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Abstract
Very metal-poor (VMP, [Fe/H]<-2.0) stars serve as invaluable repositories of insights into the nature and evolution of the first-generation
stars formed in the early galaxy. The upcoming China Space Station Telescope (CSST) will provide us with a large amount of spectral data
that may contain plenty of VMP stars, and thus it is crucial to determine the stellar atmospheric parameters (Teff, log g, and [Fe/H]) for low-
resolution spectra similar to the CSST spectra (R∼ 200). This study introduces a novel two-dimensional Convolutional Neural Network
(CNN) model, comprised of three convolutional layers and two fully connected layers. The model’s proficiency is assessed in estimating
stellar parameters, particularly metallicity, from low-resolution spectra (R∼ 200), with a specific focus on enhancing the search for VMP
stars within the CSST spectral data. We mainly use 10 008 spectra of VMP stars from LAMOST DR3, and 16 638 spectra of non-VMP stars
([Fe/H]>-2.0) from LAMOSTDR8 for the experiments and apply random forest and support vector machinemethods tomake comparisons.
The resolution of all spectra is reduced to R∼ 200 to match the resolution of the CSST, followed by pre-processing and transformation into
two-dimensional spectra for input into the CNNmodel. The validation and practicality of this model are also tested on theMARCS synthetic
spectra. The results show that using the CNNmodel constructed in this paper, we obtain Mean Absolute Error (MAE) values of 99.40 K for
Teff, 0.22 dex for log g, 0.14 dex for [Fe/H], and 0.26 dex for [C/Fe] on the test set. Besides, the CNNmodel can efficiently identify VMP stars
with a precision rate of 94.77%, a recall rate of 93.73%, and an accuracy of 95.70%. This paper powerfully demonstrates the effectiveness
of the proposed CNN model in estimating stellar parameters for low-resolution spectra (R∼ 200) and recognizing VMP stars that are of
interest for stellar population and galactic evolution work.
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1. Introduction

Very metal-poor (VMP, [Fe/H]<-2) stars are important relics of
the galactic formation history since it offers rich information on
the chemical and physical conditions of the first-generation stars
in the universe. The Li abundance in VMP stars can provide esti-
mates of the baryon-to-photon ratio, helping us to better refine
the galaxy formation model (Beers and Christlieb 2005; Frebel and
Norris 2015; Frebel 2018).

Owing to large-scale sky survey projects, researchers have so
far discovered a large number of VMP stars using photometry
and spectroscopic methods. One of the earliest VMP search pro-
grammes was HK survey (Rhee, Beers, & Irwin 2001), discovering
approximately 2 000 cooler VMP stars by combining Artificial
Neural networks and 2MASS JHK photometry, with a detection
efficiency of between 60% and 70%. Christlieb et al. (2008) used
CCD photometry to calibrate B-V colours in the Hamburg/ESO
Survey (HES) spectra and found 10 times more VMP stars than
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the HK survey, with a rejection rate of 97% for stars with [Fe/H]>-
2. The Pristine Inner Galaxy Survey (PIGS) photometry (Arentsen
et al. 2020) explored 1 300 VMP stars in the inner Galaxy with an
efficiency exceeding 80%. For the spectroscopic survey, APOGEE
(García Pérez et al. 2013) also found a small number of VMP stars
in the central part of theMilkyWay. Besides,Matijevič et al. (2017)
determined the metallicity of data from RAVE DR5 more reliably
than the pipeline, with an accuracy of 0.2 dex, and found hundreds
of VMP stars. Da Costa et al. (2019) discovered nearly 2 500 VMP
stars from SkyMapper DR1.1 with the help of the follow-up low-
resolution (R∼ 3 000) spectroscopic research. Other surveys such
as LAMOST (Li, Tan, & Zhao 2018) and Southern African Large
Telescope (SALT, Rasmussen et al. 2020) also enlarge the sample
pool of VMP stars.

Metal-poor stars tend to contain higher than average levels
of carbon. If the carbon abundance ([C/Fe]) of the metal-poor
([Fe/H]<-1.0) stars is larger than +1.0, it is called the Carbon
Enhanced Metal-poor (CEMP) stars (Beers and Christlieb 2005).
This threshold for classifying CEMP stars has been updated to
[C/Fe]>+0.7 (Aoki et al. 2007). Measuring the carbon enhance-
ment of metal-poor stars discovered from large-scale surveys
is conducive to deriving CEMP stars, which are of vital impor-
tance for understanding the relationship between astrophysical
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s-process and carbon enhancement (Marsteller et al. 2005) and
the nature of first-generation stars (Beers 2011). Frebel et al.
(2006) proved that there is clear evidence that the proportion of
carbon enrichment in metal-poor stars increases with decreasing
metallicity. Lucatello et al. (2006) first analysed 94 VMP stars
obtained by the Hamburg/ESO R-process Enhanced Star survey
(HERES, Barklem et al. 2005) and found 21± 2% of VMP stars
with [C/Fe] abundances above +1.0, which can be classified as
CEMP stars. Lee et al. (2013) proposed a novel technique to
obtain the fractions of CEMP stars in metal-poor stars from a
large sample of SDSS/SEGUE low-resolution (R∼ 2 000) spectra
with precision over 0.35 dex. Placco et al. (2014) improved the
frequency of CEMP stars in metal-poor stars and derived that 20%
of VMP stars have [C/Fe] abundance greater than +0.7 utilizing
the most extensive high-resolution samples from a variety of
literature at that time.

In order to identify VMP and CEMP stars, the metallicity
([Fe/H]) and [C/Fe] abundance should first be determined. Many
methods have been proposed to extract stellar atmospheric param-
eters (effective temperature Teff, surface gravity log g, and metal-
licity [Fe/H]) and chemical abundances from large amounts of
spectral or photometric data. The spectral template fitting method
is the most widely used method and has high reliability. Lee
et al. (2008) proposed the SEGUE Stellar Parameter Pipeline
(SSPP) using the line index method and χ 2 minimum spec-
tral fitting method and tested its performance on SDSS-iand
SDSS-ii/SEGUE medium-resolution spectra. Koleva et al. (2009)
presented a full-spectrum fitting packageULySS by fitting themin-
imum observed spectra and model. Blanco-Cuaresma et al. (2014)
created iSpec using synthetic spectral fitting and equivalent width
methods based on the SPECTRUM code and tested its effective-
ness in the Gaia stellar spectral library. Wu et al. (2014) developed
LAMOST stellar parameter pipeline (LASP) using the correlation
function interpolation (CFI) and ULySS methods to automati-
cally derive stellar parameters and radial velocity (Vr) for late A,
FGK-type stars.

With the development of machine learning and the maturity
of artificial intelligence technology, more and more deep learn-
ing methods are applied to stellar parameter measurement. Ness
et al. (2015) developed The Cannon, a data-driven model that
does not rely on physical models, which allows us to derive stel-
lar labels from low signal-to-noise (S/N) spectra. StarNet (Fabbro
et al. 2018) and SPCANet (Wang et al. 2020) both employed
Convolutional Neural Network (CNN), which is an approach
capable of automatically learning data features without the need
for manual feature design (Krizhevsky, Sutskever, & Hinton 2012;
Szegedy et al. 2015). This can save time and costs, making it more
suitable for application to large astronomical datasets. Leung and
Bovy (2019) used the Artificial Neural Network (ANN), CNN,
and Bayesian dropout variational inference to successfully obtain
18 element abundances of APOGEE high-resolution spectra. Ting
et al. (2019) presented Payne by combining the neural network
spectral interpolating method and physical models, which can
determine a variety of stellar labels simultaneously.

These deep learning methods are a good solution to the prob-
lem of slow speed of traditional template matching methods, but
most of them are still based on high-resolution spectra or spec-
tra with R∼ 2 000 down to 1 000. The Chinese Space Station
Telescope (CSST) (Zhan 2021) to be emitted in the future will
acquire slitless spectra (Yuan, Deng, & Sun 2021), i.e. on the
focal plane, all sources are able to disperse uniformly along the

dispersion direction, which allows us to acquire the full spec-
trum of the entire field of view. However, the resulting mixing of
the dispersion terms leads to contamination, which makes data
processing more difficult and also further reduces the resolution
(R∼ 200) and signal-to-noise ratio of the spectra. Moreover, the
low metal abundance and weak spectral line features of VMP stars
make most stellar parameter estimation methods inefficient for
VMP stars. Both of these reasons increase the difficulty of using
CSST spectral data to estimate stellar labels and identify VMP
stars. So far, several studies have already shown the feasibility of
estimating stellar parameters from very low-resolution spectra by
using Gaia BP/RP spectra with a resolution of about 50 (Gavel et
al. 2022; Witten et al. 2022). In this paper, we construct a two-
dimensional CNN model composed of three convolutional layers
and two fully connected layers. It can be an important supplement
to the above methods and will be of great help for future studies
of CSST. We use the spectral data obtained from LAMOST and
reduce its resolution to R∼ 200 to validate our model. MARCS
synthetic spectra and other machine learning methods are also
used to test whether our model has higher accuracy.

The paper consists of five parts. The data selection and data
pre-processing are introduced in Section 2. Then we describe
the principles of CNN models and the structure of our model
in Section 3. Section 4 presents the experiments and results.
Section 5 discusses the comparison between CNN models and
other machine learning algorithms. Brief conclusions can be seen
in Section 6.

2. Data

The data used in the experiments in this paper are obtained from
the LAMOST database andMARCS synthetic spectra. This section
briefly introduces the data sources and selection process, as well as
the pre-processing of the data.

2.1. LAMOST

2.1.1. Data introduction

In 2009, the Large Sky Area Multi-Object Fiber Spectroscopic
Telescope (LAMOST) was successfully completed in China. As an
exemplary representative among spectroscopic survey telescopes,
LAMOST utilizes advanced thin mirror active optics and spliced
mirror active optics technology, ingeniously combining a large
field of view with a substantial aperture. This achievement has
enabled LAMOST to provide an unparalleled understanding of
the Milky Way and has significantly advanced the development
of large-aperture astronomical telescopes in China (Li et al. 2022).
Thanks to LAMOST’s enhanced observing capabilities and its abil-
ity to acquire largemulti-fibre samples, the observation ofmedium
or low-resolution spectra (R∼ 1 000 or 2 000) from LAMOST
has made substantial contributions to the search for VMP stars
(Wu et al. 2010; Li et al. 2015, 2018; Wang et al. 2022). To date,
LAMOST has publicly released its eighth version of data, com-
prising an impressive collection of 10 633 515 low-resolution (R∼
1 800) spectra, covering 10 336 752 stars, 224 702 galaxies, and
72 061 quasars. The LAMOST stellar parameter pipeline (LASP)
automatically derives the basic stellar atmospheric parameters for
A, F, G, and K types of stars (Wu et al. 2014), while the deter-
mination of M-type stars is carried out by LASP-M (Du et al.
2021).
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2.1.2. Data selection

In order to compare the ability of the model to estimate stellar
parameters for VMP stellar spectra and non-VMP stellar spectra,
and the accuracy of identifying VMP stars, we construct a dataset
including VMP stars and non-VMP stars ([Fe/H]>-2.0) as posi-
tive and negative samples. To ensure the reliability of the stellar
parameters, we combine two stellar parameter sources. For the
VMP stellar sample, we choose the catalog containing 10 008 VMP
stars obtained from LAMOST DR3 by Li et al. (2018) since it still
provides researchers with the largest pool of bright and accurate
VMP candidates to date. The stellar atmospheric parameters of
these VMP stars are determined by line indices and by comparison
with a grid of synthetic spectra, withmetallicity ranging from−4.5
dex to −2.0 dex. For the negative sample dataset, we randomly
select data with [Fe/H]>-2.0 from the LAMOST DR8 dataset that
is recently made public to the world, where the stellar atmospheric
parameters are determined by LASP (Wu et al. 2014). To ensure
that the accuracy of the stellar parameters of this dataset is compa-
rable to that of the VMP stars dataset, we obtain 16 638 non-VMP
stars with minor uncertainties and a signal-to-noise ratio larger
than 10 at the g-band. In total, we construct a dataset including 26
646 stars. The resolution of all the spectral data is R∼ 1 800. The
parameters of these stars range from 3 824.88 K<Teff <8 866.15
K, 0.213 dex<log g<4.897 dex, and −4.55 dex<[Fe/H]<0.699 dex.
The errors of the parameters range from 0 K<σ (Teff) <399 K,
0 dex<σ ( log g)<0.94 dex, and 0 dex<σ ([Fe/H])<0.4 dex. For sub-
sequent model training and testing, we divide this dataset into a
training set and a test set in the ratio of 7:3, including 18 652 and
7 994 stars, respectively. Fig. 1 depicts more clearly the distribution
of the parameters in the training and test sets.

To estimate the carbon abundance and identify CEMP stars
in VMP stars, we need a dataset of VMP stars containing [C/Fe]
labels. Since the VMP stars catalog mentioned above does not
contain [C/Fe] values, Yuan et al. (2020) cross-matched this cat-
alog with Gaia DR2 and obtained a modified catalog including
9 690 stars with parameters derived by SEGUE Stellar Parameter
Pipeline (SSPP, Lee et al. 2008). We cross-match the VMP stars
catalog (Li et al. 2018) with the modified catalog (Yuan et al. 2020)
and find 8 117 of 10 008 VMP stars with [C/Fe] labels. The range
of the [C/Fe] labels is −2.018 dex<[C/Fe]<4.803 dex. For the aim
of model training and testing, we divide the dataset into a training
set and a test set in the ratio of 7:3, containing 5 681 and 2 436
stars, respectively.

2.1.3. Data pre-processing

To obtain the data needed for the experiment, we preprocess the
spectral data as follows:

(1) Resolution reduction:
Reduce the resolution of the spectra from R∼ 1 800 to
R∼ 200 to simulate the low-resolution spectra acquired by
CSST. The Coronagraph library provided in Python with
the noise_routines.construct_lam() and downbin_spec()
functions can bring the data down to the resolution we
need and output the degraded flux.
Fig. 2 shows a comparison of the spectra with resolution
R∼ 1 800 and R∼ 200. Fewer features in the lower reso-
lution spectra make the stellar parameter estimation more
difficult.

Figure 1. The distribution of Teff (top panel), log g (middle panel), and [Fe/H] (bottom
panel) in the LAMOST training set and test set. The division of the training and test sets
ensures the consistency of the data distribution.

(2) Interpolation:
Interpolate the flux data to the range of 4 000Å to 8 095Å,
ensuring that the data is sampled at the same wavelengths.
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Figure 2. The plots of spectra with resolution 1 800 (left) and 200 (right). Spectra with lower resolution have fewer characteristic points.

This results in a consistent flux range for all spectra and
reduces the effect of noise at both ends of the spectrum.

(3) Normalization:
The flux values are then normalized by a linear function
(Min-Max scaling), which can achieve equal scaling of the
original data to convert the flux to the range of [0, 1], as
follows.

Fluxnorm = Flux− Fluxmin

Fluxmax − Fluxmin
, (1)

Finally, we obtain spectral data with 410 feature points. Section
4.1 shows the results of estimating stellar labels and identifying
VMP stars in the LAMOST dataset using our CNNmodel.

2.2. MARCS dataset

To further test the validity of the CNN model for estimating stel-
lar parameters, we use the MARCS synthetic spectra (Gustafsson
et al. 2008). It is a grid of about 104 model atmospheres with nearly
52 000 stellar spectra containing F, G, and K types of stars. This
grid of one-dimensional LTEmodel atmospheres can be combined
with atomic and molecular spectral line data and software to gen-
erate stellar spectra, which has been widely used in a variety of
studies (Roederer et al. 2014; Lu et al. 2018; Reggiani et al. 2019;
VandenBerg et al. 2021; Salsi et al. 2022).

We select 9 644 data from MARCS for the experiment. The
range of the stellar parameters is 2 500 K<Teff <8 000 K, −0.5
dex<log g<5.5 dex, −5 dex<[Fe/H]<−1 dex, and the step size of
the parameters is 2 500 K for Teff, 0.5 dex for log g, and 0.25
dex for [Fe/H]. We perform the same interpolation and normal-
ization operations on the data and obtain spectral data with 746
feature points. The dataset is divided into a training set and a test
in the ratio of 7:3, including 6 750 and 2 894 stars, respectively.
Section 4.3 shows the results of estimating stellar parameters of
the MARCS synthetic spectra using the CNN model.

3. Methodology

3.1. Introduction to the convolutional neural network (CNN)

In this paper, we construct a CNN model and test its performance
in estimating stellar labels for low-resolution (R∼ 200) spectra
and identifying VMP stars. This can enable us to better handle
low-resolution spectra of CSST in the future and search for VMP
stars.

The concept of deep learning originated from the study of arti-
ficial neural networks and was proposed by Hinton (2008). CNN
(Lecun et al. 1998) is a typical supervised model of deep learn-
ing that has been widely applied to various fields in recent years.
It is the first actual multilayer structure learning algorithm that
uses spatial relative relationships to reduce the number of param-
eters to improve training performance. It adds a feature part to the
original multilayer neural network; i.e. a convolutional layer and
a pooling layer (dimensionality reduction layer) are added before
the fully connected layer, and the network selects the features itself.
CNN is a deep feedforward neural network that is widely used
for supervised learning problems in image processing and nat-
ural language processing, such as computer vision (Krizhevsky
et al. 2012), semantic segmentation (Ronneberger, Fischer, & Brox
2015), object recognition (Redmon et al. 2016), etc.

While the CNN model can directly process one-dimensional
sequences such as spectral data, most current CNN models
demonstrate their power in processing two-dimensional image
data. In the LAMOST dataset, the length of the 1D spectral data
(1× 410) we obtain is long, and collapsing it into 2D data (21×
21) to simulate image data can perform cross-correlation opera-
tions and extract spectral features better and faster, thus speed up
the network learning speed and parameter optimization efficiency.
For MARCS spectral data (1× 746), we also collapse them into a
two-dimensional matrix (28× 28) as the input to the CNNmodel.
The following is a brief description of the structure and principles
of the 2D CNN.

A complete CNN model must include convolutional layers,
non-linear activation functions, pooling layers, and fully con-
nected layers.
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Figure 3. Convolution process.

(1) Convolutional layer:
The convolutional layer is the core layer for establish-
ing the CNN model, which can act as a filter and reduce
the number of parameters. The discrete form of two-
dimensional convolution is used.
Given a figure X ∈RM×N and a convolutional kernel W ∈
RU×V . In general, U<M, V<N. The convolution between
them can be denoted as

Y=W ∗X, (2)

yij =
U∑

u=1

V∑
v=1

wuvxi−u+1,j−v+1. (3)

An example of the convolution process is shown in Fig. 3.
A two-dimensional input array (3× 3) performs a mutual
correlation operation with a two-dimensional convolu-
tional kernel array (2× 2), resulting in a two-dimensional
array (2× 2). The convolution kernel slides over the input
array from left to right and top to bottom.
The convolutional layer extracts features from local
regions, and different convolutional kernels are equiva-
lent to various feature extractors. Based on the standard
definition of convolution, strides and zero padding of the
convolutional kernel can be introduced to increase the
diversity of convolution. Strides refer to the number of
steps each convolutional kernel moves when performing a
convolutional operation. Set stride=k, which means con-
volving k rows and k columns from left to right and from
top to bottom. Zero padding represents adding zeros to
the outer side of the image. Setting padding=d means
supplementing d layers of zeros around the input vector.
Zero padding allows us to obtain more detailed feature
information and control the network structure.
After the convolutional layer, an activation function is usu-
ally added as a non-linear factor, which can deal with
problems that cannot be solved by linear models and
enhance the ability of the network to interpret the model.
A commonly used activation function is ReLU (Equation
(4)). It has a small computational effort, and can effec-
tively alleviate the gradient disappearance and gradient
explosion problem because its derivative is maintained
at 1.

f (x)=max(0, x). (4)

(2) Pooling layer:
The pooling layer (subsampling layer) is designed to
reduce the number of features in the network, thereby
reducing the number of parameters and avoiding overfit-
ting. Local translation invariance is an essential property

Figure 4. Max-pooling process.

of pooling layers, which indicates that pooling is approxi-
mately invariant in its representation of the input when a
small number of translations are performed on the input.
Max-pooling is the most commonly used which means
extracting the maximum value within the neighbourhood
(see Fig. 4). It can reduce the offset of the estimated mean
value caused by the parameter error of the convolutional
layer, and retain more texture information.

(3) Fully connected layer:
The purpose of the fully connected layer is to connect the
results of the last pooling layer to the output nodes and
map the feature representation learned by the network to
the label space of the samples. It acts as the ‘classifier’ of
the network. It is important to note that when encoding
the model, the last pooling layer needs to be flattened to
a one-dimensional vector before connecting to the fully
connected layer.

CNN extracts high-level semantic information from the input
data gradually through a series of operations in these layers, for-
malizes the target task as an objective function, and generates
the predicted values. This process is called Forward Propagation.
The parameter optimization in the model is performed by Back
Propagation. By calculating the loss between the predicted values
and the true values, the CNN feeds the loss from the previous layer
to the next layer, calculates the gradient of the loss on the param-
eters of each layer, and updates the corresponding parameters.
Once all the parameters have completed one round of updates, the
feedforward operation is performed again. This process is repeated
iteratively until the model converges.

3.2. Themethod of preventing overfitting

When the number of parameters in a model is large compared
to the available training samples, overfitting can occur. This is
manifested by high prediction accuracy on the training set and a
significant decrease in accuracy on the test set.

The advent of dropout (Hinton et al. 2012) has greatly allevi-
ated this problem. During training, each neuron is retained with
probability p and stops working with probability 1− p, and a dif-
ferent set of neurons is retained for each forward propagation.
This approach reduces the reliance of the model on certain local
features and has better generalization performance.

Another way is to add Batch Normalization (BN, Ioffe and
Szegedy 2015) layers after the convolutional and fully connected
layers. During the training process of neural networks, parame-
ter changes can lead to unstable distribution of activation values,
which hinders the ability of subsequent layers to learn useful fea-
tures. In addition to normalizing the input data of each layer and
promoting a stable distribution of activation values, the BN layer
can accelerate the convergence thus preventing model overfitting.
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Figure 5. The structure of the proposed CNNmodel. The 1D spectral data is transformed into a 2D image-like matrix and is then input into the neural network consisting of three
convolutional layers, three max-pooling layers, and two fully connected layers to extract the stellar parameters.

3.3. The structure of the proposed CNNmodel

After parameter tuning of the model, the final CNN model we
construct is shown in Fig. 5. The convolutional layers filter the
processed 2D spectra using a filter of size 9× 9, and the input is
filled with zero space on the boundary so that the size of the out-
put layer of the convolution is equal to the size of the input layer.
The 9× 9 convolution kernel can acquire a larger field of percep-
tion and therefore can capture more characteristics. The kernels
of each convolutional layer are 64, 128, and 256, respectively. Each
convolutional layer is followed by amax-pooling layer of size 2× 2
with a step size set to two. Afterwards, two fully connected layers
with 128 and 64 channels are added to combine the features pre-
viously extracted by the model. To prevent overfitting, a dropout
layer can be set after each fully connected layer with a value of
0.2 to avoid the over-regularization of the model. BN and ReLU
activation function layers are added between each layer to reduce
overfitting and enhance the expressiveness of the model. The final
output layer is the predicted values derived from the model.

3.4. Experimental procedure

To test whether our model can better estimate stellar parameters
and identify VMP stars, we conduct experiments using Python 3.8
on NVIDIA GeForce RTX GPU. As mentioned in Section 2, both
the LAMOST dataset and the MARCS dataset are divided into
training and testing sets in the ratio of 7:3 to train the model and
test its effectiveness. The training and testing process is performed
on Teff, log g, [Fe/H], and [C/Fe] respectively.

We set a total of 1 000 epochs for model training, and L1loss
(MAE, Equation (5)) is used as the loss function. The training
process is performed in batches, with the size of each batch set
to 128. The Adam algorithm (Kingma and Ba 2014), with an ini-
tial learning rate set to 0.001, is chosen to be the optimizer, which
is an extension of the stochastic gradient descent method. Adam
optimizer can speed up convergence by adapting the learning rate,

making it well-suited for deep learning problems. An early stop-
ping mechanism is set when the loss function no longer decreases
beyond 250 epochs, which can effectively prevent the model from
overfitting.

3.4.1. Evaluation metrics

We use three main evaluation metrics to test the effectiveness of
the model in estimating stellar parameters, Mean Absolute Error
(MAE, Equation (5)), Standard Deviation (STD, Equation (6)),
and R squared (R2, Equation (7)).

Suppose that N is the number of samples contained in the test
set, y denotes the true values, and ŷ denotes the predicted values
derived by the proposed model. Let ei be yi − ŷi, and ēi be the
average value of ei.

(1) Mean absolute error (MAE): MAE is a loss function used
in regression models, which can express the fitting ability
of the model more intuitively.

MAE(y, ŷ)= 1
N

N−1∑
i=0

|yi − ŷi|. (5)

(2) Standard deviation (STD): Standard deviation reflects the
degree of dispersion of a dataset.

STD(y, ŷ)=
√√√√ 1

N

N∑
i=1

(ei − ēi)2. (6)

(3) R squared (R2): The numerator is the error between the
predicted value and the true value, and the denominator is
understood as the dispersion of the true value. The division
of the two can eliminate the effect of the dispersion of the
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Table 1. The prediction results of the three fundamental atmospheric parame-
ters on the test set including 7 994 stars using the proposed CNNmodel.

Parameter MAE STD R2

Teff (K) 99.40 183.33 0.93

log g(dex) 0.22 0.35 0.84

[Fe/H](dex) 0.14 0.26 0.94

true value. The closer R2 is to 1, the better the model fits
the data.

R2(y, ŷ)= 1−
∑

(y− ŷ)2∑
(y− ȳ)2

. (7)

Three other metrics can be used to test the effectiveness of
the model in classifying stars, precision (Equation (8)), recall
(Equation (9)), and accuracy rate (Equation (10)).

(1) True Positive (TP): VMP stars predicted as VMP stars.
(2) True Negative (TN): Common stars predicted as common

stars.
(3) False Positive (FP): Common stars predicted as VMP stars.
(4) False Negative (FN): VMP stars predicted as common

stars.

Precision= TP
TP + FP

. (8)

Recall= TP
TP + FN

. (9)

Accuracy= TP + TN
TP + FP + TN + FN

. (10)

4. Results

In this section, we show the parameter estimation and classi-
fication results in the dataset described in Section 2 using the
proposed CNN model.

4.1. Estimating stellar parameters and identifying VMP stars
using the LAMOST dataset

We start our experiments with a total of 26 646 stars, including
both VMP and non-VMP stars. The prediction results obtained
on the test set are displayed in Table 1. For Teff, MAE=99.40 K,
STD=183.33 K, R2 =0.93; for log g, MAE=0.22 dex, STD=0.35
dex, R2 =0.84; and for [Fe/H], MAE=0.14 dex, STD=0.26 dex,
R2 =0.94. We can see that the model is able to fit the three stel-
lar parameters well and fits Teff and [Fe/H] better than log g.
Simultaneously, we plot the scatter density plots of the predicted
and true values on the test set (see the left column of Fig. 6). The
green dashed line indicates the first-degree polynomial fit curve
of the predicted and true values, and the red line is the image
of predicted value= true value. The closer the green dashed line
is to the red solid line, the better the prediction results. From
the figure, we can state that the fitting results of Teff and [Fe/H]
are very close to the line of predicted value= true value, while the
results of log g are relatively poor, which shows that the proposed
CNN model has a better prediction for Teff and [Fe/H], while log
g is relatively more difficult to estimate. In addition, the right

column of Fig. 6 illustrates the variation of the residuals (true
value-predicted value) with respect to the true values. The red line
can show us more explicitly the turbulence of the residuals around
zero.

Furthermore, experiments can be conducted on 10 008 VMP
stars and 16 638 non-VMP stars separately to test whether the
CNN model has a significant difference in measuring the param-
eters of VMP stars and those of non-VMP stars. The prediction
results on the two test sets involving 3 003 VMP stars and 4 992
non-VMP stars are listed in Table 2. Briefly, the MAE values for
the predicted and true values are 118.26 K for Teff, 0.31 dex for
log g, and 0.17 dex for [Fe/H] for the VMP stars, and 75.84 K
for Teff, 0.11 dex for log g, and 0.08 dex for [Fe/H] for the non-
VMP stars. We can clearly demonstrate that the proposed CNN
model is much better at deriving the parameters of non-VMP
stars than VMP stars, which specifies the necessity to develop
a model that can effectively measure the parameters of VMP
stars.

With the results obtained above, we can conclude that the pro-
posed CNN model has good accuracy in estimating stellar atmo-
spheric parameters, which suggests that we can use the method for
VMP star identification. By analysing the metallicity of the total
dataset containing VMP and non-VMP stars, setting the label of
VMP stars with [Fe/H]<-2.0 to 1 and the label of non-VMP stars
with [Fe/H]>-2.0 to 0, we find 2 999 VMP stars and 4 995 non-
VMP stars in the test set. The confusion matrix of the true and
predicted values is shown in Fig. 7. Then we can calculate the
precision, recall, and accuracy of the proposed CNN model for
predicting VMP stars (see Table 3). Among the 2 966 stars pre-
dicted to be VMP stars, 2 811 stars are true VMP stars, with a
precision rate of 94.77% (2 811/2 966); among the test set includ-
ing 2 999 VMP stars, 2 811 stars are correctly predicted to be VMP
stars, with a recall rate of 93.73% (2 811/2 999). Overall, our CNN
model is also able to classify VMP stars and non-VMP stars well,
with an accuracy of 95.70%.

4.2. Estimating [C/Fe] and identifying CEMP stars using the
VMP stars dataset

We perform experiments using the dataset obtained by cross-
matching in Section 2.1, which includes 8 117 VMP stars with
[C/Fe] values. The best prediction results obtained on the test set
are MAE=0.26 dex, STD=0.38 dex, and R2=0.64.We also plot the
scatter density plots of the predicted and true values of [C/Fe] and
the residuals (Fig. 8). It can be seen from the figures that the pro-
posed CNN model is also able to predict [C/Fe] well. By analysing
the prediction results, we find that 240 stars are correctly predicted
as CEMP stars, with a precision rate of 75.7% (240/317). The total
accuracy rate is around 87.56%, indicating our model has good
performance in classifying CEMP stars.

4.3. Estimating stellar parameters using the MARCS synthetic
spectra including 9 644 stars

This section shows the outcomes of predicting the stellar param-
eters of the 9 644 MARCS spectra using the CNN model. The
results on the test set of 2 894 stars are shown in Table 4.
For Teff, MAE=53.03 K, STD=80.78 K, R2=0.998; for log g,
MAE=0.056 dex, STD=0.097 dex, R2=0.995; and for [Fe/H],
MAE=0.047 dex, STD=0.093 dex, R2=0.995. Compared to the
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Figure 6. The left panel shows the true and predicted values of Teff (top side), log g (centre), and [Fe/H] (bottom side) obtained on the LAMOST test set. The red solid line is the plot
of the function y= x. The green dashed line represents the first-degree polynomial fit curve of the predicted values to the true values. The right panel are their residuals against
the true values.

errors obtained using the LAMOST dataset, the results for the
synthetic spectra are much smaller, and in particular the R2 val-
ues very close to 1 indicate a good fit of our model. The scat-
ter density plots between the true and predicted values can be
seen in Fig. 9, revealing there is only a little deviation between
them.

5. Discussion

To further verify the effectiveness of the proposed CNN model,
we introduce Random Forest (RF) and Support Vector Machine
(SVM) algorithms to make comparisons. The dataset used in the
comparison experiment is the same as that used in Section 4.1,

https://doi.org/10.1017/pasa.2023.59 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2023.59


Publications of the Astronomical Society of Australia 9

Table 2. The prediction results of the three fundamental atmospheric parame-
ters on VMP star test set and non-VMP stars test set.

Teff(K) log g(dex) [Fe/H](dex)

MAE STD R2 MAE STD R2 MAE STD R2

VMP 118.26 173.61 0.91 0.31 0.43 0.67 0.17 0.24 0.84

COMMON 75.84 156.14 0.96 0.11 0.18 0.95 0.08 0.13 0.94

Table 3. The results of classifying the VMP stars on
test set including 7 994 stars.

Precision Recall Accuracy

94.77% 93.73% 95.70%

Figure 7. The confusion matrix of classifying the VMP stars on test set including 7 994
stars.

which includes a total of 26 646 spectral data and fundamental stel-
lar parameters of the VMP stars and non-VMP stars. The training
and test sets are also selected in line with the previous experiments
to test whether the CNN model outperforms other algorithms.

Table 4. The prediction results of the three fundamental atmospheric parame-
ters on MARCS test set including 2 894 stars.

Parameter MAE STD R2

Teff (K) 53.03 80.78 0.998

log g(dex) 0.056 0.097 0.995

[Fe/H](dex) 0.047 0.093 0.995

1. RF:
The RF algorithm (Breiman 2001) is a specific implemen-
tation of the bagging method, where multiple decision
trees are trained and all results are combined. For regres-
sion problems, the prediction of the Random Forest is the
average of all decision tree results. The advantage that this
method can operate efficiently on large data sets and is not
prone to overfitting has made it widely used in astronom-
ical data analysis (Wang et al. 2019; Mahmudunnobe et al.
2021).
The RandomForestRegressor function in the Scikit − learn
package in Python is imported to carry out experiments.
To construct the optimal RF model, we tune the param-
eters for the number of decision trees (n_estimators) and
the maximum number of features (max_features). The
GridSearchCV function in Python provides us with a
convenient method to automatically derive the optimal
parameters and the score. The specific parameter-tuning
process is detailed in the Appendix. The MAE values on
the test set are, 122.57 K for Teff, 0.30 dex for log g, and
0.26 dex for [Fe/H]. The precision, recall, and accuracy of
classifying the VMP stars are 93.12%, 74.02%, and 88.20%,
respectively.

2. SVM:
SVM (Cortes and Vapnik 1995) is a binary classification
model, which is essentially an optimization algorithm for
solving convex quadratic programming problems. In addi-
tion to classification problems, SVM can also be applied
to regression problems (SVR), which centres on finding a
regression plane such that all data in a set are closest to

Figure 8. The left panel shows the true and predicted values of [C/Fe] obtained on the test set including 2 436 stars. The red solid line is the plot of the function y= x. The green
dashed line represents the first-degree polynomial fit curve of the predicted values to the true values. The right panel is the residual against the true values.
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Figure 9. The true and predicted values of Teff (top panel), log g (middle panel), and
[Fe/H] (bottom panel) on MARCS test set including 2 894 stars.

this plane. For non-linear regression problems, SVM can
introduce a kernel function that turns the problem into an
approximate linear regression problem.
To construct the optimal regressionmodel, we use the SVR
function of the Scikit − learn library in Python, utilizing
the third-degree polynomial kernel function for training
and tuning two relatively important parameters C and
gamma. C is the penalty factor of the target function and
gamma is the coefficient of the kernel function. The tuning

Table 5. The prediction results of the three fundamental atmospheric parame-
ters on the test set including 7,994 stars using RF, SVM, and CNNmethods.

Teff (K) log g (dex) [Fe/H](dex)

MAE STD R2 MAE STD R2 MAE STD R2

RF 122.57 200.15 0.92 0.30 0.45 0.75 0.26 0.41 0.85

SVM 122.07 211.92 0.91 0.26 0.40 0.80 0.23 0.37 0.87

CNN 99.40 183.33 0.93 0.22 0.35 0.84 0.14 0.26 0.94

process is detailed in the Appendix. By using the opti-
mal SVM model, the MAE values obtained on the test
set are, 122.07 K for Teff, 0.26 dex for log g, and 0.23
dex for [Fe/H]. The precision, recall, and accuracy of clas-
sifying the VMP stars are 95.37%, 77.66%, and 90.21%,
respectively.

The specific results of the comparison experiments are shown
in Table 5. The MAE, STD, and R2 values for estimating stel-
lar parameters using the three machine learning methods are
included. We can see that CNN estimates stellar parameters with
higher accuracy than the other twomethods from all threemetrics.

We also draw a bar chart of the results of identifying VMP
stars with these three methods. From Fig. 10, we can clearly
demonstrate that although the precision of the three methods is
comparable, the recall rates of RF and SVM are much lower than
that of the CNN, which indicates that the probability of VMP stars
being predicted as common stars can be greatly reduced using the
proposed CNN model. In terms of accuracy, the CNN model is
also able to better classify VMP stars and common stars.

Additionally, Wang et al. (2022) carried out a fairly similar
exercise to ours using neural networks. Similarly, they utilized the
VMP stars catalog from Li et al. (2018) as a comparative refer-
ence. Employing their own method, they determined the [Fe/H]
values within the sample. Their investigation yielded Standard
Deviation (σ ) values of 0.299 dex and 0.219 dex for two kinds of
[Fe/H] values ([Fe/H]-NN-PASTEL and [Fe/H]-NN-VMP, refer
to Figure 21 in their study). In contrast to our VMP star results
with an STD value of 0.24 dex (as shown in Table 2), the error of
their improved [Fe/H] values ([Fe/H]-NN-VMP) is slightly bet-
ter than ours, but the spectral resolution used by us is extremely
low at only 200, which is much lower than the LAMOST low-
resolution spectra (R∼1 800) employed by them. Consequently, it
can be inferred that ourmodel capably estimates stellar parameters
even for spectra possessing a resolution as low as 200.

6. Conclusion

This paper investigates the effectiveness of the CNN model in
estimating stellar parameters for low-resolution spectra (R∼ 200)
and the ability to identify VMP stars. We constructed a two-
dimensional CNN model consisting of three convolutional and
two fully connected layers and selected a catalog including 10 008
VMP stars and 16 638 non-VMP stars for our experiments. The
resolution of these stellar spectra was scaled down from R∼ 1 800
to R∼ 200 to match the CSST’s spectral data, and then the spec-
tral data with 410 features could be derived through interpolation
and normalization. By collapsing these one-dimensional spectra
into two-dimensional matrices and feeding them into the CNN
model, we successfully estimated corresponding stellar parame-
ters. The results show that for Teff, MAE=99.40 K, STD=183.33 K,
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Figure 10. The bar chart of the precision rate, recall rate, and accuracy of identifying VMP stars using RF (green), SVM (blue), and CNN (orange).

R2=0.93; for log g, MAE=0.22 dex, STD=0.35 dex, R2=0.84; for
[Fe/H], MAE=0.14 dex, STD=0.26 dex, R2=0.94; and for [C/Fe],
MAE=0.26 dex, STD=0.37 dex, R2=0.64. While the CNN model
exhibited slightly diminished performance in deriving parameters
of the VMP stars compared to non-VMP stars, it was still able
to distinguish VMP stars with a precision rate of 94.77%, a recall
rate of 93.73% and an accuracy of 95.70%. Impressively, the model
also effectively identified CEMP stars in VMP stars, achieving an
accuracy of 87.56%. Moreover, we illustrated the superiority of
the CNN model over the RF and SVM algorithms in that it can
predict stellar parameters with higher accuracy and identify VMP
stars better, with a recall rate nearly 20% higher than the other two
approaches. The efficiency of the CNN model was also tested on
the MARCS synthetic spectra, and the MAE values obtained on
the test set were 53.03 K for Teff, 0.056 dex for log g, and 0.047 dex
for [Fe/H].

To sum up, the CNNmodel proposed in this paper can produc-
tively measure the stellar parameters of spectra with a resolution
of 200 and excels in identifying VMP stars. This work lays a robust
foundation for future investigations of a large number of low-
resolution spectra obtained by the CSST and searching for VMP
stars from them. This will not only greatly expand the VMP star
candidates, but also lead to a better understanding of the evolution
of the Milky Way.
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Appendix A. Parameter-tuning process of RF and SVM

1. RFr
The RF model can be regarded as a decision tree model
embedded into the bagging framework, so we first per-
form parameter selection on the outer bagging frame-
work (n_estimators) and then on the inner decision tree
model (max_features). When optimizing a certain param-
eter, the other parameters need to be set as constants.
The parameter-tuning process is performed on Teff, log
g, and [Fe/H], respectively. For Teff, when default values
are used for all parameters, the best score is 0.914. After
that, we perform a ten-fold cross-validation. The range
of n_esimators is chosen to be 1–150 and the step size is
10. The best n_esimators obtained is 110 and the score is
0.916. On the basis of n_esimators of 110, themax_features
range is chosen to be 1–100 and the step size is 1. The best
max_features obtained is 95, with a score of 0.918. It can be
seen that there is a small increase in the score, indicating
the parameter-tuning process is effective. Following the
same steps, we obtain the optimal parameters for log g is
n_esimators=120, max_features=94 with a score of 0.743,
and for [Fe/H] is n_esimators=110,max_features=52 with
the score of 0.851.

2. SVM
The tuning process for the SVM model is performed sep-
arately for Teff, log g, and [Fe/H]. We use a grid search
for 5-fold cross-validation, first tuning C, and then fix-
ing the optimal C value to adjust gamma. C is set to 0.1,
1, 10, and gamma is set to 0.001, 0.01, 0.1, and ‘scale’
(gamma= 1/(n_features ∗ X.var()), where n_features is the
number of the input features, X.var() is the variance of
the input features). The experimental results show that for
Teff, log g, and [Fe/H], the optimal C values are all 10,
with scores of 0.87, 0.79, and 0.87, respectively. On this
basis, optimal gamma values are obtained as 0.1, ‘scale’,
and ‘scale’, with scores of 0.91, 0.81, and 0.88, respectively.
Using the obtained optimal SVM model, we can conduct
subsequent experiments.

https://doi.org/10.1017/pasa.2023.59 Published online by Cambridge University Press

https://doi.org/10.1051/0004-6361/200811467
https://ui.adsabs.harvard.edu/abs/2009A&A...501.1269K
https://doi.org/10.1051/0004-6361/200811467
https://arxiv.org/abs/0903.2979
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1088/0004-6256/146/5/132
https://ui.adsabs.harvard.edu/abs/2013AJ....146..132L
https://doi.org/10.1088/0004-6256/146/5/132
https://doi.org/10.1088/0004-6256/146/5/132
https://arxiv.org/abs/1310.3276
https://doi.org/10.1088/0004-6256/146/5/132
https://ui.adsabs.harvard.edu/abs/2008AJ....136.2022L
https://doi.org/10.1088/0004-6256/136/5/2022
https://doi.org/10.1088/0004-6256/136/5/2022
https://arxiv.org/abs/0710.5645
https://doi.org/10.1093/mnras/sty3217
https://ui.adsabs.harvard.edu/abs/2019MNRAS.483.3255L
https://doi.org/10.1093/mnras/sty3217
https://doi.org/10.1093/mnras/sty3217
https://arxiv.org/abs/1808.04428
https://doi.org/10.3847/1538-4365/aada4a
https://ui.adsabs.harvard.edu/abs/2018ApJS..238...16L
https://doi.org/10.3847/1538-4365/aada4a
https://doi.org/10.3847/1538-4365/aada4a
https://arxiv.org/abs/1809.03881
https://doi.org/10.1088/0004-637X/798/2/110
https://ui.adsabs.harvard.edu/abs/2015ApJ...798..110L
https://doi.org/10.1088/0004-637X/798/2/110
https://doi.org/10.1088/0004-637X/798/2/110
https://arxiv.org/abs/1501.03062
https://doi.org/10.1093/mnras/stac1625
https://ui.adsabs.harvard.edu/abs/2022MNRAS.514.4588L
https://doi.org/10.1093/mnras/stac1625
https://arxiv.org/abs/2207.06042
https://ui.adsabs.harvard.edu/abs/2018AcASn..59...35L
https://doi.org/10.1086/509780
https://ui.adsabs.harvard.edu/abs/2006ApJ...652L..37L
https://doi.org/10.1086/509780
https://arxiv.org/abs/astro-ph/0609730
https://doi.org/10.1140/epjs/s11734-021-00205-x
https://ui.adsabs.harvard.edu/abs/2021EPJST.230.2177M
https://doi.org/10.1140/epjs/s11734-021-00205-x
https://arxiv.org/abs/2103.05826
https://doi.org/10.1016/j.nuclphysa.2005.05.056
https://ui.adsabs.harvard.edu/abs/2005NuPhA.758..312M
https://doi.org/10.1016/j.nuclphysa.2005.05.056
https://arxiv.org/abs/astro-ph/0408380 \hbox {\char '133}\gdef  \ignorespaces {\hbox {\char '133}}\gdef no{no}\gdef yes{yes}astro-ph\hbox {\char '135}\gdef  \ignorespaces {\hbox {\char '135}}\gdef no{no}\gdef yes{yes}
https://doi.org/10.1088/0004-637X/808/1/16
https://ui.adsabs.harvard.edu/abs/2015ApJ...808...16N
https://doi.org/10.1088/0004-637X/808/1/16
https://arxiv.org/abs/1501.07604
https://doi.org/10.1088/0004-637X/797/1/21
https://ui.adsabs.harvard.edu/abs/2014ApJ...797...21P
https://doi.org/10.1088/0004-637X/797/1/21
https://arxiv.org/abs/1410.2223
https://doi.org/10.3847/1538-4357/abc005
https://ui.adsabs.harvard.edu/abs/2020ApJ...905...20R
https://doi.org/10.3847/1538-4357/abc005
https://arxiv.org/abs/2010.04214
https://doi.org/10.1051/0004-6361/201935156
https://ui.adsabs.harvard.edu/abs/2019A&A...627A.177R
https://doi.org/10.1051/0004-6361/201935156
https://doi.org/10.1051/0004-6361/201935156
https://arxiv.org/abs/1906.08281
https://ui.adsabs.harvard.edu/abs/2001AAS...199.9108R
https://doi.org/10.1088/0004-6256/147/6/136
https://ui.adsabs.harvard.edu/abs/2014AJ....147..136R
https://doi.org/10.1088/0004-6256/147/6/136
https://arxiv.org/abs/1403.6853
https://doi.org/10.1051/0004-6361/202142133
https://ui.adsabs.harvard.edu/abs/2022A&A...662A.120S
https://doi.org/10.1051/0004-6361/202142133
https://arxiv.org/abs/2203.16320
https://doi.org/10.3847/1538-4357/ab2331
https://ui.adsabs.harvard.edu/abs/2019ApJ...879...69T
https://doi.org/10.3847/1538-4357/ab2331
https://arxiv.org/abs/1804.01530
https://doi.org/10.1093/mnras/stab2996
https://doi.org/10.1093/mnras/stab2996
https://doi.org/10.1093/mnras/stab2996
https://academic.oup.com/mnras/article-pdf/509/3/4189/41505523/stab2996.pdf
https://academic.oup.com/mnras/article-pdf/509/3/4189/41505523/stab2996.pdf
https://doi.org/10.3847/1538-4365/ac4df7
https://ui.adsabs.harvard.edu/abs/2022ApJS..259...51W
https://doi.org/10.3847/1538-4365/ac4df7
https://arxiv.org/abs/2201.09442
https://doi.org/10.3847/1538-4357/ab6dea
https://ui.adsabs.harvard.edu/abs/2020ApJ...891...23W
https://doi.org/10.3847/1538-4357/ab6dea
https://arxiv.org/abs/2001.03470
https://doi.org/10.1093/mnras/stac2273
https://ui.adsabs.harvard.edu/abs/2022MNRAS.516.3254W
https://doi.org/10.1093/mnras/stac2273
https://arxiv.org/abs/2205.12271
https://doi.org/10.1017/S1743921314010825
https://ui.adsabs.harvard.edu/abs/2014IAUS..306..340W
https://doi.org/10.1017/S1743921314010825
https://arxiv.org/abs/1407.1980
https://doi.org/10.1088/1674-4527/21/3/074
https://ui.adsabs.harvard.edu/abs/2021RAA....21...74Y
https://doi.org/10.1088/1674-4527/21/3/074
https://arxiv.org/abs/2010.14005
https://doi.org/10.3847/1538-4357/ab6ef7
https://ui.adsabs.harvard.edu/abs/2020ApJ...891...39Y
https://doi.org/10.3847/1538-4357/ab6ef7
https://arxiv.org/abs/1910.07538
https://doi.org/10.1017/pasa.2023.59

	
	Introduction
	Data
	LAMOST
	Data introduction
	Data selection
	Data pre-processing
	MARCS dataset
	Methodology
	Introduction to the convolutional neural network (CNN)
	The method of preventing overfitting
	The structure of the proposed CNN model
	Experimental procedure
	Evaluation metrics
	Results
	Estimating stellar parameters and identifying VMP stars using the LAMOST dataset
	Estimating '133C/Fe'135 and identifying CEMP stars using the VMP stars dataset
	Estimating stellar parameters using the MARCS synthetic spectra including 9 644 stars
	Discussion
	Conclusion

