
ON A CLASS OF SINGULAR DIFFERENTIAL 
OPERATORS 

R. R. D. K E M P 

In the considerable literature on linear operators in L2 or Lp arising from 
ordinary differential operators it has always been assumed that the coefficient 
of the highest order derivative appearing does not vanish in the interior of 
the interval under consideration. If this coefficient vanishes at one or both 
endpoints of the interval, or if one or both of the endpoints is infinite the 
differential operator is said to be singular. In this paper we shall allow this 
leading coefficient to vanish in the interior of the interval, and show that 
the theory of such operators can sometimes be reduced to a consideration 
of several operators of the well-known type. We shall also indicate how those 
which cannot be so reduced should be dealt with. 

A cursory examination of the problem leads one to the conclusion that the 
major change from the known situation will be in the definition of appro­
priate domains for such operators, and thus in the construction of appropriate 
boundary conditions. 

Thus in § 1 we shall define the domains of basic minimal and maximal 
operators associated with a given differential expression, and thus define a 
class of operators arising from a differential expression. This class of operators 
will be the subject of the rest of the paper, and in § 2 we show how these 
operators' domains are determined by suitable boundary conditions. In § 3 
we restrict to a narrower class of differential expressions in order to obtain 
more detailed information. For this restricted class we have a problem, which 
differs from the known case only in the nature of the boundary conditions. 
In § 4 we show that operators of this restricted class, which are formally 
self-adjoint, give rise to L2 expansion theorems, and in § 5 we consider a 
few examples. 

1. Differential operators and adjoints. We shall consider operators 
on LP(I) (1 < p < oo) for any interval i" = [a, b] (where a or b or both may 
be infinite), which are generated by expressions 

(1.1) r = E PiixW-i, 
3=0 

where D = d/dx and pj is a complex-valued function belonging to Cn~j(I). 
We define the adjoint differential expression by 
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(1.2) r* = Z qj(x)Dn-j 

<L* = t {-Dn-kClZ)D^Pk. 

Note that r* is an operator of the same type as r, and that it is the conjugate 
of the usual Lagrange adjoint. This modification is made for convenience in 
dealing with Banach space adjoints, and when we consider formally self-
adjoint operators in § 4 we shall return to the more usual notation. 

When one assumes that po(x) ^ 0 on the interior of 7, the definition of 
minimal and maximal operators on LP(I), which are associated with r, is 
relatively direct (see, for example, Rota (8)). However, as we do not wish 
to make this assumption some modifications must be made. Denoting by 
Kn(I) the space of all n times continuously differentiate functions which 
vanish outside a compact subset of 7 we define the operators TA(T, p, I) on 
LP(I) for 1 < p < oo by TA(r, p, I)f = rf for / Ç Kn(I). Note that rf is 
continuous on 7, and vanishes outside a compact subset if 7 is unbounded, 
so rf G LP(I). 

Now for any p > 1 TA(r, p, 7) has an adjoint 7\(r*, q, 7) on Lq(I) with 
domain Z>i(r*, g, 7), and 7*1 (r*, g, 7) has an adjoint TO(T, p, 7) on LP(I) with 
domain D0(r, p, 7). Clearly, 70(r, p, 7) is an extension of the closure of 
TA(T, p, I). It will, in fact, be the closure unless p = °o. 

We shall now show how 7i(r*, g, 7) is related to r*, and give a charac­
terization of DI(T*, q, I). First we define 

(1.3) TO/ = po(x)f(x) 

r*k+1f = D(rtf) + (-lf+1pk+1(x)f(x), k = 0, 1, . . . , n - 1. 

THEOREM 1.1. D±(T*, q, 7) = {/ G LQ(I)\rk*f is absolutely continuous on any 
compact subset of 7, k = 0, 1, . . . , n — 1; rn*f € Lq(I)}. Also, for 
f <E 7>i(r*, q, I), TI(T*, q, I)f = (— l)nr„*/, and i f / G Cn on a neighbourhood 
of x0 then J I ( T * , q} I)f = r*/ on that neighbourhood. 

Proof. By definition / G 7>i(r*, g, 7) if and only if / 6 Lq(I), and there is 
/ i Ç 7^(7) such that for any g Ç i£w(7) we have 

(1.4) J(fTg-te)dx = 0. 

Given such a g there is a compact interval [c, d] C 7 outside of which g is 
zero. Thus if <j> = 7>ng we have 

(1.5a) D*g = J ' - ^ f - j p r i y î *(*)#» fe = 0, 1, . . . , n - 1; 

(1.5b) I xk(t>(x)dx = 0, ft = 0, 1, . . . ,w - 1; 

and may rewrite (1.4) in the form 
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0 = j*[po(x)f(x)4,(x) + £ PteW fe%-%[ *®d* 
( i - i ) ! 

- / l ( « ) / ( « - 1 ) 1 * < « * . 
d#. 

When we interchange the order of integration in each term which involves 
two integrals this becomes 

o = JV) [po(x)m + g J'^pr^rP^^)^ 

-J!%^W^dx 

= I <t>{x)\p(x) dx. 

Now we may choose any 4>(x) fulfilling (1.5b) and define g Ç Kn(I) by (1.5a) 
(for k = 0) inside [c, d], and by 0 outside [c, d]. Thus t^(x) is a function in 
Lq(cyd) which is annihilated by all functions $ fulfilling (1.5b), and it must 
be equal almost everywhere to a polynomial of degree n — 1. 

Thus we have 

(1.6) Po(x)f(x) + E J'^j-z^rPsWfMdl: 

fi(£)d£ = Pn-i(x) a.e. on [c, d]. x (» - 1)! 

At this point in the known case, one a l t e r s / on a set of measure 0 so that 
(1.6) holds everywhere on [c, d]. We may do this except at points where 
po(x) is zero, and shall assume that this has been done. Thus (1.6) holds 
except at a subset A of measure 0 of sJt0 = \x\po(x) = 0}. Thus for any 
xo € A we have 

lim po(x)f(x) 
x-^xo 

existing, where the limit is taken along a sequence of points not in A. As 
/ 6 La(I) it cannot be infinite on an open set, so if x0 is an interior point 
of 5Ro, or if it is the limit of interior points of 9Î0, this limit is 0. In any case 
we see that (1.6) can fail to hold only at points where po(x) = 0 and f(x) is 
infinite, so the definition of the product was in doubt in any case. We define 
its value to be this limit, so that (1.6) will hold everywhere in [c, d]. 

Thus r0*/ is absolutely continuous on [c, d]. If rk*f exists and is absolutely 
continuous on [c, d] then (1.6) yields 

n nd /£ vV~ l c~~1 

- (-D' J 7 j I £-17!-^)^ = ^»-i(«) on M-
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Thus 

D{nf) + {-i)k+i
P!c+1(x)f(X) + (-i)*+i£ V^.~lyk'pmm)di 

_ ( _ i)W-i J'^ZfL^yMW = Dk+1Pn^(x) a.e. on [c, d]. 

However, this means that the derivative rk+i*f of an absolutely continuous 
function 

rtf +(-1)* fV«-i(&f(*)# 

is equal a.e. to an absolutely continuous function. It must thus be equal 
everywhere, and r^+i*/ exists and is absolutely continuous on [c, d]. 

Therefore rk*f, for & = 0 , l , . . . , t t — 1 are absolutely continuous on [c, d] 
and rn*/ = (— l)nfi a.e. on [c, d]. As we could begin with any compact [c, d]C.I 
this completes the proof of the description of i>i(r*, <Z> 7), a n d of the action 
of i i ( r*, g, 7) on this domain. The fact that i i ( r*, q, I)f = r*/ if / Ç C* 
follows from an easy computation. 

For 1 < p < oo it follows (see, for example, Rota (8)) that TO(T, p, 7) is 
the closure of TA(T, p, 7), and is thus a restriction of i i ( r , p, I). For p = oo 
the graph of io(r, °°, 7) is the closure of the graph of TA(T, °°, 7) in the 
i i ( 7 ) © i i (7 ) topology of i œ (7) 0 i œ (7 ) . Thus T0(T, œ, 7) will, in general, 
be a proper extension of the closure of i A ( r , °°, 7). However, the graph of 
i i ( r , » , 7) is also closed in the i x (7) © i x (7) topology of i œ (7) © i œ (7 ) , 
and contains the graph of i A ( r , °°, 7). Thus again io(r, °°, 7) C 7\(r, °°, 7) 
and we have 

2t(r, £, 7) = ri(r*, ^, 7) 1 < £ < » , g = T - ^ - T 
p — 1 

TÎ(T, p, I) = io(r*, g, 7) 1 < £ < » , q = - ^ 
p - 1 

TO(T,P,I) C i i ( r , p , 7) l < p < » . 

We shall consider closed operators i o n i^(7) such that io(r, p, 7) C i C i i 
(r,p,I). These will be called differential operators associated with r, or 
r-operators. Clearly the adjoint of a r-operator on LV{I) is a r*-operator 
on i f f(7). 

2. r-Operators and boundary conditions. The direct way of specify­
ing a r-operator T on LP(I) is to give its domain D{T) as a subspace of Dx 

(T,P,I), which contains D0(T, p, I). We note that under the norm 
I l / l k , = | | i i ( r , p, 7)/ | | , + 11/11,, (called the r-norm on i p (7)) , i ^ r , p, 7) is a 
Banach space, and i>o(r, p, 7) is a closed subspace. In order that i be closed 
D(T) must also be a closed subspace of 7>i(r, p, 7) under this norm. Clearly 
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we could also specify D(T) by giving the subspace of DI{T, p, I)/D0(T, p> I) 
onto which it projects under the natural projection of Di(r, p, I) onto 
^ ( r . ^ / J / Z J o ^ p , / ) . 

As the image of an / Ç DI(T,P,I) in the space DI(T, p, I)/DO(T, p, I) 
represents the portion of / not in D0(T, p} I) it also represents the way in 
which / fails to be appropriately zero at the "boundary" of / . Thus we shall 
call this projection of/ the boundary value (or boundary values) of/, and call 
the space £>I(T, p, I)/DQ(T, p, I) the space of boundary values for r on LP(I). 
This makes it natural to define a boundary condition for r on LP(I) as an element 
of [Di(r, p, I)/D0(T, p, / ) ]* , which is thus the space of boundary conditions 
for r on LP(I). 

Clearly, a boundary condition F for r on LP(I) is completely specified by 
a linear functional on Di(r, p} I) which vanishes on DQ(T, p, I) and is con­
tinuous in the r-norm on LP(I). We shall also denote this functional by F. 

THEOREM 2.1. If F is a boundary condition for r on LP(I) there is g £ Di 
(r*, q, I) such that for any f Ç DI(T, p, I) 

Hf) = J[TI(T, p, I)f(x)g{x) - m W , q, I)g(x)} dx. 

Thus the space of boundary conditions for r on Lp (I) is isomorphic to the space 
of boundary values for r* on Lq (I). 

Proof. We see immediately that 

if, g) = J[TI(T, P, I)fg - fT,{r*, q, I)g] dx 

is a bilinear form on DX{T, p, I) X -DI(T*, q, I), which satisfies the following 
conditions: 

(f, g) = 0 for all / £ Dxir, p, I) if and only if g € D0(r*, q, I), 
if, g) = 0 for all g € Z?i(r*. q, I) if and only it f £ D0(r, p, I), 
\(fg)\<\\f\U\ë\\r*,«. 

Thus (/, g) induces a continuous, non-singular bilinear form on [Di(rf p, I)/D0 

{r,p,I)\ X [Di(j*t q, I)/Do(r*y q, / ) ] , and if F is any non-zero boundary 
condition for r on LP(I) there i s / 6 £>i(V> p, I)/D0(T, p, I) for which F(fi) ^ 0. 
Now for any / Ç Dx{j, py I)/D0(T, p, I) we h a v e / = ^ ( / ) / i / ^ ( / i ) + / o where 
F(Jo) = 0. If 91 consists of all g Ç Z>i(r*, g, I)/D0(T*, q, / ) , which annihilate 
the null-space of F, there must exist gi (z 31 such that (/i, gi) ^ 0 or 51 would 
annihilate all of DI(T, p, I)/DQ(T, q, I) and (/, g) would be singular. Then 
Hf) = </, *2> where g2 = ^(/OgiA/i, gi). 

The mapping F —+ g2 is clearly an isomorphism so the proof is complete. 
This representation of boundary conditions allows us to show in what sense 

boundary values and boundary conditions are related to the boundary of 
the interval / . 
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THEOREM 2.2. If p0(x) ^ 0 on [xh x2] C I, where a < xi < x2 < b, the value 
of (/, g) depends only on the values of f and g on the set I — [xi, x2]. 

Proof. Since the continuous function po(x) is non-zero on the closed interval 
[xiy X2] there is a larger closed interval [x/, x2'] such that a < x / < Xi < X2 < 
X2 < b, on which po(x) 9^ 0. Thus for/ G P>i(r, p, I), g G £>I(T*, q, I) we have 

if, g) = f [ri(T, p, I)fg - fT^r*, q, I)g] dx 
v I-lxi',xi'] 

+ f [rx(T, p, I)fg - fTrir*, g, I)g] dx. 

However on [x/, x2
r] it is clear t h a t / and g have absolutely continuous deriva­

tives up to order n — 1 and TI(T, p> I)f = r/, r i(r*, q, I)g = r*g on this 
interval. Thus the second term above is given by 

J *X2r 

[rfg-fr*g]dx = [fg](x2') - [fiKxi), 
X\' 

where 

IfgKx) = E £ (-l)k-1Dn-i-kf(x)Dk-1(Pj(x)g(x)). 

Thus (/, g) is given by an expression fulfilling the requirements of the theorem. 

COROLLARY 2.1. (/, g) depends only on the values of f and g in the neighbour­
hood of Sîo = {x\po(x) = 0} and in the neighbourhood of the endpoints of I. 

THEOREM 2.3. If po(x) = 0 on [xi, x2] C I then the value of (/, g) depends 
only on the values of f and g at points outside [xi, x2], at its endpoints, and in 
the neighbourhood of points inside (xi, x2) where pi(x) is zero. 

Proof. We may assume that po(x) is not identically zero on any interval 
containing [xi, x2], although this does not alter the proof. The conditions 
which the restriction of/ G DI(T, p, I) to [xi, x2] must satisfy are: rof = qof = 0, 
nf = — qif absolutely continuous, etc. Thus it is clear that on [xi, x2] we 
are really dealing with the operator 

n 

T[XUX2] = X ) Pj(x)Dn~3, 

and we may apply Theorem 2.2 to the boundary form (/, g) for this operator 
to obtain the desired result. 

This reduction process can clearly be repeated to arrive at a complete 
characterization of the points in / at which the values of/ and g are relevant 
to the values of (/, g). We use the notations ytk = {x\pj(x) = 0,j = 0, 1, . . . ,k} 
and 9î/to for the interior of 9^, and combine our results in the following theorem. 

THEOREM 2.4. The value of (/, g) depends only on the values of f and g in the 
neighbourhood of the set S = {x Ç I\x is an endpoint of / , or there exists an 
integer k between 0 and n — \ such that x G 9Î&, x $ 5ft/co}. 
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T h u s for the differential operators r and r* the set 33 plays the role of 
the boundary of the interval I. T h e boundary values of a function in DI(T, p, I) 
or DI(T*9 g, I) depend only on the values of the function in a neighbourhood 
of 33. T h u s there are boundary conditions for r on LP(I), which depend on 
values of the function away from the endpoints of / . Th is is the main signifi­
can t difference which arises in our general class of operators . 

Another remark might be made a t this stage. If / G Cn(I) C\ LP(I) and 
g £ Cn(I) C\ Lq{I) it is easily seen t h a t (/, g) depends only on the values of 
/ and g near the endpoints of P If fn and gm are sequences of such functions 
which converge in LP(I) and Lq(I) to /o and go respectively, and if rfn and 
T*gm converge in LP(I) and Lq(I) to / 0 * and go* respectively, it is clear t h a t 
/o e D i ( r , p, I), go £ Diir*, q, I), ^ ( r , p, I)fo = /0*, T^T*, q, I)go = go*, and 
t h a t as n and m approach oo (fni gm) converges to (/0, go)- T h u s it is clear 
t h a t (/o, go) depends only on the values of /o and go in the neighbourhood of 
the endpoints of I. T h u s 7 \ ( r , p} I) and 7 \ ( T * , g, 7) are not given, in general, 
by the closures of r and r* on Cn(I) C\ LP(I) and Cn(I) P\ Lq(I) respectively. 

3. R e g u l a r operators . In order to obtain more specific results it seems 
to be necessary to restrict the class of operators somewhat . T h e na tura l 
restriction to make, and one which we shall make throughout the remainder 
of this paper, is t h a t S3 should be finite, consisting of {x0, Xi, . . . , xm}, where 
Xo and xm are the endpoints of I, and either or both may be infinite. We shall 
denote by Ij the interval [xj-i, Xj] j = 1, . . . , m. 

I t is necessary to restrict somewhat further t han this however. T h e essential 
spectrum of an operator T is the set {X|7" — X does not have closed range], and 
we shall define the essential spectrum of r to be the essential spectrum of To 
(r, p, I) and denote it by ere(T, p, I). T h e essential point spectrum of r is the 
point spectrum of TQ(T, p, I) and will be denoted by Po-e(r, p, I). T h e essential 
resolvent set pe(r, p, I) is the complement of 

(ye{T,p,I) VJ Pae(r,p,I), 

and we shall say t h a t r is a regular opera tor if S is finite and if pe(r, fi, I) is 
non-empty . 

T H E O R E M 3.1 . If I1 and I2 are two subintervals of I such that I1 C\ I2 is a 
single point and I1 VJ I2 = I, then 

ae(r, p, I) = ae(r, p, P) U ae(r, p, P) 

and 

Pae(r, p, I) D Pae(r, p, P) \J Pae(r, p, P). 

Proof. If x is the point common to P and P it is finite, so f o r / G -Oi(r, p, I), 
Z)i(r, p, J 1 ) , or ZMr , P, I2), i t follows t h a t rkf for k = 0, 1, . . . , n - 1 has a 
finite limit a t x. T h u s i f / Ç D0(T, p, P) and T0(r, p, P)f = Xf it follows t h a t 
for any g Ç Cn(P), which is zero on a neighbourhood of x0} we mus t have 
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0 = (X[T0(r,p,I1)fg-fr*g]dx 
•Jxo 

= lim ± ( - i r * + W ( x - e) g^ix - e ) . 

Thus for k = 0, 1, . . . , n — 1 the limit of rkf{x) as x —> # is zero, and the 
function / i which is equal to / on J1 and is zero on P belongs to DQ(T, p, I) 
and has the property that TO(T, p, I)fi = X/i. Thus 

P<T.(T,P,P) CP<Te(T,P,n, 

and the proof for P is precisely the same. 

For the other part of the theorem we note that as the null-space of 
To(r, p, I) — X is contained in the direct sum of the null-spaces of J i ( r , p, 
Ij) — X, which are finite dimensional, the former must be finite dimensional 
also. Similarly the null-spaces of r 0 ( r , p, I1) — X and TQ{T, p, P) — X must 
be finite dimensional. Thus results of Rota (8) yield our conclusion. 

We might note that these results depend only on 33 being finite, and not 
on pe(Tj p, I) being non-empty. There are several immediate consequences 
of Theorem 3.1 which we list as corollaries. 

COROLLARY 3.1. If S is finite 
m 

ae(r, p, I) = U o-e(r, p, Ij) 

and 
m 

and if pe(r, p, I) is non-empty, we have pe(r, p, Ij) non-empty for j = 1, . . . , m. 

COROLLARY 3.2. ce(r, p, I) is closed and equal to the essential spectrum of any 
r-operator if pe(r, p, I) is non-empty. Also ^ ( r , p, I) coincides with <re(T*, q, I) 
if 1 < p < oo. 

Corollary 3.1 is obvious and Corollary 3.2 follows from corresponding 
results of Rota (8) for the usual case. One cannot state that Pae(T, p, I) is 
closed, and it is quite possible for P(je{ry p, Ij) to be empty for j = 1, . . . , m 
and yet have Pcre(rt p, I) non-empty. 

THEOREM 3.2. If r is regular on LP{I) or if 33 is finite and pe(T, p, Ij) is 
non-empty for j = 1, 2, . . . , m then Di(r, p, I)/DQ(T, p, I) is finite dimensional. 

Proof. We note that by Corollary 3.1 r regular on LP(I) implies that 
pe(r, py Ij) is non-empty for j = 1, 2, . . . , m. It is the latter which is the 
necessary hypothesis here, and it does not imply that pe(r, p, I) is non-empty. 

Now for each j there is an integer kj such that pa(x) = 0 on Ij for a < kj 
and pkj(x) ^ 0 for x in the interior of Ij. Thus every/ Ç Z>i(r, p, I) belongs, 
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when restricted to Ih to the domain of an operator of order n — kjy which 
we shall still denote by r. On Ij r satisfies all the hypotheses required by 
Rota (8) , so DI(T, p, IJ)/DO(T, p, Ij) is finite dimensional. Le t TJ be the 
projection of D i ( r , p, 13) onto D\(r, p, I3)/DQ(T, p, Ij). If we define the t rans­
formation 7T from DI(T, p, I) to 

m 

J2 ®D1(ripiIj)/Do(ripiIj) 

by TT/ = (7Ti/, 7T2/, . . • , TTmf) we see immediately t h a t the null space of ir is 
contained in DQ(T, p, I) so t h a t D i ( r , p, 7 ) / D 0 ( T , p, I) is isomorphic to the 
quot ien t of TTDI(T, p, I) by 7TZ^O(T, p, I), which mus t be finite dimensional. 

T h e previous discussion has essentially consisted of proofs t h a t a regular 
operator possesses properties very similar to those of the usual case. In fact 
they possess sufficiently similar properties to carry over unchanged the results 
on extensions proved by Ro ta in (8) . 

However, further questions natural ly arise. I t would simplify the problem 
immensely if any r-operator had the proper ty of commut ing with the pro­
jections Pj defined by Pjf = xjf where xj is the characterist ic function of Ij. 
Even if this is not t rue one might wish to examine the na ture of the opera tor 
Tj on Lp(Ij) arising from a r -operator T by ijPjf = PjTf f o r / Ç D(T). One 
can hardly expect t h a t Tj will even be closed in general, for all the functions 
/ in its domain have rn-if absolutely continuous on compact subintervals of 
Ij which contain the end point of Ij, which is interior to 7. Th is condition is 
not satisfied by a l l / £ £>i(r, p, Ij) in general. For the part icular case when T 
is TI(TJP, I) one might hope t h a t the closure of TIJ(T, p, I) would be 7 \ ( r , p, Ij). 

T H E O R E M 3.3. The second adjoint of i i^(r, p, I) is 7 \ ( r , p, Ij). 

Proof. We shall assume t h a t the te rms of r with coefficients identically 
zero on Ij have been omit ted and thus t h a t po(x) 9e 0 except a t Xj-i and 
Xj. Thus , if g belongs to the domain of the adjoint of I\J(T} p, I) it has absolutely 
cont inuous derivatives up to order n — 1 on any compact interval properly 
contained in Ij. T h u s for any / Ç Z>i(r, p, I) and ^ - f u n c t i o n s <j>i and #2, 
such t h a t 0i + </>2 = 1, 

0! = 1 for x < — ^ - i ^ 1 , 

and 

we have 

0! = 0 for x > ^L±?^=l 

o = a g)ij = <«i/, g)ij + <02/, 

As </>if and 0 2 / both belong to Z>i(r, p, I) we must also have 0 = (0i / , g)Tj = 
(02/, g)in and thus 
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0 = lim 2 (-l)K-*+1rn_,[01(x,_1 + e)/(x,_! + eW^gixj-! + e) 

= lim £ ( - i r W ( ï M + ^ ' " ' g ( ï M + ')1 
e_*0+ k=l 

and 

0 = lim £ (-iy-k+\n-k[Mxj ~ «)/(*, - e ) ] ! / " 1 ^ - e) 
e_>0+ fc=l 

= lim £ ( - l ) " - t + 1 r ^ ( x , - e ^ g f o - e). 
e_^0+ * = 1 

To show that these conditions imply that g £ £*O(T*, g, Ij) we must show 
that if these conditions hold for / Ç Dx{r,p, I) they also hold for f £ Di 
(r, p, Ij). If x^_i or Xj is an end point of / this implication follows immediately 
at that endpoint. For, let / Ç DI(T, p, Ij) and Xj i — XQ. Thus the function 
/ which is <j>if in Ij and 0 outside Ij belongs to DI(T, p, I) and 

lim £ (-l)n-k+1rn^f(xj^ + e)g(xj.1 + e) 
e^0+ k=l 

= lim £ ( - l ^ W ^ x + e)g(xj-1 + «) = 0. 
€-40+ fc=l 

The proof if similar. Otherwise both Xj and x^-i are finite. We shall 
treat only the condition at Xj-i as the treatment of the other is similar. If 
x° £ I then 

K—l / U\ 

Tn-kf(x) = J2 Tn-k+vf(x ) : 
n V! 

+ 
which clearly exists for x = a^-i. Thus we can use this expression for x° = Xj-i 
whether / Ç DX(T, p, I) or DX(T, p, Ij). Now if 

lim eD*g(tfj_i + e) ^ 0 

g can hardly belong to LQ(Ij) so 

lim E ( ^ î r - ^ V / f e - i + e ^ - ^ f e ^ + e) 
e^0+ k=l 

= lim £ ( - i r s + 1 { r „ _ , / ( x , _ 1 ) + ( " ' " " V ^ W i + «. *Kf(l ) 
e_>0+ fc=l \ «^ary-i 

+ Xn*,- i + «. flf(«)]d£P g(*f-i + 0 
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I t is also easy to verify t h a t g Ç. Lq{Ij) implies t h a t 

lim D^ x g(* ,_ i + a) P " + V i ^ y - i + «, £)r«m) + £ ? W i + «, « 

f (S ) ]# = 0. 

T h u s the condition reduces to 

0= lim è ( - l ) * " H I W M ^ ( x H + e). 

We mus t show t h a t if this holds for all / G £>i(r, £, / ) it also holds for all / 
in DI(T, p, IJ). This amoun t s to showing t h a t the admissible values of the 
vector (ro/Oy-i) , n / ( x y _ i ) , . . . , r n _ i / ( ^ _ i ) ) are the same for / Ç £>i(V> p , J) 
and f o r / Ç Di(r,p, Ij). A change in this vector amoun t s to changing 

ro/(x) = £ r,f(Xj^)^^f^+ fx [K[n\x,t)Tnm+K{?\x,mtm 
by the addit ion of a polynomial R(x) of degree n — 1. As this addi t ion could 
be modified by a Cw function outside of Ih the admissible class of polynomials 
in both cases consists of those for which R(x)/p0(x) belongs to LP(I). T h u s 
the admissible values of the vector are the same in bo th cases and we have 
succeeded in proving t h a t the adjoint of TIJ(T, p, I) is 7"o(r*, q, I). This 
completes the proof. 

COROLLARY 3.3. If p ^ <» the closure of TI3(T, p, I) is 7 \ ( r , p, Ij). 

For a more general r -operator T the domain D(T) is determined by a 
finite set of boundary conditions au «2, . . . , a r . Even if we assume t h a t 
these are separated in the sense t h a t each one depends only on values of a 
function near one point of 33, it does not follow t h a t any of them can be 
considered as boundary conditions on any Ij. This is due to the fact t h a t a 
boundary condition a t a point Xj of 33, which is interior to / , will usually 
depend on values of a function on both sides of Xj. If none of the boundary 
conditions determining D(T) can be considered as boundary conditions on 
Ij then it is clear t h a t the second adjoint of Tj will again be T\(j, p, Ij). 

One can give a more definitive answer to the question of permutabi l i ty with 
the projections Pj. 

T H E O R E M 3.4. / / r 0 ( r , p, I) C T C 7 \ ( r , p, I) then PjT = TPj if and only 
if PjD(T) = D0(T, p, IJ) for j = 2,3,. . . y?n - I and F(Pjf) = 0 for any 
f Ç D{T) and boundary condition F on I\ or Im, which depends only on the 
values of a function near x\ or xm-i respectively. 

Proof. If Pj is to leave D{T) invar iant it is clear t h a t / Ç D(T) implies 
Xjf e D(T) so rff(xj) =0 for k = 0, 1, . . . , n - 1; j = 1, 2, . . . , m - 1. 
Not ing t h a t 7\(r*, g , / , ) is the closure of r* on Cn~kj(Ij) r\Lq{Ij) we see 
t h a t for g G Cn~kj(Ij) C\ LQ(Ij), (/, g)Tj depends only on values of / and g 
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near x0 or xm if either belongs to Ih and is zero otherwise. T h u s clearly 
Xjf 6 DQ(T, p, Ij) for j = 2, 3, . . . , m — 1, and F(PJ) = 0 for any boundary 
condition F on Ix or 7W which depends only on the values of a function near 

respectively. The converse implication is trivial. 
T h u s if T is to commute with Pj the boundary conditions must be chosen 

with great care, and even this will be impossible unless PyZ}0(r, £, I) = D0 

(r, p, Ij) for j = 2, 3, . . . , m. 

4. Formal ly se l f -adjo int operators o n L2(I). In dealing with the L2 

case we shall conform to the s tandard Hilbert space notat ion and r* will 
now denote the conjugate of (1.2). As the qk's are now conjugates of those 
in (1.2) the expressions for rk*f in (1.3) must have conjugates on the p^s. 
When we speak of adjoints of operators we now mean the usual Hilber t 
space adjoint. 

We shall assume henceforward tha t r = r*. T h u s TQ(T, I) = 7"0(r, / , 2) is 
a symmetr ic operator and T0(T, I) C TI(T, I) = T0*(T,I). As usual we 
are interested in discussing the spectral resolution of operators T such t h a t 
FQ(T, I) C T C T\{T, I), and particularly in those which are maximal sym­
metric or self-adjoint. T h e general theory of such problems has been con­
sidered by many authors , so we shall only consider a particular aspect. Cod-
dington (2, 3, 4, 5 ) has shown how the resolution of the identi ty of a self-
adjoint extension, or the generalized resolution of the identi ty for a maximal 
symmetr ic extension, can be expressed as integral operators in such a way as 
to yield an expansion theorem and Parseval equali ty; provided t h a t the 
resolvent, or generalized resolvent, is an integral operator of Carleman type . 
This is also related to the work of Mau tne r (6), Bade and Schwartz (1), and 
Nelson (7) on eigenfunction expansions. 

We shall prove only the following theorem, which allows one to apply these 
results to obtain an expansion theorem. 

T H E O R E M 4.1 . / / $5 is finite, r 0 ( r , I) C T C T\{T> I) where T is maximal 
symmetric or s elf-adjoint, then the generalized resolvent or resolvent of T is an 
integral operator of Carleman type. 

Proof. On Ij T gives rise to a problem of the type considered by Coddington 
(3, 4) , who showed t h a t there are either maximal symmetr ic extensions 
possessing generalized resolvents, which are integral operators of Carleman 
type , or self-adjoint extensions with resolvents having the same proper ty . Let 
Gj(x, £, X) be the kernel of such a resolvent or generalized resolvent. 

Now the essential spectrum of TO(T, / ) , and thus of 7 \ ( r , / ) , is contained 
in the real axis, so we can apply a result of Rota (9) to construct for dm\ > 0 
an orthonormal basis 

^ ( x , X ) , . . . , ^ f + ( x , X ) 

of the null-space of TI(T, IJ) — X, and a similar basis 
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for dmX < 0. These bases will be analytic in X. 
Now if g G DI(T, I) and (7\(r, / ) — X)g = / we see that on /^ g can differ 

from 

x. 
only by a linear combination of 0£(;)(#> X) (£ = 1» 2, . . . , co (̂X); c^(X) = co;+ 
for dm\ > 0 and = œj- for dmX < 0). Thus 

(4.1) g(x) = £ ^ 4 J ) ( x , X ) + G,(x,£,X)/(£)^,x € J,. 

Since g Ç DI(T, I) we must also have 

J
i coj (X) 

Gjixj - 0, £, X)/(f)df + E « i * T « ^ ( ^ - 0, X) 
r y J f c = l 

J» wj+i(X) 

7/+1 *=1 

for j = 1, 2, . . . , m — 1; g = 0, 1, . . . , n — 1; where 
T e ^ f o - O . X ) 

and 

r e4m ) (x , + 0, X) 

clearly exist as the x/s involved are finite. Similarly reGj{Xj — 0, £, X) and 
TeGj+i(xj + 0, £, X) exist and are in L2(Ij) and L2(/ J + i) respectively as func­
tions of £. These identities determine certain of the a^ 's in terms of certain 
others and in terms of such expressions as 

x TeGj^Xj ~ 0, £, X)/(£)df. 

Thus we may rewrite (4.1) in the form 
co(X) /» 

(4.2) g(x) = £ «*&(*, X) + G(x, | , A)/(£)^, 

where the afc's are the a^'s which remained undetermined above, and 
G(x, £, X) £ L2(i) as function of J. Clearly the functions <t>k(x, X) belong to 
the null-space of 7\(r, / ) , and we can assume that they form a basis for 
this space which is orthonormal and analytic in X. 

Now if dm\ > 0, co(X) = co + , and if dm\ < 0, co(X) = co —. We may 
assume co + < co — so that a maximal symmetric extension of r 0 ( r , / ) is 
determined by an isometric V from yi(Ti(r, I) — i) into 9?(7\(r, / ) + i) in 
the following manner 

D(TV) = {/ e 2?I(T, / ) | / = /o + (/ - TO/+,/o € 2 M T , / ) , /+ € 91 ( ^ ( T , / ) - » ) } 
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then 

D{T*) = {/ € DI(T, I)\f = / 0 + ( I - F*)/_,/„ € DO(T, / ) , / _ 

This clearly amounts to imposing co + boundary conditions, and allows us 
to determine from (4.2) a Carleman kernel Gv(x, f, X), which is a kernel for 
the generalized resolvent of the maximal symmetric operator Tv. 

5. Examples. Here we shall discuss briefly three examples of operators 
which are formally self-adjoint. 

(a) If ry = (xy')' on I = [ - 1 , 1] one finds that 33 = {- 1, 0, 1} and 

</» g»> = oci{g)a2{f) ~ a2(g)a1(f) + az(g)a±(f) - a^{g)az(f) + ab(g)aQ(f) 
- ai(g)ab(J), 

where 

ai(f) = / ( l ) , a 2 ( / ) = / ' ( l ) ,«»( / ) = limx/'(x) = TX/(0), 

<*4(/) = lim [f(x) - / ( - x ) ] , a 5 ( / ) = / ( - l ) , and «,(/) = / ' ( - l ) . 

Thus this operator of the second order requires three boundary conditions 
to determine a self-adjoint extension on L2(I). 

With the boundary conditions ai(f) — «3 CD = a5(f) = 0 we obtain a self-
adjoint extension on L2(I) which commutes with the projections P i and P2. 

On the other hand, with the boundary conditions «i(/) = a4(f) = «5(f) = 0 
we obtain a self-adjoint extension which does not commute with Pi and P2. 

We might also note that this differential expression has particularly simple 
properties as the equation {T\(j, p, I) — \)f = 0 has three linearly independ­
ent solutions, which are entire functions of X for any p < 00. These are 

ui(x, X) = ( J0(2(~Xx)è) x > 0 
I 0 x < 0 

0 i x > 0 
Jo (2 (-Ax)*) x < 0 

«8(*,X) = F0(2(-Xx)*) - - / o ( 2 ( - X x ) * ) ( l o g ( - X ) * + Y) 

= ^ log |x| J 0 (2(-Xx) i ) - \ Ë ^ *(»), 

where 

For p = co only «i(x, X) and w2(x, X) belong to Lœ(I). However, in this case 
az(f) = a4(f) = 0 automatically. 

u2{x, X) = 
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(b) If ry = (x2y'Y + \y on / = [ - 1, 1], one finds that S3 = {- 1, 0, 1} 
again, but 

(A £>> = <xi(g)a*(f) ~ «2(g)ai(j0 - <*z(g)at{f) + «4(g)a3(/), 

with the same notation as in (a). Here any extension defined by separated 
boundary conditions commutes with the projections P i and P2 , but extensions 
given by non-separated boundary conditions will not have this property of 
course. The spectrum is purely continuous (X > —\) for separated boundary 
conditions, but there may also be point spectrum in the general situation. 

(c) If 

Ux*y')' +iy' x > 0 
ry = < . , y . n on / = - 1, 1 

one again finds that 33 = { — 1, 0, 1} but here 

(/,i> = £ ( r / I -/?i)d* = /'(i)g(T) -/(î^'cïy + if(i)i(î) - */(-i^PÏÏ. 

Thus PO(T, I) has no self-adjoint extensions on 1/2(1), but a maximal sym­
metric extension will commute with P i and P2 if its domain is defined by 
separated boundary conditions. 
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