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Abstract

We apply Takesaki’s and Connes’s ideas on structure analysis for type III factors to the study of links
(a short term of Markov kernels) appearing in asymptotic representation theory.
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1. Introduction

Asymptotic representation theory was initiated by Vershik and Kerov in around 1980,
and investigates unitary characters of inductive limits of finite/compact groups. The
theory has involved several operator algebraic tools such as AF-algebras with their
dimension groups since its birth; see for example, [9]. The main classification problem
(on factor representations) in the theory is described in terms of links (or equivalently,
Markov kernels) on branching graphs; see for example, [1, 9]. (See Section 2 too
for the definition of links.) For the infinite symmetric group, that is, the inductive
limit of symmetric groups, the branching graph is a Young poset and the link is
obtained from the multiplicity function that describes its branching rule. In this way,
the study of asymptotic representation theory for ordinary groups can be studied by
looking at only branching graphs. However, one can consider links that do not match
multiplicity functions. Such a link naturally arises in the quantum group setting as an
effect of q-deformation (see [7, 12]), and we have developed, in [18, 19], an abstract
framework to discuss those from the viewpoint of Olshanski’s spherical representation
theory in the general operator algebraic setting. The purpose of this paper is to
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introduce a new method of studying general links on branching graphs, which admits a
K-theoretic interpretation.

Our operator algebraic, abstract framework is rather general, but it starts, in
the context of this paper, with an inductive sequence An of atomic W∗-algebras
with continuous flows αt

n : R � An, and then takes its (C∗-algebraic) inductive limit
(A,αt) = lim−−→(An,αt

n). Such an inductive limit naturally arises when one considers the
inductive limit of quantum unitary groups Uq(n), that is, An = W∗(Uq(n)), the group
W∗-algebra of Uq(n), and αt

n is given by the so-called scaling automorphism group
arising as a consequence of q-deformation. See [18, Section 4] for more details.

In our previous paper [19], we introduced the notion of (αt, β)-spherical repre-
sentations with β ∈ R. An (αt, β)-spherical representation of A is a ∗-representation
Π : A ⊗max Aop � HΠ (⊗max denotes the maximal C∗-tensor product and Aop the
opposite algebra of A) together with a unit vector ξ ∈ HΠ with the following KMS-like
property: for each a ∈ A and each η ∈ HΠ, there is a bounded continuous function F(z)
on 0 ∧ (β/2) ≤ Imz ≤ 0 ∨ (β/2) such that F(z) is holomorphic in its interior and

F(t) = (Π(αt(a) ⊗ 1op)ξ | η)HΠ , F(t + iβ/2) = (Π(1 ⊗ (αt(a))op)ξ | η)HΠ

for all t ∈ R. See [19, Definition 5.1]. This definition may look technical but is
equivalent to that

Π(a ⊗ 1op)ξ = Π(1 ⊗ aop)ξ, a ∈ A

when αt is the trivial flow. Thus, the notion of (αt, β)-spherical representations is a
natural abstraction of that of spherical representations for spherical pairs of ordinary
(topological) groups G < G × G in the sense due to Olshanski. See the first several
paragraphs of [19, Section 3] (and also see [18, Corollary 4.11]). The natural class of
(αt, β)-spherical representations in the present context is given by locally bi-normal
ones, that is, (a, bop) 	→ Π(a ⊗ bop) is separately normal on An × Aop

n for each n. We
have established a one-to-one correspondence between the equivalence classes of
locally bi-normal (αt, β)-spherical representations and the locally normal (αt, β)-KMS
states Kln

β (αt) (see [19, Theorem 5.7]). This correspondence explains that Kln
−1(αt) can

naturally be understood as a counterpart of the space of unitary characters when
(A,αt) = lim−−→(An,αt

n) arises from an inductive limit of compact quantum groups; see
[19, Section 6] and [18, Sections 4.1, 4.2]. Therefore, the analysis of Vershik–Kerov
type should be the study of Kln

β (αt) in our abstract setup, and we work with Kln
β (αt)

rather than (αt, β)-spherical representations themselves in this paper because the main
focus here is to develop an analog of Vershik–Kerov’s theory.

Our framework naturally leads us to the use of Takesaki’s idea [13] on general
structure analysis for type III factors (based on his celebrated duality theorem) and
Connes’ idea [4] on almost-periodic weights in the study of links that do not match
multiplicity functions. We apply the construction of Takesaki duals to the inductive
sequence (An,αt

n) and obtain a new inductive sequence Ãn of atomic W∗-algebras
again equipped with actions α̃γn of discrete subgroup Γ of the multiplicative group R×+.
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[3] Spherical representations for C∗-flows III 241

We take the new (C∗-algebraic) inductive limit (Ã, α̃γ) = lim−−→(Ãn, α̃γn), and then Kln
β (αt)

are shown to be affine-isomorphic to the tracial weights τ on Ã that are locally normal
semifinite and suitably scaling under α̃γ. This procedure is explained in Section 3.
We then interpret this procedure in terms of links on branching graphs. This is done
in Section 4. A consequence is that the study of a general link on a branching graph
is reduced to that of the link arising from the multiplicity function on an extended
branching graph with group action. This new approach allows us to use the notion of
dimension groups explicitly. The reader who is only interested in the study of links
may directly go to Section 4.3, where the present method is given without appealing to
any operator algebras. In Section 5, we examine a relation between the present method
and K-theory. A consequence is to give a way to connect the study of general links to
K0-groups. In Section 6, we examine the present method with the infinite dimensional
quantum unitary group Uq(∞), whose formulation was precisely given in part II of
this series of papers. The consequence there explains that the present method is closed
in the class of inductive limits of compact quantum groups and should be regarded
as a way to make the special positive elements ρn ∈ U(Uq(n)), n = 0, 1, . . . (see, for
example, [18, equation (4.5)]) form an inductive sequence by enlarging the algebras in
question. See Section 6.2.

We use the following notation rule: F � Γ means that F is a finite subset of a
set Γ. For a C∗-algebra C, we denote by C+ the cone of its positive elements. We also
mention that our main references on operator algebras are still Bratteli and Robinson’s
books [2, 3] as well as our previous two papers [18, 19], but we have to refer to
Takesaki’s book vol.II [15] concerning weights on C∗-/W∗-algebras and the so-called
Tomita–Takesaki theory with its applications to type III factors.

2. General setup and necessary concepts

Let An, n = 1, 2, . . . be atomic W∗-algebras with separable preduals, and put
A0 = C1. We assume that the An form an inductive sequence by unital normal
embeddings An ↪→ An+1, n = 0, 1, . . . . Let A = lim−−→An be the inductive (direct) limit
C∗-algebra. For each n, we denote by Zn all the minimal projections in the center
Z(An).

Assume that we have a flow α : R � A such that αt(An) = An holds for every t ∈ R
and n ≥ 0 (that is, αt is an inductive flow) and moreover that the restriction of αt to each
An, denoted by αt

n : R � An, is continuous in the u-topology, that is, ‖ω ◦ αt
n − ω‖ → 0

as t → 0 for all ω ∈ An∗ (note that the u-topology is the most natural topology on
automorphisms of W∗-algebras and dates back to Haagerup’s work [8, Definition 3.4]).
The u-continuity assumption makes every flow αt

n fix elements in Z(An). See [19,
Lemma 7.1] for details. Thus, for each z ∈ Zn, n ≥ 0, the restriction of αt

n to zAn defines
a ‘local’ flow αt

z.
For each z ∈ Zn, zAn is identified with all the bounded operators B(Hz) on a Hilbert

space Hz, since An is atomic. Then, for each z ∈ Zn, n ≥ 0, we can find a unique
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(up to positive scaling) nonsingular positive self-adjoint operator ρz affiliated with
zAn = B(Hz) such that αt

z = Adρit
z for every t ∈ R. Throughout this paper, we consider

only the case when all ρz are diagonalizable. This is fulfilled when all the dimensions
dim(z) := dim(Hz) < ∞.

To the inductive sequence An, we associate a branching graph together with multi-
plicity function as follows. The vertex set is Z =

⊔
n≥0 Zn, and the multiplicity function

m :
⊔

n≥0 Zn+1 × Zn → N ∪ {0,∞} is defined to be the multiplicity of z′An = B(Hz′) in
zAn+1 = B(Hz) via An ↪→ An+1 for (z, z′) ∈ Zn+1 × Zn. We observe that⋃

z′∈Zn

{z ∈ Zn+1; m(z, z′) > 0} = Zn+1,
⋃

z∈Zn+1

{z′ ∈ Zn; m(z, z′) > 0} = Zn

for all n ≥ 0, and

Tr(zz′) = m(z, z′) dim(z′), (z, z′) ∈
⊔
n≥0

Zn+1 × Zn

hold, where Tr stands for the nonnormalized trace on zAn+1 = B(Hz). We also remark
that

dim(z) =
∑

z′∈Zn−1

m(z, z′) dim(z′) = · · · =
∑

zi∈Zi(i=1,...,n−1)

m(z, zn−1) · · ·m(z2, z1)m(z1, 1)

for every z ∈ Zn. The edge set is defined to be all the (z, z′) ∈ ⊔
n≥0 Zn+1 × Zn with

m(z, z′) > 0. We have shown (see [19, Section 9]) that the graph (Z, m) completely
remembers the inductive sequence An.

Let an inverse temperature β ∈ R be fixed throughout in such a way that Tr(ρ−βz ) < ∞
for all z ∈ Zn, n ≥ 1. For each z ∈ Zn, n ≥ 0, a unique (faithful, normal) (αt

z, β)-KMS
state τβz = τ(αt

z,β) on zAn = B(Hz) is given by

x ∈ B(Hz) 	→ τ
β
z (x) :=

Tr(ρ−βz x)

Tr(ρ−βz )
∈ C.

In what follows, we write dimβ(z) = dim(αt ,β)(z) := Tr(ρ−βz ).
We discussed, in [18, 19], locally normal (αt, β)-spherical representations, or

equivalently, locally normal (αt, β)-KMS states for A = lim−−→An, whose classification
problem can be discussed in terms of links over Z =

⊔
n≥0 Zn. See Section 1 too on

this point. Here we recall the notion of links. A function λ :
⊔

n≥0 Zn+1 × Zn → [0, 1]
is called a link (a synonym of a Markov kernel) if λ(z, · ) gives a (discrete) probability
measure on Zn for every z ∈ Zn+1.

In the present setting, the link κ = κ(αt ,β) :
⊔

n≥0 Zn+1 × Zn → [0, 1] is given by

κ(z, z′) := τβz (zz′) =
Tr(ρ−βz z′)
dimβ(z)

, (z, z′) ∈
⊔
n≥0

Zn+1 × Zn. (2-1)
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If β = 0 and all dim(z) < ∞, then dimβ(z) = dim(z) holds for every z ∈ Z and the link
κ(z, z′) is nothing less than

μ(z, z′) :=
1

dim(z)
m(z, z′) dim(z′), (z, z′) ∈

⊔
n≥0

Zn+1 × Zn.

We call this special link μ :
⊔

n≥0 Zn+1 × Zn → [0, 1] the standard link (this is available
only when all dim(z) < ∞). The standard link fits the notion of dimension groups, but
other links do not. Consequently, to a given branching graph (Z, m), we associate the
standard link μ under all the dim(z) < ∞, but a nonstandard link on (Z, m) can also
be considered even when μ cannot. Moreover, we illustrated in [19, Section 9] how
any nonstandard link arises in the spherical representation theory for a certain class of
C∗-flows.

3. ρ-Extension

We fix a family ρ = {ρz}z∈Z as in Section 2, that is, each ρit
z implements the restriction

αt
z of αt

n to zAn, z ∈ Zn ⊂ Z, and all ρz are diagonalizable. Let Γ = Γ(ρ) be the discrete
(countable) subgroup generated by all the eigenvalues of ρz in the multiplicative group
R×+ = (0,∞). Let G = Γ̂ be the dual compact abelian group of Γ. There is a continuous
homomorphism from R into G with dense image such that 〈γ, t〉 = γit holds for every
γ ∈ Γ when t ∈ R is regarded as an element of G via the homomorphism, where
〈 · , · 〉 : Γ × G→ T is the dual pairing. It is evident that every unitary representation
t 	→ uz(t) = ρit

z of the real numbers R uniquely extends to G by using the spectral
decomposition of ρz, and hence so does every flow αt

n.
For each n = 0, 1, . . . , we take the W∗-crossed product Ãn := An�̄αg

n
G, whose

construction (see for example, [2, Definition 2.7.3]) is reviewed in our convenient way
as follows. Since An has separable predual and thus is σ-finite, An acts on a Hilbert
spaceKn with a separating and cyclic vector. (See for example, [2, Proposition 2.5.6].)
Let L2(G;Kn) be the Kn-valued L2-space over G with respect to the Haar probability
measure dg, which can be identified with the completion of the Kn-valued continuous
functions C(G;Kn) equipped with inner product

(ξ | η) :=
∫

G
(ξ(g) | η(g))Kn dg, ξ, η ∈ C(G;Kn).

We define an injective normal ∗-homomorphism παn : An → B(L2(G;Kn)) by

(παn (a)ξ)(g) := αg−1

n (a)ξ(g), a ∈ An, ξ ∈ C(G;Kn) ⊂ L2(G;Kn).

Let λ : G� L2(G;Kn) be the unitary representation defined by

(λ(g1)ξ)(g2) := ξ(g−1
1 g2), g1, g2 ∈ G, ξ ∈ C(G;Kn) ⊂ L2(G;Kn).

We have a natural identification L2(G;Kn) = Kn ⊗̄L2(G) by

(ξ ⊗ f )(g) = f (g)ξ, ξ ∈ Kn, f ∈ C(G) ⊂ L2(G),
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where C(G) ⊂ L2(G) denote the continuous functions on G and the L2-space over G
with respect to dg, respectively. Via the identification, we set

λ(g) := 1 ⊗ λg, g ∈ G

with the left regular representation λg of G. Then, the W∗-crossed product An�̄αg
n
G is

the W∗-subalgebra of An ⊗̄B(L2(G)) generated by παn (An) and λ(G) in An ⊗̄B(L2(G))
with the covariant relation

λ(g)παn (a) = παn (αg
n(a))λ(g), a ∈ An, g ∈ G.

Note that (the algebraic structure of) the resulting W∗-algebra An�̄αg
n
G is known to be

independent of the choice of representation An ⊂ B(Kn); see [15, Section X.1].
We observe that Ã0 = C1�̄G � �∞(Γ) is given by

eγ =
∫

G
〈γ, g〉 λ(g) dg←→ δγ,

where δγ is the Dirac function at γ. The so-called dual action α̃n : Γ� Ãn (see for
example, [2, Definition 2.7.3]) can be constructed in such a way that

α̃
γ
n(παn (a)) = παn (a), α̃

γ
n(λ(g)) = 〈γ, g〉 λ(g) a ∈ An, γ ∈ Γ, g ∈ G,

and the latter relation is rephrased as

α̃
γ
n(eγ′) = eγγ′ , γ, γ′ ∈ Γ. (3-1)

Since α
g
n+1 = α

g
n holds on An for every g ∈ G, we have a normal embedding

Ãn ↪→ Ãn+1 determined by

παn (a) 	→ παn+1 (a), a ∈ An. (3-2)

Hence, the Ãn form an inductive sequence, and let Ã := lim−−→ Ãn be the inductive limit
C∗-algebra. Moreover, since

An
� � ��

παn

��

An+1

παn+1

��
παn (An) �

� ��
� �

��

παn+1 (An+1)� �

��

�

�

Ãn
� � �� Ãn+1

there is a unique injective ∗-homomorphism πα := lim−−→ παn : A = lim−−→An → Ã = lim−−→ Ãn

such that πα(a) = παm (a) in Ã for every a ∈ An and m ≥ n. By (3-1) and (3-2), we can
take the inductive limit action α̃ := lim−−→ α̃n : Γ� Ã, which acts on πα(A) trivially.
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DEFINITION 3.1. We call (α̃ : Γ� Ã = lim−−→ Ãn) as above the ρ-extension of
(A,αt) = lim−−→(An,αt

n).

We remark that Γ is not a canonical object of the flow αt because it depends on
the choice of ρz. In the next section, we select Γ to be a canonical object under an
additional assumption on A = lim−−→An.

Following a standard strategy in operator algebras dating back to Takesaki’s
structure theorem for type III factors (see for example, [15, Section XII.1]), we interpret
Kln
β (αt) as a suitable class of tracial weights on Ã.
We start with necessary concepts/facts on (tracial) weights on C∗-algebras (see [15,

Ch. VII] as well as [14, Section V.2]). A weight ψ on a C∗-algebra C means a map from
C+ to [0,+∞] such that

ψ(c1 + c2) = ψ(c1) + ψ(c2), c1, c2 ∈ C+,
ψ(tc) = tψ(c), t ∈ [0,+∞), c ∈ C+

with the convention 0 × (+∞) = 0. We call ψ a tracial weight if, in addition,
ψ(c∗c) = ψ(cc∗) holds for any c ∈ C. The definition domain mψ of ψ is defined to
be the linear span of all the c∗1c2 with ψ(c∗kck) < +∞, k = 1, 2. By the polarization
identity, we can extend ψ tomψ as a linear functional. When ψ is tracial, ψ satisfies that
ψ(c1c2) = ψ(c2c1) if one of ci ∈ C falls into mψ; see the proof of [14, Lemma V.2.16].
When C is a W∗-algebra, ψ is said to be normal if ci ↗ c in C+ implies ψ(ci)↗
ψ(c), and also semifinite if C is generated as a W∗-algebra by all the c ∈ C+ with
ψ(c) < +∞.

DEFINITION 3.2. (1) An (α̃γ, β)-scaling trace is defined to be a tracial weight
τ : (Ã)+ → [0,∞] such that:

(i) for each x ∈ Ã and each n, the mapping y ∈ (Ãn)+ 	→ τ(xyx∗) ∈ [0,+∞] is
normal;

(ii) τ ◦ α̃γ = γβ τ for all γ ∈ Γ;
(iii) τ(e1) = 1.

The set of all (α̃γ, β)-scaling traces is denoted by TW ln
β (α̃γ).

(2) We define a normal semifinite weight trβ : (Ã0)+ → [0,∞] by trβ(eγ) = γβ for
every γ ∈ Γ.

Note that items (ii), (iii) in part (1) imply that τ(eγ) = γβ for every γ ∈ Γ so that
τ is semifinite on each Ãn. In fact, letting eF :=

∑
γ∈F eγ with F � Γ, we see that⋃

γ∈F eF (Ãn)+eF is σ-weakly dense in (Ãn)+ and items (ii), (iii) imply 0 ≤ τ(eF xeF ) ≤
‖x‖ ∑

γ∈F γ
β < +∞ for any x ∈ (Ãn)+.

LEMMA 3.3. For each ω ∈ Kln
β (αt), the restriction of ω ⊗̄ id : An ⊗̄B(L2(G))→

C1 ⊗̄B(L2(G)) (the composition of x 	→ 1 ⊗ x and the normal slice map
Rω : A ⊗̄B(L2(G)) sending a ⊗ x to ω(a)x; see for example, [16]) to Ãn = An �̄αn G
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defines a unique normal conditional expectation Ẽω,n : Ãn � Ã0 such that
Ẽω,n(παn (a)) = ω(a)1 for every a ∈ An. Then, Ẽω,n+1 coincides with Ẽω,n on Ãn, and
the inductive limit conditional expectation Ẽω := lim−−→ Ẽω,n from Ã = lim−−→ Ãn onto Ã0 is
well defined.

PROOF. Since the image of R in G is dense and ω ◦ αt = ω for all t ∈ R, we have
ω ◦ αg

n(a) = ω(a) for all g ∈ G and a ∈ An. By [2, Theorem 2.5.31(a)], we can choose
a representing vector ξ ∈ Kn of the restriction of ω to An, so that ω(a) = (a ξ | ξ)Kn

holds for every a ∈ An. We observe that (Rω(x) f1 | f2)L2(G) = (x ξ ⊗ f1 | ξ ⊗ f2)Kn f2⊗̄L2(G)

by definition, for all x ∈ An ⊗̄B(L2(G)) and f1, f2 ∈ L2(G). By the identification
L2(G;Kn) = Kn ⊗̄L2(G),

(παn (a) ξ ⊗ f1 | ξ ⊗ f2)Kn ⊗̄L2(G) =

∫
G

(αg−1

n (a)ξ | ξ)Kn f1(g) f2(g) dg

=

∫
G
ω(αg−1

n (a)) f1(g) f2(g) dg

= ω(a) ( f1 | f2)L2(G)

for all a ∈ An and f1, f2 ∈ C(G) ⊂ L2(G). We conclude that Rω(παn (a)) = ω(a) 1L2(G)

and hence (ω ⊗̄ id)(παn (a)) = ω(a) 1 for all a ∈ An. Since the παn (a)λ(g) form a
σ-weakly total subset of Ãn, it follows that (ω ⊗̄ id)(Ãn) = Ã0 and hence the restriction
of ω ⊗̄ id to Ãn gives the desired conditional expectation Ẽω,n. The rest of the assertion
is now obvious. �

LEMMA 3.4. For each ω ∈ Kln
β (αt), the weight τω := trβ ◦ Ẽω : Ã+ → [0,∞] becomes

an (α̃γ, β)-scaling trace.

PROOF. We have to confirm that τω satisfies items (i)–(iii) of Definition 3.2(1).
We remark that the restriction of ω to An becomes

∑
z∈Zn

ω(z) τβz (see [19, Lemma
7.3]). We set s :=

∑
z∈Zn

1(0,1](ω(z)) z ∈ Z(An), which is the support projection of the
restriction of ω to An, that is, ω is faithful on sAn and identically zero on (1 − s)An.
One can easily confirm that ω enjoys the (α−βt

n ,−1)-KMS condition, and hence the
restriction of α−βt

n to sAn gives the modular automorphism group associated with the
restriction of ω to sAn by [3, Theorem 5.3.10].

We observe that παn (s)= s ⊗ 1∈Z(Ãn); so, παn (s)Ãn= (sAn)�̄αn G ⊂ (sAn) ⊗̄B(L2(G))
by its construction. We have a bijective ∗-homomorphism ι : παn (s)Ã0 → Ã0 sending
λ(0)(g) := παn (s)λ(g) = s ⊗ λg to 1 ⊗ λg = λ(g) for any g ∈ G. With

e(00)
γ :=

∫
G
〈γ, g〉λg dg, γ ∈ Γ,

we observe that the bijective ∗-homomorphism ι sends e(0)
γ := s ⊗ e(00)

γ to 1 ⊗ e(00)
γ = eγ

for every γ ∈ Γ. For a while, we work with παn (s)Ãn = (sAn)�̄αg
n
G whose generators are

παn (a) (a ∈ sAn) as well as λ(0)(g) (g ∈ G) or e(0)
γ (γ ∈ Γ) along the lines of proof of [17,

Theorem 1].
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Let ω̃ be the dual weight on (sAn)�̄αg
n
G constructed out of the restriction of ω to sAn

(see [15, Definition X.1.16, Lemma X.1.18]), which satisfies that

ω̃
(( ∫

G
λ(0)(g)παn (a(g)) dg

)∗( ∫
G
λ(0)(g)παn (a(g)) dg

))
=

∫
G
ω(a(g)∗b(g)) dg

for any σ-strong∗-continuous functions a, b : G→ sAn, where ω̃ extends to its
definition domain mω̃. Moreover, its modular automorphism σω̃t satisfies that

σω̃t (παn (a)) = παn (α−βt
n (a)), σω̃t (λ(0)(g)) = λ(0)(g)

for all a ∈ sAn and g ∈ G. In particular, we obtain σω̃t = Adλ(0)(−βt) for every t ∈ R.
Also, we have ω̃(e(0)

γ ) = ω̃(e(0)
γ e(0)

γ ) =
∫

G dg = 1, and hence the restriction of ω̃ to
λ(0)(G)′′ is semifinite. Thus, Takesaki’s theorem [15, Theorem IX.4.2] guarantees that
there is a unique faithful normal conditional expectation E : (sAn)�̄αg

n
G→ λ(0)(G)′′

with ω̃ ◦ E = ω̃. Then

ω̃(E(παn (a))e(0)
γ ) = ω̃ ◦ E(e(0)

γ παn (a)e(0)
γ ) = ω̃(e(0)

γ παn (a)e(0)
γ )

=

∫
G
ω(a) dg = ω(a) ω̃(e(0)

γ ),

implying that E(παn (a)) = ω(a)1 for every a ∈ sAn because ω̃(e(0)
γ ) = 1. Since

λ(0)(−βt) =
∑
γ∈Γ
〈γ,−βt〉e(0)

γ =
∑
γ∈Γ

γi(−βt) e(0)
γ =

(∑
γ∈Γ

γ−β e(0)
γ

)it
=: Hit

(H is a nonsingular positive self-adjoint operator affiliated with λ(0)(G)′′), [15,
Theorem VIII.3.14] and its proof show that a semifinite normal tracial weight on
(sAn)�̄αg

n
G can be defined to be ω̃(H−1( · )) (which needs some justification; see [15,

Lemma VIII.2.8]). Then we can easily verify ω̃(H−1E( · )) = ω̃(H−1( · )), since H is
affiliated with λ(0)(G)′′. We observe that H−1e(0)

γ = γ
β e(0)

γ and hence ω̃(H−1e(0)
γ ) =

γβ ω̃(e(0)
γ ) = γβ for every γ ∈ Γ.

Since

Ẽω,n(παn (a)λ(g)) = ω(a)λ(g) = ω(sa)ι(λ(0)(g)) = ι(E(παn (s)παn (a)λ(0)(g)))

for any a ∈ An and g ∈ G, we have Ẽω,n(x) = ι(E(παn (s)x)) for every x ∈ Ãn.
Since trβ(ι(e

(0)
γ )) = trβ(eγ) = γβ = ω̃(H−1e(0)

γ ) for every γ ∈ Γ, we also have trβ ◦ ι =
ω̃(H−1( · )) on (Ã0)+. Therefore,

trβ ◦ Ẽω,n(x) = trβ(ι(E(παn (s)x))) = ω̃(H−1E(παn (s)x)) = ω̃(H−1παn (s)x)

for every x ∈ (Ãn)+. Since τω coincides with trβ ◦ Ẽω,n on Ãn, it must be a normal
semifinite tracial weight on Ãn.

Let x ∈ Ã be arbitrarily chosen. Choose a sequence xk ∈
⋃

n≥0 Ãn in such a way that
‖xk − x‖ → 0 as k → ∞.
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For any net yλ ↗ y in (Ãn)+,

lim sup
λ
|φ(Eω(xyλx∗) − Eω(xyx∗))| ≤ 2‖φ‖ ‖y‖ (‖x‖ + ‖xk‖) ‖xk − x‖ k→∞→ 0

for every normal linear functional φ on Ã0, since the xkyλx∗k and xkyx∗k fall into some
Ãm with m ≥ n for a fixed k, and since the restriction of Eω to Ãm is normal. Hence,
we conclude that Eω(xyλx∗)↗ Eω(xyx∗), that is, y ∈ Ã0 	→ Eω(xyx∗) ∈ Ã0 is a normal
map. It follows that τω = trβ ◦ Eω satisfies item (i) thanks to the normality of trβ.

Let F1,F2 � Γ be arbitrarily given. For each k, eF2 xkeF1 falls in some Ãn, and
what we have proved above shows that τω(eF1 x∗keF2 xkeF1 ) = τω(eF2 xkeF1 x∗keF2 ), since
τω coincides with trβ ◦ Ẽω,n on Ãn. By the dominated convergence theorem (note,
Ã0 � �∞(Γ) is pointed out before),

τω(eF1 x∗keF2 xkeF1 ) = trβ(Ẽω(x∗keF2 xk)eF1 )→ trβ(Ẽω(x∗eF2 x)eF1 ) = τω(eF1 x∗eF2 xeF1 ),

τω(eF2 xkeF1 x∗keF2 ) = trβ(Ẽω(xkeF1 x∗k)eF2 )→ trβ(Ẽω(xeF1 x∗)eF2 ) = τω(eF2 xeF1 x∗eF2 )

as k → ∞. Consequently, we obtain that τω(eF1 x∗eF2 xeF1 ) = τω(eF2 xeF1 x∗eF2 ) for any
F1,F2 � Γ.

By the normality of trβ,

τω(eF1 x∗eF2 xeF1 ) = trβ(Ẽω(x∗eF2 x)eF1 )↗ trβ(Ẽω(x∗eF2 x)) = τω(x∗eF2 x)

as F1 ↗ Γ. However, we have, by item (i), τω(eF2 xeF1 x∗eF2 )↗ τω(eF2 xx∗eF2 ) as
F1 ↗ Γ. Hence, τω(x∗eF2 x) = τω(eF2 xx∗eF2 ) for any F2 � Γ. Similarly, taking the limit
as F2 ↗ Γ, we obtain τω(x∗x) = τω(xx∗). Hence, τω is a tracial weight.

We have

Ẽω ◦ α̃γ(πα(a)λ(g)) = 〈γ, g〉 Ẽω(πα(a)λ(g)) = 〈γ, g〉 Ẽω,n(παn (a)λ(g))

= 〈γ, g〉ω(a) λ(g) = α̃γ(Ẽω,n(παn (a)λ(g))) = α̃γ ◦ Ẽω(πα(a)λ(g))

for any a ∈ An and g ∈ G. Hence, we obtain Ẽω ◦ α̃γ = α̃γ ◦ Ẽω for every γ ∈ Γ. More-
over, we observe that trβ ◦ α̃γ(eγ′) = trβ(eγγ′) = γβγ′β = γβ trβ(eγ′) for all γ, γ′ ∈ Γ.
Therefore, we obtain that trβ ◦ α̃γ = γβ trβ and, thus, τω satisfies item (ii). Item (iii)
is trivial by Definition 3.2(2). �

LEMMA 3.5. For each τ ∈ TW ln
β (α̃γ), the mapping

a ∈ A+ 	→ τ(e1πα(a)) = τ(πα(a)e1) = τ(e1πα(a)e1) ∈ [0,∞)

extends to the whole of A and defines an element of Kln
β (αt).

PROOF. Since τ(e1) < +∞, τ(e1παn (a)) = τ(παn (a)e1) = τ(e1παn (a)e1) makes sense for
all a ∈ A. By the standard Phragmen–Lindelöf method, it suffices to show that
τ(e1παn (ab)) = τ(παn (bαiβ

n (a))e1) (= τ(e1παn (bαiβ
n (a)))) for any αt

n-analytic a ∈ An and
any b ∈ An.
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For each γ ∈ Γ, we define E(n)
γ : An → An by

E(n)
γ (a) :=

∫
G
〈γ, g〉αg

n(a) dg, a ∈ An.

Then,

E(n)
γ (a)∗ = E(n)

γ−1 (a∗) (3-3)

for every a ∈ An. Observe that E(n)
γ (αt

n(a)) = γit E(n)
γ (a) for every a ∈ An, and moreover

that z 	→ E(n)
γ (αz

n(a)) is entire for every αt
n-analytic a ∈ An (note, this can easily be

confirmed by using [15, Appendix A1]). By the unicity theorem in complex analysis,
we conclude that

γ−βE(n)
γ (a) = E(n)

γ (αiβ
n (a)) (3-4)

for every αt
n-analytic a ∈ An. We also observe that

e1παn (a)eγ = παn (E(n)
γ−1 (a))eγ (3-5)

for every a ∈ An. Taking the adjoint of this identity together with (3-3),

eγπαn (a)e1 = eγπαn (E(n)
γ (a)) (3-6)

for every a ∈ An.
Let a ∈ An be an arbitrary αt

n-analytic element, and b ∈ An be an arbitrary element
of An. Then,

τ(e1παn (ab)) = τ(e1παn (a)παn (b)e1) = τ(παn (b)e1παn (a)) (trace property)

=
∑
γ∈Γ

τ(παn (b)e1παn (a)eγ)

=
∑
γ∈Γ

τ(παn (bE(n)
γ−1 (a))eγ) (use (3-5))

=
∑
γ∈Γ

τ ◦ α̃γ(παn (bE(n)
γ−1 (a))e1) (use (3-1))

=
∑
γ∈Γ

γβ τ(παn (bE(n)
γ−1 (a))e1) (use item (ii) in Definition 3.2(1))

=
∑
γ∈Γ

τ(παn (b(γβ E(n)
γ−1 (a)))e1)

=
∑
γ∈Γ

τ(παn (bE(n)
γ−1 (αiβ

n (a))e1) (use (3-4))

=
∑
γ∈Γ

τ(παn (b)eγ−1παn (αiβ
n (a))e1) (use (3-6))

= τ(παn (bαiβ
n (a))e1).

Hence, we are done. �
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So far, we have constructed two maps

ω ∈ Kln
β (αt) 	→ τω = trβ ◦ Ẽω ∈ TW ln

β (α̃γ),

τ ∈ TW ln
β (α̃γ) 	→ (a 	→ ωτ(a) := τ(e1πα(a))) ∈ Kln

β (αt).
(3-7)

Since τω(e1πα(a)) = ω(a) for all a ∈ A, it follows that the first map in (3-7) is injective.
We also remark that ωτ in (3-7) makes sense on the whole A since τ(e1) < +∞.

LEMMA 3.6. We have τ = τωτ for every τ ∈ TW ln
β (α̃γ).

PROOF. For any a ∈ A+, g ∈ G, and γ ∈ Γ,

τ(πα(a)λ(g)eγ) = τ(πα(a) 〈γ, g〉 eγ) = 〈γ, g〉 τ(eγπα(a)eγ)

= 〈γ, g〉 τ ◦ α̃γ(e1πα(a)e1) = 〈γ, g〉 γβ τ(e1πα(a)e1)

= 〈γ, g〉 γβ ωτ(a) = 〈γ, g〉ωτ(a) trβ(eγ) = trβ(Ẽωτ(πα(a))λ(g)eγ).

It follows that τ(xeγ) = τωτ(xeγ) holds for any x ∈ Ã and γ ∈ Γ. Therefore, we have
τ(xeF ) = τωτ(xeF ) for any x ∈ Ã and any finite F � Γ. By the trace property together
with τ(eF ) < +∞, we have, by item (i) of Definition 3.2(1),

τ(xeF ) = τ(eF xeF ) = τ(x1/2eF x1/2)↗ τ(x)

as F ↗ Γ for every x ∈ Ã+. We also have τωτ(xeF ) = trβ(Ẽωτ(x)eF )↗ trβ(Ẽωτ(x)) =
τωτ(x) as F ↗ Γ for every x ∈ Ã+. We conclude that τ = τωτ holds. �

Summing up the discussion so far, we have obtained the following theorem.

THEOREM 3.7. The maps in (3-7) are inverse to each other. Therefore, Kln
β (αt) and

TW ln
β (α̃γ) are affine-isomorphic.

Thanks to the theorem, a natural topology on TW ln
β (α̃γ) is defined by the following

convergence: τi → τ in TW ln
β (α̃γ) means that τi(e1πα(a))→ τ(e1πα(a)) for every a ∈ A.

By item (ii) of Definition 3.2(1), we have τi → τ in TW ln
β (α̃γ) implies that τi(eF x)→

τ(eF x) for any F � Γ and x ∈ Ã, and hence lim infi τi(x) ≥ τ(x) for all x ∈ Ã+.

4. Weight-extended branching graph

In the previous section, we transferred the study of locally normal (αt, β)-KMS
states to that of (α̃γ, β)-scaling traces on Ã = lim−−→ Ãn. Here, we translate this procedure
into the terminology of standard links. For this purpose, we have to assume that all
dim(z) < ∞. Then we can select each ρz in such a way that Tr(ρz) = Tr(ρ−1

z ). Under
this selection, the ρ = {ρz}z∈Z is uniquely determined from the flow αt, and hence both
Γ = Γ(ρ) and G = Γ̂ are canonical objects associated with αt. Hence, we call this Γ
the weight group, and the ρ-extension (α̃ : Γ� Ã = lim−−→ Ãn) the weight-extension in
this case. Note that this choice of Γ is not exactly the same as that in the so-called
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discrete decomposition for type III factors due to Connes (see for example, [17] whose
treatment aligns the present discussion).

4.1. Weight-extended branching graph. Let

ρz =
∑
γ∈Γ

γ pz(γ)

be the spectral decomposition (note, the support of pz( · ) is a finite subset of Γ due to
dim(z) < +∞). Then,

uz(g) =
∑
γ∈Γ
〈γ, g〉 pz(γ), g ∈ G,

and regarding pz(γ), uz(g) as elements of zAn ⊂ An,

un(g) =
∑
z∈Zn

uz(g) =
∑
z∈Zn

∑
γ∈Γ
〈γ, g〉 pz(γ) ∈ An, g ∈ G.

The unitary operator U on L2(G;Kn) defined by

(Uξ)(g) = un(g)ξ(g), ξ ∈ C(G;Kn) ⊂ L2(G;Kn)

satisfies

Uπαn (a)U∗ = a ⊗ 1, Uλ(g)U∗ = un(g) ⊗ λg (4-1)

for any a ∈ An and g ∈ G, where we identify L2(G;Kn) = Kn ⊗̄L2(G) as in Section 3.
See for example, [15, Theorem X.1.7(ii)]. We observe that

UeγU∗ =
∑
z∈Zn

∑
γ1,γ2∈Γ

∫
G
〈γ−1γ1γ2, g〉 dg pz(γ1) ⊗ e(00)

γ2
=

∑
z∈Zn

∑
γ′∈Γ

pz(γγ
′−1) ⊗ e(00)

γ′

(4-2)

for every γ ∈ Γ.

LEMMA 4.1. There is a unique bijective ∗-homomorphism

Φn : Ãn −→
⊕

(z,γ)∈Zn×Γ
zAn

(
�

⊕
(z,γ)∈Zn×Γ

B(Hz)
)

such that

Φn(παn (a))(z, γ′) := za, Φn(eγ)(z, γ′) := pz(γγ
′−1) (4-3)

hold for any a ∈ An, z ∈ Zn, and γ, γ′ ∈ Γ. The map Φn intertwines the dual action α̃γ

with the translation action of Γ on the right coordinate, that is,

Φn(α̃γ(x))(z, γ′) = Φn(x)(z, γ−1γ′) (4-4)

holds for any x ∈ Ãn and z ∈ Zn, and γ, γ′ ∈ Γ.

https://doi.org/10.1017/S1446788724000053 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788724000053


252 Y. Ueda [14]

PROOF. Note that An ⊗̄L(G) � An ⊗̄ �∞(Γ) �
⊕

γ∈Γ An �
⊕

(z,γ)∈Zn×Γ zAn by

a ⊗ λg ↔
∑
γ∈Γ
〈γ, g〉 a ⊗ δγ ↔ (〈γ, g〉 a)γ∈Γ = (〈γ, g〉 za)(z,γ)∈Zn×Γ, a ∈ An, g ∈ G

with L(G) := λ(G)′′ on L2(G). Therefore, the composition of AdU and this bijective
∗-homomorphism gives the desired Φn. By (4-1) and (4-2),

Φn(eγ)(z, γ′) = (UeγU∗)(z, γ′) = pz(γγ
′−1)

for every γ ∈ Γ. Hence, we have confirmed that (4-3) actually holds true. Since the
eγ are the spectral projections of λ(g) (g ∈ G), it is clear that (4-3) determines Φn

completely.
We have

Φn(α̃γn(παn (a)))(z, γ′) = Φn(παn (a))(z, γ′) = za = Φn(παn (a))(z, γ−1γ′),

Φn(α̃γn(eγ′′))(z, γ′) = Φn(eγγ′′)(z, γ′) = pz(γγ
′′γ′−1) = pz(γ

′′(γ−1γ′)−1)

= Φn(eγ′′)(z, γ−1γ′)

(note, Γ is commutative). Hence, (4-4) holds true. �

We then investigate the inclusion Ãn ↪→ Ãn+1 in the description of Lemma 4.1. Note
that the lemma, in particular, says that the inductive sequence Ãn consists of finite,
atomic W∗-algebras again.

Since α
g
n+1 = α

g
n holds on An for every g ∈ G thanks to the density of R in G,

we observe that g ∈ G 	→ wn+1,n(g) := un(g)∗un+1(g) ∈ (An)′ ∩ An+1 gives a unitary
representation. Since all the zz′ � 0 with (z, z′) ∈ Zn+1 × Zn form a complete set of
minimal central projections of (An)′ ∩ An+1, we obtain the unitary representation

g ∈ G 	→ wz,z′(g) := zz′wn+1,n(g) = uz(g)uz′(g)∗ = uz′(g)∗uz(g) ∈ zz′((An)′ ∩ An+1)

for each (z, z′) ∈ Zn+1 × Zn with zz′ � 0. Since wz,z′(g) is a unitary representation of a
compact abelian group, it admits a spectral decomposition of the following form:

w(z,z′)(g) =
∑
γ∈Γ
〈γ, g〉 q(z,z′)(γ), g ∈ G, (4-5)

where the q(z,z′)(γ) form a partition of unity of zz′((An)′ ∩ An+1) consisting of projec-
tions. Since αt

n+1 = α
t
n holds on An for every t ∈ R, we see that ρzρz′ = ρz′ρz holds in

zAn+1 for each (z, z′) ∈ Zn+1 × Zn with zz′ � 0. Hence, the generator of wz,z′(t) should
be ρzρ

−1
z′ = ρ

−1
z′ ρz, and thus we have the following explicit description of q(z,z′)(γ) in

terms of pz(γ):

q(z,z′)(γ) =
∑
γ′∈Γ

pz(γγ
′)pz′(γ

′) =
∑
γ′∈Γ

pz′(γ
′)pz(γ

′γ), γ ∈ Γ. (4-6)
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We define an element a ⊗ δγ ∈ Φn(Ãn) with a ∈ An and γ ∈ Γ by

(a ⊗ δγ)(z′, γ′) := δγ(γ′) z′a, (z′, γ′) ∈ Zn × Γ,

where δγ denotes the Dirac function at γ. We remark that the z ⊗ δγ, (z, γ) ∈ Zn × Γ,
form a complete set of minimal central projections of Φn(Ãn).

LEMMA 4.2. The embedding ιn+1,n = Φn+1 ◦ Φ−1
n : Φn(Ãn) ↪→ Φn+1(Ãn+1) obtained

from Ãn ↪→ Ãn+1 sends each z′ ⊗ δγ′ with (z′, γ′) ∈ Zn × Γ to

ιn+1,n(z′ ⊗ δγ′) =
∑

z∈Zn+1
m(z,z′)>0

∑
γ∈Γ

q(z,z′)(γ
′γ−1) ⊗ δγ. (4-7)

In particular,

(z ⊗ δγ) ιn+1,n(z′ ⊗ δγ′) =
⎧⎪⎪⎨⎪⎪⎩q(z,z′)(γ′γ−1) ⊗ δγ (m(z, z′) > 0),

0 (m(z, z′) = 0)
(4-8)

for each pair ((z, γ), (z′, γ′)) ∈ (Zn+1 × Γ) × (Zn × Γ).

PROOF. Choose an arbitrary pair (z′, γ′) ∈ Zn × Γ. By the proof of Lemma 4.1,

Φn

( ∫
G
〈γ′, g〉 παn (uz′(g)∗) λ(g) dg

)
= z′ ⊗ δγ′ .

Observe that ∫
G 〈γ

′, g〉 παn (uz′(g)∗) λ(g) dg in Ãn

∫
G 〈γ

′, g〉 παn+1 (uz′(g)∗) λ(g) dg
��

��

in Ãn+1

∫
G 〈γ

′, g〉 (uz′(g)∗un+1(g)) ⊗ λg dg in An ⊗̄L(G).

We have, by (4-5) and the proof of Lemma 3.4 (formula λge(00)
γ = 〈γ, g〉 e(00)

γ ),∫
G
〈γ′, g〉 (uz′(g)∗un+1(g)) ⊗ λg dg =

∑
z∈Zn+1

m(z,z′)>0

∫
G
〈γ′, g〉w(z,z′)(g) ⊗ λg dg

=
∑

z∈Zn+1
m(z,z′)>0

∑
γ1,γ2∈Γ

∫
G
〈γ′−1γ1γ2, g〉 q(z,z′)(γ1) ⊗ e(00)

γ2
dg

=
∑

z∈Zn+1
m(z,z′)>0

∑
γ∈Γ

q(z,z′)(γ
′γ−1) ⊗ e(00)

γ .

https://doi.org/10.1017/S1446788724000053 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788724000053


254 Y. Ueda [16]

It follows that

Φn+1

( ∫
G
〈γ′, g〉 παn (uz′(g)∗) λ(g) dg

)
=

∑
z∈Zn+1

m(z,z′)>0

∑
γ∈Γ

q(z,z′)(γ
′γ−1) ⊗ δγ.

Consequently, we obtain (4-7), which trivially implies (4-8). �

The lemmas above immediately imply the following proposition.

PROPOSITION 4.3. The minimal central projections of Ãn are labeled by Z̃n := Zn × Γ,
and the dimension corresponding to a (z, γ) ∈ Z̃n becomes dim(z) (that is, being
independent of γ).

The branching graph (Z̃, m̃) of the inductive sequence Ãn is given by Z̃ :=
⊔

n≥0 Z̃n

and

m̃((z, γ), (z′, γ′)) =
Tr(ιn+1,n(z′ ⊗ δγ′)(z, γ))

dim(z′)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Tr(q(z,z′)(γ−1γ′))

dim(z′)
(m(z, z′) > 0),

0 (m(z, z′) = 0)

for any ((z, γ), (z′, γ′)) ∈ Z̃n+1 × Z̃n, n ≥ 0. In particular, the standard link μ̃ over (Z̃, m̃)
becomes

μ̃((z, γ), (z′, γ′)) = m̃((z, γ), (z′, γ′))
dim(z′)
dim(z)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Tr(q(z,z′)(γ−1γ′))

dim(z)
(m(z, z′) > 0),

0 (m(z, z′) = 0)

for any ((z, γ), (z′, γ′)) ∈ Z̃n+1 × Z̃n, n ≥ 0.
In particular, the multiplicity function m̃ and the standard link μ̃ are invariant under

the translation action T : Γ� Z̃ defined by Tγ(z, γ′) := (z, γγ′), that is,

μ̃ ◦ (T−1
γ × T−1

γ ) = μ̃, m̃ ◦ (T−1
γ × T−1

γ ) = m̃, γ ∈ Γ.

REMARK 4.4. Lemma 4.1 says that

Ãn � Φn(Ãn) =
⊕

(z,γ)∈Zn×Γ

z⊗δγ
zAn with zAn = B(Hz),

where the symbol z ⊗ δγ over zAn indicates the central support projection of direct
summand zAn. Then its center-valued trace ctrn is given by

ctrn(x)(z, γ) =
Tr(x(z, γ))

dim(z)
, x ∈ Φn(Ãn), (z, γ) ∈ Zn × Γ,
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where Tr stands for the nonnormalized trace on zAn = B(Hz). (See [14, Theorem
V.2.6]; its uniqueness guarantees that the above map is indeed the center-valued trace.)
We observe that

ctrn+1(ιn+1,n(z′ ⊗ δγ′))(z, γ) = μ̃((z, γ), (z′, γ′)) (4-9)

holds for every pair ((z, γ), (z′, γ′)) ∈ Z̃n+1 × Z̃n, n ≥ 0. This is consistent with [18,
Equation (3.7)] and the natural conditional expectations playing the role of E(αt

n,β) in
[18] are the center-valued traces of Ãn in the present context.

4.2. Harmonic functions corresponding to (α̃γ, β)-scaling traces. So far, we
have described the branching graph (Z̃, m̃) associated with the Ãn, n ≥ 0. With the
description, we translate the (α̃γ, β)-traces TW ln

β (α̃γ) into a certain class of harmonic

functions on (Z̃, m̃).

LEMMA 4.5. For each τ ∈ TW ln
β (α̃γ), there is a unique function ν̃ = ν̃[τ] : Z̃ :=⊔

n≥0 Z̃n → [0,+∞) such that

τ(x) =
∑

(z,γ)∈Z̃n

ν̃(z, γ)
Tr(Φn(x)(z, γ))

dim(z)
, x ∈ Ãn. (4-10)

The function ν̃ has the following properties:

(i) ν̃(z′, γ′) =
∑

(z,γ)∈Z̃n+1
ν̃(z, γ) μ̃((z, γ), (z′, γ′)) for all (z′, γ′) ∈ Z̃n, n ≥ 0;

(ii) ν̃(z, γ) = γβν̃(z, 1) for all (z, γ) ∈ Z̃;
(iii) ν̃(1, 1) = 1.

PROOF. Write τn := τ ◦ Φ−1
n for simplicity, and it should be a normal semifinite tracial

weight on Φn(Ãn). Since all the z ⊗ δγ form a complete orthogonal family of minimal
central projections of Φn(Ãn), we observe that τn(z ⊗ δγ) < +∞ for any (z, γ) ∈ Z̃n.
Thus,

a ∈
z⊗δγ

(zAn)+(⊂ Φn(Ãn)+) 	→ τn(a) ∈ [0,+∞)

(see Remark 4.4 for this notation of direct summands) coincides with a unique
nonnegative scalar multiple of the normalized trace Tr( · )/ dim(z) on zAn = B(Hz).
Then, the nonnegative scalar gives the desired number ν̃(z, γ), that is, by semifiniteness
and normality,

τn(x) =
∑

(z,γ)∈Z̃n

τn((z ⊗ δγ)x) =
∑

(z,γ)∈Z̃n

ν̃(z, γ)
Tr(x(z, γ))

dim(z)
(= τn(ctrn(x)))

for all x ∈ Φn(Ãn)+. Hence, (4-10) follows.
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Item (i): we have

ν̃(z′, γ′) = τn(z′ ⊗ δγ′)
= τn+1(ιn+1,n(z′ ⊗ δγ′))

=
∑

(z,γ)∈Z̃n+1

ν̃(z, γ)
Tr(ιn+1,n(z′ ⊗ δγ′)(z, γ))

dim(z)

=
∑

(z,γ)∈Z̃n+1

ν̃(z, γ) μ̃((z, γ), (z′, γ′))

by Proposition 4.3 (and Remark 4.4).
Item (ii): we observe that

Φn(α̃γ(Φ−1
n (z ⊗ δ1)))(z′, γ′) = Φn(Φ−1

n (z ⊗ δ1))(z′, γ−1γ′) = (z ⊗ δγ)(z′, γ′)

for (z′, γ′) ∈ Z̃n. Hence, we have α̃γ(Φ−1
n (z ⊗ δ1)) = Φ−1

n (z ⊗ δγ) and, thus,

ν̃(z, γ) = τ(Φ−1
n (z ⊗ δγ)) = τ(α̃γ(Φ−1

n (z ⊗ δ1))) = γβ τ(Φ−1
n (z ⊗ δ1)) = γβ ν̃(z, 1)

by item (ii) of Definition 3.2(1).
Item (iii): this is nothing but item (iii) of Definition 3.2(1), that is, τ(e1) = 1. �

We remark that ∑
z∈Zn

dimβ(z)

dim(z)
ν̃(z, 1) = 1, n ≥ 0,

which follows from items (i)–(iii) above thanks to Proposition 4.3.

DEFINITION 4.6. A normalized, β-power scaling μ̃-harmonic function is a function
ν̃ : Z̃→ [0,+∞) such that items (i)–(iii) in Proposition 4.5 hold. We denote by H+1 (μ̃)β
all the normalized, β-power scaling μ̃-harmonic functions.

We also need to recall the notion of κ-harmonic functions and notation H+1 (κ). A
function ν : Z =

⊔
n≥0 Zn → C is κ-harmonic if

ν(z′) =
∑

z∈Zn+1

ν(z)κ(z, z′), z′ ∈ Zn

holds for every n � 0. A κ-harmonic function ν is positive if ν(z) ≥ 0 for all z ∈ Z,
and normalized if ν(1) = 1, where one must remember Z0 = {1}. We denote by H+1 (κ)
all the normalized, positive κ-harmonic functions on Z. See [19, Section 7] for more
details.

THEOREM 4.7. There is a unique affine-isomorphism ν ∈ H+1 (κ)←→ ν̃ ∈ H+1 (μ̃)β with

dimβ(z) ν̃(z, γ) = dim(z) ν(z) γβ, (z, γ) ∈ Z̃.
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PROOF. We first claim that

Tr(ρ−βz x)

Tr(ρ−βz z′)
=

Tr(ρ−βz′ x)

dimβ(z′)
, x ∈ z′An = B(Hz′) ↪→ zAn+1 = B(Hz) (4-11)

holds for any pair (z, z′) ∈ Zn+1 × Zn with m(z, z′) > 0. In fact, the left-hand side
defines an (αt

z′ , β)-KMS state on z′An = B(Hz′), and the uniqueness of (αt
z′ , β)-KMS

states shows the claim.
Let ν ∈ H+1 (κ) be arbitrarily chosen. We show that

ν̃(z, γ) :=
dim(z)
dimβ(z)

ν(z) γβ

defines an element of H+1 (μ̃)β. Item (ii) of Lemma 4.5 trivially holds, and the
normalization property of ν trivially implies item (iii) of Lemma 4.5. Hence, it suffices
to show item (i) of Lemma 4.5.

We have∑
(z,γ)∈Z̃n+1

ν̃(z, γ) μ̃((z, γ), (z′, γ)) =
∑

(z,γ)∈Z̃n+1
m(z,z′)>0

dim(z)
dimβ(z)

ν(z) γβ
Tr(q(z,z′)(γ−1γ′))

dim(z)

=
1

dimβ(z)

∑
z∈Zn+1

m(z,z′)>0

ν(z)
∑
γ∈Γ

γβ Tr(q(z,z′)(γ
−1γ′)).

Now, we observe that∑
γ∈Γ

γβ Tr(q(z,z′)(γ
−1γ′)) =

∑
γ∈Γ

γβ
∑
γ′′∈Γ

Tr(pz(γ
−1γ′γ′′)pz′(γ

′′))

= γ′β
∑

γ1,γ2∈Γ
γ
−β
1 γ

β
2Tr(pz(γ1)pz′(γ2))

= γ′β Tr(ρ−βz ρ
β
z′)

= dimβ(z) τβz (zz′)
dim(z′) γ′β

dimβ(z′)

by (4-11). Since κ(z, z′) = τβz (zz′) and since zz′ = 0 if and only if m(z, z′) = 0, we
conclude that ∑

(z,γ)∈Z̃n+1

ν̃(z, γ) μ̃((z, γ), (z′, γ)) =
dim(z′) γ′β

dimβ(z′)

∑
z∈Zn+1

ν(z) τβz (zz′)

=
dim(z′) γ′β

dimβ(z′)
ν(z′) = ν̃(z′, γ′).

Hence, ν̃ satisfies item (i) of Lemma 4.5.
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Let ν̃ ∈ H+1 (μ̃)β be arbitrarily chosen. We show that

ν(z) :=
dimβ(z)

dim(z)
ν̃(z, 1)

defines an element of H+1 (κ).
We first observe that∑
z∈Zn+1

ν(z)κ(z, z′) =
∑

z∈Zn+1

ν̃(z, 1)
Tr(ρ−βz z′)

dim(z)

=
∑

z∈Zn+1

ν̃(z, 1)
Tr(ρ−βz ρ

β
z′) dimβ(z′)

dim(z) Tr(ρ−βz′ ρ
β
z′)

(use (4-11))

=
∑

z∈Zn+1

ν̃(z, 1)
∑
γ∈Γ

γ−β
Tr(q(z,z′)(γ))

dim(z)

dimβ(z′)
dim(z′)

=
dimβ(z′)
dim(z′)

∑
z∈Zn+1

ν̃(z, 1)
∑
γ∈Γ

γβ
Tr(q(z,z′)(γ−1))

dim(z)

=
dimβ(z′)
dim(z′)

∑
(z,γ)∈Z̃n+1

ν̃(z, γ)μ̃((z, γ), (z′, 1)) (by Proposition 4.3)

=
dimβ(z′)
dim(z′)

ν̃(z′, 1) = ν(z′).

Hence, ν is κ-harmonic. Moreover, item (iii) of Lemma 4.5, a requirement of ν̃, clearly
shows that ν is normalized. Hence, we are done. �

So far, we have obtained the following diagram:

Kln
β (αt) ��

(a) ��
��

(b)

��

TW ln
β (α̃γ)

(c)

��
H+1 (κ) ��

(d)
�� H+1 (μ̃)β

where the correspondences (a)–(d) have been established as follows:

(a) Theorem 3.7;
(b) [19, Proposition 3.7];
(c) Lemma 4.5;
(d) Theorem 4.7.

We examine the composition of maps (d)→ (b)→ (a).
Let ν̃ ∈ H+1 (μ̃, β) be arbitrarily chosen. By Theorem 4.7, we have a unique ν ∈ H+1 (κ)

with
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ν(z) =
dimβ(z)

dim(z)
ν̃(z, 1), z ∈ Z.

Then, by [19, Proposition 3.7], we have a unique ω ∈ Kln
β (αt) so that

ω(a) =
∑
z∈Zn

ν(z) τβz (za) =
∑
z∈Zn

dimβ(z)

dim(z)
ν̃(z, 1) τβz (za), a ∈ An, n ≥ 0.

Finally, with this ω, we obtain a unique τω = trβ ◦ Ẽω ∈ TW ln
β (α̃γ) by Theorem 3.7.

Consequently, the resulting τω enjoys

ν̃[τω](z, γ) = τω(Φ−1
n (z ⊗ δγ)) = trβ(Eω(Φ−1

n (z ⊗ δγ))).

By the proof of Lemma 4.2, we observe that

Φ−1
n (z ⊗ δγ) =

∫
G
〈γ, g〉 παn (uz(g)∗) λ(g) dg =

∑
γ−1

1 γ2=γ

παn (pz(γ1))eγ2 .

Consequently, we obtain that

ν̃[τω](z, γ) =
∑

γ−1
1 γ2=γ

dimβ(z) ν̃(z, 1)
1

dim(z)
τ
β
z (pz(γ1)) γβ2

=
∑

γ−1
1 γ2=γ

dimβ(z) ν̃(z, 1)
1

dim(z)

γ
−β
1 Tr(pz(γ1))

dimβ(z)
γ
β
2

= ν̃(z, 1) γβ
∑
γ1

Tr(pz(γ1))
dim(z)

= ν̃(z, 1)γβ = ν̃(z, γ).

It follows that the composition of maps (d)→ (b)→ (a) is exactly inverse to map (c).
Hence, we have arrived at the following theorem.

THEOREM 4.8. The mapping τ ∈ TW ln
β (α̃γ) 	→ ν̃[τ] ∈ H+1 (μ̃)β obtained in Lemma 4.5

is an affine-isomorphism.

4.3. Weights and weight-extended branching graphs of links. The reader might
ask how to construct the branching graph (Z̃, m̃) with a Γ-action from a given link
(Z, κ) rather than an inductive C∗-flow αt. See Section 2 for the notion of links. Such
a construction can be given by using [19, Section 9]; namely, one first constructs an
inductive C∗-flow from (Z, κ), and then applies the discussions so far in this paper to
it. Here, we translate this procedure without appealing to any C∗-flows. This seems to
be of independent interest.

We first remark that the analysis of links does not depend on multiplicities on
edges; hence, we ignore, for simplicity, the multiplicity function over Z. Here, one
should remark that m(z, z′) > 0 if and only if κ(z, z′) > 0, and hence the edges (z, z′) ∈
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n≥0 Zn+1 × Zn are determined by the positivity of κ(z, z′). Moreover, we have assumed

that ⋃
z′∈Zn

{z ∈ Zn+1; κ(z, z′) > 0} = Zn+1,
⋃

z∈Zn+1

{z′ ∈ Zn; κ(z, z′) > 0} = Zn

for all n ≥ 0. (Informally, this assumption corresponds to that An ↪→ An+1 is a unital
embedding for every n ≥ 0.) We assume that our link satisfies these requirements.

Since the definition of κ in (2-1) involves the inverse temperature β, we have to
specify this β. In what follows, we informally think that the inverse temperature has
been selected to be β = −1.

DEFINITION 4.9. For each z ∈ Zn, n ≥ 0, we define its κ-dimension by

κ-dim(z) :=

√√√√√√√ ∑
zk∈Zk(k=0,1...,n)

z0=1,zn=z
κ(zk+1,zk)>0 (k=0,1,...,n−1)

1
κ(zn, zn−1)κ(zn−1, zn−2) · · · κ(z1, z0)

with κ-dim(1) := 1. We then define the weight at (z, z′) ∈ Zn+1 × Zn, n ≥ 0, by

ρ(z, z′) := κ-dim(z) κ(z, z′)
1

κ-dim(z′)
.

The countable discrete subgroup Γ(κ) of R×+ generated by all the positive weights
ρ(z, z′) > 0 with (z, z′) ∈ Zn+1 × Zn, n ≥ 0, is called the weight group of κ.

By definition, ρ(z, z′) > 0 if and only if κ(z, z′) = 1. This construction is motivated
by that in [19, Proposition 9.5] together with (4-5), (4-6).

Here is a claim, which informally corresponds to Tr(ρz) = Tr(ρ−1
z ).

LEMMA 4.10. We have

κ-dim(z) =
∑

zk∈Zk(k=0,1...,n)
z0=1,zn=z

ρ(zn, zn−1)ρ(zn−1, zn−2) · · · ρ(z1, z0)

=
∑

zk∈Zk(k=0,1...,n)
z0=1,zn=z

κ(zk+1,zk)>0 (k=0,1...,n−1)

1
ρ(zn, zn−1)ρ(zn−1, zn−2) · · · ρ(z1, z0)

for every z ∈ Zn, n ≥ 1.

PROOF. This is easily shown by induction on n. Clearly, κ-dim(z) = κ(z, 1) = ρ(z, 1) =
1 holds for every z ∈ Z1. The induction procedure from n to n + 1 goes as follows.
Using

∑
z′∈Zn

κ(z, z′) = 1 for every z ∈ Zn+1, a property of links, we easily see that the
first identity holds true. Compute
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∑
zk∈Zk(k=0,1...,n+1)

z0=1,zn+1=z
κ(zk+1,zk)>0 (k=0,1...,n)

1
ρ(zn+1, zn)ρ(zn, zn−1) · · · ρ(z1, z0)

=
1

κ-dim(z)

∑
zn∈Zn

κ(z,zn)>0

κ-dim(zn)
κ(z, zn)

∑
zk∈Zk(k=0,1...,n−1)

z0=1
κ(zk+1,zk)>0 (k=0,1...,n−1)

1
ρ(zn, zn−1) · · · ρ(z1, z0)

=
1

κ-dim(z)

∑
zn∈Zn

κ(z,zn)>0

κ-dim(zn)2

κ(z, zn)
(by induction hypothesis)

=
1

κ-dim(z)

∑
zn∈Zn

κ(z,zn)>0

1
κ(z, zn)

∑
zk∈Zk(k=0,1...,n−1)

z0=1
κ(zk+1,zk)>0 (k=0,1...,n−1)

1
κ(zn, zn−1) · · · κ(z1, z0)

=
1

κ-dim(z)

∑
zk∈Zk(k=0,1...,n+1)

z0=1,zn+1=z
κ(zk+1,zk)>0 (k=0,1...,n)

1
κ(zn+1, zn)κ(zn, zn−1) · · · κ(z1, z0)

= κ-dim(z).

Hence, we are done. �

Proposition 4.3 suggests that we define the desired new branching graph as follows.

DEFINITION 4.11. The weight-extended branching graph (Z̃, m̃) of κ is defined to be
Z̃ =

⊔
n≥0 Z̃n with Z̃n := Zn × Γ and

m̃((z, γ), (z′, γ′)) :=

⎧⎪⎪⎨⎪⎪⎩1 (γ−1γ′ = ρ(z, z′) > 0),
0 (otherwise).

This multiplicity function m̃ is invariant under the translation action of Γ on the
right coordinate, that is, m̃ ◦ (T−1

γ × T−1
γ ) = m̃ for every γ ∈ Γ.

Since we have implicitly assumed that all m(z, z′) are either 0 or 1, the dimension
dim(z) of z ∈ Zn ⊂ Z in this context should be the total number of paths (zn, . . . , z1, 1)
with zk ∈ Zk, zn = z and κ(zk+1, zk) > 0. The dimension dim(z, γ) of (z, γ) ∈ Z̃n is
defined to be the total number of paths ending at (z, γ) and starting in the 0 th stage Z̃0
(which is no longer a singleton). Here is a lemma.

LEMMA 4.12. dim(z, γ) = dim(z) always holds.

PROOF. Let ((zn, γn), . . . , (z1, γ1), (1, γ0)) be a path in Z̃ ending at (zn, γn) and
starting in Z̃0. Then, m(zk+1, zk) = 1 holds for every k = 0, . . . , n − 1 with z0 := 1.
Moreover, the equations γ1 = γ0/ρ(z1, 1), γ2 = γ1/ρ(z2, z1) = γ0/ρ(z2, z1)ρ(z1, 1), . . . ,
γn = γ0/ρ(zn, zn−1) · · · ρ(z1, 1) should hold. This means that each path is uniquely deter-
mined by the path (zn, . . . , z1, 1) in Z and the relation γ0 = γnρ(zn, zn−1) · · · ρ(z1, 1).
Hence, the desired assertion must hold. �
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This lemma shows that the standard link μ̃ over (Z̃, m̃) should be

μ̃((z, γ), (z′, γ′)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dim(z′)
dim(z)

(m̃((z, γ), (z′, γ′)) = 1),

0 (otherwise).

With the preparation so far, Theorem 4.7 actually holds as it is with β = −1 and
dimβ(z) = κ-dim(z) in the present setup. Its proof is an easy exercise now.

5. Relation to K0-groups

K0-groups or dimension groups play a role of representation rings in asymptotic
representation theory, but they are not applicable to spherical representations for
C∗-flows (nor general links). Thus, we introduced, in our previous paper [18], a
certain replacement of K0-groups by means of operator systems to investigate inductive
C∗-flows. Here, we give a way to connect the locally normal (αt, β)-KMS states Kln

β (αt)

to K-theory of the ρ-extension (α̃ : Γ� Ã = lim−−→ Ãn) under the assumption that all
dim(z) < +∞.

We investigate the K0-group K0(Ã) and its positive cone K0(Ã)+ of Ã = lim−−→ Ãn.
By a standard fact on K-theory (see for example, [6, Proposition 8.1]), we have
K0(Ã) = lim−−→K0(Ãn) and K0(Ãn)+ = lim−−→K0(Ãn)+. Thus, we first have to calculate each

pair K0(Ãn)+ ⊂ K0(Ãn) and then have to do each embedding K0(Ãn) ↪→ K0(Ãn+1).
The first task was completed by just using [11, Proposition 6.1] as follows. It is

convenient to transform each Ãn to

Φn(Ãn) =
⊕

(z,γ)∈Zn

z⊗δγ
B(Hz)

by Lemma 4.1 with the notation in Remark 4.4. By [11, Proposition 6.1(iv)], the
K0-group K0(Φn(Ãn)) is isomorphic, by the dimension function cdimn := dimZ(Φn(Ãn))
induced from the center-valued trace ctrn (= trZ(Φn(Ãn)) in [11]), to∏̃
(z,γ)∈Z̃n

Z

dim(z)

:=
{

f : Z̃n → Q ; f (z, γ) ∈ Z

dim(z)
for each (z, γ) ∈ Z̃n and sup

(z,γ)∈Z̃n

| f (z, γ)| < +∞
}
,

(5-1)

which sits in the center �∞(Z̃n) = Z(Φn(Ãn)). Here, this identification of the center
is given by δ(z,γ) = z ⊗ δγ. We take a closer look at cdimn. In this case, the K0-group
is the Grothendieck group of the Murray–von Neumann equivalence classes [P]n of
projections in M∞(Φn(Ãn)) :=

⋃
m≥1 Mm(C) ⊗ Φn(Ãn), where the embedding Mm(C) ⊗

Φn(Ãn) ↪→ Mm+1(C) ⊗ Φn(Ãn) is the upper corner one. The addition (semigroup
operation) on it is given by
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[P]n + [Q]n :=
[[

P
Q

]]
n

.

Then, the mapping [P]n 	→ (Tr ⊗ ctrn)(P) is well defined because Tr is the nonnor-
malized trace. This mapping is nothing less than the dimension function cdimn. The
commutative diagram in [11, Proposition 6.1(ii)] and the finiteness of the W∗-algebra
in question show that the order arising from the positive cone K0(Φn(Ãn))+ is the
natural, point-wise one on �∞(Z̃n). Hence, K0(Φn(Ãn))+ (⊂ K0(Φn(Ãn))) is isomorphic
via cdimn to[ ∏̃

(z,γ)∈Z̃n

Z

dim(z)

]
+

:=
{

f ∈
∏̃

(z,γ)∈Z̃n

Z

dim(z)
; f (z, γ) ≥ 0 for each (z, γ) ∈ Z̃n

}
.

We then investigate the embedding K0(Φn(Ãn)) ↪→ K0(Φn(Ãn+1)) in description
(5-1). The embedding is ι∗n+1,n with ιn+1,n = Φn+1 ◦ Φ−1

n in Lemma 4.2. Hence, we need
to compute

ι∗∗n+1,n := cdimn+1 ◦ ι∗n+1,n ◦ (cdimn)−1 :
∏̃

(z,γ)∈Z̃n

Z

dim(z)
→

∏̃
(z,γ)∈Z̃n+1

Z

dim(z)
.

Let x ∈ K0(Φn(Ãn)) be arbitrarily chosen. Then there are m ∈ N and projections P, Q ∈
Mm(C) ⊗ Φn(Ãn) such that x = [P]n − [Q]n. Then,

cdimn(x) = (Tr ⊗ ctrn)(P − Q) =
∑

(z′,γ′)∈Z̃n

Tr((1 ⊗ (z′ ⊗ δγ′))(P − Q))

dim(z′)
(z′ ⊗ δγ′),

cdimn+1 ◦ ι∗n+1,n(x) = (Tr ⊗ ctrn+1)((id ⊗ ιn+1,n)(P − Q))

=
∑

(z,γ)∈Z̃n+1

∑
(z′,γ′)∈Z̃n

1
dim(z)

Tr((1⊗ (z⊗ δγ))(id ⊗ ιn+1,n)((1 ⊗ (z′ ⊗ δγ′))(P−Q)))(z ⊗ δγ)

=
∑

(z,γ)∈Z̃n+1

∑
(z′,γ′)∈Z̃n

Tr((z ⊗ δγ)ιn+1,n(z′ ⊗ δγ′))
dim(z) dim(z′)

Tr((1 ⊗ (z′ ⊗ δγ′))(P − Q))(z ⊗ δγ)

by using the uniqueness of traces. Thus,

cdimn+1 ◦ ι∗n+1,n(x)

=
∑

(z,γ)∈Z̃n+1

∑
(z′,γ′)∈Z̃n

Tr((1 ⊗ (z′ ⊗ δγ′))(P − Q))

dim(z′)
ctrn+1(ιn+1,n(z′ ⊗ δγ′))(z ⊗ δγ)

=
∑

(z,γ)∈Z̃n+1

ctrn+1(ιn+1,n(ctrn(x)))(z′ ⊗ δγ′))

= ctrn+1(ιn+1,n(ctrn(x))).
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Therefore, we conclude that the desired embedding map ι∗∗n+1,n is just the restric-
tion of the normal map ctrn+1 ◦ ιn+1,n : Z(Φn(Ãn))→ Z(Φn+1(Ãn+1)) to the range of
cdimn(K0(Φn(Ãn))). Actually, for an f ∈ ∏̃

(z,γ)∈Z̃n
(Z/dim(z)),

ι∗∗n+1,n( f )(z, γ) =
∑

(z′,γ′)∈Z̃n

f (z′, γ′) ctrn+1(ιn+1,n(z′ ⊗ δγ′))(z, γ)

=
∑

(z′,γ′)∈Z̃n

μ̃((z, γ), (z′, γ′)) f (z′, γ′) (5-2)

by (4-9). This computation shows that the embedding ι∗∗n+1,n is the left-multiplication
of the∞×∞ matrix [

μ̃((z, γ), (z′, γ′))
]
Z̃n+1×Z̃n

in Description (5-1). Since μ̃((z, γ), (z′, γ′)) ≥ 0, the embedding preserves the positiv-
ity. Summing up the discussion so far, we conclude as follows.

PROPOSITION 5.1. The triple (K0(Ã) ⊃ K0(Ã)+, [1]) is computed as

(D ⊃ D+, 1) := lim−−→

( ∏̃
(z,γ)∈Z̃n

Z

dim(z)
⊃

[ ∏̃
(z,γ)∈Z̃n

Z

dim(z)

]
+

, 1
)

along the embeddings ι∗∗n+1,n = ctrn+1 ◦ ιn+1,n, n = 0, 1, . . . , where 1 is the constant
function, that is, 1(z, γ) = 1 for all (z, γ) ∈ Z̃n.

REMARK 5.2. For each n, the mapping

f ∈
∏̃

(z,γ)∈Z̃n

Z

dim(z)
	→ {(z, γ) 	→ dim(z) f (z, γ)} ∈ ZZ̃n

is an injective group homomorphism, whose image is exactly

〈ZZ̃n〉 :=
{
h ∈ ZZ̃n ; sup

(z,γ)∈Z̃n

|h(z, γ)|
dim(z)

< +∞
}
.

With these mappings, (K0(Ã) ⊃ K0(Ã)+, [1]) is identified with

lim−−→(〈ZZ̃n〉, 〈ZZ̃n〉+, dim)

along the mapping from 〈ZZ̃n〉 to 〈ZZ̃n+1〉 given as the left-multiplication of an ∞×∞
matrix [

m̃((z, γ), (z′, γ′))
]
Z̃n+1×Z̃n

,

where

〈ZZ̃n〉+ := {h ∈ 〈ZZ̃n〉 ; h(z, γ) ≥ 0 for all (z, γ) ∈ Z̃n}
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and dim(z, γ) = dim(z) holds for every (z, γ) ∈ Z̃n. This description is completely
consistent with dimension groups of AF-algebras. An additional feature here is that
〈ZZ̃n〉 is a much smaller set than ZZ̃n except for the case when Z̃n is a finite set.

We then investigate how the action α̃γ : Γ� Ã behaves on D. Let (α̃γ)∗ be the
automorphism of K0(Ã) induced from α̃γ canonically.

PROPOSITION 5.3. The automorphism (α̃γ)∗∗ of D obtained from (α̃γ)∗ via K0(Ã) � D
is given as follows. For each n ≥ 0,

(α̃γ)∗∗(ι∗∗n ( f )) = ι∗∗n ( f ◦ T−1
γ ), γ ∈ Γ, f ∈

∏̃
(z,γ)∈Z̃n

Z

dim(z)
,

where ι∗∗n :
∏̃

(z,γ)∈Z̃n
(Z/dim(z))→ D is the canonical group-homomorphism.

PROOF. Since α̃γ is an inductive action, the restriction of α̃γ to each Ãn makes sense
and induces an automorphism (α̃γ)∗∗n of

(K0(Ãn)
Φ∗n→ K0(Φn(Ãn))

cdimn→ )
∏̃

(z,γ)∈Z̃n

Z

dim(z)
(⊂ Z(Φn(Ãn))),

which we have to compute. This is nothing but cdimn ◦ (α̃γ)∗ ◦ (cdimn)−1, and can be
shown in the same way as above to coincide with the restriction of Φn ◦ α̃γ ◦ Φ−1

n to∏̃
(z,γ)∈Z̃n

(Z/dim(z)) (⊂ Z(Φn(Ãn))). By (4-4),

(Φn ◦ α̃γ ◦ Φ−1
n )(z′ ⊗ δγ) = z′ ⊗ δγγ′ ,

and hence, we conclude that

(α̃γ)∗∗n ( f ) = f ◦ T−1
γ , γ ∈ Γ, f ∈

∏̃
(z,γ)∈Z̃n

Z

dim(z)
.

Since

(ι∗∗n+1,n ◦ (α̃γ
′′
)∗∗n ( f ))(z, γ)

=
∑

(z′,γ′)∈Z̃n

μ̃((z, γ), (z′, γ′)) f (T−1
γ′′ (z

′, γ′)) (by (5-2))

=
∑

(z′,γ′)∈Z̃n

μ̃(T−1
γ′′ (z, γ), T−1

γ′′ (z
′, γ′)) f (T−1

γ′′ (z
′, γ′)) (by Proposition 4.3)

= ι∗∗n+1,n( f )(T−1
γ′′ (z, γ))

= ((α̃γ
′′
)∗∗n+1 ◦ ι

∗∗
n+1,n( f ))(z, γ)

for every (z, γ) ∈ Z̃n+1 and γ′′ ∈ Γ, the inductive limit lim−−→(α̃γ)∗∗n is well defined on D.
Then, it is not difficult to see that this coincides with (α̃γ)∗∗. �

Here is a proposition.
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PROPOSITION 5.4. LetWln
β (μ̃) be all the additive maps ψ : D+ → [0,∞] such that:

(i) ψ ◦ (α̃γ)∗∗ = γβ ψ for all γ ∈ Γ;
(ii) for each n, if fk ↗ f in [

∏̃
(z,γ)∈Z̃n

(Z/dim(z))]+ pointwise as functions over Z̃n,
then ψ ◦ ι∗∗n ( fk)↗ ψ ◦ ι∗∗n ( f ) as k → ∞;

(iii) ψ(ι∗∗0 (δ(1,1))) = 1.

Then there is a unique affine bijection ν̃ ∈ H+1 (μ̃)β 	→ ψν̃ ∈ Wln
β (μ̃) so that

ψν̃(ι
∗∗
n (δ(z,γ))) = ν̃(z, γ)

for all (z, γ) ∈ Z̃n, n ≥ 0.

PROOF. Let ν̃ ∈ H+1 (μ̃)β be arbitrarily chosen. We observe that∑
(z′,γ′)∈Z̃n

ν̃(z′, γ′) f (z′, γ′) =
∑

(z′,γ′)∈Z̃n

∑
(z,γ)∈Z̃n+1

ν̃(z, γ) μ̃((z, γ), (z′, γ′)) f (z′, γ′)

=
∑

(z,γ)∈Z̃n+1

ν̃(z, γ)
∑

(z′,γ′)∈Z̃n

μ̃((z, γ), (z′, γ′)) f (z′, γ′)

=
∑

(z,γ)∈Z̃n+1

ν̃(z, γ) ι∗∗n+1,n( f )(z, γ)

for every f ∈ [
∏̃

(z,γ)∈Z̃n
(Z/dim(z))]+. Hence,

ι∗∗n ( f ) with f ∈
[ ∏̃

(z,γ)∈Z̃n

Z

dim(z)

]
+

	→
∑

(z,γ)∈Z̃n

ν̃(z, γ) f (z, γ)

defines a well-defined additive map ψν from D+ to [0,∞]. That the ν̃ satisfies item (ii)
of Definition 4.6 implies that the ψν̃ does item (i) here. That ψν̃ satisfies items (ii), (iii)
is clear from its definition.

Let ψ ∈ Wln
β (ν̃) be arbitrarily chosen. Define ν̃ψ(z, γ) := ψ(ι∗∗n (δ(z,γ))) for each

(z, γ) ∈ Z̃n ⊂ Z̃. Using (5-2) and item (ii) here, we can easily confirm that this ν̃ψ
satisfies item (i) of Definition 4.6. We also have, for every (z, γ) ∈ Z̃n, n ≥ 0,

ν̃ψ(z, γ) = ψ(ι∗∗n (δ(z,γ))) = ψ(ι∗∗n (T−1
γ (δ(z,1)))) = ψ((α̃γ)∗∗(ι∗∗n (δ(z,1))))

= γβ ψ(ι∗∗n (δ(z,1))) = γ
β ν̃ψ(z, 1),

implying that the ν̃ψ satisfies item (ii) of Definition 4.6. Finally, ν̃ψ(1, 1) =
ψ(ι∗∗0 (δ(1,1))) = 1. Hence, we are done. �

This proposition together with Theorem 4.7 gives an interpretation of Kln
β (αt) or

H+1 (κ) in terms of K0-group. In fact, we have the following theorem.
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THEOREM 5.5. The correspondence ω ∈ Kln
β (αt) 	→ ψω ∈ Wln

β (μ̃) defined by

ψω(ι∗∗n (δ(z,γ))) =
dim(z)
dimβ(z)

ω(z) γβ, (z, γ) ∈ Z̃n, n = 0, 1, . . .

is an affine-isomorphism. In particular, each ψ ∈ Wln
β (μ̃) gives a unique ωψ ∈ Kln

β (αt)
in such a way that

ωψ(a) =
∑
z∈Zn

ψ(ι∗∗n (δ(z,1)))
Tr(ρ−βz za)

dim(z)
, a ∈ An, n = 0, 1, . . . ,

and any element of Kln
β (αt) arises in this way.

REMARK 5.6. Let Wβ(K0(Ã)) be all the additive maps ψ : K0(Ã)+ → [0,∞] so that
ψ ◦ (α̃γ)∗ = γβ ψ for all γ ∈ Γ. Then we see that Wln

β (μ̃) sits in Wβ(K0(Ã)) via

D � K0(Ã). Note thatWβ(K0(Ã)) depends only on Ã, butWln
β (μ̃) does not.

6. A concrete example: Uq(∞)

We illustrate the present method with the infinite dimensional quantum unitary
group Uq(∞), for whose formulation we follow our previous paper [18] (note, the
convention of q-deformation in both [7, 12] does not fit standard references on the
quantum unitary group Uq(n), although the difference in the consequences is minor,
that is, q� q−1/2 in [7] and q� q−1 in [12]). Namely, we freely use the notation in
[18, Section 4.2]. However, the Greek letter Γ was used there with a different meaning
from in this paper.

6.1. Weight group and weight-extended branching system. We first have to find
the eigenvalues of ρλ to determine the weight group Γ in Section 4. Here, we remark
that the ρλ, λ ∈ Sn, naturally satisfy Tr(ρλ) = Tr(ρ−1

λ ).

LEMMA 6.1. The weight group Γ is qZ := {qk; k ∈ Z}.

PROOF. By [18, equation (4.17)],

ρλ = πλ(K−n+1
1 K−n+3

2 · · ·Kn−1
n ), λ ∈ Sn.

The irreducible representations πλ, λ ∈ Sn, must satisfy that the πλ(Ki) are commonly
diagonalized with eigenvalues of the form qk including at least qλi for πλ(Ki). Thus,
ρ(1,0) ((1, 0) ∈ S2) has eigenvalue q−1. This shows Γ = qZ. �

The dual of qZ is identified with the 1-dimensional torus T = {ζ ∈ C; |ζ | = 1}
with dual pairing 〈qk, ζ〉 = ζk for any k ∈ Z and ζ ∈ T. The canonical surjective
group-homomorphism from R to T is given by t 	→ qit.

The inductive sequence ˜W∗(Uq(n)), n = 0, 1, . . . , is given as the W∗-crossed prod-
ucts W∗(Uq(n)) �̄ϑζnT. By Proposition 4.3, its branching graph is given by

⊔
n≥0 Sn × qZ

and the multiplicity function is computed by finding the spectral decomposition ρλρ−1
λ′
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onHλ
πλ
� Uqgl(n + 1) with (λ, λ′) ∈ Sn+1 × Sn, λ′ ≺ λ, n ≥ 0. As in [18, Section 4.4.5],

we obtain

ρλρ
−1
λ′ = πλ′(K

−1
1 · · ·K

−1
n ) ⊗ π(|λ|−|λ′ |)(Kn

1 )

(up to unitary equivalence), where the right-hand side is the representation of
Uqgl(n) ⊗ Uqgl(1). Since the branching rule from Uqgl(n) ↪→ Uqgl(n + 1) is the same
as the classical case and hence multiplicity-free, we obtain that ρλρ−1

λ′ is of the form
γ zλzλ′ with positive scalar γ > 0 and also that

Tr(zλzλ′) = sλ′(1, . . . , 1) s(|λ|−|λ′|)(1) = sλ′(1, . . . , 1) = dim(λ′),

Tr(ρλρ
−1
λ′ ) = sλ′(q−1, . . . , q−1) s(|λ|−|λ′ |)(qn)

= qn|λ|−(n+1)|λ′|sλ′(1, . . . , 1) = qn|λ|−(n+1)|λ′| dim(λ′).

It follows that γ = qn|λ|−(n+1)|λ′| and hence,

q(λ,λ′)(qk) =

⎧⎪⎪⎨⎪⎪⎩zλzλ′ (k = n|λ| − (n + 1)|λ′|),
0 (otherwise).

Therefore,

m̃((λ, qk), (λ′, q�)) =

⎧⎪⎪⎨⎪⎪⎩1 (� − k = n|λ| − (n + 1)|λ′|),
0 (otherwise)

(note n|λ| − (n + 1)|λ′| = [λ′, (|λ| − |λ′|)]; see [18, Section 4.4.5] for this terminology).
Hence, we have determined the branching graph of the ˜W∗(Uq(n)), n = 0, 1, . . . ,
completely. With [18, (4.16)], we remark that this computation is consistent with the
construction in Section 4.3. This is not a surprise, because this computation as well as
the computation of the link [18, (4.16)] were done by using only the branching rule.

6.2. Quantum group interpretation of weight-extensions. We clarify that the
algebra ˜W∗(Uq(n)) = W∗(Uq(n)) �̄ϑζnT comes from a compact quantum group. A
similar (but not the same) algebra appeared in an unpublished manuscript of De
Commer [5], where qZ is replaced with q2Z.

Let (C[T],ΔT, ST, εT) be the Hopf ∗-algebra associated with the 1-dimensional torus
T, that is, C[T] denotes all the Laurent polynomials

∑
k ckχk (ck ∈ C) in the continuous

functions C(T) with χk(ζ) = ζk in ζ ∈ T (k ∈ Z), and

ΔT(χk) = χk ⊗ χk, ST(χk) = χ−k, εT(χk) = 1.

Since S2
T
= id, the Woronowicz character or the special positive element of U(T), the

algebraic dual of C[T], must be trivial by [10, Proposition 1.7.9].
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We define the new Hopf ∗-algebra (C[Uq(n) × T],Δn,T, Sn,T, εn,T) to be the algebraic
tensor product C[Uq(n) × T] := C[Uq(n)] ⊗ C[T] and

Δn,T := Σ23 ◦ (Δn ⊗ ΔT), Sn,T := Sn ⊗ ST, εn,T := εn ⊗ εT,

where Σ is the tensor-flip map and we use the leg-notation. The matrix elements
of unitary representations U ⊗ χk with finite dimensional unitary representations U
of (C[Uq(n)],Δn) and k ∈ Z clearly generate C[Uq(n) × T] as algebra, and hence the
Hopf ∗-algebra indeed defines a compact quantum group by [10, Theorem 1.6.7].
The corresponding C∗-algebra is trivially C(Uq(n)) ⊗ C(T) with unique C∗-tensor
product due to nuclearity. Moreover, the unitary irreducible representations Uλ ⊗ χk,
(λ, k) ∈ Sn × Z, are easily shown to be mutually inequivalent, and we can prove that
they form a complete family of inequivalent, unitary irreducible representations by
appealing to the famous orthogonal relation and the Peter–Weyl type theorem (see [10,
Theorem 1.4.3(ii) and the discussion following Corollary 1.5.5]). Consequently,

U(Uq(n) × T) =
∏

(λ,m)∈Sn×Z
B(H(λ,m)) withH(λ,m) := Hλ,

and hence,

W∗(Uq(n) × T) =
⊕

(λ,m)∈Sn×Z
B(H(λ,m)) = W∗(Uq(n)) ⊗̄ �∞(Z), (6-1)

which is clearly isomorphic to ˜W∗(Uq(n)) via Φn of Lemma 4.1.
Choose an x ∈ W∗(Uq(n)) ⊂ U(Uq(n)) and a ζ ∈ T. We regard ζ as an element of

U(T) by ζ( f ) := f (ζ) for every f ∈ C(T), in which C[T] sits. For any a, b ∈ C[Uq(n)]
and k, � ∈ Z,

(Δ̂n,T(x ⊗ ζ))((a ⊗ χk) ⊗ (b ⊗ χ�)) = (x ⊗ ζ)(ab ⊗ χk+�)

= x(ab)ζk+�

= Δ̂n(x)(a ⊗ b) Δ̂T(χk ⊗ χ�)
= (Δ̂n(x)13Δ̂T(ζ)24)((a ⊗ χk) ⊗ (b ⊗ χ�)),

and hence,

Δ̂n,T(x ⊗ ζ) = Δ̂n(x)13Δ̂T(ζ)24 = Δ̂n(x)13(1 ⊗ ζ ⊗ 1 ⊗ ζ) ∈ U((Uq(n) × T)2).

We observe that

ζ =
∑
k∈Z

ζ(χk) δk =
∑
k∈Z

ζk δk ∈ �∞(Z) ⊂ CZ = U(T).

Since Δ̂n(x) ∈ W∗(Uq(n)) ⊗̄W∗(Uq(n)) and since the ζ ∈ T generate �∞(Z) as a
W∗-algebra, we conclude that the restriction of Δ̂n,T to W∗(Uq(n) × T) coincides
with the injective normal ∗-homomorphism

Σ23 ◦ (Δ̂n ⊗̄ Δ̂T) : W∗(Uq(n) × T)→ (W∗(Uq(n) × T))⊗̄2.
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It is also easy to see that the restrictions of ε̂n,T and Ŝn,T to U(Uq(n)) ⊗U(T) (sitting
inU(Uq(n) × T) naturally) are exactly ε̂n ⊗ ε̂T and Ŝn ⊗ ŜT, respectively. In particular,
the restriction of ε̂n,T to W∗(Uq(n) × T) is ε̂n ⊗̄ ε̂T. Since the algebraic tensor product
F (Uq(n) × T) = F (Uq(n)) ⊗ cfin(Z) with all the finitely supported bi-sequences cfin(Z),
we have Ŝ2

n,T = Ŝ2
n ⊗ id on F (Uq(n) × T).

We observe that (Uλ ⊗ χk)cc = Ucc
λ ⊗ χk by definition and hence ρ(λ,k) = ρλ ⊗ 1 by

[10, Proposition 1.4.4] for every (λ, k) ∈ Sn × Z. Therefore, the special positive element
for Uq(n) × T must be ρn ⊗ 1 ∈ U(Uq(n)) ⊗ C1 ⊂ U(Uq(n) × T). It follows that the
restriction of the unitary antipode R̂n,T to W∗(Uq(n) × T) coincides with R̂n ⊗̄ ŜT.

Regarding the Φn in Lemma 4.1 as a map from ˜W∗(Uq(n)) onto W∗(Uq(n) × T) =
W∗(Uq(n)) ⊗̄ �∞(Z) (see (6-1)), we observe that

Φn(πϑn (x)) = x ⊗ 1, Φn(λ(qit)) = ρit
n ⊗ qit, x ∈ W∗(Uq(n)), t ∈ R.

Hence, via Φn, the Hopf ∗-algebra structure (Δ̂n,T, R̂n,T,ϑt
n,T = Ad(ρit

n ⊗ 1), εn,T) on
W∗(Uq(n) × T) is transferred to that on ˜W∗(Uq(n)) as follows. Write

Δ̃n := (Φ⊗̄2
n )−1 ◦ Δ̂n,T ◦ Φn, R̃n := Φ−1

n ◦ R̂n,T ◦ Φn, ϑ̃t
n := Φ−1

n ◦ ϑt
n,T ◦ Φn

(note, this does not correspond to α̃γn in Section 3) and ε̃t
n := ε̂n,T ◦ Φn for simplicity.

Then,

Δ̃n(πϑn (x)λ(qit)) = π⊗̄2
ϑn

(Δ̂n(x)) (λ(qit) ⊗ λ(qit)),

R̃n(πϑ(x)λ(qit)) = λ(q−it) πϑn (R̂n(x)),

ϑ̃t
n(πϑn (x)λ(qit)) = πϑn (ϑt

n(x))λ(qit)),

ε̃n(πϑn (x)λ(qit)) = ε̂n(x)

for any x ∈ W∗(Uq(n)) and t ∈ R. Thus, ˜W∗(Uq(n)) is equipped with the natural
structure of the group W∗-algebra of the compact quantum group Uq(n) × T.

It is easy to see that the dual action of qk ∈ qZ acts on a generator x ⊗ δm ∈
W∗(Uq(n)) ⊗̄ �∞(Z) = W∗(Uq(n) × T) as x ⊗ δm 	→ x ⊗ δm+k.

So far, we have seen that each ˜W∗(Uq(n)) becomes a ‘compact quantum group’.
Moreover, the above computations show that the resulting quantum group structure is
compatible with the embedding ˜W∗(Uq(n)) ↪→ ˜W∗(Uq(n + 1)), n ≥ 0. The embedding
is interpreted, on the W∗(Uq(n) × T), n = 0, 1, . . . , as

x ⊗ 1 = Φn(πϑn (x)) 	→ Φn+1(πϑn+1 (x)) = x ⊗ 1 (x ∈ W∗(Uq(n))),

ρit
n ⊗ qit = Φn(λ(qit)) 	→ Φn+1(λ(qit)) = ρit

n+1 ⊗ qit (t ∈ R),

or other words,

x ⊗ qit 	→ (x(ρ−1
n ρn+1)it) ⊗ qit (x ∈ W∗(Uq(n)), t ∈ R).

Here, we remark (see [18, Section 4.2.1]) that

(ρ−1
n ρn+1)it = (ρn+1ρ

−1
n )it = ρ−it

n ρit
n+1 = ρ

it
n+1ρ

−it
n ∈ W∗(Uq(n))′ ∩W∗(Uq(n + 1))
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for every t ∈ R. Namely, the choice of embedding of Uq(n) × T ↪→ Uq(n + 1) × T is
not standard. Thus, although the ρn, n = 0, 1, . . . , do not form an inductive sequence in
any sense, the ρit

n ⊗ qit, n = 0, 1, . . . , do, thanks to the weight-extension of B(Uq(∞)) =
lim−−→W∗(Uq(n)). This became possible by the famous Fell absorption principle!

Finally, the projection eqk (n) in L(T) := λ(T)′′ ⊂ ˜W∗(Uq(n)) becomes

eqk (n) :=
∑
�∈Z

∑
λ∈Sn

pλ(qk−�) ⊗ δ�

in W∗(Uq(n) × T), where the double sums can be interchanged and ρλ =
∑

k∈Z qk pλ(qk)
(a finite sum; note, all but finitely many pλ(qk) = 0) is the spectral decomposition as
in Section 4. In fact, for any x ∈ zλW∗(Uq(n)),

e1(n)(x ⊗ 1)e1(n) =
∑
�∈Z

(pλ(q−�)xpλ(q−�)) ⊗ δ�,

and

ctrn(e1(n)(x ⊗ 1)e1(n)) =
∑
�∈Z

Tr(pλ(q−�) x)
dim(λ)

(1 ⊗ δ�).

Hence, if we assign q−� at 1 ⊗ δ�, then the above element becomes Tr(ρλx)/ dim(λ).
This is a closer look at the trick behind Theorem 3.7 in the quantum group setting.

REMARK 6.2. The discussion in this subsection is completely general. Actually, the
same interpretation in terms of quantum groups is applicable to any inductive sequence
of compact quantum groups, where the 1-dimensional torus T and its dual Z = T̂ in
the above should be replaced with the dual G of the weight group Γ and Γ itself,
respectively.
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