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Based on data from pore-resolved direct numerical simulation of turbulent flow over
mono-disperse random sphere packs, we evaluate the budgets of the double-averaged
turbulent kinetic energy (TKE) and the wake kinetic energy (WKE). While TKE results
from temporal velocity fluctuations, WKE describes the kinetic energy in spatial variations
of the time-averaged flow field. We analyse eight cases which represent sampling points
within a parameter space spanned by friction Reynolds numbers Reτ ∈ [150, 500] and
permeability Reynolds numbers ReK ∈ [0.4, 2.8]. A systematic exploration of the param-
eter space is possible by varying the ratio between flow depth and sphere diameter h/D ∈
{3, 5, 10}. With roughness Reynolds numbers of k+

s ∈ [20, 200], the simulated cases lie
within the transitionally or fully rough regime. Revisiting the budget equations, we identify
a WKE production mechanism via viscous interaction of the flow field with solid surfaces.
The scaling behaviour of different processes over ReK and Reτ suggests that this previous-
ly unexplored mechanism has a non-negligible contribution to the WKE production. With
increasing ReK , progressively more WKE is transferred into TKE by wake production.
A near-interface peak in the TKE production, however, primarily results from shear
production and scales with interface-related scales. Conversely, further above the sediment
bed, the TKE budget terms of cases with comparable Reτ show similarity under outer-
scaling. Most transport processes relocate energy in the near-interface region, whereas
pressure diffusion propagates TKE and WKE into deeper regions of the sphere pack.

Key words: turbulent boundary layers, porous media, turbulence simulation

1. Introduction
Exchange of mass and momentum across the interface between a porous medium and a
free turbulent flow occurs in a variety of natural and industrial systems. One prominent
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example is the hyporheic zone, which comprises the uppermost sediment layers of a river
bed, where the water in the pore space is in permanent bidirectional interaction with the
overlying turbulent flow (e.g. Boano et al. 2014). The hyporheic zone is characterised
by a high biogeochemical activity, which makes hyporheic exchange processes highly
relevant for the health of the benthic, but also the whole aquatic ecosystem (e.g. Brunke &
Gonser 1997; Battin et al. 2016). It is therefore of interdisciplinary interest to advance the
understanding of the hydrodynamics near the interface between the turbulent flow and the
granular, porous sediment bed.

Besides molecular diffusion, turbulent and dispersive transport can contribute to the
hyporheic exchange (e.g. Voermans, Ghisalberti & Ivey 2018). Turbulent transport depends
on temporal fluctuations in the flow field. According to Grant et al. (2020), those velocity
fluctuations can either be induced by pressure fluctuations at the bed surface, which
themselves result from turbulence in the free flow region, or can be the results of
turbulent eddies entraining into the pore space. Dispersive transport, on the other hand,
is associated with spatial variations in the time-averaged hyporheic flow field. Shen, Yuan
& Phanikumar (2022) reported that even grain-scale inhomogeneities in the sediment bed
surface can induce locally upwelling or downwelling fluid motion. A strong correlation
between spatial variations of the time-averaged near-interface pressure field and the bed-
normal time-averaged flow field is consistent with the concept of ‘pumping’, which was
originally proposed by Elliott & Brooks (1997) for flow over regularly shaped macroscopic
bed forms.

The analysis of the unsteady and strongly three-dimensional hyporheic flow field
requires an appropriate framework. A possible approach is provided by a double-averaging
technique in both time and space. First, an arbitrary flow quantity is Reynolds decomposed
into a temporal mean and a temporal fluctuation. Subsequently, the temporal mean
quantity is spatially averaged within a horizontal plane, which yields the double-averaged
quantity and a spatial variation of the mean quantity. Initially, this method of horizontal
averaging, also denoted as plane-averaging, was developed in the context of atmospheric
flow problems (e.g. Wilson & Shaw 1977; Raupach & Shaw 1982). Later, the horizontal
averaging method was adapted for the analysis of hyporheic flow problems, where drastic
changes in porosity need to be taken into account (e.g. Giménez-Curto & Lera 1996;
Nikora et al. 2001; Mignot, Barthelemy & Hurther 2009). To investigate both temporal
velocity fluctuations and spatial velocity variations, as well as the interactions thereof,
the horizontal averaging framework can be used to conduct a triple-decomposition of
the complete kinetic energy (KE) of the flow field (e.g. Raupach & Shaw 1982; Yuan &
Piomelli 2014; Ghodke & Apte 2016). Within the double-averaging framework, the mean
kinetic energy (MKE) represents the kinetic energy in the temporally and spatially double-
averaged flow field. The kinetic energy in the spatial velocity variations is referred to as
wake kinetic energy, or short WKE (e.g. Finnigan 2000; Yuan & Piomelli 2014; Ghodke
& Apte 2016). The remaining third part is the spatially averaged turbulent kinetic energy
(TKE), which represents the temporal fluctuations in the velocity field.

Ghodke & Apte (2018) illustrate the energy transfer pathways between the different
components of the total kinetic energy. The mechanisms behind the energy transfer
pathways are identified via terms which appear with opposite signs in the budget equations
of MKE, WKE and TKE (Yuan & Piomelli 2014). Accordingly, two different mechanisms
exist, which can generate spatial variations in the mean flow field. A transfer of MKE
into WKE happens when dispersive shear stresses act against the vertical gradient of
the double-averaged flow field. Also the work of the double-averaged flow field against
the pressure drag generates WKE at the expense of MKE. As stated by Finnigan (2000),
TKE can also be produced via two different pathways. The shear production mechanism
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transfers MKE into TKE when Reynolds shear stresses act against the vertical gradient
of the double-averaged flow field. Besides that, form-induced production can convert
WKE into TKE when the local Reynolds stresses act against local gradients introduced
by velocity variations. Whereas shear production can introduce TKE on large scales,
form-induced production generates TKE on the usually smaller scale of the flow
obstacles, which thus ‘bypasses’ (Finnigan 2000) or ‘short-circuits’ (Raupach, Antonia
& Rajagopalan 1991) the energy cascade.

Mignot et al. (2009) conducted experimental measurements in turbulent flow over gravel
beds. They report that TKE production exceeds the dissipation in the form-induced layer,
which comprises the region near the crests of the roughness elements. In this context,
shear production plays a dominant role, whereas form-induced production was found to
be negligible. Below the roughness crests, turbulent transport relocates TKE into deeper
regions of the sediment bed. In contrast, an upward TKE transport was observed above the
crests, which agrees with findings for rough impermeable walls (e.g. Raupach et al. 1991;
Antonia & Krogstad 2001; Schultz & Flack 2005). At approximately twice the height of the
roughness crests, Mignot et al. (2009) document the presence of an equilibrium layer, as
described by Townsend (1961). TKE budgets in flow over porous media were also reported
by several numerical studies (e.g. Breugem, Boersma & Uittenbogaard 2006; Han, He
& Fang 2017; Fang et al. 2018; Wang et al. 2021). By means of pore-resolved direct
numerical simulation (DNS), Shen, Yuan & Phanikumar (2020) investigated turbulent
open-channel channel flow over sediment beds with both regular and random sphere
arrangement in the interface region. In contrast to Mignot et al. (2009), they observe a
non-negligible impact of form-induced production, which however strongly depends on
the interface structure and can even change its sign. Further, Shen et al. (2020) report
that the randomly structured sediment–water interface enhances the form-induced vertical
TKE transport, which counteracts the other transport processes. Also Fang et al. (2018)
document a significant form-induced production, which can even exceed 10 % of the shear
production.

In contrast to the temporal velocity fluctuations, Ghodke & Apte (2018) remark
that only few other studies (e.g. Yuan & Piomelli 2014; Ghodke & Apte 2016)
systematically investigate the production, transport and destruction of spatial variations
in the horizontally averaged velocity field. Using the equations derived by Raupach &
Shaw (1982) under consideration of the varying porosity, Yuan & Piomelli (2014) evaluate
the budget of WKE for the flow over transitionally and fully rough impermeable walls.
The work of the horizontally double-averaged flow against the pressure drag is found to
contribute significantly to the production of variation in the streamwise velocity field.
Yuan & Piomelli (2014) documented that, with increasing roughness, larger shares of
the WKE are transferred into TKE instead of being dissipated, which they explain with
a clearer separation between roughness length scales and the viscous length scale. The
energy transfer from WKE to the wall-normal and spanwise Reynolds normal stresses
was connected to a higher isotropy of the Reynolds stress tensor. In the context of a
time–volume double-averaging framework, Pinson et al. (2006) describe a kinetic energy
transfer between macro-scale and sub-filter mean kinetic energy, which corresponds to a
transfer from MKE to WKE. This kinetic energy transfer results from the work of the time-
and volume-averaged velocity field against the time-averaged drag. Kuwata & Suga (2015)
and Kuwata & Suga (2016) represent the same mechanism by a drag force term, which was
found to contribute largely to the spatial variance in the flow field. It appears worthwhile
to remark that the drag also includes a viscous component, which is not considered by
Raupach & Shaw (1982), Yuan & Piomelli (2014) or Ghodke & Apte (2018).
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The permeability Reynolds number ReK = uτ

√
K/ν and the roughness Reynolds

number Reks = uτ ks/ν = k+
s are commonly used parameters, as the permeability K

and the equivalent sand-grain roughness height ks characterise the sediment bed. The
parameters ReK and k+

s are connected via the sediment bed structure, such that the
effects of roughness and permeability are tightly coupled for granular porous media
with a narrow grain size distribution (e.g. Voermans, Ghisalberti & Ivey 2017; Shen
et al. 2020; Karra et al. 2023). The roughness Reynolds number k+

s allows a distinction
between the dynamically smooth regime (k+

s < 5), the transitionally rough regime and the
fully rough regime (k+

s > 70) (Raupach et al. 1991; Jiménez 2004; Kadivar, Tormey &
McGranaghan 2021). In the smooth regime, mainly viscous stresses transfer momentum
from the flow to the solid surface, whereas pressure drag on the solid surfaces gains
importance with increasing k+

s . The permeability Reynolds number ReK describes the
permeability regime, as

√
K can be interpreted as an effective pore diameter (Breugem

et al. 2006; Manes, Poggi & Ridolfi 2011; Voermans et al. 2017; Karra et al. 2023).
According to the hydrodynamic framework of Voermans et al. (2017), large values of
ReK � 1 indicate highly permeable boundaries, whereas low values (ReK � 1) are
associated with effectively impermeably boundaries. A transition between both extremes
takes place in the range of ReK ≈ 1−2. High permeability, paired with roughness, relaxes
the wall-blocking effect and reduces the near-interface shear intensity, which affects the
structure of turbulence and the composition of the turbulent kinetic energy (e.g. Breugem
et al. 2006; Rosti, Cortelezzi & Quadrio 2015; Suga, Nakagawa & Kaneda 2017).

This overview indicates that the treatment of viscous effects may have received less
attention within the horizontal averaging framework, which is likely due to the origins
of the framework in atmospheric sciences. However, the same may not be justified
for granular porous media in aquatic environments, where the flow is characterised by
comparatively low permeability Reynolds numbers. Whilst several studies have evaluated
the TKE budget near the sediment–water interface, the WKE budget has hardly been
discussed for turbulent flow over porous granular beds. Due to the critical role of spatial
velocity variations for hyporheic exchange, we feel that an evaluation of this budget could
advance our current understanding. To our knowledge, also the scaling of different WKE
and TKE budget terms over a wider parameter space covering both transitionally and fully
rough regimes has not yet been documented.

Building on v.Wenczowski & Manhart (2024), the present study aims to answer the
following questions: (i) which role(s) can viscous effects play for the spatial variations
in the velocity field?; (ii) how do the different production mechanisms of TKE and
WKE scale with ReK and Reτ , and at what height do they reach their peak values?;
(iii) which transport mechanisms are most efficient in relocating TKE and WKE in the
near-interface region? To address these question, we revisit the budget equations for MKE,
WKE and TKE in § 2. The applied methods as well as the sampled parameter space with
systematically varying Reτ and ReK are introduced in § 3. In § 4, we evaluate the TKE and
WKE budgets based on datasets obtained from pore-resolved DNS, while we also shed a
light on the scaling behaviour of different terms. The main results are then discussed in
§ 5, before § 6 concludes the study.

2. Theory
The governing equations are introduced in § 2.1, and important properties of the horizontal
averaging framework are outlined in § 2.2. Based on the decomposition of the kinetic
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energy in § 2.3, we discuss the budgets of TKE, WKE and MKE in §§ 2.4, 2.5 and 2.6,
respectively. Transfer mechanisms between the kinetic energy components are summarised
in § 2.7.

2.1. Governing equations
The incompressible Navier–Stokes equations for a Newtonian fluid with a density ρ and a
kinematic viscosity ν provide the basis for the budget formulations. The Einstein summa-
tion convention allows to express the conservation of mass and momentum as follows:

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ

∂p

∂xi
+ ν

∂2ui

∂x j∂x j
+ gi . (2.2)

The coordinates are defined such that x1 ≡ x , x2 ≡ y and x3 ≡ z represent the streamwise,
spanwise and bed-normal coordinate, respectively. The corresponding flow velocities are
u1 ≡ u, u2 ≡ v and u3 ≡ w. The variable p represents the pressure and gi is a volume
force acting on the fluid. In (2.2), we express the viscous term as ν ∂2ui/∂x j∂x j , which
is possible due to the solenoidality constraint imposed by (2.1). In the derivation of the
budgets, this formulation will lead us to a pseudo-dissipation formulation (e.g. Pope
2000). We accept the pseudo-dissipation formulation, as it abbreviates the notation and
facilitates the comparison to other studies (e.g. Finnigan 2000; Yuan & Piomelli 2014;
Ghodke & Apte 2018; Hantsis & Piomelli 2020; Shen et al. 2020), which similarly use this
formulation. In Appendix A, we show that only minor differences between full-dissipation
and pseudo-dissipation are to be expected for the budgets that are evaluated in this study.

2.2. Analysis framework
To analyse the flow field, we use horizontal averaging within x-y-planes, which are parallel
to the mean sediment bed surface. In a first step, the Reynolds decomposition splits an
arbitrary quantity φ into an ensemble average φ and a temporal fluctuation φ′:

φ(x,t) = φ(x) + φ′
(x,t) , where φ(x) = 1

T

∫ T

0
φ(x,t) dt. (2.3)

In a second step, the time-averaged quantity φ from (2.3) undergoes a decomposition with
respect to space. The intrinsic average within a horizontal plane is denoted as

〈
φ
〉
, whereas

deviations from the in-plane average are marked by a tilde:

φ(x) = 〈φ〉(z) + φ̃(x) , where 〈φ〉(z) = 1
A f

∫∫
A f

φ(x) dx dy. (2.4)

According to its definition in (2.4), the intrinsic average
〈
φ
〉

represents an average over the
fluid-filled area A f . The superficial average

〈
φ
〉s , however, refers to an average over the

complete base area A0 of the averaging plane. Therefore, the in-plane porosity θ(z) allows
a transformation between intrinsic and superficial spatial averages:

〈φ〉s(z) = θ(z) 〈φ〉(z) with θ(z) = A f (z) / A0. (2.5)

It is worthwhile to note that, in contrast to φ and φ′, the individual quantities 〈φ〉 and φ̃

do not satisfy the physical boundary conditions. In particular, the infringement of no-slip
conditions on solid surfaces will give rise to terms that may appear artificial at first glance,
but still allow a physical interpretation. Another consequence is that spatial derivatives and
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horizontal averaging operations do not commute below the crests of the sediment grains,
where the area A f changes over z. Consistent with Giménez-Curto & Lera (1996), the
horizontally averaged spatial gradient of φ can be formulated as follows:

〈∇φ
〉=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
∂φ

∂x

〉
〈

∂φ

∂y

〉
〈

∂φ

∂z

〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
A f

∮
s

φ
nx√

n2
x + n2

y

ds

1
A f

∮
s

φ
ny√

n2
x + n2

y

ds

1
θ

∂θ
〈
φ
〉

∂z
+ 1

A f

∮
s

φ
nz√

n2
x + n2

y

ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

⎛⎜⎜⎜⎜⎝
BT1(φ)

BT2(φ)

1
θ

∂θ
〈
φ
〉

∂z
+ BT3(φ)

⎞⎟⎟⎟⎟⎠ .

(2.6)

The curve s in (2.6) describes the intersection of the averaging plane with the fluid–solid
interface, e.g. the surface of sediment grains. The unit normal vector n = (nx , ny, nz)

T at
the solid–fluid interface points out of the fluid-filled volume. To shorten the notation, we
refer to the curve integrals as the boundary term, abbreviated as BTi (φ).

The double-averaged momentum equation is obtained by applying the above rules to
(2.2). In preview of the application, we imply that 〈w〉 = 0, which means that no net flux
in the bed-normal direction exists, while no-slip boundary conditions apply on the surfaces
of the sediment grains, such that

∂〈u〉
∂t

= 1
θ

∂

∂z

⎛⎜⎜⎜⎝ θ

〈
ν
∂ u

∂z

〉
︸ ︷︷ ︸

visc.

− θ
〈
u′w′〉︸ ︷︷ ︸

turb.

− θ
〈̃
u w̃

〉︸ ︷︷ ︸
disp.

⎞⎟⎟⎟⎠
+ 1

ρ
BT1(−p)︸ ︷︷ ︸

f p,i

+ BTj

(
ν

∂u

∂x j

)
︸ ︷︷ ︸

fν,i

+ 〈gx 〉 = 0. (2.7)

The time derivative of the double-averaged velocity on the left-hand side is obtained
from double-averaging of the time derivative of u as the operators commute (Pope 2000,
§ 3.6). In statistically stationary flows, the time derivatives of double-averaged quantities
are zero. Equation (2.7) shows that viscous, turbulent and dispersive stresses can transfer
momentum within the fluid volume. Due to their origin, dispersive stresses are also
synonymously called form-induced stresses (Giménez-Curto & Lera 1996; Nikora et al.
2001). Pressure drag f p and viscous drag fν result from pressure or viscous forces,
respectively, acting on solid surfaces, e.g. of the sediment grains. Thus, they represent
the momentum exchange with the fluid–solid interface. A volume force in the streamwise
direction is denoted as gx . While the interpretation of pressure drag and viscous drag as
boundary terms is decisive for the further derivations, the equalities in (2.6) allow us to
evaluate f p and fν from plane averages within an x-y-periodic domain. In Appendix B,
we demonstrate that an evaluation as plane-averages is advantageous for an immersed
boundary representation, while good agreement with values obtained from an actual
surface integration is observed.
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2.3. Decomposition of the kinetic energy
The horizontal averaging framework allows a decomposition of the double-averaged total
kinetic energy into three components:〈

1
2

u j u j

〉
︸ ︷︷ ︸

KE

=
〈

1
2

u′
j u

′
j

〉
︸ ︷︷ ︸

〈TKE〉

+
〈

1
2

ũ j ũ j

〉
︸ ︷︷ ︸

〈WKE〉

+ 1
2
〈u j 〉〈u j 〉︸ ︷︷ ︸

MKE

. (2.8)

To be consistent with the nomenclature of Finnigan (2000), Yuan & Piomelli (2014) and
Ghodke & Apte (2016), we will use the terms turbulent kinetic energy (TKE), wake kinetic
energy (WKE) and mean kinetic energy (MKE) to distinguish the three terms on the right-
hand side of (2.8). Together, WKE and MKE constitute the energy in the time-averaged
mean flow field. The total WKE and total TKE result from the sum of all dispersive or
Reynolds normal stresses, respectively. In the following, budget expressions for the total
energies as well as for individual components will be presented. Like in (2.7), the time
derivative of the double-averaged kinetic energies is zero in a statistically stationary flow.
By checking the closure of the budget, we can assess if sufficient statistics have been
sampled.

2.4. Budget equation for the TKE components
Without a summation over the Greek index α = 1, 2, 3, (2.9) formulates a budget for the
horizontally averaged individual TKE components, which are interconnected via an inter-
component redistribution term. When summed over α, the budget for the horizontally
averaged TKE is obtained via

∂

∂t

〈
1
2

u′
αu′

α

〉
= −

〈
u′

αu′
j

〉 ∂ 〈uα〉
∂x j

−
〈
˜u′
αu′

j
∂ ũα

∂x j

〉
−
〈
u′

αu′
j

〉 〈∂ ũα

∂x j

〉
︸ ︷︷ ︸

production(Πshear+Πwake+Πmean)

− 1
2

1
θ

∂θ
〈

ũ j u′
αu′

α

〉
∂x j

− 1
2

1
θ

∂θ
〈

u′
αu′

αu′
j

〉
∂x j

+ 1
2

1
θ

∂θ
〈
ν

∂u′
αu′

α

∂x j

〉
∂x j︸ ︷︷ ︸

transport(Tdisp+Tturb+Tvisc)

− 1
ρ

1
θ

∂θ〈p′u′
α〉

∂xα︸ ︷︷ ︸
transport(Tpres)

+ 1
ρ

〈
p′ ∂ u′

α

∂xα

〉
︸ ︷︷ ︸

redistribution(R)

− ν

〈
∂u′

α

∂x j

∂u′
α

∂x j

〉
︸ ︷︷ ︸

(pseudo−)dissipation(ε)

= 0. (2.9)

The first three terms on the right-hand side together represent the total plane-averaged
TKE production. The fourth to seventh terms are responsible for dispersive transport,
turbulent transport, diffusive transport and pressure transport in the bed-normal direction.
The eighth term represents the pressure-based inter-component redistribution of TKE,
which can act as a sink or source in the component-wise budgets, whereas it has zero-value
in the complete TKE budget. Finally, the ninth term represents the dissipation of TKE
in a pseudo-dissipation formulation (Pope 2000). The horizontal averaging framework
allows a further decomposition of the TKE production. Accordingly, the first production
term in (2.9) is referred to as shear production and would account for the complete
production in smooth-wall channel flow. The second and third terms are commonly named
wake production and mean production, respectively (e.g. Mignot et al. 2009). The mean
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production is tightly linked to porosity changes via 〈∂ ũα/∂x j 〉 = BTj (̃uα) = 〈uα〉∂θ/∂z,
which makes a physical interpretation of the individual term difficult. Therefore, we
summarise wake production and mean production in the form-induced production
Πform, i.e.

Π f orm = −
〈

u′
αu′

j
∂ ũα

∂x j

〉
= Πwake + Πmean. (2.10)

As shown by (2.10), the form-induced production represents the work that the local
Reynolds stresses perform against local gradients due to spatial velocity variations.

2.5. Budget equation for the WKE components
Similarly, it is possible to formulate budget equations for the dispersive normal stresses.
Again, no summation over index α = 1, 2, 3 is intended if one wishes to obtain the
budgets for the three individual components of the WKE, separately. To ensure a clear
distinction from terms of the TKE budget, we add the superscript ∼ to terms of the WKE
budget, such that

∂

∂t

〈
1
2

ũα ũα

〉
= − 〈̃

uα ũ j
〉 ∂〈uα〉

∂x j
+
〈
˜u′
αu′

j
∂ ũα

∂x j

〉
+
〈
u′

αu′
j

〉 〈∂ ũα

∂x j

〉
︸ ︷︷ ︸

production (Π∼
shear − Πwake − Πmean)

− 1
2

1
θ

∂θ
〈
ũα ũα ũ j

〉
∂x j

− 1
θ

∂θ

〈̃
uα

˜u′
αu′

j

〉
∂x j︸ ︷︷ ︸

transport (T ∼
disp + T ∼

turb)

− ν

〈
∂ ũα

∂x j

∂ ũα

∂x j

〉
︸ ︷︷ ︸

(pseudo-) dissipation (ε∼)

+ 1
ρ

〈
p̃

∂ ũα

∂xα

〉
︸ ︷︷ ︸
redistribution (R∼)

− 1
ρ

〈
∂ ũα p̃

∂xα

〉
+ ν

〈
1
2

∂2ũα ũα

∂x j∂x j

〉
︸ ︷︷ ︸

mixed role (equations (2.12) and (2.13))

= 0. (2.11)

The first term on the right-hand side of (2.11) represents a shear production mechanism, as
dispersive shear stresses act against the bed-normal gradient of the double-averaged flow
velocity. The second and third terms resemble the wake and mean production, respectively,
which we summarise as form-induced production. Compared with (2.9), the terms appear
here with opposite sign. The fourth and fifth terms are responsible for dispersive and
turbulent transport in bed-normal direction, as the terms can only have non-zero values
for j = 3. The sixth and seventh terms are identified as dissipation and inter-component
redistribution of spatial variance, respectively. The last two terms on the right-hand side
of (2.11) remind of pressure diffusion and viscous transport. A mere interpretation as
transport terms, however, would neglect the non-zero boundary terms BTα(̃uα p̃)/ρ and
BTj (ν ũα ∂ ũα/∂x j ). These boundary terms could be interpreted as transport of ũα ũα

across the fluid–solid interface, which is formally possible as both ũα and 〈uα〉 violate
the no-slip boundary condition. Knowing that the boundary term represents an integral
along the intersection curve s of the averaging plane with the solid sphere surfaces (see
(2.6)), we can substitute ũα = −〈uα〉 due to the no-slip boundary condition on the sphere
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Undisturbed f low

Viscous interaction

with a thin plate

x

x

y

y

〈1/2 uαuα〉 = 0
� �

〈1/2 uαuα〉 > 0
� �

Figure 1. Introduction of spatial variance to the flow field by exclusively viscous interaction on the surface
of a very thin plate with flow-parallel orientation. The sketch shows a top view of the averaging plane
(x-y-plane).

surfaces, and we obtain

− 1
ρ

〈
∂ ũα p̃

∂xα

〉
= − 1

ρ

1
θ

∂θ〈w̃ p̃〉
∂z︸ ︷︷ ︸

transport(T ∼
pres)

− 1
ρ

〈uα〉 BTα(− p̃)︸ ︷︷ ︸
production (Π∼

p−BT )

, (2.12)

ν

〈
1
2

∂2ũα ũα

∂x j∂x j

〉
= ν

1
2

1
θ

∂θ
〈
∂ ũα ũα

∂z

〉
∂z︸ ︷︷ ︸

transport (T ∼
visc)

− 〈uα〉 BTj

(
ν
∂ ũα

∂x j

)
︸ ︷︷ ︸

production (Π∼
ν-BT)

. (2.13)

The formulation in (2.12) and (2.13) isolates exclusive bed-normal transport terms T ∼
pres

and T ∼
visc from fluxes across the fluid solid interface, which appear as the production

terms Π∼
p-BT and Π∼

ν-BT. The formulation suggests that spatial variance is generated as
the double-averaged bed-parallel velocities work against the pressure drag and the part
of the viscous drag that results from in-plane velocity variations. For the pressure drag,
it can be shown that BTα( p̃) = BTα(p) for α = 1, 2, such that it makes no practical
difference whether 〈p〉 is included if 〈w〉 = 0. However, it appears plausible that the
viscous drag component 〈uα〉 BTj (∂〈uα〉/∂x j ) does not contribute to the production of
WKE, as otherwise, spatial variances would also be spuriously introduced into the flow
over a horizontal and smooth surface. Whereas WKE production due to pressure drag
is well documented (e.g. Raupach & Shaw 1982), the WKE production due to viscous
interaction with solid surfaces is often neglected in budget formulations (e.g. Raupach &
Shaw 1982; Yuan & Piomelli 2014; Ghodke & Apte 2016; Hantsis & Piomelli 2020).
The fact that viscous surface interactions can lead to spatial variance in an otherwise
undisturbed velocity field is illustrated by figure 1, where boundary layers form on both
sides of a very thin plate, which pierces the x-y-averaging plane. From a mathematical
perspective, the decomposition in (2.13) ensures that the viscous transport T ∼

visc is free of
net sources, which is an important property of a transport term.

2.6. Budget equation for the MKE
From multiplying (2.7) with 〈u〉, we obtain the MKE budget equation for the streamwise
velocity component, which completes the set of budget equations. This equation reads
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 ∂/∂t 〈1/2 u′
αu′

α〉

 ∂/∂t (1/2 〈u〉〈u〉)¯ ¯

−〈u′w′〉∂〈u〉/∂𝑧¯  ∂/∂t 〈1/2 uαuα〉� �

−〈u w〉∂〈u〉/∂𝑧 – 〈u〉(BT1(–p) + BTj¯ ¯� � ��
  (ν ∂u/∂xj))

−〈u′
αu′

j ∂uα/∂xj〉�

−〈u′
αu′

j〉〈∂uα/∂xj〉�

Figure 2. Energy transfer pathways between MKE, WKE and TKE. The arrows indicate the direction of energy
flow when the corresponding terms have a positive value. Sources by volume forces, losses by dissipation and
vertical transport are not depicted.

∂

∂t

(
1
2

〈u〉 〈u〉
)

= 〈
u′w′〉 ∂ 〈u〉

∂z
+ 〈̃

u w̃
〉 ∂〈u〉

∂z︸ ︷︷ ︸
production (−Πshear −Π∼

shear )

+ 1
θ

∂θ〈ν ∂u/∂z〉
∂z

〈u〉︸ ︷︷ ︸
viscous term (Tvisc+ε)

− 1
θ

∂θ〈u′w′〉〈u〉
∂z

− 1
θ

∂θ 〈̃u w̃〉〈u〉
∂z︸ ︷︷ ︸

transport (Tdisp+Tturb)

+ 〈u〉 〈gx 〉︸ ︷︷ ︸
source (S)

+ 1
ρ

〈u〉 BT1(−p) + 〈u〉 BTj

(
ν

∂ ũ

∂x j

)
+ 〈u〉 BT3

(
ν
∂〈u〉
∂z

)
︸ ︷︷ ︸

action against total drag

= 0.

(2.14)

The first and second terms on the right-hand side of (2.14) resemble the shear production
terms, which appear in (2.9) and (2.11) with the opposite sign. The third term, labelled
‘viscous term’, summarises viscous transport and viscous dissipation, whereas we refrain
from a lengthy reformulation of the term, which introduces multiple boundary terms. The
fourth and fifth terms can be identified as transport terms. The driving volume force gx acts
as a source of MKE in the sixth term. Altogether, terms seven to nine represent the work
of the double-averaged streamwise flow field against the drag. Knowing that BT1( p̃) =
BT1(p), we detect that the seventh and eighth term appear here with opposite signs as in
(2.12) and (2.13), which is not the case for the ninth term.

2.7. Energy transfer mechanisms
We conclude the theory part by summarising all transfer mechanisms between TKE, WKE
and MKE, which are identified by means of terms that appear with opposite signs in the
budget equations. Figure 2 visualises the energy transfer pathways between the budgets.
The arrows indicate the direction of energy transfer if the corresponding terms have
positive values. Transport terms, dissipative losses of WKE and TKE, as well as energy
input into the MKE budget due to the volume force are not shown explicitly. According to
the energy transfer pathways, shear production mechanisms can generate TKE or WKE at
the expense of MKE. Additionally, WKE can result from the work of the double-averaged
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(b) ˜Spatial autocorrelation of zb
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 (
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˜

Figure 3. Properties of the sediment bed. (a) In-plane porosity profiles of different realisations of the sphere
pack. The interface z = 0 is defined where ∂2θ/∂z2 = 0. The porosity profiles are aligned according to the
interface position. (b) Spatial autocorrelation of the bed elevation fluctuation z̃b over the horizontal shift r for
different realisations.

flow field against the pressure drag and the part of the viscous drag, which is caused by
spatial velocity variations. Finally, form-induced production can transfer WKE into TKE
and vice versa.

3. Methodology
We have simulated turbulent open-channel flow over mono-disperse random sphere packs
(v.Wenczowski & Manhart 2024). In the case configuration, the sphere pack approximates
the sediment bed of a gravel bed river, whereas the spheres play the role of sediment
grains and remain static during the flow simulation. By fully resolving the pore space,
we allow the flow to enter the pore space. The bottom domain boundary intersects the
sphere pack. A free-slip condition ensures that momentum is only transferred to the sphere
surfaces and not at the bottom wall, which thus reduces the influence of the bottom domain
boundary. On the surface of the spheres, a no-slip boundary condition is specified. At the
top domain boundary, a free-slip condition is used to approximate a free water surface. In
the streamwise x-direction and lateral y-direction, periodic domain boundary conditions
are set. A constant volume force in streamwise direction emulates the effect of gravity in
a sloped channel. In the statistically stationary state, the flow depth h equals the thickness
δ of the fully developed boundary layer.

3.1. Representation of the porous medium
Mono-disperse random sphere packs of different extents were generated as described by
v.Wenczowski & Manhart (2024). The generation process is conducted such that a level
mean bed surface results. Exemplarily, figure 3(a) shows the in-plane porosity profiles θ(z)
of five different realisations of the bed used in the M-cases, which has a base area of A0 =
64D × 32D. The collapse of porosity profiles for different realisations indicates that the
generation mechanism avoids strongly unique features. The inflection point ∂2θ/∂z2 = 0
of the porosity profile is used as a geometric interface definition, which is consistent with
Voermans et al. (2017). The distance from the geometrically determined interface to the
top domain boundary defines the different flow depths h, whereas the sediment bed has a
thickness of 5D in all simulated cases. The local bed elevation zb is obtained by defining
a vertical line at position (x, y). The height of the topmost intersection point between
this line and the surface of the sediment grains yields zb(x, y). The variable z̃b represents
the fluctuation of the bed elevation field around its mean value. Figure 3(b) describes
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Voermans 2017

Shen 2020

Karra 2023

ℎ/D ratio
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K

(−
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Reτ (−)
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M-150

L-180

L-300

M-300

S-300

S-500

h/D = 3

h/D = 5

h/D = 10

h/D →∞

Figure 4. Overview of the dimensionless parameter space, including reference points from the literature. The
grey dashed lines represent fixed ratios between the flow depth h (i.e. boundary layer thickness) and the sphere
diameter D. As reference points, we refer to Breugem et al. (2006), Voermans et al. (2017), Shen et al. (2020)
and Karra et al. (2023). Figure adapted from v.Wenczowski & Manhart (2024).

the bed surface by means of the spatial autocorrelation of z̃b. A fast decay of the spatial
autocorrelation function indicates that no repeating patterns are present in the bed surface.

3.2. Parameter space
Various Reynolds numbers can be used to characterise the flow conditions in different
regions of the domain (e.g. Voermans et al. 2017). We choose the friction Reynolds
number Reτ and permeability Reynolds number ReK as the primary parameters to
span a two-dimensional parameter space. The friction Reynolds number Reτ = uτ h/ν

is well-established in channel flow investigations and describes the unconfined flow
above the sediment layer. In contrast, the permeability Reynolds number ReK = uτ

√
K/ν

characterises the interface of the porous medium. Both Reynolds numbers consider the
friction velocity uτ , which we compute via a balance of forces as uτ = √

gx h. The
permeability Reynolds number uses the square root of the sediment permeability K
as a length scale, which can be conceptually understood as an effective pore diameter
(Breugem et al. 2006). According to the Kozeny–Carman equation (Kozeny 1927; Carman
1937),

√
K is proportional to the sphere diameter D. Relating this length scale to the

viscous sublayer length scale, ReK describes if the smallest scales of turbulent motion can
penetrate into the pore space. Accordingly, ReK � 1 and ReK � 1 indicate effectively
impermeable and highly permeable boundaries, respectively, whereas ReK ≈ 1−2 is
identified as a transition between both extremes (Voermans et al. 2017). A variation of
h/D, i.e. the ratio of the flow depth to the sphere diameter, allows us to investigate
different combinations of Reτ and ReK . High values of h/D up to 10 were chosen to
mitigate the blocking effect introduced by individual spheres. By considering Reτ > 150,
we aim to reduce low-Reynolds-number effects, whereas the upper bound of Reτ = 500 is
dictated by computational affordability. The chosen range of ReK = 0.4−2.8 includes the
transition region around ReK ≈ 1−2. In summary, figure 4 visualises the eight sampling
points in terms of Reτ and ReK that we probe in this study. Table 1 contains further
parameters describing the simulated cases. Among those parameters, k+

s deserves special
attention, as it allows us to categorise case S-150 as transitionally rough. With k+

s ≈
50 − 60, cases M-150 and S-300 lie near the onset of the fully rough regime (e.g. Kadivar
et al. 2021), while the remaining cases lie within the fully rough regime. As described
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Case h/D Lx/h × L y/h �x+
i,min �x+

i,max D+ Reτ ReK Reb Rep k+
s

L-180 3 13.3 × 6.7 0.94 0.94 58 174 1.63 1232 0.95 131
L-300 3 13.3 × 6.7 1.04 2.08 100 300 2.82 2114 2.77 204
M-150 5 12.8 × 6.4 0.63 2.52 31 154 0.87 1305 0.15 59
M-300 5 12.8 × 6.4 0.63 2.52 60 300 1.69 2444 0.59 126
M-500 5 12.8 × 6.4 1.04 4.16 100 500 2.82 4075 1.60 202
S-150 10 12.8 × 6.4 0.31 1.24 15 150 0.42 1714 0.02 16
S-300 10 12.8 × 6.4 0.63 2.52 30 300 0.84 3105 0.07 50
S-500 10 12.8 × 6.4 1.04 4.16 50 500 1.40 5037 0.20 95
I-180 → ∞ 13.3 × 6.7 0.63 1.26 0 180 0 2718 0 0
I-300 → ∞ 12.8 × 6.4 0.75 3.00 0 300 0 5034 0 0
I-500 → ∞ 12.8 × 6.4 0.90 3.60 0 500 0 9027 0 0

Table 1. Overview of dimensionless parameters. The variable D represents the sphere diameter, h is the flow
depth, L is the extent of the domain, �x+

i,min provides the side length of the smallest cubic cells near the
interface and �x+

i,max specifies the side length of the largest cells in the free-flow region. Friction, permeability,
bulk, particle and roughness Reynolds numbers are defined as Reτ = uτ h/ν, ReK = uτ

√
K/ν, Reb = ubh/ν,

Rep = 〈u〉s D/ν and k+
s = uτ ks/ν. Further, K is the permeability, uτ represents the shear velocity, ub is the

bulk velocity and ks is the equivalent sand-grain roughness height.

5

10

Velocity shift

100

200

Roughness Reynolds number

�
u+

0 1 2 3 0 1 2 3

ReK ReK

k+ s =
 e

κ
(�

u+
 +

3
.4

 )

k+
s ≈ 70 

(a) (b)

Figure 5. Roughness quantification in dependence of ReK . (a) Shift �u+ of the velocity profile in comparison
to flow over a smooth wall at comparable Reτ . (b) Corresponding roughness Reynolds number k+

s , computed
from �u+ via the relation given on the y-axis (Jiménez 2004), where κ = 0.4 is used for the von Kármán
constant.

in v.Wenczowski & Manhart (2024), the values of k+
s were determined from the velocity

shift �u+ in relation to a smooth-wall flow case at comparable Reτ . The smooth-wall
cases I-180, I-300, and I-500 are formally characterised by h/D → ∞. Figure 5 shows
both the velocity shift �u+ and k+

s in dependence of ReK .

3.3. Interface definition
The nominal parameters of the simulation cases refer to an interface position, which
is purely geometrically defined by the inflection point of the porosity profile. In
v.Wenczowski & Manhart (2024), we observed that the drag distribution on the porous
medium exhibits a characteristic peak near the sediment–water interface, which marks
the region where momentum from the free flow region is absorbed. The features of this
characteristic peak were used to describe the interface region. The centroid of the drag
distribution was associated with the mean interface position μz , whereas the spread σz
was found to provide a useful proxy for an interfacial length scale.
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Mean interface position μz Spread σz of interface
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Figure 6. Interface parameters derived from the distribution of drag on the porous medium, as described in
v.Wenczowski & Manhart (2024). The mean interface position μz reflects the drag maximum, whereas σz
quantifies the spread of the drag distribution. D represents the sphere diameter.

Figure 6 shows the interface parameters μz and σz in dependency of ReK . Whereas the
drag-based interface μz moves to lower positions with increasing ReK , the spread σz/D
only varies slightly over the ReK -range. In the scope of the present study, positions will
be quantified in z/D, where the vertical coordinate z refers to the geometrically defined
interface and D is the sphere diameter. Wherever appropriate, we will add the grey dashed
line from figure 6(a) to provide the position μz as a reference.

3.4. Numerical methods
The flow fields were obtained by DNS, for which our in-house code MGLET (Manhart,
Tremblay & Friedrich 2001; Manhart 2004; Peller et al. 2006; Sakai et al. 2019) was
employed. MGLET solves the conservation laws for mass (2.1) and momentum (2.2)
by an energy-conserving central second-order finite volume method. A Cartesian grid
with staggered arrangement of variables is used with local grid refinement in a multi-
level approach (Manhart 2004). An explicit third-order low-storage Runge–Kutta method
(Williamson 1980) with a fractional step formulation (Chorin 1967) advances the solution
in time. The required pressure update defines an elliptic problem, which is solved
efficiently by a multi-level Poisson solver. The geometry of the pore space is resolved by
a ghost-cell immersed boundary method, in which a second-order spatial interpolation
accuracy is coupled with a correction algorithm to ensure local mass conservation
(Peller et al. 2006; Peller 2010). In Appendix B, we describe the implemented ghost-cell
immersed boundary method in detail and show the convergence behaviour of different
terms accompanied by a comparison to a body-fitted mesh.

3.5. Accuracy assessment
The convergence of the flow simulation for a random sphere pack was demonstrated in
v.Wenczowski & Manhart (2024), yielding that 48 cells per diameter are sufficient to
obtain an accurate representation of the permeability. Further, a reasonable agreement
of the double-averaged velocity profile and the turbulent and dispersive stresses with
experimental data of Voermans et al. (2017) has been observed. It was also demonstrated
that the near-interface spatial resolution of �x+

i,min ≈ 1.0 allows an adequate resolution
of all turbulent length scales in this region. Statistics were collected over a time T with
T uτ /h ∈ [27, 39].

An evaluation of all terms in the budgets of TKE and WKE allows us to check the
closure of the budgets. For the TKE budgets, the largest amplitude of the residual is
observed near z/D ≈ 0. The residual is smaller than 3 % of the amplitude of the production
peak, which is found at a similar height. In most cases, a positive sign of the residual

1014 A17-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
25

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10254


Journal of Fluid Mechanics

−2

−1

0

1

2
TKE

−2

−1

0

1

2
WKE

L-180

L-300

M-150

M-300

M-500

S-150

S-300

S-500

1/2〈u′
ju′

j〉/uτ
2

(a) (b)

0 1 2 30 1 2 3

ReK

z/D

1/2〈u�j u�j〉/uτ
2

Figure 7. Near-interface profiles of TKE and WKE, normalised by the friction velocity uτ . The vertical
coordinate z refers to the geometrically defined interface and is normalised by the sphere diameter D.

indicates that we may slightly underpredict the dissipation. In comparison to the TKE,
more effort is required to achieve good closure of the WKE budget. Though we exploit the
second-order accuracy of the immersed boundary implementation, spikes in the resulting
profiles of the term Π∼

ν-BT near the sphere crests did not vanish. A test with a single
sphere (not shown here) allowed us to connect those spikes to the thin viscous boundary
layers forming at the crests of individual protruding spheres. For a cleaner graphical
representation, however, those spikes were removed by smoothing the profiles with a
Gaussian kernel. The smoothed profile for the term Π∼

ν-BT keeps the residual in the MKE
budget below 4.2 % of the production peak.

4. Results
In this section, we will first describe the distribution of MKE, WKE and TKE, before we
present the budgets for the latter two components of the kinetic energy. Double-averaged
profiles as well as the spatial distributions of the kinetic energy components are presented
in § 4.1 and § 4.2, respectively. In § 4.3, we investigate the outer-layer behaviour of TKE
budget terms, before we focus exclusively on the near-interface region. We discuss one
representative near-interface TKE budget in detail (§ 4.4), show the scaling behaviour
of source and sink terms (§ 4.5), and decompose the transport into individual processes
(§ 4.6). The same analysis steps are repeated for the WKE, such that we start with the
near-interface budget (§ 4.7), proceed to the scaling behaviour of sources and sinks (§ 4.8),
and finish with a detailed look at the transport (§ 4.9).

4.1. Near-interface profiles of TKE and WKE
As a basis for the discussion of the kinetic energy budgets, figure 7 shows the near-interface
profiles of plane-averaged TKE and WKE. The profiles are normalised by uτ and plotted
against z/D.
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For all simulated cases, the TKE attains peak values above the interface, and quickly
decays near and below the interface. Above their peaks near z/D ≈ 1, the TKE profiles
group according to the ratio h/D under the given normalisation. A cross-comparison
between profiles suggests that both increasing Reτ and increasing ReK contribute to
higher intensities of velocity fluctuation at z/D = 0. For case S-150, which is associated
with the transitionally rough regime, an emphasised peak in the TKE distribution is found
at z/D ≈ 1.2, which is above the peak location of other profiles. This qualitative difference
of the transitionally rough case S-150 can be explained by the turbulence structure of
the buffer layer including streaks and quasi-streamwise vortices, which vanish at higher
ReK (v.Wenczowski & Manhart 2024). The WKE profiles reach their maxima at z/D ≈
0.2−0.5. There is a trend towards higher peaks at lower locations with increasing ReK .
Directly above the peak, the WKE decreases rapidly towards the free flow region, such
that only small amounts of WKE remain above z/D ≈ 1. Most profiles behave similarly in
the region of z/D ∈ [0.5, 1] near the crests of the topmost spheres, which hints at a direct
influence of the bed geometry on the distribution of the WKE. According to the layer
concept of Nikora et al. (2001), which is based on a horizontal-averaging perspective, the
nearly complete decay of dispersive stresses at z/D ≈ 1.2 − 1.5 marks the upper end of the
form-induced sublayer and, thus, also the upper end of the roughness layer. Below z = 0,
the WKE profiles group well visibly according to ReK . With increasing ReK , the spatial
velocity variations entrain into progressively deeper regions of the sediment. Again, the
transitionally rough case S-150 renders an exception, as the amplitude of the WKE peak
is smaller and the peak is found at a higher position. This observation can be explained
by the rather strong wall-blocking effect at ReK ≈ 0.4, which allows stable recirculation
vortices to occupy gaps between the topmost spheres, such that the downstream spheres
are sheltered from the approaching flow (v.Wenczowski & Manhart 2024).

4.2. Spatial distribution of TKE and WKE
To facilitate the interpretation of the previous profiles, we consider the spatial distributions
of u′

j u
′
j/2 and ũ j ũ j/2, i.e. the distribution of the kinetic energies prior to the horizontal

averaging operation. Figure 8 visualises the different quantities within a vertical slice
through the domain of case M-300. The largest values of the TKE are found slightly
above the sediment crests. Between the sediment crests and z/D ≈ 1.5, individual spots of
increased TKE are recognisable. The TKE appears to be more homogeneously distributed
at larger elevations, suggesting that the influence of spatial inhomogeneities in the
sediment bed, such as individual protruding spheres, is limited to a confined region. High
values of the WKE are found only in direct proximity of the sediment bed surface. In
particular, the wake regions behind the crests of prominently protruding spheres induce
strong deviations from the plane-averaged velocity, as shown by the inset in figure 8(b).
These regions are likely to be responsible for the peak in the WKE profile, which would
also explain the rapid decrease of WKE above the crests of the topmost spheres. The no-
slip boundary condition dictates that ui = 0 on the sphere surface, which implies that ũi =
−〈ui 〉. Accordingly, the WKE is generally not zero on the surface of the spheres, but has a
local value of 〈u j 〉〈u j 〉/2, which corresponds to the MKE at the respective z-position. As
a result, thin layers of large WKE are also found on the wind-ward side of exposed spheres.

4.3. Outer-layer similarity of TKE budget terms
In v.Wenczowski & Manhart (2024), we observed an outer-layer similarity among the
TKE profiles of cases with comparable Reτ . While the TKE profiles far from the sediment
surface remained similar across different h/D or ReK , a near-wall TKE peak was damped
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Figure 8. Spatial distribution of TKE and WKE within an arbitrarily chosen x-z-plane of simulation case
M-300. The values are normalised by the square of the friction velocity uτ . Coordinates in the x- and z-
directions are given in x/D and z/D, respectively, where D is the sphere diameter.

with increasing ReK . That motivates us to investigate the TKE budgets in an outer scaling
with the flow depth h and the friction velocity uτ . Figure 9 shows the budgets in terms
of total production, total transport and dissipation according to (2.9). The profiles are
plotted over the complete flow depth, while cases with similar Reτ are shown in one
plot. The region far from the surface of the sediment bed is characterised by a collapse
of the curves for similar Reτ , which suggests an outer-layer similarity of the budget terms.
Slightly above the sediment–water interface, the TKE budget terms depend strongly on
ReK . Smooth-wall cases and cases with a low permeability Reynolds number show an
emphasised production peak in this region, which flattens out with progressively higher
ReK . As the influence of roughness and permeability seems to be most emphasised in the
near-interface region, we will focus on this region in a deeper analysis of the budget.

4.4. Overview of the near-interface TKE budget
To obtain a comprehensive image of all processes involved, we analyse the near-interface
TKE budget of the case M-300. With Reτ = 300 and ReK ≈ 1.7, case M-300 lies
approximately in the centre of our parameter space and, thus, provides a representative
example. Figure 10(a) shows the TKE budget normalised with the friction velocity uτ

and the sphere diameter D, which provides a typical length scale in the interface region.
Whereas transport processes are summarised in the total transport Ttot, the individual
contributions of shear and form-induced production are plotted separately. The total
production peaks at z/D ≈ 0.5, whereas the dissipation rate ε at the same position is
smaller. A larger share of the TKE which is produced but not dissipated appears to
be transported downwards into the pore space of the porous medium. In the region
below z/D ≈ −0.1, more TKE is provided by the transport than by the production. With
increasing depth, the TKE input from transport is nearly exclusively balanced by the
dissipation ε. The major part of the TKE production results from shear production, which
also seems to determine the position of the production peak. In comparison to that, the
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Figure 9. TKE budget terms in outer scaling. Total production (Πtot, ), total transport (Ttot, ) and
dissipation (ε, ) are normalised by the flow depth h and the friction velocity uτ . Plots show groups of
cases with similar Reτ , but different ReK .

contribution of form-induced production appears to be minor, except in the region below
z/D = −0.3, where hardly any shear production takes place.

Figure 10(b–d) provides the budgets for individual components of the TKE. Nearly the
complete TKE is produced in the component 〈u′u′〉. Approximately half of the produced
〈u′u′〉 is dissipated, whereas the rest is redistributed to 〈v′v′〉 and 〈w′w′〉 by the pressure
redistribution Predist . The pressure-based inter-component redistribution is the main
source of bed-normal velocity fluctuations, and reaches its largest positive contribution in
the budget of 〈w′w′〉 at z/D ≈ 0.5. Compared with other terms involved, vertical transport
plays a major role in the budget of 〈w′w′〉. Below a depth of z/D �−0.2, the pressure-
based redistribution term in the budget of 〈w′w′〉 changes its sign, such that TKE is
distributed back to the other components. The detail in figure 10(b) shows that this inter-
component redistribution even acts as a source of streamwise velocity fluctuations in the
region z/D < −0.3.

4.5. Scaling of TKE sources and sinks
In what follows, we investigate how the maxima of the production and dissipation and
their locations depend on the Reynolds numbers. The left column, i.e. figure 11(a), shows
the maximal values normalised with u3

τ /D over ReK . Figure 11(b) shows the elevations
at which the maximum intensity of the respective process is observed. We also added as
a reference the position of the centroid of the drag distribution μz , which can be used
as an interface position (see § 3.3). The normalised total TKE production increases with
ReK , but seems to saturate once the hydraulically fully rough regime is reached (k+

s � 70
at ReK � 1). Following the trend of μz , the location of the total production peak lowers
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Figure 10. Budgets for the complete TKE and for the individual Reynolds normal stresses in the near-interface
region. Case M-300 serves as an example. For normalisation, the shear velocity uτ and the sphere diameter D
are used. The vertical coordinate z refers to the geometrically defined interface and is normalised by D. Note
that the horizontal axes cover different value ranges.

in the range of ReK < 1.5, but seems to stabilise at z/D ≈ 0.5 for ReK > 1.5. Both in
terms of magnitude and position, the peaks of the shear production Πshear appear to
go in line with the peaks of total production, as the shear production is the main TKE
production mechanism (compare figure 10). The data points of cases L-300 and M-500,
however, indicate that higher ReK may also slightly reduce the shear production. Starting
from nearly zero-value at ReK = 0.42, the maximal value of the form-induced production
Π f orm increases monotonously with increasing ReK . In comparison to Πshear , however,
the form-induced production plays a secondary role. Even at ReK ≈ 2.8, the maximum
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Figure 11. Scaling of production terms and dissipation of TKE with ReK . (a) Maxima of the processes
normalised by the friction velocity uτ and the sphere diameter D. (b) Vertical position of the maxima with
respect to the geometrically defined interface, whereas z is normalised by D. The grey dashed line represents the
position μz of the drag-based interface (v.Wenczowski & Manhart 2024). The total production Πtot summarises
the shear production Πshear and the form-induced production Πform. ε represents the dissipation.

value of form-induced production is approximately a fourth of the maximal value of
shear production. The peak of the form-induced production is found near z = μz and,
thus, at a lower position than the shear production peak. By means of an instantaneous
field, figure 12 illustrates the nature of the form-induced production mechanism. The
wake regions behind individual spheres seem to have major contributions. Horseshoe-
like vortices, which form on the windward side of exposed spheres, can equally lead to a
positive form-induced production. The observation that form-induced production acts on
small spatial scales comparable to the grain scale is likely to explain the smaller peak value
of Π f orm . The maximal amplitude of the dissipation is lower than the maximal values of
production, as the dissipation takes place over a wider vertical region than the production.
With increasing ReK , the maximal dissipation values still grow slightly. The dissipation
maxima are also found at a lower elevation than the total production maxima, which results
from increasing vertical TKE transport into the negative z-direction.

The observations in figure 11 suggest that the permeability Reynolds number ReK has
decisive impact on the TKE sources and sinks in the interface region, whereas an influence
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Figure 12. Instantaneous field of the form-induced TKE production mechanism. The shear velocity uτ and the
sphere diameter D are used for normalisation. The shown patch is a fraction of the domain of case M-300.
Coordinates are given as x/D and y/D, respectively.

of Reτ is hardly noticeable. With larger ReK , the maxima of different processes move to
progressively lower elevations, thus following the drag-based interface (grey dashed lines
in figure 11). For ReK ≤ 3, shear production remains the dominant production process. In
§ 5, we discuss the behaviour of the dominant shear production in detail and show how its
distribution is linked to the interface position and the interfacial length scale.

4.6. TKE transport and fluxes
In the following, we focus on the TKE transport in the region near the sediment–water
interface. The total vertical transport Ttot is decomposed into contributions of the specific
transport processes Tproc, representing turbulent transport, pressure diffusion, viscous
transport and dispersive transport, respectively. Under normalisation with uτ and D,
figure 13(a) shows the individual transport budget terms Tproc for case M-300. In addition,
figure 13(b) provides the superficially averaged vertical TKE fluxes J s

proc associated with
the individual processes. The relation between both quantities is given as

Tproc = −1
θ

∂ θ Jproc

∂z
= −1

θ

∂ J s
proc

∂z
. (4.1)

For case M-300, TKE is transported upwards above z/D ≈ 0.7 and downwards below
this position, as indicated by a positive flux above and a negative flux below this point.
A similar TKE flux upwards into the free-flow region was documented by Raupach
et al. (1991) and Mignot et al. (2009). In the direct proximity of the interface, viscous
and dispersive transport cause downward-oriented TKE fluxes of small amplitude. The
downward orientation of the dispersive flux contrasts the observations of Shen et al.
(2020), who report upward dispersive transport. The turbulent transport Tturb has a
dominant contribution to the removal of TKE from the region near the sphere crests, where
the production maximum is found. A large share of the TKE is transported upwards into
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Figure 13. Individual transport terms in the TKE budget and the corresponding superficially averaged TKE
fluxes. Case M-300 serves as an example. The shear velocity uτ and the sphere diameter D are used for
normalisation. The vertical coordinate z refers to the geometrically defined interface and is normalised by D.

the free-flow region. Below z/D ≈ 0.7, a negative turbulent flux transports TKE deeper
into the sediment bed.

In contrast to the other TKE transport processes, pressure transport can only cause net
vertical transport of 〈w′w′〉. Even above the crests of the topmost spheres at z/D > 1,
the corresponding flux has a negative sign, which implies that pressure transport transfers
TKE from the free flow region towards and into the sediment bed. At z/D ≈ 0.6, further
TKE is picked up, such that the downwards-oriented flux reaches its maximum amplitude
at approximately z/D = 0.2. Deeper below the interface at z/D < −0.5, pressure transport
introduces more TKE than other transport processes. The efficient propagation of vertical
velocity fluctuation into deeper sediment layers is likely explained by a superposition of
both small-scale pressure fluctuations originating from the interface region and large-scale
pressure fluctuations from the free flow region. Under normalisation with the cube of the
friction velocity, figure 14 shows the maximal amplitudes of the downward-oriented TKE
flux due to pressure transport. Among cases with similar ReK , the cases with the largest
ratio h/D exhibit the largest value of max(|J s

pres |) / u3
τ . In the fully rough regime, the

smaller relative roughness for cases with large h/D results in a larger bulk velocity ub,
which seems to increase the TKE flux. Also under normalisation with u3

b (not shown here),
the flux maxima do not collapse, which supports the idea that effects of free-flow and near-
interface scales are superposed. Except for case S-150, the vertical position of the largest
downward-oriented TKE flux, which corresponds to the zero-crossing of the budget term,
coincides approximately with the drag-based interface position μz .

4.7. Overview of the near-interface WKE budget
In the following, we focus on the WKE budget, which gives us detailed insight into the
production, transport and destruction of spatial variance in the time-averaged velocity
field. Again, we use case M-300 as an exemplary case for the detailed analysis.
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Figure 14. Amplitude of the downward-oriented TKE flux due to pressure transport over the permeability
Reynolds number ReK . (a) Maximal amplitude of the TKE flux due to pressure transport, normalised by the
friction velocity u3

τ . (b) Vertical position of the maximum with respect to the geometrically defined interface,
whereas z is normalised by D. The grey dashed line represents the position μz of the drag-based interface.

Figure 15(a) shows the budget of the total WKE. The total production Π∼
tot peaks at

z/D ≈ 0.3. From this production maximum, WKE is transported in both directions. Small
amounts of WKE are moved in the positive z-direction, such that the total transport T ∼

tot
has a positive contribution at z/D ≈ 1. The majority of the WKE, however, is relocated
into deeper regions of the sediment bed, where the transport constitutes the only positive
budget term. Similar to the TKE budget, the maximal dissipation of WKE also takes place
slightly below the peak of the WKE production. The total production Π∼

tot summarises
the shear production Π∼

shear , the form-induced production Π∼
form = −Πform and the WKE

production that results from interaction with the sphere surfaces via the pressure (Π∼
p-BT)

and via viscous stresses (Π∼
ν-BT). The form-induced production transfers kinetic energy

from the WKE to the TKE and, therefore, appears with a negative sign in the WKE budget.
In comparison to the shear production, a larger share of WKE production results from the
interactions of the flow field with the solid surfaces of the sediment bed. Notice that the
production due to viscous interactions with the sphere surfaces is not considerably smaller
than the production due to pressure-based surface interactions.

To complete the picture, figure 15(b–d) shows the budgets for the individual WKE
components. All four production mechanisms are involved in the budget of 〈̃u ũ〉.
Approximately half of the produced variations in the streamwise velocity field are
dissipated in the region near the production peak at z/D ≈ 0.3. A considerable part of
the excessively produced WKE is transferred to 〈̃v ṽ〉 and 〈w̃ w̃〉. The redistributed WKE
constitutes the only term with a major positive contribution in the budget of 〈̃v ṽ〉. The
negative sign of the form production term indicates that spatial variations in the lateral
velocity field are reduced, while temporal fluctuations 〈v′v′〉 are generated. Transport
processes play a critical role in the budget of 〈w̃ w̃〉. Above the interface at z/D ≈
0.25, inter-component redistribution increases variations in the bed-normal velocity field,
whereas only a small amount of these variations is dissipated. While only a small amount is
transported upwards, most of the excessively introduced 〈w̃ w̃〉 is transported downwards
into the sediment bed. In those deeper regions, the redistribution mechanism R∼ acts in
the opposite direction, as it takes WKE out of 〈w̃ w̃〉 and introduces it even back into 〈̃u ũ〉,
as shown by the detail in figure 15(b).

4.8. Scaling of WKE sources and sinks
Figure 15 has shown that shear production by dispersive stresses Π∼

shear , as well as Π∼
p-BT

and Π∼
ν-BT produce WKE in the interface region. Besides the dissipation, the form-induced
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Figure 15. Budgets for the complete WKE and for the individual dispersive normal stresses in the near-
interface region. Case M-300 serves as an example. For normalisation, the shear velocity uτ and the sphere
diameter D are used. The vertical coordinate z refers to the geometrically defined interface and is normalised
by D. Note that the horizontal axes cover different value ranges.

production of TKE acts as a sink of WKE. Figure 16(a) shows the maximal values of
different WKE sources and sinks, which are plotted over ReK . The values are normalised
by the friction velocity uτ and the sphere diameter D. Figure 16(b) provides the elevations
at which the maxima are found.

For ReK ≤ 1, the maximum of the total production becomes larger with increasing ReK ,
whereas its value seems to saturate in the region of ReK > 1. With increasing ReK , the
maximum value of WKE shear production increases monotonically. For the transitionally
rough case S-150, dispersive shear stresses are very small, such that hardly any shear
production is observed. The shear production maximum is found at progressively lower
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Figure 16. Scaling of production mechanisms and dissipation of WKE with ReK . (a) Maximal values of the
processes normalised with the friction velocity uτ and the sphere diameter D. (b) Position of the maxima with
respect to the geometrically defined interface, whereas the vertical coordinate z is normalised by D. The grey
dashed line represents the position μz of the drag-based interface. The total production Π∼

tot summarises the
processes Π∼

shear , Π∼
p-BT and Π∼

ν-BT , whereas ε∼ is the dissipation.

heights with increasing ReK . For all simulated cases, Π∼
p-BT, i.e. the WKE production

due to work of the double-averaged flow field against the pressure drag, exceeds the shear
production, while it also increases monotonously with increasing ReK . The maximum
of Π∼

p-BT is found at approximately the same vertical position as the maximal shear
production. The production Π∼

ν-BT, which results from the work of the double-averaged
flow field against the viscous drag from in-plane velocity variations, decreases slightly
with increasing ReK . For the transitionally rough case S-150, the maximum of Π∼

ν-BT is
higher than the maximum of Π∼

p-BT, indicating an important role of viscous effects. With
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Figure 17. Individual transport terms in the WKE budget and the corresponding superficially averaged WKE
fluxes. Case M-300 serves as an example. The shear velocity uτ and the sphere diameter D are used for
normalisation. The vertical coordinate z refers to the geometrically defined interface and is normalised by D.

increasing ReK , the relative importance of Π∼
ν-BT in comparison to other WKE production

mechanisms declines but remains noticeable. The maximum of Π∼
ν-BT is found near the

crests of the topmost spheres and thus at a greater elevation than the maxima of other
processes. For all cases, the maximum value of the dissipation is smaller than that of
the total production of WKE, while figure 15 indicates that dissipation takes place over
a wider region. With increasing ReK , the form-induced production of TKE (figure 11)
also removes progressively larger amounts of WKE. The dissipation maximum is found
at approximately the same elevation as the maximum of the total production. As already
observed for the TKE, the maxima of the WKE sources and sinks move to lower vertical
positions with increasing ReK . Thus, they follow a trend in the equally ReK -dependent
position μz of the drag-based interface, which is marked by a grey dashed line in figure 16.

4.9. WKE transport and fluxes
As done for the TKE in § 4.6, we continue with a detailed discussion of the process-
specific transport terms T ∼

proc in the WKE budget, which are shown in figure 17(a).
The corresponding superficially double-averaged WKE fluxes J∼s

proc are provided in
figure 17(b), and the relation between both quantities is given by (4.1). The total transport
moves a large part of the WKE from the region near z/D ≈ 0.3. As shown by the
large amplitude of the negative flux around z/D = 0, WKE is predominantly transported
downwards. Only turbulent transport seems to transfer a small amount of spatial velocity
variations into the region z/D > 1, where the WKE is small, but not absolutely zero.
Viscous and dispersive transport cause comparatively smaller fluxes J∼s

visc and J∼s
disp, which

relocate WKE only in direct proximity of the interface, whereas they neither affect the free
flow region nor greater depths of the sediment bed. Compared with turbulent transport,
pressure transport causes a similarly strong downwards oriented WKE flux J∼s

pres from the
interface region. The flux from pressure transport, however, peaks at a lower position and
also introduces spatial velocity variations into greater depths of z/D < −1. In contrast to
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Figure 18. Amplitude of the downward-oriented WKE flux due to pressure transport over the permeability
Reynolds number ReK . (a) Maximal amplitude of the WKE flux due to pressure transport, normalised by the
friction velocity u3

τ . (b) Vertical position of the maxima with respect to the geometrically defined interface,
whereas z is normalised by D. The grey dashed line represents the position μz of the drag-based interface.

that, the pressure transport hardly introduces any spatial velocity variations in the free flow
region.

Vertical pressure-driven transport propagates WKE into deeper regions of the sediment
and acts via spatial variations of w, which makes the process also highly relevant for
dispersive mass transport in the hyporheic zone. That motivates us to investigate the
scaling behaviour of the flux J∼s

pres in detail. As shown by figure 18, the maximal amplitude
of the downward oriented flux is reached slightly below z = μz and it follows the drag-
based interface. When the maximal amplitude of the downward-oriented flux is normalised
by u3

τ and plotted over ReK , we observe a nonlinear increase, such that a clearly
interpretable scaling behaviour cannot be deduced. To find an appropriate scaling, an
idealised scenario of pressure pumping is sketched in Appendix C, and different terms are
evaluated analytically. The analytic solutions suggest that J∼s

pres scales with (K/νρ2) p̂2kx ,
where p̂ represents the amplitude of a regular pressure variation at the interface, while
kx is the wavenumber of the regular pressure variation. According to the Kozeny–Carman
equation, the permeability K scales with D2. Further, we assume that p̂ is proportional
to ρu2

τ and that kx is proportional to 1/D. These assumptions suggest a scaling of J∼s
pres

with u4
τ D/ν. Figure 18 shows that, under normalisation with u4

τ D/ν, the highest value of
J∼s

pres is reached for cases with ReK ≈ 1, whereas it decreases monotonically for higher
ReK > 1. Again, no interpretable scaling behaviour can be observed. Elliott & Brooks
(1997) propose a scaling of the pressure variations with the bulk velocity, which similarly
does not seem to apply for our cases without macroscopic bed forms (not shown here). In
§ 5, we discuss a potential scaling of the pressure-driven processes in the near-interface
region, which includes the roughness-induced dimensionless velocity shift �u+ as an
additional parameter.

5. Discussion
Finnigan (2000) stated that work against the viscous component of the canopy drag leads
to a direct dissipation of MKE into heat. Revisiting the budget equations, however, we
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encounter a term which represents an energy transfer from MKE to WKE via viscous
interaction between the flow and the solid surfaces. While the term results formally from
a rigorous application of the rules for spatial derivatives within the horizontal averaging
framework (e.g. Giménez-Curto & Lera 1996), we can also find a simple example, which
intuitively illustrates the existence of such a viscosity-based WKE production mechanism
(see figure 1). As the studies of Yuan & Piomelli (2014) or Ghodke & Apte (2018) do
not explicitly mention WKE production via viscous interaction with solid surfaces, the
question remains if this process is relevant in the context of turbulent flow over a random
sphere pack.

For flow over a random sphere pack at ReK < 3, our results suggest a clear ‘yes’.
For the transitionally rough case S-150, viscous- and pressure-based surface interactions
contribute to the WKE production in approximately equal parts. In contrast, the shear
production of WKE is negligible for case S-150, which can be explained by the strong
wall-blocking and the very low dispersive shear stresses near the interface (v.Wenczowski
& Manhart 2024). Even for the cases L-300 and M-500 with ReK ≈ 2.8, the relative
contribution of the WKE production due to viscous surface interaction does not become
negligible, though it is smaller than the dominant WKE production due to pressure drag.
Accordingly, the shift in the relative impact of the production mechanism reflects the
transition of the roughness regime (Raupach et al. 1991; Jiménez 2004; Kadivar et al.
2021) from the transitionally rough to the fully rough regime. An extrapolation of this trend
could explain that in atmospheric flow (e.g Raupach & Shaw 1982), the WKE production
via viscous interaction could be neglected for extreme roughness and permeability, which
is not generally justified for hyporheic flow problems.

With increasing ReK , the form-induced production converts progressively larger
amounts of WKE into TKE. Even for the fully rough cases in this study, however, the
form production remains small in comparison to the shear production of TKE, which
appears to be the dominant process in the near-interface TKE budget. This observation
agrees with the findings of Fang et al. (2018) and Shen et al. (2020). The investigation of
an instantaneous field showed that form-induced production takes place within a thin layer
near the sediment bed surface and occurs on small scales, which are comparable to the
sphere diameter. As stated by Finnigan (2000), the introduction of TKE on smaller length
scales explains why wake production is less efficient than shear production.

In the present study, we used the inflection point of the porosity profile as a geometrical
interface definition and the sphere diameter D as an interface length scale. Within this
reference frame, the maxima of production and dissipation terms are found at progressively
lower positions with increasing ReK . In v.Wenczowski & Manhart (2024), we proposed a
drag-based interface description, where the height μz represents the position of maximal
momentum absorption near the interface and σz quantifies the spread of the region in
which the momentum is absorbed. We used μz to define the interface position and a
consistent friction velocity was computed as uμ

τ =√
gx (h − μz). Together with σz , an

interface coordinate was defined as γ = (z − μz)/σz . In the following, we deviate from the
geometric interface definition and discuss the scaling behaviour of the shear production in
the drag-based framework.

Figure 19 shows that ∂〈u〉/∂z scales with uμ
τ /σz , which means that a momentum

absorption over a wider region reduces the shear intensity. Further, the figure shows
that Reynolds shear stress 〈u′w′〉s scales approximately, though not perfectly, with (uμ

τ )2.
Together, both observations explain the scaling behaviour of the shear production term
with (uμ

τ )3/σz , i.e. with quantities that are characteristic for the interface region. Only
the shear production profile of the transitionally rough case S-150 deviates strongly from
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Figure 19. Near-interface profiles of the shear intensity, the Reynolds shear stress and the resulting shear
production of TKE. The vertical coordinate γ considers the drag-based interface position at z = μz and uses
the spread σz of the drag distribution as a length scale. The friction velocity uμ

τ is consistent with the drag-based
interface at z = μz .

the profiles of the remaining hydraulically rough cases, which collapse reasonably well
when plotted against γ . In combination with the observed trend that the maximum values
of other processes of the TKE budget similarly follow the drag-based interface position
(figure 11), the similarity of the shear production distribution further underlines the
flow-dynamical relevance of this interface definition.

The similarity of the profiles suggests that the TKE shear production scales with
interface-related length and velocity scales. In outer scaling with uτ and h, this observation
explains why the near-interface TKE production peak flattens out with progressively larger
ReK . Far from the interface, however, the TKE budget terms of cases with similar Reτ

show a good similarity in outer scaling (see figure 9). This co-existence of two differently
scaling regions indicates that these regions hardly influence each other. The notion of
a certain, yet by far not complete, separation between a near-interface region and an
outer layer is supported by the observation of a layer at z/h ≈ 0.4, where dissipation and
production budget terms are in equilibrium, whereas transport terms hardly play a role.

Within the horizontal double-averaging framework, the pressure diffusion in bed-
normal direction only acts via the vertical velocity component w. In contrast to other
transport processes, pressure-based vertical transport propagates temporal fluctuations
or spatial variations of the velocity field into deeper regions of the sediment bed. The
interface also seems to be a source region of TKE, which is transported downwards by
pressure diffusion. However, we also observe downward-oriented pressure-based transport
of temporal velocity fluctuation from the free-flow region. The interface and free-flow
region are therefore not entirely decoupled. In contrast to that, pressure diffusion of
WKE only acts between the interface region and the sediment bed below. The exclusive
dependency on ReK is a further indication that the free-flow region is not involved. To
discuss the WKE budget terms further, we draw parallels to a simplified two-dimensional
scenario, which is sketched in Appendix C. On the surface of a permeable bed, a regular
pressure variation characterised by a single wavenumber kx is prescribed as a boundary
condition and drives the flow field in the porous medium. For this simplified scenario,
terms representing pressure-driven mechanisms can be evaluated analytically. The analytic
solution predicts that the amplitude of the downward oriented flux of 〈w̃ w̃〉 is largest at
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Figure 20. (a,b) Near-interface profiles of WKE redistribution terms and (c) of the pressure transport term.
The vertical coordinate γ considers the drag-based interface position at z = μz and uses the spread σz of the
drag distribution as a length scale. The friction velocity uμ

τ is consistent with the drag-based interface at z = μz .
The dimensionless velocity shift �u+ includes the effect of roughness.

the surface of the permeable bed, where the driving pressure field is applied as a boundary
condition. In agreement with that, our simulations show that the maximal amplitude of
the flux J∼s

pres = θ〈 p̃w̃〉 is found only slightly below the drag-based interface at z = μz .
Also, the analytical solution agrees with the observation that the pressure-diffusion
mechanism acts as a source for vertical velocity variations in deeper regions of the
sediment bed (figure 17). Beyond that, a pressure redistribution from the vertical velocity
variation to the bed-parallel velocity variation is predicted by the analytical solution, which
we also see in the simulations at greater depths (figure 15). These points indicate that the
behaviour of the budget terms in deeper regions represents a pressure pumping scenario,
which agrees with the observation of Shen et al. (2022) for irregular rough surfaces. In the
near-interface region, this pumping scenario is superposed by other processes, which are
not captured by the simplified scenario with an unresolved interface region. Among those
processes is the near-interface pressure redistribution from 〈̃u ũ〉 towards 〈̃v ṽ〉 and 〈w̃ w̃〉.
This finding emphasises the role of the topmost sediment layer, which was highlighted by
Karra et al. (2023).

The amount of WKE, which is transferred into 〈w̃ w̃〉 and transported downwards, is
neither proportional to u3

τ nor to u4
τ (figure 18), such that we assume that it is necessary to

include information about the roughness into a potential scaling relation. In figure 20,
the profiles of pressure redistribution and pressure transport terms are plotted against
the drag-based interface coordinate γ . For the normalisation, we use (uμ

τ )3�u+/σz ,
where uμ

τ represents the interface-adapted friction velocity and σz acts as an interfacial
length scale. The dimensionless parameter �u+ represents the shift of the dimensionless
velocity profile with respect to the smooth-wall flow case at comparable Reτ (figure 5).
Accordingly, the value of �u+ can be seen as a robust proxy for the cumulative impact of
the roughness. The similarities among the normalised profiles indicate that the amount of
WKE that is transferred into 〈w̃ w̃〉 and transported into deeper regions scales well with
(uμ

τ )3�u+/σz in both the transitionally rough and the fully rough regime. As shown in
figure 5, �u+ increases monotonically, but nonlinearly, with ReK .
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6. Conclusions
Based on previously validated data from pore-resolved direct numerical simulations, we
evaluated the double-averaged budgets of both turbulent kinetic energy (TKE) and wake
kinetic energy (WKE) for turbulent flows over mono-disperse random sphere packs. Eight
cases were analysed and act as sampling points within a parameter space, which is spanned
by friction Reynolds numbers Reτ ∈ [150, 500] and permeability Reynolds numbers
ReK ∈ [0.4, 2.8]. Varying ratios of flow depth to sphere diameter of h/D ∈ {3, 5, 10}
allowed an investigation of cross-combination between both Reynolds numbers. With
roughness Reynolds numbers of k+

s ∈ [20, 200], the simulated cases can be categorised
as transitionally rough or hydraulically fully rough. The underlying data sets have been
validated in v.Wenczowski & Manhart (2024), such that the present study could focus
exclusively on the budget evaluations, for which we achieve full closure with residuals of
less than approximately 4 % of the locally largest term in the budget. For a representative
case in the centre of our parameter space, the complete budgets of TKE and WKE
were exemplary shown and discussed in detail. Further, we evaluated scaling of different
processes with ReK and Reτ .

We demonstrated that viscous interactions between the flow and the solid sphere
surfaces can transfer kinetic energy of the double-averaged flow field into WKE, thus
contributing to an increased spatial variance of the time-averaged flow field. To our
knowledge, this transfer process has not yet been investigated in detail for turbulent flow
over porous media, whereas a similar mechanism based on the pressure drag is well
documented. For a transitionally rough case, half of the near-interface WKE production
results from viscous interactions at the sphere surfaces. With progressively higher
permeability and roughness, the relative influence of the viscous interaction decreases
compared with the pressure interaction. However, it remains non-negligible throughout the
parameter space of the present study. In contrast to atmospheric sciences, these findings
suggest that WKE production due to viscous surface interactions cannot be considered
negligible in the hyporheic region.

With increasing roughness and permeability, the form-induced production gains
importance and transfers progressively larger amounts of WKE into TKE. Despite this
trend, mainly shear production is responsible for a characteristic TKE production peak
in the near-interface region. Our data suggest that the near-interface production peak of
TKE scales with the friction velocity and an interface-related length scale, such as the
spread of the drag distribution. In the region far from the sediment bed, however, the
TKE budget terms of cases with similar Reτ showed a high degree of similarity under
outer-scaling with the friction velocity and the flow depth. Among different transport
processes of TKE and WKE, the pressure diffusion appears most effective in propagating
temporal fluctuations and spatial velocity variations into greater depth of the sediment
bed. Whereas the analysis of TKE fluxes indicates that temporal velocity variations can
also have their origin in the free flow region, WKE is transferred downwards from the
sediment–water interface. The amount of WKE which is propagated into deeper layers of
the porous medium via vertical velocity variations scales well with the friction velocity
and a roughness parameter. A redistribution of WKE takes place in greater depth and
resembles the behaviour observed in an idealised pressure pumping scenario.

Without doubt, the analysis of TKE budgets advances our mechanistic understanding
of processes within the hyporheic zone. Particularly for ReK = O(1), however, the WKE
budget deserves similar attention, as spatial variations in the time-averaged flow play a
decisive role in the dispersive transport of mass and momentum across the interface.
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Appendix A. Formulation of the dissipation term
The full-dissipation formulation of the budget equations for TKE and WKE builds on the
following notation of the Navier–Stokes equation:

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ

∂p

∂xi
+ ∂τi j

∂x j
+ gi , where τi j = 2νSi j = ν

(
∂ui

∂x j
+ ∂u j

∂xi

)
(A1)

In (A1), Si j represents the strain rate tensor. In the double-averaged momentum equation,
the shear rate tensor appears in the viscous transport term as well as by the viscous drag
term, which leads us to

∂〈uα〉
∂t

= 1
θ

∂

∂x j

⎛⎜⎜⎜⎝θ

〈
ν

(
∂uα

∂x j
+ ∂u j

∂xα

)〉
︸ ︷︷ ︸

visc.

− θ
〈
u′

αu′
j

〉
︸ ︷︷ ︸

turb.

− θ
〈̃
uα ũ j

〉︸ ︷︷ ︸
disp.

⎞⎟⎟⎟⎠
+ 1

ρ
BTα (−p)︸ ︷︷ ︸

f p,α

+ BTj

(
ν

(
∂uα

∂x j
+ ∂u j

∂xα

))
︸ ︷︷ ︸

fν,α

+〈gα〉 = 0. (A2)

The obtained (A2) is consistent with the formulation chosen by Lian et al. (2021). In the
budget equation of TKE and WKE, the full dissipation terms appear as

εfull = −ν

〈
∂u′

α

∂x j

∂u′
α

∂x j
+ ∂u′

α

∂x j

∂u′
j

∂xα

〉
= ε − ν

〈
∂u′

α

∂x j

∂u′
j

∂xα

〉
(A3)

and

ε∼
full = −ν

〈
∂ ũα

∂x j

∂ ũα

∂x j
+ ∂ ũα

∂x j

∂ ũ j

∂xα

〉
= ε∼ − ν

〈
∂ ũα

∂x j

∂ ũ j

∂xα

〉
. (A4)

By the example of case M-300, figure 21 shows that the differences between pseudo
dissipation and full dissipation are minor. For the TKE budget, this observation agrees with
the statement of Pope (2000). Additionally, the small differences indicate that a pseudo
dissipation formulation of the WKE budget is also justifiable.

Appendix B. Immersed boundary implementation
As pressure and viscous drag need to be evaluated, the method and accuracy of
the immersed boundary implementation in MGLET deserve attention. Instead of
feedback-forcing with a distributed forcing field (e.g. Goldstein, Handler & Sirovich
1993), MGLET relies on a direct-forcing method, which comprises three steps within each
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Figure 21. Minor differences between full dissipation and pseudo dissipation for both (a) TKE and (b) WKE.
Case M-300 was used as an example. The friction velocity uτ and the sphere diameter D are used for
normalisation.

Runge–Kutta substep (Peller 2010; Sakai & Manhart 2020): (i) in an interpolation step, a
stencil formulation is used to determine the velocities in cells intersected by solid surfaces.
Under consideration of the velocities in neighbouring fluid-filled cells, the velocity in an
intersected cell is computed such that the Dirichlet boundary condition at the position
of the solid surface is fulfilled; (ii) in the flux correction step, the mass fluxes through
the open faces of the intersected cell are computed. To ensure mass conservation at the
immersed boundary, the divergence of the velocity field within the intersected cell is
distributed among the neighbouring cells based on the open areas between the cells. That
ensures that the rotation of the velocity field remains unchanged; (iii) the third step is the
solution of a Poisson equation for the fluid-filled cells, which yields a pressure correction
required to obtain a divergence-free flow field. As the velocity in the fluid-filled cells is
updated, the fluxes through the faces of the intersected cell also change, such that steps
(ii) and (iii) are iterated until the whole flow field is divergence-free. Only then, the next
Runge-Kutta substep is entered.

We checked the solution of the pressure field around the immersed boundary for
laminar flow around a cylinder by comparing it with a highly resolved simulation with
a body-fitted finite volume method in OpenFOAM (Weller et al. 1998). Figure 22 shows
the pressure fields for various grid resolutions. The flow within the periodic domain is
driven by a volume force gx . Even at coarser resolutions, the immersed boundary yields
a pressure field, which appears free of artificial distortions and visually similar to the
solution on a body-fitted mesh. As the Poisson equation is only solved for the fluid-filled
cells, no pressure values are available for the intersected cells in the immersed boundary
case (best seen in figure 22c). The pressure drag of the cylinder, which we evaluate as
fp, IBM = 〈∂ p/∂x〉, converges with first-order accuracy, as shown by figure 23. The values
of f p,IBM at resolutions of 48 or more cells per diameter only deviate from the value
fp, BF of the body-fitted simulation by less than 0.7 %. The value fp, BF is obtained by
integrating (p n) over the cylinder surface, where n is the normal vector. Also, the value
of the viscous drag fν,IBM = μ〈∂/∂x j (∂u/∂x j )〉 agrees well with fν,BF, which we obtain
by computing the wall shear stress and integrating it over the cylinder surface of the
body-fitted simulation. The values of fν,IBM shown in figure 23(b) converge monotonically,
whereas a convergence order cannot be specified.
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Immersed boundary

method in MGLET

(Peller 2010)

Body-fitted mesh

in OpenFOAM

(Weller et al. 1998)

(a) 64 cells

per diameter

(b) 32 cells

per diameter

(d) Pressure f ield

from pisoFoam solver

(e) Body-fittted mesh

from blockMesh utility

(c) 16 cells

per diameter

Figure 22. Pressure fields for laminar flow around cylinder in a two-dimensional x-y-periodic domain. Results
from immersed boundary method at different resolutions are compared with computation on a body-fitted
mesh.
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Figure 23. Convergence study of pressure and viscous drag determined by the immersed boundary method.
The result from a simulation with a body-fitted mesh is given for comparison. The side length �x of the cubic
cells is normalised by the cylinder diameter D. The drag is normalised by (gx V f ), where gx is the driving
volume force and V f is the fluid volume. Accordingly, both normalised drags sum to unity.

Appendix C. Pressure pumping scenario
We consider the following two-dimensional scenario, which resembles the case discussed
by Elliott & Brooks (1997). The surface of a sediment bed with a permeability K and a
depth hb lies at z = 0. On the sediment bed surface, a pressure field is prescribed as

p(x, z = 0) = p̂ cos(kx x) = p̂
1
2

(
eikx x + e−ikx x), (C1)
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Figure 24. Qualitative visualisation of the analytical solution and normalised profiles of different terms. The
analytical solution in panel (a) shows contour lines of the pressure field. The black arrows represent the
flow from high pressure (red) to low pressure (blue). The budget terms in panel (b) represent the pressure
redistribution term and the pressure transport term in the budget for ∂/∂t〈w̃ w̃〉/2. The flux term in panel (c)
represents the pressure-driven downward flux of 〈w̃ w̃〉/2. The permeability K , the dynamic viscosity μ, the
amplitude p̂ and the wavenumber kx of the interfacial pressure variation are used for normalisation.

where p̂ > 0 is the amplitude of the regular cosine-shaped pressure variation and kx =
2π/λx is the angular wavenumber of the regular spatial pressure variation with wavelength
λx . For the interfacial boundary condition of (C1), an analytical solution for the pressure
and flow field within the porous medium can be found, which fulfils Laplace’s equation for
the pressure, while also wD(z = −hb) = 0 is maintained, which corresponds to the bottom
boundary of our simulation cases. Using solutions known in the context of Airy’s wave
theory in combination with Darcy’s law, we obtain

p(x, z) = p̂ cos(kx x)
cosh(kx (z + hb))

cosh(kx hb)
, (C2)

u D(x, z) = − K

μ

∂p

∂x
= K

μ
kx p̂ sin(kx x)

cosh(kx (z + hb))

cosh(kx hb)
, (C3)

wD(x, z) = − K

μ

∂p

∂z
= − K

μ
kx p̂ cos(kx x)

sinh(kx (z + hb))

cosh(kx hb)
. (C4)

In (C2), (C3) and (C4), cosh(x) = (ex + e−x )/2 and sinh(x) = (ex − e−x )/2 represent
the hyperbolic cosine and hyperbolic sine function, respectively. The subscript in uD
and wD identifies the velocity as Darcy velocities, which describe a divergence-free
pressure-driven potential flow within the porous medium.

The obtained analytical solution is represented in figure 24(a). We use the analytical
solution to compute values of terms, which occur in the budget for 〈w̃ w̃〉. While no
boundary terms occur in the idealised scenario, we obtain profiles for the redistribution
term (see (2.11)) and the pressure transport term (see (2.12)). Also, the value of the
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pressure-induced WKE flux J s
pres = 〈w̃ p̃〉 can be obtained, such that〈

p̃
∂w̃

∂z

〉
= −

(
K

μ
p̂2k2

x

)(
cosh(kx (z + hb))

cosh(kx hb)

)2 1
λx

∫ λx

0
(cos(kx x))2 dx (C5)

〈
∂w̃ p̃

∂z

〉
= −

(
K

μ
p̂2k2

x

)((
cosh(kx (z + hb))

cosh(kx hb)

)2

+
(

sinh(kx (z + hb))

cosh(kx hb)

)2
)

× 1
λx

∫ λx

0
(cos(kx x))2 dx (C6)

〈
w̃ p̃

〉= −
(

K

μ
p̂2kx

)
cosh(kx (z + hb))

cosh(kx hb)

sinh(kx (z + hb))

cosh(kx hb)

1
λx

∫ λx

0
(cos(kx x))2 dx .

(C7)

The expressions in (C5), (C6), (C7) assume that the domain length is a multiple of the
wavelength λx . Also, the equations show that the flux is expected to scale with K p̂2kx/μ,
while the budget terms are expected to scale with K p̂2k2

x/μ, if the sediment bed depth hb
does not have a major influence. As shown in figure 24, the normalised quantities approach
a zero value with increasing depth. The appearance of kx in the z-dependent terms implies
that this decay to zero happens closer to the sediment surface if the interfacial pressure
variation has a higher wavenumber.
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