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EXTENDING TORSORS UNDER QUASI-FINITE FLAT GROUP
SCHEMES

SARA MEHIDI

Abstract. Let R be a discrete valuation ring of field of fractions K and of

residue field k of characteristic p> 0. In an earlier work, we studied the question

of extending torsors over K -curves into torsors over R-regular models of the

curves in the case when the structural K -group scheme of the torsor admits

a finite flat model over R. In this paper, we first give a simpler description

of the problem in the case where the curve is semistable using recent work

in Holmes, Molcho, Orecchia, and Poiret (2023, Journal für die Reine und

Angewandte Mathematik [Crelle’s Journal] 230, 115–159) and Molcho and Wise

(2022, Compositio Mathematica 158, 1477–1562). Second, if R is assumed to be

Henselian and Japanese, we solve the problem of extending torsors by combining

our previous work together with results in Antei and Emsalem (2018, Nagoya

Mathematical Journal 230, 18–34) and Phung and Dos Santos (2023, Algebraic

Geometry 230, 1–40), including the case where the structural group does not

admit a finite flat R-model.

§1. Introduction

All over this paper, R denotes a discrete valuation ring with field of fractions K and

residue field k of characteristic p > 0. In addition, schemes and log schemes are supposed

to be locally Noetherian.

Let S be a regular scheme, and let U ⊆S be a dense open subset. Let f :X →S be a finite

flat morphism of schemes, unramified over U. The Zariski–Nagata purity theorem, known as

purity of the branch locus, says that the closed subset of S where f ramifies is either empty

or of pure codimension 1. On the other hand, given a finite étale group scheme G/S, and

an fppf GU -torsor X → U (hence an étale torsor by fppf descent), if it extends into an fppf

G-torsor over the whole S, it needs to be étale, hence unramified. But the purity theorem

suggests that such an extension may not exist in general. Nevertheless, if the extension of

the torsor X → U ramifies outside U, and if the ramification is tame, there might be a way

to lift it into a log torsor over S. Indeed, assume that D := S\U is a normal crossing divisor,

so that one can endow S with the divisorial log structure induced by D. Then, logarithmic

torsors over X are, roughly speaking, tamely ramified over D. This approach of extending

torsors into log torsors has been followed in [11], and the main purpose of this paper is to

enhance their results. The paper is divided into two independent parts, which we explain

below.

Part I:

Let C be a smooth projective curve over K, endowed with a K -point Q, and let J

denote its Jacobian variety. Let C be a regular model of C over R, such that its special
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2 S. MEHIDI

fiber is a normal crossing divisor, and endow C with the canonical log structure induced

by this divisor; let Q denote the R-section extending Q by properness. Let G be a finite

commutative group scheme over K. It is well known that the Jacobian variety classifies

fppf commutative torsors, which can be rephrased through the one-to-one correspondence

(cf. [11, lemme 2.3]):

H1
fppf (C,Q,G)�Hom(GD,J), (�)

where the group on the left is the first cohomology group classifying fppf pointed G-torsors

(relatively to Q) over C, and GD is the Cartier dual of G. It is shown in [11, Rem. 1.11]

that one has a similar correspondence for log torsors over C. Indeed, if G denotes a finite

flat commutative R-group scheme, one has a one-to-one correspondence:

H1
klf (C,Q,G)�Hom(GD,PiclogC/R),

where the group on the left is the first cohomology group classifying Kummer log flat pointed

G-torsors (relatively to Q) over C, and PiclogC/R is the relative log Picard functor of C/R. An

immediate consequence of this is that, given a pointed fppf G-torsor over C, it extends into

a log torsor over C if and only if there exists a finite flat R-model G of G such that the

K -morphism GD → J from (�) corresponding to the torsor extends into an R-morphism

GD → PiclogC/R. Moreover, if J is the Néron model of J over R, it is shown in the same

paper that the canonical map J ↪→ PicC/R extends uniquely into a map J → PiclogC/R. In

particular, if the morphism GD → J extends into a morphism GD →J , the torsor extends

into a G-log torsor over C. In this paper, we want to invest the converse. Given that J is

a smooth scheme, it is a nicer object to work with than the log Picard functor. Using the

results of [12] on log curves, we give a partial answer to this question:

Corollary 3.4. Let C be a smooth projective semistable and geometrically connected

curve endowed with a K-point. Let C be an R-regular model of C with normal crossing special

fiber and endowed with the divisorial log structure (cf. example 2.1(3)). Let G be a finite

commutative K-group scheme, and let G be a finite flat R-model of G. Then a pointed fppf

G-torsor over C extends into a pointed G-log torsor over C if and only if the K-morphism

GD → J associated with the generic torsor (cf. (�)) extends into an R-morphism GD →J .

Part II:

In the second part of this paper, we would like to drop the assumption that G admits

a finite flat R-model. Indeed, there exist groups which do not admit such a model

(cf. Example 3.7). However, if G is finite, then what is true in general is that it admits

a quasi-finite flat R-model (cf. [2, Th. 3.7]). In the latter, the authors took advantage of

this to obtain partial answers to the problem of extending finite torsors. In particular, they

showed that there exists a modification (a Néron blow-up) of the regular model of the curve

over which the torsor extends under some quasi-finite flat group scheme. On the other hand,

under additional assumptions on R, it is shown in [16] that a torsor under a quasi-finite flat

group scheme reduces into a torsor under a finite flat group scheme. Combining these two

results, together with our previous work, we prove the following:

Theorem 4.4. Let C be a smooth projective and geometrically connected K-curve with

a K-point Q. Let C be an R-regular model of C, and let G be a finite commutative K-group

scheme. Let Y → C be an fppf pointed G-torsor (relatively to Q). Then, there exists a
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EXTENDING TORSORS UNDER QUASI-FINITE FLAT GROUP SCHEMES 3

quasi-finite flat group scheme G over R with generic fiber G, and an fppf pointed G-torsor
Y → C that extends the G-torsor Y → C.

§2. Preliminaries

2.1 Kummer log flat torsors

2.1.1. Log schemes.

Let (X,OX) denote a scheme. A logarithmic (log) structure on X is the data of a sheaf of

monoids MX on Xét, together with a morphism αX :MX →OX such that α−1
X (O×

X)�O×
X .

A scheme endowed with a log structure is said to be a logarithmic (log) scheme.

A morphism of log schemes is a morphism f :X → Y of the underlying schemes, together

with a morphism f−1MY →MX such that the diagram

f−1MY MX

f−1OY OX

f−1αY αX

commutes.

2.1.2. Charts.

If P is the constant sheaf associated with a monoid P, and if we are given a morphism of

sheaves P →OX , it induces a unique log structure on X [13, Prop. 1.1.5]. If (X,MX) is a log

scheme, it is said to have a chart on P if the log structure induced by P is isomorphic toMX .

All the log schemes in this paper are supposed to admit charts étale locally. Furthermore, if

P is fine (finitely generated and integral, i.e., P ↪→ P gp) and saturated (i.e., if a ∈ P gp such

that an ∈ P for some nonzero integer n, then a ∈ P ), X is said to be a fine and saturated

log scheme; we refer to [13] for further details.

2.1.3. Inverse image log structure and strict morphisms.

If Y is a log scheme with underlying scheme Y , and f :X → Y is a morphism of schemes,

then the composition f−1MY
f−1αY−−−−→ f−1OY →OX is a prelog structure on X, and induces

the inverse image log structure on X that we denote by f∗MY .

If f :X → Y is a morphism of log schemes, the map f−1MY →MX factors canonically

through f∗MY →MX .

The morphism of log schemes f :X → Y is said to be strict if the induced map f∗MY →
MX is an isomorphism.

2.1.4. Direct image log structure.

If f :X → Y is a morphism of schemes and αX :MX →OX is a log structure on X, then

the natural map β in the diagram below

f∗MX ×f∗OX
OY OY

f∗MX f∗OX

β

f∗αX
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4 S. MEHIDI

is a log structure on Y, called the direct image log structure induced by αX . We denote it

by f log
∗ αX : f log

∗ MX →OY .

Example 2.1.

1. Let X be a scheme. MX := O×
X defines a fine and saturated log structure on X called

the trivial log structure. X has a chart on the monoid {1}. If X is a log scheme, the

largest Zariski open subset of X (possibly empty) on which the log structure is trivial

is called the open of triviality of X.

2. Let X be a regular scheme, and let j : U ↪→ X be a dense open subset whose

complementary is a normal crossing divisor D on X. Then the sheaf

MX(V ) := {s ∈ OX(V )|s|V ∩U ∈ OV ∩U (V ∩U)×} ↪→OX(V )

defines the divisorial log structure on X.

It is the same as the direct image log structure on X of the trivial log structure on U,

that is, jlog∗ O×
U (cf. [8, §1.5]). It is a fine and saturated log structure on X.

Note that U is the open of triviality of the divisorial log structure on X. In particular,

Spec(R) can be seen as a fine and saturated log scheme with the log structure induced

by Spec(k) seen as a divisor. Spec(R) has a chart on N given by N→ R;1 �→ π, where

π is the uniformizer of R. More generally, if X is a flat R-scheme such that its special

fiber is a normal crossing divisor, then it can be seen as a fine and saturated log scheme

with the log structure induced by its special fiber. The generic fiber XK is the open of

triviality of the log structure. Furthermore, it has (étale) locally a chart on Nr.

3. If S is a fine and saturated log scheme, we say that X → S is a log curve if it is a

proper, integral (cf. [7, Def. 2.3]), vertical,1 log smooth morphism of (fine and saturated)

log schemes with connected and reduced geometric fibers of pure dimension 1. Then,

according to [6], the underlying scheme of X is a flat family of nodal curves over S and

one has an explicit description of the log structure on the geometric points of X lying

above geometric points of S. This is a fine and saturated log structure on X. Conversely,

if S is the spectrum of a DVR R and K =Frac(R), if C/K is a semistable curve with C
some regular model over S, there exist canonical log structures on C and S making C →S

a log curve (cf. [14, §3]). Furthermore, if S is endowed with its divisorial log structure,

and if the special fiber of C/S is a normal crossing divisor, tho so-mentioned canonical

log structure on C agrees with the divisorial one (cf. [12, §2 of proof of Lemma 2.2.5.1

and Theorem 2.4.1.3]).

We consider here the category of fine and saturated log schemes, endowed with the

Kummer log flat topology (we sometimes write klf to refer to this topology for simplicity).

We refer to [8] or [4, §2.2] for the definition of this Grothendieck topology. A torsor in this

category, defined with respect to the klf topology, is called a logarithmic torsor (or a log

torsor). The structural group of the torsor is always assumed to be endowed with the strict

log structure (the inverse log structure of that of the base). Moreover, a Kummer log flat

cover of a scheme endowed with the trivial log structure is just a cover for the fppf topology.

So, in this paper, the category of schemes is endowed with the fppf topology.

1 Vertical means that the curve does not have marked points (cf. [6, §1.8 (2)]).
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Example 2.2 [9, §1; 1.9.3]. Let A be a discrete valuation ring with uniformizer π.

Assume that it contains a primitive nth root of unity and that n ∈N is invertible in A. We

set B := A[ n
√
π], X := Spec(A) and Y := Spec(B). We endow both these schemes with the

divisorial log structure, making them into fine saturated log schemes. Let G := AutA(B) =

μn � Z/nZ. Then Y →X is not an fppf G-torsor (because it is totally ramified while G is

unramified), but it is a klf (more precisely, Kummer log étale) torsor.

2.2 Extension of torsors under a finite flat group scheme

We recall briefly in this section the main results of [11] on the problem of extending

torsors under finite flat group schemes. From now on, Spec(R) is endowed with the divisorial

log structure. Let (fs/R)klf denote the category of fine and saturated log schemes over R

endowed with the Kummer log flat topology, and let (Sch/R)fppf be the category of schemes

over R endowed with the fppf topology. The latter can be viewed as a full subcategory of

(fs/R)klf by endowing an R-scheme with the inverse log structure of that of Spec(R). We

recall the following definitions:

Definition 2.3.

1. We define the following functor:

Gm,log,R : (fs/R)klf → (Ab)

T �→ Γ(T,Mgp
T ),

which is a sheaf in the klf site [8, Th. 3.2]. Note that generically, it is isomorphic to

Gm,K .

2. Let C be a smooth projective K -curve with an R-regular model C endowed with the

divisorial log structure. Using the embedding (Sch/R)fppf ↪→ (fs/R)klf , consider the

following functor:

(Sch/R)fppf → (Sets)

T �→ {Gm,log,C − log torsors on CT }.

The log Picard functor, denoted by PiclogC/R, is defined to be the fppf sheaffification on

(Sch/R)fppf of the previous functor. Furthermore, it is clear that its generic fiber is

PicC/K , the usual relative Picard functor of C/K.

Theorem 2.4 [11, Rem. 1.11]. Let C be a smooth projective and geometrically connected

curve over K, endowed with a K-point Q, and let J denote its Jacobian variety. Let C be

an R-regular model of C such that its special fiber is a normal crossing divisor. Endow C
with the divisorial log structure, and let Q be the R-section that extends Q over C. Let G
be a finite commutative K-group scheme with finite flat R-model G, and let GD denote its

Cartier dual. We have a canonical isomorphism:

H1
klf (C,Q,G) �−→Hom(GD,PiclogC/R),

where H1
klf (C,Q,G) denotes the cohomology group that classifies logarithmic G-torsors

over C, pointed relatively to Q. In particular, a pointed fppf G-torsor (relatively to Q) over

C extends into a pointed log G-torsor (relatively to Q) over C if and only if the associated

K-morphism GD → J (cf. (�)) extends into an R-morphism GD → PiclogC/R.
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6 S. MEHIDI

Proposition 2.5 [11, Props. 1.12 and 1.18]. With the assumptions of the previous

theorem, if J is the Néron model of J over R, then the closed immersion J ↪→ PicC/K

extends uniquely into an R-morphism J → PiclogC/R. In particular, if the associated

K-morphism GD → J of the generic torsor extends into an R-morphism GD → J , the

torsor extends into a G-log torsor over C. Moreover, if J 0 denotes the identity component

of J , the extended log torsor is fppf if and only if GD →J factors through J 0.

§3. Part I: Case of semistable curves

3.1 The Log Picard functor

Recently, the Picard log functor has been defined in a more general frame. Let S be a log

regular scheme, and let U ⊆ S be the open of triviality of the log structure on S (which is

nonempty and even dense in S by log regularity). Let X → S be a logarithmic curve (hence

smooth over U ). In [12], following the ideas of Illusie and Kato, the authors constructed

the analogue of the Picard functor in the logarithmic setting: the logarithmic Picard group

that they denoted by LogPicX/S . It is the sheaf of isomorphism classes of the stack which

parameterizes the logarithmic line bundles, that is, torsors under the group scheme Gm,log,S ,

which verify a certain condition called the condition of bounded monodromy.

Naturally, the logarithmic Picard group coincides with the ordinary Picard group over

XU , where the log structure is trivial. Furthermore, logarithmic line bundles have a natural

notion of (total) degree extending the notion of degree of classical line bundles (cf. [12, §4.5]).
Using this notion of degree, it is defined in [5, De. 3.47] LogPic0X/S , the subsheaf

of LogPicX/S consisting of log line bundles of total degree zero, which they called the

logarithmic Jacobian. In fact, this provides the best possible extension of the Jacobian

Pic0XU/U .

Furthermore, one can restrict the functor LogPic0X/S to the category of schemes via the

embedding (Sch)fppf ↪→ (fs/S)klf , and the resulting functor is called the strict logarithmic

Jacobian and denoted by sLogPic0X/S (cf. [5, Def. 4.5]).

Theorem 3.1 [5, Cor. 6.13]. sLogPic0X/S is the Néron model of Pic0XU/U .

Remark 3.2. The condition of bounded monodromy is essential to get a log Picard

group of X/S that is well behaved in families. For the purposes of this paper, we do not

need to recall its definition in the general setting; we will simply recall it in the case where

the base S is the spectrum of a discrete valuation ring endowed with the divisorial log

structure. We will see that in this case, this condition is automatically satisfied.

So we take S to be Spec(R) endowed with the divisorial log structure. Let X denote an

R-log curve, and let s= Spec(k̄) denote the geometric closed point of Spec(R). If Γ denotes

the dual graph (which is assumed to be oriented) of Xs and if MR denotes the divisorial

log structure over the base Spec(R), one can define on Γ a length map l : Γ→MR,s, where

MR :=MR/O∗
R. Since MR =OR∩O∗

K , one finds that MR,s � N.

The data X = (Γ, l : Γ→N) are called the tropical curve associated withXs (cf. [12, §2.3]).
In addition, on can define a topology on tropical curves (cf. [12, §3]) which allows to do

homology on them. In particular, the length map l can be extended to H1(X ).

To any log line bundle over X is associated a class of morphisms H1(X ) → MR
gp

,s =

Ngp = Z, called the monodromy class (cf. [12, §§3.5 and 4.1]). A logarithmic line bundle is
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said to have bounded monodromy if for any γ ∈H1(X ),∃n ∈ N such that −nl(γ)≤ α(γ)≤
nl(γ), where α : H1(X ) → Z is some representative in the monodromy class of the line

bundle (this condition does not depend on the choice of a representative). MR,s � N being

archimedean, it is clear that the monodromy condition is automatically satisfied in this

setting.

Therefore, in the case where S is the spectrum of a discrete valuation ring endowed

with its divisorial log structure, the condition of bounded monodromy is automatically

satisfied, which means that log line bundles consist of all the Gm,log,S-torsors. In particular,

sLogPicX/S coincides with the log Picard functor we recalled in §2.2.
Proposition 3.3. Let C be a smooth projective semistable and geometrically connected

curve endowed with a K-point. Let C be an R-regular model of C with normal crossing special

fiber and endowed with the divisorial log structure. Let G be a finite flat R-group scheme.

Then any R-morphism G → PiclogC/R factors through sLogPic0C/R.

Proof. According to the previous remark, sLogPic0C/R is the subsheaf of PiclogC/R of (total)

degree zero log line bundles. On the other hand, since G is of torsion, the morphism

G → PiclogC/R factors through the torsion of PiclogC/R. Now, given the (total) degree map

PiclogC/R
deg−−→ Z and the fact that Z has no torsion, we deduce that torsion log line bundles

have (total) degree zero. In addition, G→ Spec(R) being strict, we conclude that G→PiclogC/R
factors through sLogPic0C/R.

Corollary 3.4. Let C be a smooth projective semistable and geometrically connected

curve endowed with a K-point. Let C be an R-regular model of C with normal crossing special

fiber and endowed with the divisorial log structure (cf. example 2.1(3)). Let G be a finite

commutative K-group scheme, and let G be a finite flat R-model of G. Then a pointed fppf

G-torsor extends into a pointed G-log torsor over C if and only if the K-morphism GD → J

associated with the generic torsor (cf. (�)) extends into an R-morphism GD →J .

Proof. This follows from Theorems 2.4 and 3.1 and Proposition 3.3.

3.2 On the existence of a finite flat model of the group scheme

We assume in this section that k is algebraically closed. Let C be a semistable smooth

projective and geometrically connected K -curve with Jacobian variety J. Assume that G

is a finite commutative subgroup scheme of J. In particular, the morphism G ↪→ J factors

through J [r], where r is the order of G. If J is the Néron model of J, we let G be the

schematic closure of G inside J [r]. Since C is semistable, J [r] is flat and quasi-finite

(cf. [3, §7.3, Lem. 2]).

In a previous paper (cf. [11, §3]), we found a necessary and sufficient condition for J [r]

to be finite and flat,2 hence for G to admit a finite flat R-model, namely G.

Question. If J [r] is not assumed to be finite flat anymore, can we still find a necessary

and sufficient condition for the schematic closure G of G to be finite and flat?

2 The conditions are: C is semistable, together with a combinatorial condition on the dual graph of the
special fiber.
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8 S. MEHIDI

For the rest of the section, we assume that R is Henselian. Since J [r] is quasi-finite and

R Henselian, according to [10, Lem. 1.1], we have an exact sequence

0→FJ [r]→J [r]→EJ [r]→ 0, (3.1)

where FJ [r] is a finite flat group scheme over R and EJ [r] is a étale group scheme over R,

with trivial special fiber. In particular, it follows from [1, §IX, Lem. 2.2.3] that FJ [r] is

the largest finite subgroup scheme in J [r].

The schematic closure G of G in J [r] is flat and quasi-finite. Hence, we have as previously

an exact sequence

0→F →G→E → 0,

where F is a finite flat group scheme over R and E is a étale group scheme over R, with

trivial special fiber. We would like to find a necessary and sufficient condition for G to be

finite.

We denote by FJ [r]K the generic fiber of FJ [r].

Lemma 3.5. G is finite if and only if G→ J [r] factors through FJ [r]K .

Proof. If G is finite, since FJ [r] is the largest finite subgroup scheme inside J [r], then

G→J [r] factors through FJ [r]; hence, G→ J [r] factors through FJ [r]K .

On the other hand, if G → J [r] factors through FJ [r]K , since FJ [r] is closed inside

J [r] (it is a kernel), G is the schematic closure of G in FJ [r]; hence, it is finite (closed

immersions are finite and the composition of two finite morphisms is finite).

Corollary 3.6. Let C be a semistable smooth projective and geometrically connected

curve with a K-point, let C be an R-regular model of C with normal crossing special fiber

and endowed with the divisorial log structure, and let J be the Jacobian of C and J its

Néron model. Let G be a finite subgroup scheme of J. Then, the corresponding fppf pointed

GD-torsor Y →C (cf. (�)) extends into a log torsor over C under a finite flat group scheme

if and only if G is a subgroup of FJ [r]K , with r the order of G.

Proof. If G ↪→ J [r] factors through FJ [r]K , then the schematic closure G of G in J [r]

is finite and flat by Lemma 3.5, and it follows from Corollary 3.4 that the torsor extends

into a logarithmic G
D
-torsor over C. On the other hand, if there exists a finite flat model

G of G such that the torsor extends into a log GD-torsor, then it follows from Corollary 3.4

again that the K -morphism G → J [r] extends into an R-morphism G → J [r]. Since J is

separated, it follows that G is necessarily the schematic closure of G in J [r]; hence, by

Lemma 3.5, it implies that G ↪→ J [r] factors through FJ [r]K .

Counter-example 3.7. Let A be a local Noetherian and complete ring, with fraction

field K, and residue field of characteristics p. We find in [15, §5] the following bijection:

{isomorphism classes of A−group schemes of order p} � {(a,b) ∈A2|ab= p}/∼,

where (a,b)∼ (c,d) if and only if ∃u ∈A× such that c= up−1a and d= u1−pb. Considering

the restriction morphism

{(a,b) ∈A2|ab= p}/∼ ϕ−→ {(a,b) ∈K2|ab= p}/∼,
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EXTENDING TORSORS UNDER QUASI-FINITE FLAT GROUP SCHEMES 9

and taking, for example, A= Zp, it is easy to see that ϕ is not surjective in general, which

means that there are Qp-group schemes that does not extend into a finite flat Zp-group

schemes.

Question. More generally, it is natural to ask what happens if we do not assume that

the structural group of the torsor admits a finite flat R-model. We investigate this question

in the next section.

§4. Part II: Extension of torsors under a quasi-finite flat group scheme

The following result by Antei says that there exists some regular model of the curve

where the torsor extends into an fppf torsor.

Theorem 4.1 [2, Th. 3.7]. Let X → Spec(R) be a faithfully flat morphism of finite type,

with X a regular and integral scheme of absolute dimension 2 endowed with an R-section.

Let G be a finite K-group scheme, and let f : Y →XK be an fppf pointed G-torsor. Then

there exists an integral scheme X0, faithfully flat and of finite type over R, a model map

λ : X0 →X and an fppf G-torsor Y → X0 extending the given G-torsor Y for some quasi-

finite and flat R-group scheme G. Moreover, X0 can be obtained by X after a finite number

of Néron blow-ups.

On the other hand, it is shown in [16] that an fppf torsor under a quasi-finite flat group

scheme reduces into a torsor under a finite flat group scheme.

Theorem 4.2 [16, Th. 12.1]. Let R be a discrete valuation ring which is assumed to be

Henselian Japanese, such that its residue field k is perfect. Let X be a normal, irreducible,

projective, and flat R-scheme with geometrically reduced fibers and with an R-section. Let

G be a quasi-finite flat R-group scheme, and let Y → X be a pointed fppf G-torsor. Then,
there exist a finite flat R-group scheme H, a morphism H→G, and a pointed fppf H-torsor

Y0 →X such that Y0×H G � Y is pointed fppf G-torsors.
We deduce from it the following.

Corollary 4.3. With the same notations and assumptions as in Theorem 4.2, if

Y →X is a pointed fppf G-torsor and F the largest finite subgroup scheme inside G, there
exists a pointed fppf F-torsor Y0 →X such that Y0×F G � Y as pointed fppf G-torsors.

Proof. Let H be the finite group scheme in Theorem 4.2. Since F is the largest finite

subgroup of G, H→G factors through F . Therefore, the surjective map

H1
fppf (X ,H)→H1

fppf (X ,G)
T �→ T ×H G

factors through H1
fppf (X ,F) in an obvious way.

Theorem 4.4. Let C be a smooth projective and geometrically connected K-curve with

a K-point. Let C be a regular model of C, and let G be a finite commutative K-group scheme.

Let Y →C be an fppf pointed G-torsor. Then, there exist a quasi-finite flat group scheme G
over R with generic fiber G and an fppf pointed G-torsor over C that extends the G-torsor

Y → C.

Proof. By Theorem 4.1, there exists a quasi-finite flat R-group scheme G that extends G,

together with a regular model C0 of C such that the fppf pointed G-torsor Y → C extends

into an fppf G-torsor Y → C0. By Corollary 4.3, if F is the largest finite subgroup scheme
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of G, there exists a pointed fppf F-torsor Y0 →C0 such that Y0×F G �Y. Hence, the pointed

fppf FK-torsor Y0,K → C extends into the pointed fppf F-torsor Y0 →C0. If J denotes the

Jacobian of C and J 0 the identity component of its Néron model, this is equivalent by

Proposition 2.5 to the fact that the associated K -morphism FD
K → J (cf.(�)) extends into

an R-morphism FD → J 0. But this implies by Proposition 2.5 again that the fppf FK-

torsor Y0,K →C extends into an fppf F-torsor Y ′ →C. Hence, the G-torsor Y →C extends

into the fppf G-torsor Y ′×F G → C.
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Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I), Dirigé par A. Grothendieck. Avec la
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