou set, then f is a geometrically finite rational map.
So there exists a post-critically finite rational map g with topologically conjugate dynamics
on the Julia sets (see [CT18, Theorem 1.3]). Note that g is hyperbolic as it is post-critically
finite and there are no critical points on the Julia set. Since f has a fat gasket Julia set, it
has a parabolic fixed point at ∂Ua ∩ ∂Ub. Thus, f is a root of the hyperbolic component
containing g. Since every edge is eventually mapped to E0 by Theorem 3.1, c is eventually
mapped to Ua ∪ Ub. Therefore, f is a root of a captured type hyperbolic component with
an attracting cycle of period 2. This proves the first part of Theorem 1.7.
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We now prove the moreover part. Suppose f is in Case 1 and is geometrically finite. Let
g be the corresponding post-critically finite rational map. We can connect the two points
in the critical 2-cycle of g using two internal rays, and denote this by I. We can choose a
small neighborhood U of I, so that γ = ∂U is a simple closed curve, g−1(γ ) is isotopic to
γ relative to the post-critical points of g, and g : g−1(γ ) −→ γ is a two-to-one map. Thus,
γ is an equator and g is a mating of the Basilica with a dendrite polynomial. Therefore, f
is a mating of the fat Basilica with a dendrite polynomial.

Let g be a quadratic post-critically finite rational map of captured type with a critical
2-cycle. Let Ua , Ub be the Fatou components for the critical 2-cycle. Note that the
internal fixed rays γa , γb of Ua and Ub must land at a common fixed point. Indeed,
otherwise, they land at a 2-cycle xa , xb, but a quadratic rational map can have at most
one 2-cycle, which is a contradiction. Thus, ∂Ua intersects ∂Ub. Let E0 be the union of
γa and γb together with their common landing point. Inductively, it is easy to see that
Gn := g−n(E0) is a connected simple graph. Let G = ⋃∞

n=0 Gn. Then, it is not hard to
see that g : G −→ G satisfies the assumptions in Theorem 4.1. Indeed, the condition that
G − Int(E0) is connected follows as g has no Levy cycle. Thus, similar to the proof of
Theorem 4.1, if f is a root of the hyperbolic component containing g, then f has a fat
gasket.

5. Captured type in Per2(0)

To understand the moduli space of quadratic rational maps, in [Mil93], Milnor defines
one-complex-dimensional slices, called Pern(0) curves. A map f is in Pern(0) if it has a
super-attracting periodic n-cycle. By Theorem 1.7, we are interested in maps of captured
type in Per2(0) (see Figure 3). This space has been studied extensively in the literature. In
particular, it can be interpreted as a partial mating of the filled Julia set of a Basilica and
the Mandelbrot set (see[Wit88, Luo95, Dud11]).

In this section, we will study the combinatorics of Fatou graph G of a post-critically
finite rational map of captured type in Per2(0).

5.1. The canonical finite core and critical loop. Let f be the post-critically finite map of
a captured type hyperbolic component in Per2(0). Let G be the Fatou graph of f and E0 be
the unique fixed edge of G.

For simplicity, we shall regard G as a graph embedded in the dynamical plane of f,
where a vertex is the center of the corresponding Fatou component and an edge is a union
of two internal rays together with their common landing point. With this identification, we
shall also denote the induced map on G simply by f : G −→ G.

Let c ∈ G be the vertex associated to the strictly pre-periodic critical point. Let q be the
pre-period of c. Then, f q(c) ∈ ∂E0. We define

G0 :=
q−1⋃
i=0

f −i (E0) and G1 := f −1(G0).

By induction, it is easy to see that
⋃k

i=0 f −i (E0) is a tree for all k ≤ q − 1. Thus, we have
the following lemma.
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FIGURE 3. The bifurcation locus of Per2(0) (colour online).

LEMMA 5.1. The graph G0 is a tree containing the post-critical set of G.

Thus, f : G1 −→ G0 is a finite core of f : G −→ G as introduced in §4.1. We call this
the canonical core for f.

By Lemma 4.3, G1 − Int(E0) is connected. Thus, G1 has at least one simple closed
curve that contains E0. Since G0 is a tree, it is easy to see that G1 contains exactly one
simple closed curve C. We call this loop C the critical loop for f. The length of the critical
loop is an even number 2l for some l ≥ 2. We call l the critical distance for f. Since G0 is
a tree, it is easy to show the following lemma.

LEMMA 5.2. Let C be the critical loop. Then, C contains E0 and the critical vertices of
G. Moreover, f (C) is a simple path of length l and f maps each of the two components of
Ĉ − C homeomorphically to Ĉ − f (C).

Since f (E0) = E0, we have E0 ⊆ C ∩ f (C). Depending on the intersection C ∩ f (C),
we classify the post-critically finite map of captured type in Per2(0) into three types (see
Figures 4, 5 and 6):

Type I: C ∩ f (C) = E0;
Type IIA: E0 � C ∩ f (C) � f (C);
Type IIB: C ∩ f (C) = f (C).
We shall call a map f of Type II if it is either Type IIA or Type IIB.
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FIGURE 4. The shortest anchored simple closed curves for a Type I map (colour online).

FIGURE 5. The shortest anchored simple closed curves for a Type IIA map (colour online).
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FIGURE 6. The shortest anchored simple closed curves for a Type IIB map (colour online).

5.2. Simple closed curves in G. In this subsection, we prove that the critical loop has
the shortest length among all simple closed curves of G.

PROPOSITION 5.3. Let f be a post-critically finite map of captured type in Per2(0). Let l
be the critical distance for f. Then, any simple closed curve in G has length ≥ 2l.

The proof of the proposition consists of several lemmas.

LEMMA 5.4. Let K ⊆ G be a simple closed curve. Then, either K contains both critical
points, or the image f (K) contains a simple closed curve of length ≤ length of K.

Proof. If K contains at most one critical point, f is locally injective at all but at most one
vertex of K. Thus, f (K) contains a simple closed curve. It has smaller length as f is a
simplicial map.

LEMMA 5.5. Let k be the distance between the two critical points in the graph metric of
G. Then, any simple closed curve in G has length ≥ 2k. Moreover, there exists a simple
closed curve passing through the two critical points with length 2k.

Proof. Since every edge of G is eventually mapped to E0, f n(K) = E0 for sufficiently
large n. Thus, inductively applying Lemma 5.4, we conclude that there exists a simple
closed curve containing both critical points with length ≤ length of K. This implies that
the length of K is at least 2k.
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For the moreover part, let γ ⊆ G be a path connecting the two critical points with length
k. By the minimality of γ , it is easy to see that f (γ ) is a simple path of length k. Let
L = f −1(f (γ )). Then, L is a simple closed curve of length 2k.

LEMMA 5.6. The critical distance l equals the distance between the two critical points in
the graph metric of G.

Proof. Let k be the distance between the two critical points in the graph metric of G and
let γ be a path connecting the two critical points with length k. Denote the periodic critical
point by a and the strictly pre-periodic critical point by c.

Denote the vertices of γ in order by v0 = a, v1, . . . , vk = c. We claim the following.

CLAIM 5.7. For any i �= k − 1 and any j ≥ 1, f j (vi) �= c.

Proof of the claim. Since vk = c is strictly pre-periodic, f j (vk) �= c for any j ≥ 1.
Since f is simplicial, we have d(f j (a), f j (vi)) ≤ d(a, vi) ≤ i for any j ≥ 1. Since
d(a, f j (a)) ≤ 1, we conclude that for any i ≤ k − 2, we have

d(a, f j (vi)) ≤ d(f j (a), f j (vi)) + 1 ≤ i + 1 ≤ k − 1.

Since d(a, c) = k, this proves the claim.

If γ ⊆ C, then we have l = k.
Otherwise, γ and C bound some simple closed curve K. Since C = f −1(f (C)), f (K)

contains a simple closed curve. Thus, inductively applying Lemma 5.4, we can conclude
that there exists some vertex v of K and some iterate j ≥ 1 so that f j (v) = c. Since no
vertex in C is mapped to c by f j for any j ≥ 1, together with the previous claim, there
exists j so that f j (vk−1) = c. Therefore, d(f (a), c) = k − 1.

Let α′ be a path of length k − 1 connecting f (a) and c, and let α = α′ ∪ E0. Note that
α is a path of length k connecting the two critical points that contains E0. Denote the
vertices of α in order by w0 = a, w1, . . . , wk = c. Since f (w1) = a, we have that for any
i ≤ k − 1 and any j ≥ 1,

d(a, f j (wi)) ≤ d(f j (w1), f j (wi)) + 1 ≤ i ≤ k − 1.

Thus, for any i ≤ k − 1 and any j ≥ 1, f j (wi) �= c. Therefore, the same argument as in
the previous paragraph implies that α ⊆ C, so l = k.

Proof of Proposition 5.3. Combining Lemmas 5.5 and 5.6, we have the result.

5.3. Shortest anchored simple closed curves. In this subsection, we further analyze the
structures of shortest simple closed curves in G. More precisely, we call a simple closed
curve that contains E0 an anchored simple closed curve. We will study these shortest
anchored simple closed curves.

We will use the following lemma.

LEMMA 5.8. Let K be a shortest anchored simple closed curve. Then, there exists j ≥ 0
so that f j (K) is the critical loop C.
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Proof. We claim the following.

CLAIM 5.9. If K �= C, then f (K) is a shortest anchored simple closed curve as well.

Proof of the claim. If K does not contain both critical points, by minimality of the length
of K, then f (K) is a shortest anchored simple closed curve.

Otherwise, let γ ⊆ K be a path of length l that connects the two critical points so that
γ � C. By minimality and Proposition 5.3, γ is disjoint from C other than at the two end
points. Since K is anchored, we have E0 ⊆ K − Int(γ ) ⊆ C. Therefore, f (K) is a simple
closed curve. By minimality of the length of K, it is a shortest anchored simple closed
curve.

The lemma follows by inductively applying the above claim.

Let C1 �= C2 be two shortest anchored simple closed curves. We say they are siblings
if E0 � C1 ∩ C2, that is, their intersection contains more than E0. We say they are
non-siblings if E0 = C1 ∩ C2. We will prove the following proposition.

PROPOSITION 5.10. Let f be the post-critically finite map of captured type in Per2(0).
Then, there are infinitely many shortest anchored simple closed curves, and each is mapped
to the critical loop C by some iterates of f.

Moreover:
• if f is Type I, then no shortest anchored simple closed curve has siblings;
• if f is Type IIA, then the critical loop has one sibling, and other than these two, none

has any siblings;
• if f is Type IIB, then the critical loop has two siblings, each of which has exactly

three siblings, and every other shortest anchored simple closed curve has exactly two
siblings.

Proof. Let K be a shortest anchored simple closed curve. By Lemma 5.8, K is mapped to
the critical loop C by some iterates of f. To prove there are infinitely many such curves, we
will consider three cases.

Case 1: If f is Type I, then C ∩ f (C) = E0. Note that f maps each of the two components
of Ĉ − C homeomorphically to Ĉ − f (C). Thus, by pulling back, it is easy to verify that
f −1(C) is a figure-eight curve, and one component, denoted by C1, is a shortest anchored
simple closed curve. Since C ∩ f (C) = E0, we have C ∩ C1 = E0, so they are not siblings.
Similarly, f −1(C1) is a figure-eight curve and contains a shortest anchored simple closed
curve, denoted by C1. Note that C1 and C2 are on two sides of the critical loop C (see
Figure 4).

Let U1 and U2 be the regions bounded by C1 and C2 that do not intersect the critical loop
C, and let U0 be the region bounded by C that does not contain C1. Then, f : U1 −→ U0

and f : U2 −→ U1 are homeomorphisms. Thus, by inductively pulling back, we get a
sequence of shortest anchored simple closed curves Cn, where f (Cn) = Cn−1, and none
has a sibling.

Case 2: If f is Type IIA, then E0 � C ∩ f (C) � f (C). Similarly as in Case 1, f −1(C)

is a figure-eight curve and contains a shortest anchored simple closed curve, denoted by

https://doi.org/10.1017/etds.2025.10191 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2025.10191


20 Y. Luo and Y. Zhang

C1. Since C ∩ f (C) contains more than E0, C and C1 are siblings (see Figure 5). Similarly,
f −1(C1) contains one shortest anchored simple closed curve, denoted by C2. Note that C1

and C2 are on two sides of the critical loop C. Moreover, C1 and C2 are not siblings, and
neither are C and C2. Then, the same pull back argument as in Case 1 gives a sequence of
shortest anchored simple closed curves Cn, where f (Cn) = Cn−1, and Cn has no sibling for
all n ≥ 2.

Case 3: If f is Type IIB, then C ∩ f (C) = f (C). Note that in this case, C contains both
critical values. Thus, f −1(C) is a union of four simple paths connecting the critical points.
Note that f maps each one of the four components of Ĉ − f −1(C) homeomorphically to
a component of Ĉ − C. It is easy to verify that f −1(C) contains three shortest anchored
simple closed curves, one of them is the critical loop. Denote them by C1, C−1, and C.
Therefore, C has two siblings (see Figure 6).

Let U1 and U−1 be the regions bounded by C1 and C−1 that do not contain the critical
loop C, and let V1 and V−1 be the regions bounded by C that contains C1 and C−1,
respectively. Then, f : U1 −→ V−1 and f : U−1 −→ V1 are homeomorphisms. Thus, by
inductively pulling back, we get a sequence of shortest anchored simple closed curves
Cn, n ∈ Z, where f (Cn) = C− sgn(n)(|n|−1) for |n| ≥ 1. Here, sgn(n) represents the sign of
n, and C0 = C. Moreover, Cn has two siblings Cn−1 and Cn+1, and in addition C1 and C−1 are
siblings. There are no other pairs of siblings, which gives the count in the proposition.

6. Quasiconformal non-equivalence between quadratic gasket Julia set and limit set
In this section, we shall prove Theorem 1.4. We shall proceed with the proof by
contradiction and suppose that there exists a quadratic rational map f whose Julia set is
quasiconformally homeomorphic to a geometrically finite gasket limit set. By Theorem 2.3,
the contact graph of a geometrically finite gasket limit set is not a tree, and f must have
a fat gasket Julia set (see Corollary 2.4). Thus, by Theorem 1.7, f is a root of a captured
type hyperbolic component with an attracting cycle of period 2. Since the Julia set of
f is homeomorphic to the post-critically finite center of the corresponding hyperbolic
component, Theorem 1.4 follows immediately from the following theorem.

THEOREM 6.1. Let f be a post-critically finite of captured type in Per2(0). Then, its Julia
set J is not homeomorphic to the limit set of any geometrically finite Kleinian group.

Proof. Suppose for contradiction that J is homeomorphic to the limit set � of some
geometrically finite Kleinian group. Then, the Fatou graph G of f is homeomorphic to
the contact graph of �.

Let E0 = [a, b] be the unique fixed edge of G by the induced map of f, where
a is a critical point of f. By Lemma 2.2, there exists a subgroup K ⊆ Homeo(G)

isomomorphic to Z that fixes E0. Note that any element g ∈ K must send a shortest
anchored simple closed curve to another one. Note that g ∈ K preserves sibling-ship. Thus,
by Proposition 5.10, if f is Type IIA or Type IIB, any element g ∈ K must fix the critical
loop, which is a contradiction.

Therefore, it remains to consider the case that f is Type I. Note that we can label the
shortest anchored simple closed curves by Cn, n ≥ 0, where C0 = C is the critical loop, and
f : Ci+1 −→ Ci (see Figure 4).
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Note that Ci divides the plane into infinitely many crescent-shaped regions, which we
call gaps. The boundary of any gap contains {a, b} = ∂E0. Denote the region bounded
by C0 and C1 by R0. Inductively, we define Rn, n ∈ Z as the adjacent gap to Rn−1 in the
counterclockwise direction viewed at the critical point a.

Note that if n ≥ 1, then f : Rn −→ R−n is a homeomorphism, and if n ≤ −2, then
f : Rn −→ R−n−1 is a homeomorphism. Thus, f induces an isomorphism between
G ∩ Rn and G ∩ R−n (or G ∩ Rn and G ∩ R−n−1, respectively). Therefore, for n ≥ 2, f 2 :
Rn −→ Rn−1 is a homeomorphism fixing a, b, and for n ≤ −2, f 2 : Rn −→ Rn+1 is a
homeomorphism fixing a, b. Moreover, f 2 induces an isomorphism on the corresponding
subgraphs.

Since there exists a subgroup K ⊆ Homeo(G) isomomorphic to Z that fixes E0, the
subgraph in any gap Rk is isomorphic to G ∩ Rn for some sufficiently large n. By the
observation in the previous paragraph, we thus conclude that any subgraphs in any two
gaps are homeomorphic, and the homeomorphism can be chosen fixing a, b. In particular,
there exist homeomorphisms g : R0 −→ R1 and h : R−1 −→ R0 so that:
• g(a) = a, g(b) = b and h(a) = a, h(b) = b;
• g, h induce isomorphisms between of the corresponding subgraphs.
Therefore, by considering τ := h ◦ f ◦ g : R0 −→ R0, we conclude that the subgraph G ∩
R0 is symmetric under an orientation-preserving map that interchanges a and b. The proof
of the theorem is complete with the following proposition.

PROPOSITION 6.2. Let f be a Type I post-critically finite of captured type in Per2(0).
Then, the subgraph G ∩ R0 is not symmetric under an orientation-preserving map τ that
interchanges a and b.

The rest of the section is dedicated to the proof of this proposition. We shall suppose by
contradiction that there exists such a symmetry τ .

We first set up some notation. Denote the boundary of E0 by a0 = a and b0 = b,
where the critical point corresponds to a0. Label the vertices on the critical loop C0

by a0, a1, . . . , a2l−2, b0, and the vertices on the loop C1 by b0, b1, . . . , b2l−2, a0 (see
Figure 7). Note that we have the following dynamics:
• f (bi) = ai ;
• f (a1) = a0 = f (b0);
• f (a0) = b0.
We also remark that the two critical points of f are a0 and al .

A path γ = [x0, . . . , xk] in G is called a local geodesic if xi , xj are not adjacent in
G if |i − j | ≥ 2. Note that in particular, if x, y are adjacent in G, then there are no other
local geodesics other than the edge [x, y]. We also remark that given any path γ , one
can construct a local geodesic by replacing [xi , xi+1, . . . , xj ] with [xi , xj ] if xi , xj are
adjacent in G.

Since f is post-critically finite, using the expansion of the dynamics away from the
post-critical set, it is easy to show that for any pair of vertices x, y, there are only finitely
many local geodesics of length k.

We define an R0-arc as a local geodesic α that connects two boundary vertices in ∂R0

so that:
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FIGURE 7. An illustration of the gap R0.

• α ⊆ R0;
• Int α ∩ C0 = ∅.

We first prove the following lemma.

LEMMA 6.3. There exists an R0-arc that connects al to a0 so that it has a lift under f that
connects bl and a1.

Proof. By pulling back the critical loops using f and taking the associated local geodesic,
one can show that there exists some local geodesic γ so that:
• Int γ ⊆ Int R0;
• γ connects al to bi for some i = 1, . . . , 2l − 2;
• no interior vertex of γ is adjacent to a0.
Let γ be the one with the shortest length and suppose that γ connects al with bi .

We claim that Int γ ∩ f (C0) = ∅. Suppose not. Then, there exists a strictly shorter
arc δ connecting al to v ∈ f (C0). Note that v /∈ {a, b}. Since f maps the gap R0

homeomorphically to its image, we can find a lift δ′ that connects bl and aj for some j =
1, . . . , 2l − 2. Then, τ(δ′) is a local geodesic that connects al to bj with Int τ(δ′) ⊆ Int R0

and no interior vertex of τ(δ′) is adjacent to a0. This is a contradiction to the minimality
of γ .

It is easy to verify that R0 contains f (al). Let α = γ ∪ [bi , bi+1] ∪ · · · ∪ [b2l−2, a0].
Since no interior vertex of γ is adjacent to a0, we have that α is a local geodesic. Thus, α

is an R0-arc that connects al and a0. By the claim, the closed loop

α ∪ [a0, a1] ∪ · · · ∪ [al−1, al]

separates the critical values f (al) and b0 = f (a0) (see Figure 7). Since the arc [a0, a1] ∪
· · · ∪ [al−1, al] has a lift connecting bl and b0, we conclude that the arc α has a lift
connecting bl and a1.

Let N be the length of the shortest R0-arc that connects al to a0 with a lift under f that
connects bl and a1. Let A be the collection of all R0-arcs that connects al to a0 of length
≤ N . Let B := {τ(α) : α ∈ A}. Note that A and B are finite sets with the same cardinality.
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Let K be the length of the shortest local geodesic γ as in the proof of Lemma 6.3. Then,
the proof of Lemma 6.3 gives that

N ≤ K + 2l − 1. (6.1)

We will now prove the following lemma.

LEMMA 6.4. Let β ∈ B. Then, f (β) ∈ A.

Proof. Since β is an arc connecting bl and b0, f (β) is an arc connecting al and a0.
We will now verify that f (β) satisfies the definition of an R0-arc. Since β = τ(α) for

some α ∈ A, Int β ∩ C1 = ∅. Thus, Int f (β) ∩ C0 = ∅.
Suppose that f (β) � R0. Since β connects bl to b0 in R0, and f sends locally the

region bounded between [b1, b0] and [b0, a2l−2] in R0 to the region bounded by [a1, a0]
and [a0, f (a2l−2)] in R0 (see Figure 7), we can decompose f (β) as f (β) = γ1 ∪ γ2 ∪ γ3,
where γ1 connects al to bi for some i, γ2 connects bi to bj for some j, and γ3 connects bj

to a0. Moreover, Int γ1, Int γ3 ⊆ Int R0.
We claim the following.

CLAIM 6.5. The length l(γ1) ≥ K .

Proof of the claim. If no interior vertex of γ1 is adjacent to a0, then l(γ1) ≥ K by the
minimality of the definition for K.

Otherwise, let β1 ⊆ β be the preimage of γ1 in β. Since β is a local geodesic connecting
bl to b0, no interior vertex of β1 is adjacent to b0. Since f −1(a0) = {b0, a1}, there exists
some interior vertex x ∈ β1 that is adjacent to a1. Consider the truncation β ′

1 ⊆ β1 that
connects bl and x, and β̃1 = β ′

1 ∪ [x, a1]. Then, τ(β̃1) satisfies that:
• Int τ(β̃1) ⊆ Int R0;
• τ(β̃1) connects al to b1;
• no interior vertex of τ(β̃1) is adjacent to a0.
Thus, by minimality of K, we have

K ≤ l(τ (β̃1)) = l(β̃1) = l(β ′
1) + 1 ≤ l(β1) = l(γ1).

By Proposition 5.3, any simple closed curve in G has length ≥ 2l. Thus, for any two
vertices v, w, there exists at most one path connecting v, w with length < l. Moreover, if
there is a path connecting v, w with length l, then all the other paths have length ≥ l. Since
bi , bj , a0 all lie on a shortest loop C1, we have that the lengths l(γ2), l(γ3) ≥ l. So,

l(β) = l(γ1) + l(γ2) + l(γ3) ≥ K + 2l > N ,

which is a contradiction to equation (6.1).
We now show that f (β) is a local geodesic. Suppose not. Let δ be the associated local

geodesic. Since β is a local geodesic and is contained in R0, the (non-simple) closed loop
by concatenating f (β) (from al to a0) with δ (from a0 to al) separates the two critical
values b0, f (al) with winding number 1. Thus, δ is an R0-arc with a lift connecting bl and
a1. Note that l(δ) < l(β) ≤ N , which is a contradiction to the minimality of N.

Since length l(f (β)) = l(β) ≤ N , f (β) ∈ A.
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We are ready to prove Proposition 6.2.

Proof of Proposition 6.2. By Lemma 6.4, we have an induced map f∗ : B −→ A. This
map is clearly injective as f is injective on Int R0. Since A, B have the same cardinality, f∗
is also surjective. However, by the definition of N, there exists α ∈ A whose lift connects
bl to a1, so this arc α is not in the image of the induced map f∗. This is a contradiction and
the proposition follows.
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Math. 301 (2016), 383–422.

[BM13] M. Bonk and S. Merenkov. Quasisymmetric rigidity of square Sierpinśki carpets. Ann. of Math.
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