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Abstract
This paper presents a methodology designed to leverage multitemporal sequences of synthetic
aperture radar (SAR) and multispectral data and automatically extract urban changes. The
approach compares results using different radar and optical sensors, describing the advan-
tages and drawbacks of using SAR data from the COnstellation of small Satellites for the
Mediterranean basin Observation (COSMO)/SkyMed, SAtélite Argentino de Observación
COn Microondas (SAOCOM), and Sentinel-1 constellations, as well as nighttime light data
or Sentinel-2 images. Multiple indexes obtained from multispectral data are compared, too,
and results obtained by an unsupervised clustering procedure are analyzed. The results show
that using different datasets it is possible to obtain consistent results about different types of
changes in urban areas (e.g., demolition, development, and densification) with different levels
of spatial details.

Introduction

The MultiBIGSARData project, funded by the Italian Space Agency and recently concluded,
is part of the methodological field of research dedicated to the use of synthetic aperture radar
(SAR) data sequences for characterization of phenomena with high spatial and temporal reso-
lution. For the first time, using a combination of X-band (COnstellation of small Satellites for
the Mediterranean basin Observation [COSMO]/SkyMed), C-band (Sentinel-1), and L-band
(SAtélite Argentino de Observación COn Microondas [SAOCOM]) SAR data and optical
sensors, it was possible to obtain a multifrequency, multitemporal, and multiresolution char-
acterization of the same phenomenon. The aim of the project was to identify/adapt/develop
methodologies that best combine data from different SAR and optical sensors with respect to
the temporal, spatial, and spectral axes, considering the characteristics of the different sensors
and thus profiting of their full potential in a synergistic way. The idea is not to combine multi-
ple SAR and multiple optical sensors’ dataset but to jointly use one SAR sensor and one optical
dataset at a time and compare the results.

MultiBigSARData has, therefore, led to the development of methodologies useful for the
joint use of long sequences of multisensor SAR and optical data over time, so as to provide a
useful approach for the characterization of important phenomena in numerous applications.
These methodologies have been used to characterize changes (for environmental monitoring
phenomena or for the characterization of natural or man-made disasters), to map land cover
(crops in particular) using the temporal trend of the backscattered signal to recognize their
temporal signatures in addition to their spatial and spectral ones, as shown in paper [1]. Results
referring to urban areas, reported below, highlight the possible synergies of multifrequency and
multimission SAR with multispectral data. The focus on urban area monitoring is due to the
fact that the continuous monitoring of urban development is now considered to be an essen-
tial preliminary step for many scientific and technical applications, such as (i) hydrological
balance and access to water [2], (ii) sustainable development planning [3], and (iii) resource
allocation [4].

The use of satellite remote sensing for urban monitoring has many advantages. These
include the ability to detect urban areas at a synoptic scale and to systematically revisit them
over time [5]. However, it also requires specialized tools, especially when it is performed
with radar sensors. Indeed, in the technical literature, there are not many approaches that
work on remotely sensed data sequences in urban areas to extract specific information on
changes, such as the temporal development of new constructions (and not simply the binary
extraction of change, as presented in paper [6] which uses a deep learning approach for the
change detection), the demolition of old buildings, renovation works, and so on. The main
point is that changes in urban areas do not simply and always refer to changes related to
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the expansion (or reduction) of the extents of the built-
up structures, as presented in paper [7], where a large-scale
time-series mapping approach using training samples from the
OpenStreetMap database is presented. The topic of urban change
detection using SAR data was addressed in papers [8] and [9],
which combined image processing techniques, machine learning
algorithms, and interdisciplinary collaborations to address key
challenges in urban remote sensing and geospatial analysis. In
paper [8], binary urban change maps were computed using an
unsupervised change detection algorithm based on an automatic
thresholding, a technique that has been successfully used for pixel-
based urban change using high-resolution SAR images. In this
work, change images are generated by comparing the multitem-
poral mean intensities using the modified ratio operator, and three
thresholding algorithms, i.e., theKittler–Illingworth algorithm, the
Otsu method, and the outlier detection technique, are tested and
compared to threshold the change image and generate a binary
change map.The work reported in paper [9] is another application
of the thresholding algorithm for urban change detection applied
to multitemporal spaceborne SAR data of Beijing and Shanghai.
In order to compare the SAR images at different dates, a modified
ratio operator that takes into account both positive and negative
changes was developed to derive a change image. A generalized
version of the Kittler–Illingworth minimum error thresholding
algorithm was then tested to automatically classify the change
image into the “change” and “no change” classes. Different proba-
bility density functions such as log-normal, generalized Gaussian,
Nakagami ratio, and Weibull ratio were investigated to model
the distribution of these two classes. The results show that the
Kittler–Illingworth algorithm applied to the modified ratio image
is very effective in detecting temporal changes in urban areas using
SAR images.

Within this framework, this work does not present a new
technique to monitor where and when other land covers have
transformed into urban covers.These types of changes can be char-
acterized by implementing algorithms for extracting built-up areas
and then comparing results across different data acquisition times,
like in paper [10], where land use land cover (LULC) change detec-
tion maps were computed to assess the status of Lake Tana region
in Ethiopia. Instead, in this work, urban development is linked
to the extraction of patterns of temporal changes and, in particu-
lar, those patterns that allow characterizing what happens within
the urban area. As mentioned above, these changes are gener-
ally associated with an increase/decrease in building density (e.g.,
construction of more buildings in already built-up areas), reno-
vation/demolition work (e.g., roof changes and floor increments),
and possibly replacement of old buildings/infrastructure with new
ones. Examples include residential blocks that are transformed into
commercial areas or replacement of tiny buildings with larger or
taller ones. These changes are not adequately monitored by land
use change techniques nor are they perceived as a change in the
extent of the urban area. Instead, these changes need to be detected
and monitored directly with an appropriate approach, if possible,
avoiding the built-up area extraction procedure.

By leveraging the potential linked to the use of nighttime light
(NTL) data to identify andmonitor urban areas [11], a first attempt
to exploit SAR and NTL data to detect some of these changes in
urban areas was presented in paper [12], where an automatic pro-
cedure was proposed for extracting changes in urban extent and
changes in volumetric patterns in urban areas through the joint
use of Sentinel-1 data and NTL data. This procedure exploits a
two-dimensional (2D) vector analysis in the joint feature space of

backscattering values andNTLmeasurements to build clusters that
allow the identification and characterization of classes with homo-
geneous temporal patterns within the urban extension.The results
reported in this work show the potential of the approach to detect
three-dimensional quantities (such as building volumes) related to
urban development dynamics, but the use of NTL data implies a
significant loss of spatial resolution in the final product compared
to what the SAR sensor is capable of, since the optical data on night
lights have a spatial resolution of 500 m. Therefore, a first line of
research worth exploring was to try and understand which could
be the options to capitalize onmultispectral sensors with finer spa-
tial resolution and track urban changes, possibly using both these
data and night light data togetherwith SAR for the characterization
of variations within the urban perimeter.

A natural solution is to use other multispectral datasets, such
as those from the Landsat and Sentinel-2 sensors, which do not
possess detection capabilities at the same wavelengths as the NTL
sensor but have been used for the characterization of urban areas
from a different perspective [13]. In particular, the technical lit-
erature lists for these sensors and their data many approaches
with the aim of characterizing the degree of imperviousness or
the degree of construction within the urban area. In this regard,
many so-called construction indices have been identified. These
indices are designed to use combinations of bands of these multi-
spectral spatial sensors that allow sufficiently robust separation of
urban area covers (materials) from other land covers. To this end,
these indices focus on the expected spectral response of urban-type
pixels and specifically consider those bands that increase the pos-
sibility of accurately discriminating urban from non-urban pixels.
Therefore, a second interesting line of research was to make use of
multispectral urban indices as a substitute for NTLmeasurements.

To select which indexes could be used, several studies reported
in technical literature were considered. For example, in paper [14],
the area of Addis Ababa, the capital of Ethiopia, was used to eval-
uate the capacity of different indices computed from Sentinel-2
data. The work is based on the comparison of the extensions of
the urban area between the extraction and an existing LULC map,
using indices constructed for a series of data collected in 2016,
2018, and 2020. The best results were provided by the Normalized
Built-up Area Index (NBAI), the New Built-up Index (NBI), and
theNormalizedDifference Built-up Index (NDBI). Similarly, paper
[15] contains a collection of several indices successfully imple-
mented with Landsat data, focusing on those that do not require
thermal bands so that they can also be implemented with Sentinel-
2 data. The results show that the best indices are the Band Ratio
for Built-up Area, the Biophysical Composition Index, and the
Combinational Build-up Index, in addition to the NBAI, NDBI,
and NBI mentioned above. Finally, a comprehensive review of the
above indices and their ability to extract the urban area is presented
in paper [16]. In this work, a complete collection of such indices is
illustrated, highlighting the advantages and disadvantages of each
of them.

Datasets and test site

The test site for this work is the metropolitan area of Cordoba
city (central Argentina), the capital of the Cordoba province and
the second most populous city in Argentina. SAR data from the
COSMO/SkyMed, SAOCOM, and Sentinel-1 constellations were
collected and considered, together with Sentinel-2, Landsat, and
NTL datasets. The position of Cordoba in Argentina is reported
in Fig. 1.
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Figure 1. The study area, highlighted by the dark
polygon.

COSMO-SkyMed (CSK) is an Italian Earth-imaging constel-
lation consisting of four medium-sized satellites (CSK-1, CSK-2,
CSK-3, and CSK-4), launched between 2007 and 2010, each one
equipped with a microwave high-resolution SAR operating in X-
band, with ∼630 km access ground area. COSMO-SkyMed stands
for “COnstellation of small Satellites for the Mediterranean basin
Observation.” The mission is owned and operated by Agenzia
Spaziale Italiana (ASI) and is funded by the Italian Ministry of
Research and the ItalianMinistry of Defense. CSK is a fully polari-
metric system that can provide images acquired with HV, VH, VV,
and VH polarizations.

The CSK images, recorded in Stripmap Himage mode, were
downloaded from the Cosmo/SkyMed portal (https://portal.
cosmo-skymed.it) as Geocoded Terrain Corrected images, after
radiometric calibration and geocoding using the Shuttle Radar
Topography Mission 90 m Digital Elevation Model.

The SAOCOM satellite constellation consists of two spacecraft
(SAOCOM-1A and -1B) operating an L-band polarimetric SAR
instrument each. The SAOCOMmission is a programme defined,
managed, and operated by Comisión Nacional de Actividades
Espaciales (CONAE), the Argentine Space Agency, in Buenos
Aires. The SAOCOM requirements include provision of timely
information to support management of natural and human-
induced disasters (such as flooding, volcanic activity, and seismic-
ity) and monitoring services for agriculture, mining, and marine
applications. The aim is to obtain data with high radiometric
and geometric accuracy (e.g., identification of natural resources,
interferometry, and glaciology) as well as to provide high revisit
frequencies (daily) to support specific operational requirements. A
single satellite can cover the area of interest in 16 days. Considering
the constellation, the revisit time is 8 days. The SAOCOM constel-
lation has a maximum bandwidth of 50 MHz, it can be operated
in StripMap (swath width 13–67 km) or TopSAR (swath width
109–389 km) acquisition mode, and the polarization modes can
be single, dual, or quad. The SAOCOM datasets used for this
work are Ground Terrain Corrected Level-1D, i.e., radiometrically
calibrated, geocoded, and georeferenced using topography. The
SAOCOM data are freely available on the ASI Data Hub.

The Sentinel-1 (S1) SAR sensor is the radar component of
the European Copernicus programme. It operates in the C-band
at a center frequency of 5.405 GHz. Using its two platforms

(Sentinel-1A and -1B), the mission provides data with a revisit
time of 6 or 12 days, depending on the region studied. The anten-
nas of the radar are right-looking, and the angle of incidence
can vary between 29.1∘ and 46∘. Sentinel-1 is a dual-polarized
system that can provide images acquired with VV and VH polar-
izations or HH and HV polarizations. The S1 images used in this
work were acquired using the interferometric wide swath default
operation mode, which has a swath of 250 km and a spatial resolu-
tion of 5 × 20 m (for single look). For this study, multilook level
L1C intensity images were used in the Ground Range Detected
format, with a pixel size of 10 × 10 m. More specifically, pre-
processed Sentinel-1 SARusing aworkflowderived from the SNAP
toolbox was downloaded from the Google Earth Engine plat-
form. The implemented pre-processing steps correspond to the
application of the orbit file, boundary noise and thermal noise
removal, radiometric calibration, and orthorectification. In the
end, the calibrated and orthorectified backscatter coefficient (𝜎0) is
reported.

The Sentinel-2 (S2) is a mission of the European Copernicus
Earth Observation Programme, consisting of two satellites,
Sentinel-2A and Sentinel-2B, designed for high-resolution imag-
ing of the Earth’s land surface for monitoring land cover change
and assess biophysical parameters. The mission was launched in
2015 and has been fully operational since October 2017. It pro-
vides image time series with a free, full, and open access policy,
with the following characteristics: 13 spectral bands from 0.44 to
2.2 μm, images with high spatial resolution (between 10 and 60 m
depending on the spectral bands), and continuous and frequent
observations. The constellation of Sentinel-2A and -2B satellites
observes the Earth’s land surfaces on a 5-day repeat cycle, with a
wide field of view of 290 km to capture detailed images of veg-
etation, soil, water cover, and coastal areas. The mission plays a
critical role in land monitoring services, supporting applications
such as land cover classification and the change detection, such as
urbanization monitoring.

Landsat data from the United States Geological Survey are
one of the best sources for mapping and monitoring land cover
and the biophysical and geophysical properties of the land sur-
face. For this study, Landsat 8 images for 2017 were used to
cover the year in which Sentinel-2 images having low percentage
cloud cover over Cordoba city were not available. Landsat 8 was
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launched in February 2013, ensuring the continuity of the Landsat
programme for at least the next few decades. In particular, Landsat
8 Operational Land Imager data were used, providing visible, near-
infrared (NIR), and shortwave infrared (SWIR) wavelength bands,
as well as a panchromatic band. A quality assurance band is also
included to indicate the presence of terrain shadowing, data arti-
facts, and clouds [17]. Panchromatic and multispectral imagery
are acquired at 15 m and 30 m resolution (wavelength from
0.433 to 1.390 μm), respectively. The Landsat 8 satellite images
the entire Earth every 16 days with an 8-day offset from Landsat
7. The approximate size of the scene covered is 170 km north-
south by 183 km east-west and has a large file size of about 1 GB
compressed.

The harmonized NTL time-series composites created by fus-
ing multisource NTL observations provide a long and consistent
record of the nightscape for characterizing and understanding the
spatiotemporal dynamics of global urbanization over a long time
series. In recent decades, there has been an extensive surge in using
NTL data as a proxy of human activities, such as mapping urban
growth [18]. The NTL from space offers a novel point-of-view in
portraying the extent and intensity of human footprints. Since the
1970s, a succession of satellite sensors have been developed and
utilized to detect NTL at both global and regional scales, including
Defense Meteorological Satellite Program-Operational Linescan
System, Visible Infrared Imaging Radiometer Suite (VIIRS) of
Suomi-NPP satellite, Luojia-01, Jilin1-03B, as well as images taken
from the International Space Station [19].

Since the goal of this research is change detection in urban areas,
the analysis was performed on yearly intervals, and the datasets
selected for this research span across multiple years.The overall set
of data is shown in Table 1. Please note that S2 and Landsat data are
jointly considered, in the sense that Landsat data have been used
whenever no S2 dataset in a specific year was available.

Looking at Table 1, two CSK images were considered for each
year, except for year 2020, when only one CSK image is available.

Table 1. SAR and multispectral data around the area of Cordoba, Argentina,
used in this research

Sentinel-1
COSMO-
SkyMed SAOCOM NTL Sentinel-2

Landsat
8

2012 – Feb 15
Jul 28

– Feb – –

2013 – Jan 04
Jul 27

– Jan – –

2014 – Mar 16
Jul 30

– Mar – –

2015 – Jan 10
Jul 05

– Jan – –

2016 – Feb 18
Jul 07

– Jul – –

2017 Jan 15 Jan 31
Jul 26

– Jan – Jan

2018 – Jan 06
Aug 14

– Jan – –

2019 Jul 25 Jan 21
Aug 12

– Jan Jan –

2020 – Dec 05 Aug 02 Aug – –

2021 Dec 17 Aug 16
Oct 03

Feb 26 Mar Mar –

2022 – Jan 08
Mar 14

– Mar Mar –

The CSK dataset presents this distribution in the period of inter-
est, as only those images whose footprint covered the entire city of
Cordobawere selected. Cells with a “-”markmeanno images avail-
able for that year, for that specific sensor. Instead, the cells where
only the single month is indicated refer to monthly composite

Figure 2. Summary diagram of the analysis procedure carried out considering SAR and NTL data (where SAR means S1, CSK, or SAOCOM data).
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Figure 3. Sequences of SAR and NTL data variations for the clusters obtained for a sequence from 2012 to 2021 (some of which are identified in Figure 5): the color of the
arrows identifies the cluster, the direction the flow of time, the starting point of each arrow the average value of the SAR and NTL data in the starting year, the final point of
each arrow the average value of the same data in the final year. The two graphs represent the same sequence (a) without having subtracted the average value of each
image, or (b) having subtracted it, to reduce the bias due to a different calibration or residual effects of geographical misalignment of the data.

Figure 4. Temporal clustering methodology (three clusters) applied to SAOCOM and NTL data in the period 2002–2021: on the left the geographical extension of the
identified clusters, on the right the average values of the variations of the backscattering values (x-axis) and of the NTL values (y-axis). The starting point of the arrows
identifies these values in 2020, the final point those in 2021.

datasets, realized by a temporal averaging of images in a trimester,
selecting the median per-pixel value. Those composites were con-
sidered for S2 and Landsat. Finally, available monthly images were
considered in the case of NTL data. To validate the results of
the methodology described in the next section, a few auxiliary
datasets, i.e., Planetscope images at 3 m spatial resolution acquired
on December 22, 2016, February 22, 2019, and April 28, 2022 were
used to select around 30 polygons in areas that did not change
(remained either urban or non-urban for the whole timespan) and
an equivalent number of points in areas that underwent changes
from one year to the other.

Methodology and results

Following what is indicated in the previous section, this research
was aimed to improve with respect to the state-of-the-art and the
previous research in two ways. On the one hand, the procedure
in paper [12] was implemented using multifrequency SAR data,
therefore the S1, CSK, and SAOCOM data, to compare what could
be obtained using, instead of S1, different SAR systems working

in different microwave bands and with different acquisition modes
and spatial resolution. On the other hand, this work explored
whether it is possible to substitute the original NTL data used in
paper [12] with indexes obtained from multispectral data (S2 and
Landsat) to combine the finer spatial resolution obtainable using
CSK and SAOCOM with multispectral information without the
limitation of spatial coarse resolution as in NTL data.

Joint temporal analysis of SAR (S1, CSK, or SAOCOM) and NTL
data

Themethodology in paper [12], graphically shown in Fig. 2, envis-
ages, following the co-registration and calibration of the SAR data
sequence, the extraction of the urban area extent by means of the
method in paper [3] for each of the years considered, with the con-
sequent definition of the area classified as urban in each year (called
“core urban area”) and the changes in the extension of the city year
by year, which identify its 2D expansion. The method in Fig. 1
implements the idea that the changes can be measured by both
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Figure 5. Visual representation of the sequence of clusters obtained by applying the proposed procedure to COSMO/SkyMed and NTL data over the city of Cordoba
(Argentina) for years 2012–13, 2013–18, and 2018–19. The same color is used for clusters with similar average temporal behavior.

a change in the backscattered power and a change detected by a
passive optical sensor.

More specifically, the diagram in Fig. 1, according to paper [12],
is a graphical representation of the processing chain, summarized
into the following four steps:

(i) Urban map extraction by combining and processing two
annual SAR sequences (e.g., 2012 and 2013) on the same
test area. The SAR series are separately processed, then the
urban extent for these 2 years is extracted and combined
through a logical Boolean OR operation to produce the final
urban mask.

(ii) Downsampling of the SAR images and change analysis, in
which the calibrated SAR amplitude𝜎0 is downsampled to the
spatial resolution of the nighttime data (nearly 500 m in case
of the VIIRS dataset). The annual downsampled SAR 𝜎0 data
are then combined to obtain theΔ𝜎0, the change in backscat-
tering characteristics of the urban area at the coarse spatial
scale of NTL.

(iii) Change pattern calculation: after calculating the nighttime
light change values ΔNTL, which is the difference of the NTL
data between the final and the initial dates, ΔNTL and Δ𝜎0
are combined to obtain a 2D change vector analysis, as shown
in Fig. 3 or Fig. 4. An urban density map is then calculated
at the coarse spatial resolution of the change vector analysis.
The density information is extracted from the percentage of
pixels of built-up area extracted at the resolution of the SAR
image within the coarse spatial resolution (500 m) used for
the following joint SAR-nighttime data clustering.

(iv) Clustering map: finally, the downsampled SAR 𝜎0 images, the
nighttime data at the start date, and the change vector are
clustered to distinguish between different temporal change
patterns and initial conditions.The final clustering, arbitrarily
four as the number of clusters, is shown in Fig. 5.

The main difference in the research reported here with respect
to paper [12] is, as mentioned above, the use of different SAR
datasets in input to this procedure. Unfortunately, the need to
jointly analyze SAR and NTL requires subsampling of the SAR
data to the much coarser spatial resolution of the NTL data.This is
particularly problematic when using CSK data at 2.5 m spatial res-
olution (20 times finer than the 500 m spatial resolution of NTL
data). Still following paper [12], for a given temporal sequence
the four quantities corresponding to SAR 𝜎0 for the HV cross-
polarization and the NTL data at the initial year, Δ𝜎0 and ΔNTL

Table 2. Formulation of the different indices used to verify their effectiveness
in mapping urban areas

Built-up indexes

Index Symbol Formulation

Normalized
Difference Built-up
Index

NDBI swir2−nir

swir2+nir

New Built-up Index NBI red*swir2
nir

Normalized Built-up
Area Index

NBAI
swir2− swir1

green

swir2+ swir1
green

Perpendicular
Impervious Surface
Index

PISI 0.8192 * blue − 0.5735 * nir + 0.0750

Built-up Land
Features Extraction
Index

BLFEI
green+red+swir2

3 −swir1
green+red+swir2

3 +swir1

Table 3. Quantitative analysis (measured through the OA and k indices) of the
extraction of the urban area extents for the city of Cordoba (Argentina) using
indices based on multispectral data from the Sentinel-2 and Landsat 8 and
considering the years 2017, 2019, and 2022 to verify the temporal consistency
of the results. The comparison shoes that the best results are those obtained
using the BLFEI index

2017a 2019 2022

OA κ OA κ OA κ

NDBI 0.88 0.76 0.90 0.79 0.83 0.65

NBI 0.90 0.71 0.92 0.84 0.99 0.98

NBAI 0.86 0.73 0.88 0.77 0.91 0.83

PISI 0.93 0.87 0.85 0.70 0.95 0.91

BLFEI 0.97 0.93 0.92 0.84 0.99 0.99
aLandsat 8 data.

are provided as input to the clustering function that groups the
locations featuring the same (or similar) temporal pattern(s).

The methodology in paper [12] was applied to S1 data, while in
this work, it is tested onCSK or SAOCOMdata and comparedwith
the results using S1 for the test area of Cordoba. In all cases, the
analysis is carried out considering, for a given temporal sequence,
the SAR images and NTL datasets listed in Table 1.

With regard to the CSK data, preliminary analyses made it pos-
sible to verify that by using at least two SAR images per year a
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Figure 6. Urban area extraction results for the city of
Cordoba starting from S2 data in 2022 and using the
(a) NDBI, (b), NBI, and (c) NBAI indices.

Figure 7. Summary diagram of the analysis procedure
used to consider SAR data (where SAR means S1, CSK,
or SAOCOM data) and the Built-up Land Features
Extraction Index (BLFEI) obtained from Landsat or
Sentinel-2 data.

Figure 8. Sequences of changes in the case of four clusters extracted in the period
2017–2019 and 2019–2022 using CSK data and the BLFEI index at a spatial
resolution of 500 m.

result unaffected by errors due to speckle noise can be obtained.
The results for years 2012–13, 2013–18, and 2018–19 are shown in
the following figure.

For each of the clusters extracted from these datasets, it is pos-
sible to compute the trend of the average values of the SAR and
NTL measurements for each year, thus obtaining the typical tem-
poral pattern of each cluster, which in turn allows identifying
its behavior. In the following figure, these temporal trends are
represented in a 2D graph, where each arrow represents the change
in a time interval (each arrow is oriented from the initial situation
to the final one). A sequence of arrows of the same color, therefore,

represents the temporal pattern over the years of the points that
belong to the same cluster and allows us to characterize whether
it is an area subject to new constructions (increase in backscatter-
ing), demolitions or renovations (decrease in backscattering), and,
finally, change of use (increase or decrease in NTLs).The same fig-
ure also shows the same sequence of arrows for each cluster from
which the average value over the entire image has been subtracted,
to reduce the bias due to slight variations in the data (especially
SAR) from image to image as a residual effect of calibration and
co-registration.

However, in the case of SAOCOMdata, for which available data
only cover years 2020 and 2021, the results were applied only to
this pair of years and allow us to highlight the creation of an area
of new buildings, which translates into an increase in 𝜎0 and a
slight increase in NTL values (black arrow highlighted in yellow
because it relates to the cluster of this color).The other two clusters
instead highlight areas that have essentially no variation (blue and
red arrows of practically zero size).

Joint temporal analysis of SAR (S1, CSK, or SAOCOM) and
S2/Landsat data

Given the limited spatial characterization of the changes obtained
with the SAR + NTL approach, we subsequently focused on
characterizing what is possible using the same approach but
applied to the combination of SAR and multispectral sensors
(S2/Landsat). Since NTL is a one band sensor, substituting it with
a multispectral sensor requires to compute an index useful to
characterize urban areas frommultiple bands. This is nothing new
because there are multiple indices in technical literature. A search
was, therefore, performed to select the ones who can be applied to
both S2 and Landsat data (i.e., using wavelengths that are recorded
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Figure 9. Map of the clusters obtained identified in the period 2017–2019 assuming identification of four different temporal patterns (represented by four different colors)
within the urban area of Cordoba and considering different spatial resolutions: (a) 500 m (as in the case of using NTL instead of BLFEI data), (b) 200 m (intermediate case),
and (c) 30 m (the maximum resolution possible considering the sensors used in this research, achievable only by considering the BLFEI values).

Figure 10. (a) Map of the clusters identified in the
period 2017–2019 at 500 m resolution using
COSMO-SkyMed data together with the BLFEI index
(already reported in Figure 9(a)); (b) average trends of
the variations of the clusters in the plane of the BLFEI
values (abscissae) and of the backscattering of the
COSMO data resampled at 500 m (ordinate): it is noted
that the blue and yellow clusters identify changes,
while the red and green clusters are represented by
arrows very similar to a single point.

by both sensors). These indices were computed and compared in
the urban test site of Cordoba, checking the results with respect to
the ground truth from Planet imagery.

As mentioned, therefore, the selection of a short list of con-
structed indices was carried out considering the best results identi-
fied in the literature review. The final selection is shown in Table 2
where NDBI, NBI, and NBAI were selected based on the anal-
ysis carried out in paper [14], while Perpendicular Impervious
Surface Index (PISI) and Built-up Land Features Extraction Index
(BLFEI) were taken into consideration starting from the research
reported in paper [16]. Each index in this list was selected under
the condition that it can be implemented using both Landsat and
Sentinel-2 data and that it allows the urban area to be extracted
with a sufficiently high overall accuracy.

The definitions of these selected multispectral indices are given
below:

• NDBI can enhance information about built-up land from remote
sensing images. The NDBI can be used to extract impervious
surfaces from urban areas. It utilizes the difference and the
ratio of the second SWIR (SWIR2) and NIR bands to highlight
built-up areas. It is ratio-based to mitigate the effects of terrain
illumination differences as well as atmospheric effects.

• NBIwas proposed by observing the spectral response of different
land covers in the surface reflectance value of visible red (RED),
NIR, and SWIR2 bands. Since the spectral response of barren

land is greater than the other land covers in the previous bands,
the index is defined according to the formula in Table 2.

• NBAI was designed by paper [20] to extract bare soil and built-
up area from Landsat imagery. To delineate the impervious sur-
face, the surface reflectance value of the visible green (GREEN),
first SWIR (SWIR1), and SWIR2 bands were used.

• PISI was designed as a convenient index for distinguishing
between soil and built-up areas as well as between vegetation
and built-up areas. The derivation of the PISI is based on the
determination of the reference line according to the concept of
a perpendicular index. Points above the reference line belong to
vegetation or soil and points below belong to built-up areas. The
PISI includes only NIR and the surface reflectance value of the
visible blue band, and it can be used with a wide range of data
from spaceborne sensors.

• BLFEI has been introduced for barren and built-up surfaces,
excluding the use of the NIR band. Built-up areas were observed
to have high reflectance values for SWIR1 and SWIR2 and low
values for RED and GREEN wavelengths in the electromagnetic
spectrum. This index, therefore, shows the highest values for
water, followed by built-up and vegetated surfaces. The use of
the entire visible (RED and GREEN) and SWIR (SWIR1 and
SWIR2) bands of the electromagnetic spectrum strengthens the
calculation formula of the BLFEI index.The index also allows for
improved spatial detail such as airports and roads compared to
other built-up area extraction indices.
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Figure 11. Visual analysis of the change detected by the proposed approach: each row shows VHR images of a small portion of the city of Cordoba as well as Planet images
from 2017 and 2019. The selected areas correspond to some of the 500 × 500 m areas identified as belonging to the green (1st and 2nd rows) and yellow clusters (last two
rows). It can easily be verified that in all cases the high-resolution images confirm that these areas have undergone changes.

Table 3 and Fig. 6 show the results of the urban area extent
extraction using different indices and the corresponding accuracy
values. Note that, while the figure presents the extraction results of
the urban area only for some indices, the table reports the quan-
titative evaluation for many more, to indicate the level of analysis
that was performed before proceeding. For all indices, the numbers
refer to extraction using S2 data for 2019 and 2022, but Landsat 8
data for 2017, a year for which there appear to be no S2 data with
few clouds over the area of Cordoba.

Once the best performing index (the BLFEI index) had been
selected, the subsequent work was aimed at understanding what
results could be obtained using Landsat and/or S2 multispectral
data in conjunction with CSK or SAOCOM data. In this case,
the approach with NTL data, whose framework is graphically

represented in Fig. 2, needs to be changed into the one in Fig. 7,
where “multispectral index” corresponds to BLFEI.

In this case, together with the permanent urban pixels during
the years 2017, 2019, and 2022, the values of the BLFEI index were
used starting from the analysis of the SAR data. Considering that
the value of this index is indicative of a variation in the composi-
tion of the surfacematerial and, therefore, is more correlated to the
SAR data than the NTL data, in this case short-term variations are
not significant, especially considering that Cordoba is not a rapidly
expanding urban area.Therefore, instead of extracting a temporally
detailed sequence of variations like the one reported in the previ-
ous section, the temporal framework of analysis was split into two
phases, the period 2017–2019 and the period 2019–2022. For each
time interval, theCSK and the BLFEI indices relating to the starting
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Figure 12. Clusters obtained using SAOCOM data and multispectral data for the 2020–2021 interval.

Figure 13. Clusters obtained using Sentinel-1 data and multispectral data for the 2017–2019 interval. Also note in this case the similarity between the result at 200 m
spatial resolution (on the left) and that at 30 m (on the right).

and ending dates of the period (e.g., from 2017 to 2019) are con-
sidered as input to the clustering operation. Using such data, it is
possible to obtain amap of the change values for the CSK backscat-
tering and a map of the change values of the BLFEI index on the
same two dates.

The results are represented graphically in Fig. 8 for an analysis
carried out at the spatial resolution of 500m, therefore comparable
to that of the result using SAR and NTL, where each arrow
corresponds to the variation of the average value of the backscat-
ter (HV polarization) and the index BLFEI from the beginning to
the end of the period. The clusters are therefore distinguished by
their temporal pattern in each time interval and, in this case, by
the succession of two arrows representing the changes in the two
considered intervals (2017–2019 and 2019–2022).

The results in Fig. 8 show that the points assigned to the yellow
pattern, which also appear from the graph in the figure to rep-
resent a significant change, in fact correspond to changes in the
urban fabric, for example linked to the construction of a large new
area. Considering that the scale used in this preliminary analysis is
500 m, variations related to changes in a single building, or a few
buildings are not detected. This indicates a direction that should
be considered for future analyses, in addition to the comparison
betweenwhatwas obtainedwith these data and the previous results
with nighttime lights.

Taking this into account, the same analysis was also carried out
at increasingly fine spatial resolutions (from the aggregate data and
therefore the result), up to 30 m. This test was performed to verify
that the results with BLFEI are in line with those obtained with
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NTL, when working at the same spatial resolution, and that finer
spatial resolutions simply refine the details that can be captured by
the proposed technique.

Results obtained at 500 m spatial resolution (comparable with
those using NTL data), at 200m (to have an intermediate case) and
at 30m (themaximum available considering the use of the Landsat
data), were then checked to verify their stability as the resolution
varied. In other words, it was verified that spatial clusters extracted
at 500, 200, and 30m can each be considered as a spatial refinement
of the previous one and not as a degradation of its quality. This
comparison is graphically shown in the maps in Fig. 9.

Figure 10 shows four clusters extracted using the proposed pro-
cedure. As noted in the caption, the red and green lines represent
areas that are basically stable, i.e., no change. Instead, the blue
and yellow lines represent areas that have undergone change and
specifically two different types of change. In effect, the cluster-
ing procedure extracts temporal patterns that are different. As the
approach is unsupervised, it is impossible to label these changes,
but what we have found is not a binary change/no changemap: it is
a set of areas that did or did not change but behaved differently over
time. Even the “no change” areas are divided into clusters (we can
think of “unchanged residential areas” and “unchanged industrial
areas,” for example).

Beyond a verification of the spatial similarity between clusters
at different resolutions, it was also verified that the methodology
is capable of distinguishing different temporal patterns, evaluating
whether it is possible to extract a common trend for all points of the
different clusters. Clusters with more points correspond to areas
that have not changed, but it is possible to recognize that smaller
clusters correspond to changes, identified through a comparison
with Planet data at 3 m. An example of qualitative analysis of the
results, obtained by comparisonwith the Planet images in the study
period, is shown in Fig. 11.

Finally, this same analysis was repeated, as for the SAR and
NTL case, using, instead of the CSK data in X-band, the SAOCOM
data in L-band, which clustering map is in Fig. 12, and finally
the Sentinel-1 data in C-band, Fig. 13. The results, although
not identical, confirm that the variations in urban areas can be
assessed almost equally using different microwave frequencies, as
the dimensions of the buildings are in any case much larger (on
average) than those of the wavelengths at the frequencies consid-
ered. This is a positive outcome of the research, as it implies that
the same procedure can be applied to different sensors, allowing
the monitoring of urban areas with a (combined) finer temporal
analysis.

It is important to note in Fig. 12 and Fig. 13 the similarity
between the result at 500 m spatial resolution (left) and the one at
200 m (right). It is equally important to note the similarity with
results obtained from CSK data, shown in Fig. 5. These are not
identical, due to the different sensor, data acquisitionmethods, and
angles of view. Additionally, the difference also arises from the fact
that the time interval used in this case is shorter than with the CSK
data, as the SAOCOMmission began providing images in 2020.

Conclusions

This paper compares the use of temporal sequences SAR and opti-
cal images from different sensors for the task to automatically
detect, using an unsupervised procedure, changes in urban areas,
and discriminate among different change typologies thanks to their
different temporal behaviors.

The work considers SAR data from multiple constellations,
at different frequencies and spatial resolutions, as well as dif-
ferent multispectral sensors, i.e., NTL sensors and multispectral
(RGB+NIR+ SWIR) sensors.The combinations of data recorded
by these different sensors show that it is always possible to extract
meaningful information about urban changes, and the major con-
straint is spatial resolution, which, as expected, is very important
for urban areas mapping.

Acknowledgements. This work has been funded by the Italian Space
Agency via the MultiBigSARData project, grant n. 2021-7-U.0, CUP n.
F15F21000250005.

Competing interests. The author(s) declare none.

References
1. Mestre-Quereda A, Lopez-Sanchez JM, Vicente-Guijalba F, Jacob AW

and Engdahl ME (2020) Time-series of Sentinel-1 interferometric
coherence and backscatter for crop-type mapping. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing 13,
4070–4084.

2. Praskievicz S and Chang H (2009) A review of hydrological modelling
of basin-scale climate change and urban development impacts. Progress in
Physical Geography: Earth and Environment 33(5), 650–671.

3. Xing Y, Horner RMW, El-HaramMA and Bebbington J (2009) A frame-
work model for assessing sustainability impacts of urban development.
Accounting Forum 33(3), 209–224.

4. Liu P and Biljecki F (2022) A review of spatially-explicit GeoAI appli-
cations in Urban Geography. International Journal of Applied Earth
Observation and Geoinformation 112, 102936.

5. Alami O, Saadane A, Kacimi I and Chafiq T (2016) A modified and
enhanced normalized built-up index using multispectral and thermal
bands. Indian Journal of Science and Technology 9(28), 1–11.

6. Tian S, Zhong Y, Zheng Z, Ma A, Tan X and Zhang L (2022) Large-scale
deep learning based binary and semantic change detection in ultra high
resolution remote sensing imagery: From benchmark datasets to urban
application. ISPRS Journal of Photogrammetry and Remote Sensing 193,
164–186.

7. Ding Q, Shao Z, Huang X, Altan O and Hu B (2022) Time-series land
cover mapping and urban expansion analysis using OpenStreetMap data
and remote sensing big data: A case study of Guangdong-Hong Kong-
Macao Greater Bay Area, China. International Journal of Applied Earth
Observation and Geoinformation 113, 103001.

8. Yousif O and Ban Y (2016) Object-based change detection in urban
areas using multitemporal high resolution SAR images with unsuper-
vised thresholding algorithms. InMultitemporal Remote Sensing: Methods
and Applications, Y. Ban, A c. di, in Remote Sensing and Digital Image
Processing. Cham: Springer International Publishing, 89–105.

9. Ban Y and Yousif OA (2012) Multitemporal spaceborne SAR data for
urban change detection in China. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing 5(4), 1087–1094.

10. Tewabe D and Fentahun T (2020) Assessing land use and land cover
change detection using remote sensing in the Lake Tana Basin, Northwest
Ethiopia. Cogent Environmental Science 6(1), 1778998.

11. Gamba P and Herold M (2009) Global Mapping of Human Settlement:
Experiences, Datasets, and Prospects. Boca Raton, London, New York: CRC
Press.

12. CheM and Gamba P (2019) Intra-urban change analysis using Sentinel-1
and nighttime light data. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 12(4), 1134–1142.

13. Iannelli GC and Gamba P (2019) Urban extent extraction combin-
ing sentinel data in the optical and microwave range. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing 12(7),
2209–2216.

https://doi.org/10.1017/S175907872400031X Published online by Cambridge University Press

https://doi.org/10.1017/S175907872400031X


370 Marzi et al.

14. Kebede TA, Hailu BT and Suryabhagavan KV (2022) Evaluation of
spectral built-up indices for impervious surface extraction using Sentinel-
2A MSI imageries: A case of Addis Ababa city, Ethiopia. Environmental
Challenges 8, 100568.

15. Valdiviezo-N JC, Téllez-Quiñones A, Salazar-Garibay A and López-
CalocaAA (2018) Built-up indexmethods and their applications for urban
extraction from Sentinel 2A satellite data: Discussion. Journal of the Optical
Society of America A 35(1), 35–44.

16. Kaur R and Pandey P (2022) A review on spectral indices for built-up area
extraction using remote sensing technology.Arabian Journal of Geosciences
15(5), 391.

17. Acharya T and Yang I (2015) Exploring Landsat 8. International Journal
of IT, Engineering and Applied Sciences Research 4, 4–10.

18. Zhou Y, Li X, Asrar GR, Smith SJ and Imhoff M (2018) A global record
of annual urban dynamics (1992–2013) from nighttime lights. Remote
Sensing of Environment 219, 206–220.

19. Zheng Q, Weng Q, Zhou Y and Dong B (2022) Impact of temporal com-
positing on nighttime light data and its applications. Remote Sensing of
Environment 274, 113016.

20. Waqar M, Mirza JF, Mumtaz R and Hussain E (2012) Development of
new indices for extraction of built-up area and bare soil from Landsat.
Data 1(1), 1–4.

David Marzi received the M.Sc. and Ph.D. in
Electronic Engineering from the University of
Pavia, Italy, both earned with honors in 2019
and 2022, respectively. His academic journey
included roles as a lecturer in Remote Sensing and
researcher at the same institution. Dr. Marzi took
part in several Earth Observation projects sup-
ported by important organizations like the Italian
Space Agency (ASI), European Space Agency

(ESA), and the EU Joint Research Centre (JRC). His research focuses on the
comprehensive analysis of multitemporal, multimodal satellite data, leverag-
ing machine learning and deep learning methodologies that are specifically
employed to map vegetation land covers, monitor water bodies, and charac-
terize organic croplands. David Marzi has authored and co-authored multiple
scientific publications in the field of remote sensing, including several IEEE
publications. He is also a frequent presenter at remote sensing and Earth
Observation conferences.

Erith Munoz-Rios received the B.S. in Physics,
M.S. in Electrical Engineering and Doctor of
Engineering degrees from the University of
Carabobo, Venezuela, 2007, 2012, and 2023,
respectively. He also holds an M.S. degree in
Remote Sensing applied to early warning to
natural disasters from the National University
of Cordoba and the “Gulich” Institute of the
National Commission for Spatial Activities,
Cordoba, Argentina (2014). He currently works
as an international consultant in remote sensing
for the Food and Agriculture Organization

of the United Nations (FAO) providing technical support to countries in
Latin-American and the Caribbean (LAC) in developing their national forest
monitoring systems in the context of the UN-REDD+ program. He is mainly
interested in research related to fusion of SAR and Optical data, Big Data and
Data Analytics for remote sensing, and uncertainties estimations for Earth
Observation satellite-derived products.

Antonietta Sorriso received the M.Sc. degree
(summa cum laude) in Telecommunications
Engineering and the Ph.D. degree in Information
Engineering from the University of Naples
“Parthenope,” Naples, Italy, in 2015 and 2019,
respectively. During her Ph.D., she was a member
of the MEG-BioApp Research Unit, Naples, Italy,
and her research activities were mainly focused on
image and signal processing techniques applied

to biomedical imaging, directing her interest toward the analysis of magnetic
resonance imaging (MRI) and magnetoencephalography (MEG) data. Since
2019, she is a research fellow at the Department of Industrial and Information
Engineering, University of Pavia, Italy. Her research activities are in the field
of SAR image processing, with particular emphasis on denoising and urban
detection frameworks.

Fabio Dell’Acqua is a full professor of Remote
Sensing at the University of Pavia, Italy. He grad-
uated with honors in Electronics Engineering at
the University of Pavia in 1996 and obtained his
Ph.D. in Remote Sensing at the same university
in 1999. In 2000, he was associate researcher at
the University of Edinburgh, UK, while in 2001
he obtained a permanent position as an assistant
professor at the University of Pavia, Italy. He can

now claim more than 25 years of experience in Earth Observation and signal
processing. He also taught remote sensing courses at various higher education
establishments in Italy and abroad. His research interests focus on the use of
remote sensing for agricultural applications and risk management purposes.
He took part in several international research projects on these topics.

Paolo Gamba is a professor at the University of
Pavia, Italy. He served as Editor-in-Chief of the
IEEEGeoscience andRemote Sensing Letters from
2009 to 2013, Chair of the Data Fusion Committee
of the IEEE GRSS from 2005 to 2009, and as
GRSS President in 2019–2020. He is currently
the Editor-in-Chief of the IEEE Geoscience and
Remote Sensing Magazine. He was the Technical
Chair of the biennial JURSE from 2001 to 2015 and

of the 2010, 2015, and 2020 IGARSS conferences. He has been invited to give
keynote lectures on several occasions about urban remote sensing and data
fusion.

https://doi.org/10.1017/S175907872400031X Published online by Cambridge University Press

https://doi.org/10.1017/S175907872400031X

	Joint multitemporal SAR and optical mapping of urban changes
	Introduction
	Datasets and test site
	Methodology and results
	Joint temporal analysis of SAR (S1, CSK, or SAOCOM) and NTL data
	Joint temporal analysis of SAR (S1, CSK, or SAOCOM) and S2/Landsat data

	Conclusions
	Acknowledgements
	References


