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Abstract. Let (M , g, J ) be a closed Kähler manifold with negative sectional curvature
and complex dimension m := dimC M ≥ 2. In this article, we study the unitary frame
flow, that is, the restriction of the frame flow to the principal U(m)-bundle FCM of
unitary frames. We show that if m ≥ 6 is even and m �= 28, there exists λ(m) ∈ (0, 1)

such that if (M , g) has negative λ(m)-pinched holomorphic sectional curvature, then the
unitary frame flow is ergodic and mixing. The constants λ(m) satisfy λ(6) = 0.9330...,
limm→+∞ λ(m) = 11/12 = 0.9166..., and m �→ λ(m) is decreasing. This extends to the
even-dimensional case the results of Brin and Gromov [On the ergodicity of frame flows.
Invent. Math. 60(1) (1980), 1–7] who proved ergodicity of the unitary frame flow on
negatively curved compact Kähler manifolds of odd complex dimension.

Key words: partially hyperbolic flows, Kähler manifolds, ergodic theory, frame flows,
Pestov identity
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1. Introduction
1.1. Ergodicity and mixing of unitary frame flows. Let (M , g, J ) be a smooth closed
(compact, without boundary) Kähler manifold with negative sectional curvature and
complex dimension m ≥ 2. Let SM → M be the unit tangent bundle and let FCM → M
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be the principal U(m)-bundle of unitary bases over M. A point w ∈ FCM over x ∈ M

is the data of an orthonormal basis (v, e2, . . . , em) of (TxM , hx), where hx(·, ·) =
gx(·, ·) + igx(·, Jx ·) is the canonical Hermitian inner product on the fibres of T M .
Equivalently, we will see FCM as a principal U(m − 1)-bundle over SM by the projection
map p : FCM → SM defined as p(v, e2, . . . , em) = v.

The geodesic flow (ϕt )t∈R on SM is defined as ϕt (v) := γ̇v(t), where t �→ γv(t) ∈ M

is the geodesic generated by v ∈ SM . The unitary frame flow on FCM is then defined as

�t(v, e2, . . . , em) := (ϕt (v), Pγv(t) e2, . . . , Pγv(t) em),

where Pγv(t) : TxM → Tγv(t)M is the parallel transport along γv with respect to the
Levi-Civita connection.

Recall that a flow (�t )t∈R on a compact metric space M is said to be ergodic with
respect to an invariant probability measure μ if any flow-invariant function f ∈ L2(μ) is
constant. It is said to be mixing if for all f1, f2 ∈ L2(M, μ),

lim
t→+∞

∫
M

f1 · (f2 ◦ �t) dμ =
∫
M

f1 dμ ·
∫
M

f2 dμ.

The geodesic flow (ϕt )t∈R of any negatively curved compact Riemannian manifold is
well known to be ergodic [Ano67, Hop36] with respect to the Liouville measure on SM .
However, for extensions of the geodesic flow to principal bundles, ergodicity is a more
subtle question since these flows are only partially hyperbolic, not uniformly hyperbolic.
The unitary frame flow (�t )t∈R defined above is such an extension of (ϕt )t∈R to FCM;
it preserves a natural flow-invariant smooth measure ω induced by the Liouville measure
and the Haar measure on the group U(m − 1). The purpose of this paper is to investigate
ergodicity of (�t )t∈R with respect to ω. It was proved by Brin and Gromov [BG80] that
this flow is ergodic whenever m := dimC M is odd or m = 2 but the even-dimensional
case when m ≥ 4 has remained open so far. Our aim is to bring a first positive answer when
m ≥ 6 is even and m �= 28, under some pinching hypothesis for the sectional curvature.

Recall that the holomorphic sectional curvature of (M , g, J ) is defined as

H(X) := R(X, JX, JX, X)

for all unit vectors X ∈ T M , where R is the Riemann curvature tensor of (M , g). The
manifold is said to be holomorphically λ-pinched, for some λ ∈ (0, 1], if there exists a
constant C > 0 such that

−C ≤ H(X) ≤ −Cλ

for every unit vector X. The manifold is said to be strictly holomorphically λ-pinched if the
above inequalities are strict.

To state our main result, we introduce the function m �→ λ(m), defined for even numbers
m ≥ 6 by

λ(m) := 308m + 131
336m + 105

.

The function m �→ λ(m) is decreasing, λ(6) = 0.9330... and limm→+∞ λ(m) = 11/12 =
0.9166....
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We will prove that the following theorem holds.

THEOREM 1.1. Let (M , g, J ) be a closed connected Kähler manifold of complex
dimension m ≥ 2, with negative sectional curvature. The unitary frame flow (�t )t∈R
on FCM is ergodic and mixing with respect to the smooth measure ω if:
(i) the complex dimension m is odd or m = 2 [BG80];

(ii) the complex dimension m ≥ 6 is even, m �= 28, and the manifold is strictly holomor-
phically λ(m)-pinched.

We will actually show that the unitary frame flow is ergodic if and only if it is mixing.
We believe that ergodicity should hold without any pinching condition but it is clear
from the proofs that our method only works with a pinching condition close to 1. As a
comparison, Brin conjectured that the real frame flow should be ergodic on negatively
curved manifolds with 0.25-pinched real sectional curvature (see [Bri82, Conjecture 2.6]).
(In the literature, the word ‘frame flow’ usually refers to what we call here the ‘real frame
flow’, that is, the parallel transport of all bases regardless of any almost-complex structure.
We added the word ‘unitary’ in the Kähler case and ‘real’ in the Riemannian case to make
a distinction.)

In the case of constant holomorphic curvature H = −1 (that is, on compact quotients
�\CHm of the complex hyperbolic space), the ergodicity of unitary frame flow was shown
by Howe and Moore [HM79]. In non-constant holomorphic curvature, besides [BG80]
in odd complex dimensions and m = 2, Theorem 1.1 seems to be the first result proving
ergodicity of unitary frame flows on negatively curved Kähler manifolds of even complex
dimensions m ≥ 6.

As indicated in Theorem 1.1, it also seems that our technique does not apply in
complex dimensions m = 4 and m = 28. The former case is related to the fact that S7

is parallelizable, whereas the latter case is connected to an open problem in algebraic
topology which is to classify reductions of the structure group of the unitary frame bundle
FCS55 over the sphere S55. More precisely, we are unable to rule out the possible existence
of a special E6-structure on S55 and this eventually turns out to be problematic to run our
argument, see §3 where this is further discussed.

The structure of the argument, described in more detail in §1.2, is somewhat similar
to our previous article [CLMS21] proving ergodicity of real frame flows on negatively
curved compact Riemannian manifolds of even real dimensions with nearly 0.25-pinched
(real) sectional curvature, thus almost answering the long-standing [Bri82, Conjecture 2.6]
of Brin mentioned above. Nevertheless, the present article is not a mere adaptation of
[CLMS21] as we had to develop new techniques to take into account the specificities of
the Kähler setting, see Theorem 3.1, §3.2 or §5.3 for instance. Although it is meant to
be self-contained, we encourage the reader to consult [CLMS21, CLMS22, Lef23] as we
build here on the framework developed in these articles.

Prior to [CLMS21], the real frame flow was known to be ergodic on negatively curved
Riemannian manifolds of odd dimension �= 7 by Brin and Gromov [BG80, Bri75b], and
in even dimensions (and in dimension 7) for manifolds with a pinching close to 1 by Brin
and Karcher [BK84] and Burns and Pollicott [BP03].
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The real frame flows are historically important examples of partially hyperbolic flows
studied in the aftermath of Anosov’s seminal work on hyperbolic flows [Ano67] by Brin
and Pesin [BP74, Bri75b, Bri75a]. The field of partially hyperbolic dynamical systems is
now a well-established and active field of dynamical systems, see [HP06] for instance for
an introduction to this topic.

Finally, let us mention that, similarly to the real case where ergodicity of the real frame
flow was shown to determine the high-energy behaviour of eigenfunctions of Dirac-type
operators [JS07], the ergodicity of the unitary frame flow on Kähler manifolds determines
the high-energy behaviour of eigenfunctions of Dolbeault Laplacians and Spinc Dirac
operators [JSZ08].

1.2. Proof ideas. Let us summarize the argument which, as mentioned above, is similar
to that developed in [CLMS21] and consists of three steps.

(i) Hyperbolic dynamics. Following Brin’s ideas [Bri75b] (see also [Lef23] for a more
recent approach), the non-ergodicity of the unitary frame flow is described by means
of a subgroup H � U(m − 1) called the transitivity group, see §2.3. In particular,
there exists a smooth flow-invariant principal H-subbundle Q ⊂ FCM over SM ,
such that the restriction of (�t )t∈R to Q is ergodic.

(ii) Algebraic topology. The group H thus provides a reduction of the structure group
of FCM from U(m − 1) to H. In particular, restricting to a point x0 ∈ M and
identifying Sx0M � S2m−1, the unitary frame bundle FCS2m−1 → S2m−1 must
admit a reduction of its structure group to H. In §3, we classify such reductions
and show that for m �= 4, 28, H must act reducibly on Cm−1.

(iii) Riemannian geometry. Using the non-Abelian Livšic theorem of [CL22],
we then deduce that there exists a smooth flow-invariant complex vector bundle
V→ SM which is a subbundle V ⊂ π∗T M (where π : SM → M is the
projection) satisfying certain algebraic properties. In turn, using the twisted Pestov
identity (see Lemma 2.1), we rule out the existence of such an object under a certain
pinching condition λ > λ(m) in §§4 and 5.

1.3. Structure of the article. In §2, we recall standard facts from Riemannian and
complex geometry, and (partially) hyperbolic dynamical systems needed in the rest of the
article. In §3, we study the possible reductions of the structure group of the unitary frame
bundle over the sphere, and deduce the existence of non-zero flow-invariant projectors
whenever the frame flow is not ergodic. In §4, we derive, using the twisted Pestov identity,
an inequality that must be satisfied by such an invariant object. In §5, we complete the
proof of Theorem 1.1.

2. Preliminaries
2.1. Riemannian geometry of the unit tangent bundle. Let (M , g) be a closed connected
Riemannian manifold of real dimension n. Denote by

SM := {v ∈ T M | |v|g = 1}
the unit tangent bundle of (M , g) and by π : SM → M the projection map.
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2.1.1. Tangent bundle of SM . Let (ϕt )t∈R be the geodesic flow on SM with generating
vector field X ∈ C∞(SM , T (SM)). The tangent bundle T (SM) splits as

T (SM) = V ⊕ H ⊕ RX, (2.1)

where V := ker dπ is the vertical bundle, and H is the horizontal bundle defined by means
of the Levi-Civita connection, see [Pat99, Ch. 1]. The metric g induces a canonical metric
on T (SM) called the Sasaki metric such that the splitting equation (2.1) is orthogonal.

If f ∈ C∞(SM) is a smooth function, its gradient ∇f ∈ C∞(SM , T (SM)) computed
with respect to the Sasaki metric splits according to equation (2.1) as

∇f = ∇Vf + ∇Hf + (Xf )X,

where ∇Vf ∈ C∞(SM , V) is the vertical gradient and ∇Hf ∈ C∞(SM , H) is the
horizontal gradient. The L2-norm on SM is defined using the Liouville measure μ on SM

which is the Riemannian measure induced by the Sasaki metric. Note that the Liouville
measure is invariant by the geodesic flow.

The vertical Laplacian 	V is then defined as 	V := ∇∗
V
∇V, where ∇∗

V
denotes the

L2-adjoint. Equivalently, given f ∈ C∞(SM) and x ∈ M , denoting the Laplacian of the
restriction of gx to SxM by 	SxM ,

	Vf (v) = 	SxM(f |SxM)(v) for all v ∈ SxM . (2.2)

2.1.2. Fourier decomposition in the fibres. Since π : SM → M is a sphere bundle, any
smooth function f ∈ C∞(SM) can be decomposed into a sum of spherical harmonics on
the sphere SxM � Sn−1 above each point x ∈ M . In other words, we can write

f =
+∞∑
k=0

fk ,

where fk ∈ C∞(SM) is a spherical harmonic of degree k ≥ 0, that is, it satisfies the
eigenvalue equation

	Vfk = k(n + k − 2)fk ,

where 	V is the vertical Laplacian on each sphere SxM (for x ∈ M) introduced in
equation (2.2). The space of spherical harmonics of degree k over M defines a vector
bundle 
k → M which can be naturally identified with the vector bundle of trace-free
symmetric k-tensors Sk

0T M → M via the map (here we identify T ∗M and T M by using
the metric g)

π∗
k : Sk

0T M
∼−→ 
k , π∗

k f (v) := fx(v, . . . , v) for all v ∈ SxM . (2.3)

More generally, let (E, h) → M be a Hermitian (or Euclidean) vector bundle over M
equipped with a unitary (or orthogonal) connection ∇E , by which we mean that

Yh(e,f ) = h(∇E
Y e, f )+h(e, ∇E

Y f ) for all e, f ∈C∞(M , E), for all Y ∈C∞(M , T M).
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Denoting by (E, ∇E) := (π∗E, π∗∇E) the pullback of (E, ∇E) to SM , any section
f ∈ C∞(SM , E) can be uniquely decomposed into a sum of twisted spherical harmonics
over each point x ∈ M , that is,

f =
+∞∑
k=0

fk , (2.4)

where fk ∈ C∞(SM , E) is a spherical harmonic of degree k (with values in E). Note that,
with respect to an orthonormal basis (eα) on E defined locally over U ⊂ M , any section
f ∈ C∞(SM , E) can be written as f |U = ∑

α fα eα , where fα ∈ C∞(SM|U). Then, the
vertical Laplacian is defined as

	E
V
f =

∑
α

(	Vfα) eα ,

where 	V was introduced in equation (2.2). The sections fk ∈ C∞(SM , E) then satisfy
the eigenvalue equation

	E
V
fk = k(n + k − 2)fk .

Equivalently, fk is a smooth section of the bundle 
k ⊗ E over M and this can be identified
via equation (2.3) to an element Sk

0T M ⊗ E. We say that a section f ∈ C∞(SM , E) has
even (respectively odd) Fourier degree if the decomposition of equation (2.4) only involves
spherical harmonics of even (respectively odd) degree.

We define the operator X := ∇EX, where X is the geodesic vector field on SM . This is the
infinitesimal generator of the parallel transport of sections of E along geodesic flow-lines.
It has the mapping property

X : C∞(M , 
k ⊗ E) → C∞(M , 
k−1 ⊗ E) ⊕ C∞(M , 
k+1 ⊗ E), (2.5)

and therefore splits as a sum X := X− + X+, where each term corresponds to the two
summands in equation (2.5).

There is a natural L2 scalar product on sections f , f ′ ∈ C∞(SM , E) given by

〈f , f ′〉L2 :=
∫

SM

hπ(v)(f (v), f ′(v)) dμ,

where μ is the Liouville measure on SM , and h is the Hermitian (or Euclidean) metric
on E.

2.1.3. Twisted Pestov identity. This identity will play a fundamental role in our proof of
Theorem 1.1. In the non-twisted case, it was first discovered in some particular cases by
Mukhometov [Muk75, Muk81] and Amirov [Ami86], and then in its classical shape by
Pestov and Sharafutdinov [PS88, Sha94]. Eventually, it was reformulated and described in
a general coordinate-free way in [GPSU16, PSU15]. It takes the following form.

LEMMA 2.1. (Twisted Pestov identity) Let (M , g) be a closed n-dimensional Riemannian
manifold and let (E, h) be a Hermitian (or Euclidean) vector bundle over M equipped with
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unitary (or orthogonal) connection ∇E . The following identity holds for all k ∈ Z≥0 and
u ∈ C∞(M , 
k ⊗ E):

(n + k − 2)(n + 2k − 4)

n + k − 3
‖X−u‖2

L2 − k(n + 2k)

k + 1
‖X+u‖2

L2 + ‖Z(u)‖2
L2

= 〈R∇E
V

u, ∇E
V

u〉L2 + 〈FEu, ∇E
V

u〉L2 , (2.6)

where:
• Z is a first-order differential operator which we do not make explicit;
• the term involving R takes the form

〈R∇E
V

u, ∇E
V

u〉L2 =
∫

M

∫
SxM

∑
α

R(v, ∇Vuα , ∇Vuα , v) |dv||dx|,

where R is the Riemann curvature tensor, |dv| is the Lebesgue measure on the sphere
SxM (induced by gx) and |dx| is the Riemannian measure, u = ∑

α uα eα with
(eα)α∈I an orthonormal frame at the point x ∈ M of Ex;

• the term involving FE takes the form

〈FEu, ∇E
V

u〉L2 =
∫

M

∫
SxM

∑
α

RE(v, ∇Vuα , u, eα) |dv||dx|, (2.7)

where RE is the curvature tensor of E and we use the convention:

RE(X, Y , ω, η) := h(RE(X, Y )ω, η) for all X, Y ∈ T M for all ω, η ∈ E,

and h is the Euclidean (or Hermitian) metric on the bundle E.

The operator Z is not made explicit as we will only need to use ‖Z(u)‖2
L2 ≥ 0 in

equation (2.6). We refer to [GPSU16, Proposition 3.5] for a proof.

2.2. Complex geometry. We use [KN96, Ch. IX] as basic reference for complex
geometry.

2.2.1. Curvature tensors. Let (V , g) be a Euclidean vector space of dimension n. We
will usually identify V with its dual V ∗ and 
2V with the space of skew-symmetric
endomorphisms of V using the metric g. We denote by SpV the symmetric p-tensors on
V, S

p

0 V the trace-free symmetric tensors and 
pV the pth exterior power. The space V ⊗2

splits as

V ⊗2 = Rg ⊕ S2
0V ⊕ 
2V , (2.8)

where each summand is invariant under the O(n)-action, and S2V = Rg ⊕ S2
0V . The

space V ⊗2 � End V is equipped with the norm

〈u, v〉 = Tr(u�v), (2.9)

where � denotes the transpose operator and the decomposition given in equation (2.8) is
orthogonal with respect to the metric defined in equation (2.9) so that S2V and 
2V both
inherit the metric from equation (2.9).
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A curvature tensor R is an element R ∈ S2(
2V ) satisfying the Bianchi identity

R(X, Y , Z, W) + R(Z, X, Y , W) + R(Y , Z, X, W) = 0 for all X, Y , Z, W ∈ V .

The sectional curvature associated to R is the quadratic map R : S2V → R defined by

R(X, Y ) := R(X, Y , Y , X), X, Y ∈ V .

For every X, Y ∈ V , we can see R(X, Y , ·, ·) as a skew-symmetric endomorphism
R(X, Y ) as follows:

〈R(X, Y )Z, W 〉 := R(X, Y , Z, W). (2.10)

This skew-symmetric endomorphism extends as a derivation to skew-symmetric endo-
morphisms of the exterior, symmetric and tensor algebras of V, denoted respectively by
R
p(X, Y ), RSp(X, Y ) and RV ⊗p (X, Y ). In particular, it can be easily checked that

RV ⊗2(X, Y )u = [R(X, Y ), u] (2.11)

for every u ∈ V ⊗2 = End(V ). The action equation (2.11) is diagonal with respect to the
decomposition V ⊗2 = S2V ⊕ 
2V . For X, Y ∈ V and ω, η ∈ 
pV , we set

R
pV (X, Y , ω, η) := 〈R
pV (X, Y )ω, η〉,
where 
pV is equipped with the canonical inner product. We use the analogous notation
for SpV .

2.2.2. Curvature and pinching. If (M , g) is a Riemannian manifold, we introduce the
(4, 0)-tensor g � g by

g � g(X, Y , Z, W) := g(X, Z)g(Y , W) − g(X, W)g(Y , Z)

for all X, Y , Z, W ∈ T M . This is precisely the curvature tensor when (M , g) is the real
hyperbolic space Hn, whereas if (M , g, J ) is the complex hyperbolic space CHm, its
curvature tensor G takes the form:

4G(X, Y , Z, W) = g � g(X, Y , Z, W) + g � g(X, Y , JZ, JW)

+ 2g(X, JY )g(Z, JW), (2.12)

see [KN96, §7, Ch. IX]. Equivalently, equation (2.12) can be rewritten using equation
(2.10) as

4G(X, Y ) = X ∧ Y + JX ∧ JY − 2〈X, JY 〉J , (2.13)

where X ∧ Y is the skew-symmetric endomorphism of T M defined by (X ∧ Y )(Z) :=
g(X, Z)Y − g(Y , Z)X for all Z ∈ T M .

If (M , g, J ) is any Kähler manifold, the holomorphic sectional curvature is defined for
a unit vector X ∈ T M by

H(X) := R(X, JX) = R(X, JX, JX, X).
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It can be easily checked that the holomorphic curvature of the complex hyperbolic space
is −1, that is,

HCHm(X) = G(X, JX, JX, X) = −1

for |X| = 1. By analogy with the real case, we introduce the notion of pinching of the
holomorphic curvature (that we recall was also briefly introduced in the introduction).

Definition 2.2. (Pinched holomorphic sectional curvature) We say that a Kähler manifold
(M2m, g, J ) is negatively holomorphically λ-pinched (for some λ ∈ (0, 1]) if there exists
a constant C > 0 such that for all unit vectors X ∈ T M ,

−C ≤ H(X) ≤ −Cλ.

The manifold is said to be strictly negatively holomorphically λ-pinched if the above
inequalities are strict.

Similarly, one can talk about the real (or sectional) δ-pinching of the manifold (M2m, g)

by requiring the above inequalities to hold with λ being replaced by δ, and H(X) being
replaced by the sectional curvature R(X, Y ) (for all pairs of orthogonal unit vectors X, Y ∈
T M). There exist relations between holomorphic and real pinchings, see [Ber60a, Ber60b,
BG63].

As in the real case, it is a well-known result that negative holomorphic 1-pinching
implies that (M2m, g, J ) is holomorphically isometric to a compact quotient �\CHm,
where � is a discrete subgroup of Isom(CHm). In what follows, we will always assume
that (M2m, g, J ) is negatively λ-holomorphically pinched and, without loss of generality,
we rescale the metric such that C = 1.

The following lemma proved in [BG63, Proposition 4.2] will be useful.

LEMMA 2.3. (Bishop and Goldberg 1963) Assume (M2m, g, J ) is a closed Kähler
manifold which is negatively holomorphically λ-pinched. Consider unit vectors X, Y ∈
T M such that g(X, Y ) = 0 and g(X, JY ) = cos θ . Then,

−(1 − 3
4λ sin2 θ) ≤ R(X, Y ) ≤ − 1

4 (3(1 + cos2 θ)λ − 2). (2.14)

In particular,

−1 ≤ R(X, Y ) ≤ −3λ − 2
4

for all orthogonal unit vectors X, Y ∈ T M . If λ ≥ 2/3, then (M2m, g) is negatively
δ-pinched for the sectional curvature with δ = (3λ − 2)/4.

We now set

R = R0 + 1 + λ

2
G, (2.15)

where G is the curvature tensor defined in equation (2.12). The following holds.
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LEMMA 2.4. Assume that −1 ≤ H(X) ≤ −λ for all unit vectors X ∈ T M . Then, for all
unit vectors X, Y , Z, W ∈ T M ,

|R0(X, Y , Z, W)| ≤ 4
3 (1 − λ). (2.16)

More generally, for all unit vectors X, Y ∈ T M , and for all unit ω, η ∈ 
pT M or SpT M ,

|(R0)
pT M(X, Y , ω, η)|, |(R0)SpT M(X, Y , ω, η)| ≤ 4p

3
(1 − λ). (2.17)

Proof. Let X, Y be unit vectors such that g(X, Y ) = 0 and g(X, JY ) = cos θ . Then,

R0(X, Y ) = R(X, Y ) − 1 + λ

2
G(X, Y ) = R(X, Y ) + 1 + λ

2

(
1 − 3

4
sin2 θ

)
.

Inserting equation (2.14) in the previous equation,

−1 − λ

2

(
1 + 3

4
sin2 θ

)
≤ R0(X, Y ) ≤ 1 − λ

2

(
2 − 3

4
sin2 θ

)
.

In particular, the previous inequalities yield

|R0(X, Y )| ≤ 1 − λ.

Like in the proof of [BK78, Lemma 3.7], the previous inequality then implies equation
(2.16) by writing R0(X, Y , Z, W) as a sum of terms only involving two vectors in the
arguments. The general bound of equation (2.17) follows immediately from equation (2.16)
by diagonalizing over C the skew-symmetric endomorphism R0(X, Y ).

2.3. Isometric extensions of the geodesic flow. The unitary frame bundle π̂ : FCM →
SM is a principal U(m − 1)-bundle over SM . Given a ∈ U(m − 1), we denote by Ra :
FCM → FCM the fibrewise right-action by a. The unitary frame flow (�t )t∈R is an
extension of the geodesic flow to a principal bundle in the sense that it satisfies

π ◦ �t = ϕt ◦ π , Ra ◦ �t = �t ◦ Ra

for all t ∈ R, a ∈ U(m − 1). We will denote by XFCM its infinitesimal generator.
Initiated by the work of Brin [Bri75b, Bri75a], there is now an established theory

describing the ergodic components of such an extension flow (�t )t∈R. This is achieved
via the introduction of a closed subgroup H � U(m − 1), called the transitivity group, and
defined by means of dynamical holonomies. We refer to [Lef23] for a modern construction
of the transitivity group H. It has the following properties.

THEOREM 2.5. (Brin 1975, [Lef23]) The following hold:
(i) there exists a natural isomorphism

ev : kerL2(ω) XFCM
∼−→ L2(H\U(m − 1)); (2.18)

(ii) there exists a principal H-subbundle Q ⊂ FCM over SM which is invariant by
(�t )t∈R such that (�t |Q)t∈R is ergodic (with respect to the induced measure on Q).
In particular, the unitary frame flow is ergodic if and only if H = U(m − 1).
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We refer to [Lef23, Corollary 3.10] for further details. Obviously, by the first item, the
only possibility for kerL2 XFCM to be reduced to the constants is that H = U(m − 1). The
isomorphism in equation (2.18) is simply defined by taking an arbitrary point z� ∈ SM and
setting for f ∈ kerL2 XFCM ,

ev(f ) := f |FCMz�
.

Such a function turns out to be in L2(FCMz�) � L2(U(m − 1)) (it is not clear a priori that
such an evaluation map is well defined, so its definition is also part of Theorem 2.5) and is
invariant by the action of H so it yields an element in L2(H\U(m − 1)). The second item
in Theorem 2.5 is already a strong topological constraint on the bundle FCM and is called
a reduction of the structure group, see §3 where this is further discussed.

We introduce N→ SM , the normal bundle, to be the Euclidean bundle over SM

defined for v ∈ SxM as

N(v) := Span(v, Jv)⊥,

where ⊥ denotes the orthogonal complement with respect to the Euclidean metric gx . Note
that N is equipped with the complex structure J. Observe that

π∗T M = N⊕ Rv ⊕ RJv, (2.19)

so that N can be seen as a subbundle of the pullback bundle π∗T M . Parallel transport
with respect to the Levi-Civita connection ∇LC of sections ofN along geodesic flow-lines
is well defined and generated by a first-order differential operator

X := (π∗∇LC)X : C∞(SM , N) → C∞(SM , N),

which is formally skew-adjoint and commutes with J.
Other than describing the ergodic components of the unitary frame flow, the group

H allows to construct smooth flow-invariant objects. In what follows, we denote by Vect
the category of finite-dimensional Euclidean vector spaces and call o : Vect → Vect an
operation on this category if o is obtained as a finite composition of the following
basic operations: tensor powers V ⊗m of a vector space V, symmetric powers SmV and
exterior powers 
mV . Obviously, for any such operation o, o(N) → SM is a well-defined
Euclidean bundle still equipped with an induced generator X (for simplicity, we do not
introduce any new notation for the generator on this bundle).

The following theorem holds.

THEOREM 2.6. (Non-Abelian Livšic theorem, [CL22, Theorem 3.5]) Let

o : Vect → Vect

be any operation on Vect. Then, there exists an isomorphism

ker X ∩ C∞(SM , o(N))
∼−→ {f ∈ o(R2(m−1)) | hf = f for all h ∈ H }.

The isomorphism map is nothing but evaluation at an arbitrary point of SM (similarly
to Theorem 2.5(i)). In other words, flow-invariant smooth sections of tensor products
of the normal bundle correspond exactly to algebraic H-invariant objects on R2(m−1).
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Theorem 2.6 will allow us to generate smooth flow-invariant sections when the unitary
frame flow is not ergodic. For instance, if one can show that H � U(m − 1 − p) ×
U(p) � U(m − 1), that is, H acts reducibly on R2(m−1) � Cm−1, then H fixes an orthog-
onal projector π ∈ S2R2(m−1) onto a complex (that is, J-invariant) space V ⊂ R2(m−1). In
turn, Theorem 2.6 implies that there exists a flow-invariant complex vector bundleV ⊂ N
which is the same as the existence of an orthogonal projector πV ∈ C∞(SM , S2N) ∩
ker X commuting with J.

3. Topological reductions and flow-invariant sections
In what follows, we assume that the complex dimension of M is even and larger than 2,
and we write it as dimC M = m =: 2p + 2, with p ≥ 1.

3.1. Topological reductions. By Theorem 2.5, if the unitary frame flow on FCM is not
ergodic, its transitivity group is a strict subgroup H � U(2p + 1) and there exists a strict
principal H-subbundle Q ⊂ FCM . This is known as a reduction of the structure group of
FCM to H. Since FCM admits a reduction to H, the same holds true for the restriction of
the unitary frame bundle to any sphere Sx0M for x0 ∈ M . In turn, as Sx0M � S4p+3, this
implies that the unitary frame bundle FCS4p+3 admits a reduction of its structure group
from U(2p + 1) to H.

Note that U(2p + 2) and SU(2p + 2) act transitively on S4p+3 with isotropy groups
U(2p + 1) and SU(2p + 1), respectively, so we can write

S4p+3 = SU(2p + 2)/SU(2p + 1) = U(2p + 2)/U(2p + 1).

The unitary frame bundle FCS4p+3 can be identified with U(2p + 2). Thus, the subgroup
SU(2p + 2) of U(2p + 2), seen as a principal SU(2p + 1)-bundle FC,SUS4p+3 over
S4p+3, is a reduction of FCS4p+3 to SU(2p + 1).

The aim of this section is to examine the possible further reductions of FC,SUS4p+3.
Note that as far as the spheres S4p+1 are concerned (for p ≥ 1), it was proved in
[Leo71] that their special unitary frame bundle FC,SUS4p+1 → S4p+1 does not admit any
reduction.

THEOREM 3.1. Let p ≥ 1. Assume that the principal SU(2p + 1)-bundle FC,SUS4p+3

over S4p+3 admits a reduction of its structure group to a strict connected subgroup
H0 � SU(2p + 1). Then one of the following holds:

(i) either the representation of H0 on C2p+1 is reducible;
(ii) or p = 1, and H0 is contained in SO(3) � SU(3);

(iii) or p = 13, and H0 is contained in E6 � SU(27).

Proof. Let Ĥ0 be a maximal strict subgroup of SU(2p + 1) containing H0. Clearly
the principal bundle P0 = SU(2p + 2) → S4p+3 also reduces to Ĥ0. Then [Leo71,
Theorem 3] applied (with the notation of [Leo71]) to G2p+1 := SU(2p + 1) shows that
Ĥ0 is a simple Lie group.
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If Ĥ0 is a classical simple Lie group and p ≥ 2, by [ČC06, Theorem 2.1, (D) and (E)]
applied to G = Ĥ0, we immediately obtain that the representation of Ĥ0 (and thus also
that of H) on C2p+1 is reducible. The above result does not hold for p = 1 (when the
corresponding sphere S7 is parallelizable), but it is easy to check that the only simple
Lie group strictly contained in SU(3) whose representation on C3 is irreducible is SO(3),
embedded in SU(3) via the complexification of its standard representation on R3. This
corresponds to case (ii) of Theorem 3.1.

It remains to study the case where Ĥ0 is (a finite quotient of) one of the five exceptional
simple compact Lie groups.

First of all, it suffices to look at complex irreducible representations of the exceptional
Lie groups of odd dimension 2p + 1. Moreover, by [ČC06, Proposition 3.1], writing
4p + 3 = dim Ĥ0 + k + 1 for some integer k, there must exist at least k vector fields on
the sphere S4p+3, so the Radon–Hurwitz number ρ(n) (defined by the fact that ρ(n) − 1
is the maximal number of linearly independent vector fields on Sn−1) satisfies

ρ(4p + 4) ≥ 4p + 3 − dim Ĥ0.

For all p ≥ 3, we have ρ(4p + 4) ≤ 2p + 3. Since no exceptional Lie group has an
irreducible complex representation of dimension less than 7, it follows that 2p + 1 has
to be the dimension of an irreducible complex representation of an exceptional Lie group
Ĥ0, with

7 ≤ 2p + 1 ≤ dim Ĥ0 + 1. (3.1)

Denoting by ĥ the Lie algebra of Ĥ0, it turns out that there is no complex odd-dimensional
irreducible representation of an exceptional Lie group Ĥ0 satisfying equation (3.1) except
in the following two cases.

Case 1. ĥ = e6, dim ĥ = 78. There are two 27-dimensional irreducible representations
of e6 satisfying equation (3.1). This case corresponds to a (theoretical) reduction of the
structure group SU(27) of FC,SUS55 to a subgroup of E6 (case (iii) of Theorem 3.1).

Case 2. ĥ = g2, dim ĥ = 14. The only complex odd-dimensional irreducible represen-
tation of g2 satisfying equation (3.1) is the complexification of the real 7-dimensional
representation ρ7 : G2 → SO(7) given by the embedding G2 ⊂ SO(7) for p = 3.
However, we will show that FC,SUS15 does not admit any reduction to G2.

Indeed, if such a reduction PG2 exists, then the tangent bundle T S15 is isomorphic to
the direct sum R ⊕ (C ⊗ F7), where F7 := PG2 ×ρ7 R

7 is a real vector bundle of rank 7
over S15.

Now, to each rank k real vector bundle E over S15, one can associate an element α(E)

in the homotopy group π14(SO(k)), namely, the homotopy class of its clutching function
at the equator S14 ↪→ S15. For k < l, let fk,l : SO(k) → SO(l) be the standard embedding
and denote by gk,l : π14(SO(k)) → π14(SO(l)) the group morphisms induced by fk,l in
homotopy. If E and F have ranks k and l, respectively, clearly

α(E ⊕ F) = gk,k+l(α(E)) + gl,k+l(α(F )).
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In our situation, since C ⊗ F7 is topologically isomorphic to F7 ⊕ F7, T S15 is isomorphic
to R ⊕ F7 ⊕ F7, so we can write

α(T S15) = g14,15(α(F7 ⊕ F7))

= g14,15(2g7,14(α(F7))) = 2g14,15(g7,14(α(F7))) = 0,

because π14(SO(15)) = Z2. This is a contradiction since the tangent bundle of S15 is
non-trivial. Therefore, the case ĥ = g2 is impossible, thus finishing the proof.

Combined with Theorems 2.5 and 2.6, Theorem 3.1 yields the following corollary.

COROLLARY 3.2. Let (M , g, J ) be a closed connected Kähler manifold with even
complex dimension m and non-ergodic unitary frame flow. Then, if m �= 4, 28, there
exists a finite cover (M̂ , ĝ, Ĵ ) of (M , g, J ) and a flow-invariant orthogonal projector
πV ∈ C∞(SM̂ , S2N) onto a complex subbundleV ⊂ N of rank 1 ≤ r ≤ m/2 − 1 of even
Fourier degree.

Note that by equation (2.19), N is a subbundle of the pullback bundle π∗T M so it
makes sense to talk about the decomposition of a section f ∈ C∞(SM , S2N) as a sum of
spherical harmonics as in equation (2.4). The fact that V is complex is equivalent to the
commutation relation [πV, J ] = 0.

Proof of Corollary 3.2. Up to replacing M by a finite covering if necessary, we can assume
that the transitivity group H � U(m − 1) is connected, see [CLMS21, Lemma 3.3]. In
what follows, to keep notation simple, we will still denote this finite cover by M.

The representation ρ : H → U(m − 1) induces a representation det ρ : H → U(1)

whose image is either U(1) or {1} (by connectedness of H). Following an argument of
Brin and Gromov [BG80], we first show that (det ρ)(H) = U(1).

Indeed, assume that (det ρ)(H) = {1}. As (det ρ)(H) is the transitivity group of the
frame flow of the complex line bundle 
m−1,0N, we get by the non-Abelian Livšic
Theorem 2.6 that 
m−1,0N is trivial. Now, using that


m−1,0N→ 
m,0π∗T M , ω �→ ω ∧ (v − iJ v)

is an isomorphism, the triviality of 
m−1,0N implies that

c1(

m,0π∗T M) = π∗c1(


m,0T M) = 0 ∈ H 2(SM , Z).

However, it can be easily checked using the Gysin sequence [BT82, Proposition 14.33]
(and the fact that the dimension of M is n ≥ 4) that

π∗ : H 2(M , Z) → H 2(SM , Z)

is injective, so c1(

m,0T M) = 0 = −c1(KM), where KM = 
m,0T ∗M is the canonical

line bundle. This is impossible since (M , g) has negative sectional curvature. Hence,
(det ρ)(H) = U(1).

We will now show that the H-representation ρ on Cm−1 is reducible. Assume for a
contradiction that ρ is irreducible. By the Schur lemma, the center C(H) of H is contained
in the set U(1) of scalar matrices. However, the fact that (det ρ)(H) = U(1) shows that H
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is not semi-simple, so its centre is at least one-dimensional. We thus obtain the equality
C(H) = U(1), that is, H contains the set of scalar matrices.

We now fix an arbitrary point x0 ∈ M , restrict the unitary frame bundle FCM to a
bundle over Sx0M and identify Sx0M � S4p+3. As the structure group of FCM reduces to
H by Theorem 2.5, we obtain by restriction to any fibre of SM → M that the structure
group of FCS4p+3 also reduces to H, that is, there exists a principal H-bundle PH ⊂
FCS4p+3. We claim that FCS4p+3 admits a further reduction to H0 := H ∩ SU(2p + 1).
Indeed, the principal SU(2p + 1)-bundle FC,SUS4p+3 is already a reduction of FCS4p+3

to SU(2p + 1) and for every v ∈ S4p+3, the intersection of the fibres FC,SUS4p+3(v) ∩
PH (v) is non-empty: if u ∈ PH (v) ⊂ FCS4p+3(v), there exists z ∈ U(1) such that uz ∈
FC,SUS4p+3(v), and since U(1) ⊂ H (that is, H contains scalar matrices), we also have
uz ∈ PH (v), so uz ∈ FC,SUS4p+3(v) ∩ PH (v). It is then straightforward to check that
FC,SUS4p+3 ∩ PH is a principal bundle over S4p+3 with group H0.

As m �= 4, 28 by assumption, we can apply case (i) of Theorem 3.1 to deduce that
H0 � SU(m − 1) acts reducibly on Cm−1. However, as H was assumed to act irreducibly
on Cm−1, H0 = H ∩ SU(m − 1) also acts irreducibly on Cm−1 and this is a contradiction.
Therefore, H acts reducibly on Cm−1.

We can then conclude the following using the non-Abelian Livšic Theorem 2.6: by
the remark after Theorem 2.6, there exists a smooth (non-zero) flow-invariant orthogonal
projector πV′ ∈ C∞(SM , S2N) onto a flow-invariant smooth complex bundle V′ ⊂ N.
Following [CLMS21, Lemma 3.10], one can find a (possibly different) smooth non-zero
flow-invariant orthogonal projector πV ∈ C∞(SM , S2N) of even Fourier degree onto a
flow-invariant smooth complex bundleV ⊂ N of complex rank 1 ≤ r ≤ m/2 − 1.

3.2. Complex normal twisted conformal Killing tensors. If m �= 4, 28 and the unitary
frame flow is not ergodic, we know by Corollary 3.2 that there exists a flow-invariant
orthogonal projector πV ∈ C∞(SM , S2N) of even Fourier degree and commuting with J.
The flow-invariance condition is equivalent to XπV = 0. A crucial step then is to show
that such a flow-invariant section has finite Fourier degree, that is, the decomposition of
equation (2.4) only involves a finite number of terms. This is the content of the following
lemma.

LEMMA 3.3. For any operation o : Vect → Vect, a section f ∈ C∞(SM , o(N)) satisfy-
ing Xf = 0 has finite Fourier degree.

The proof of Lemma 3.3 uses the fact that the sectional curvature of (M , g) is negative
and relies on the twisted Pestov identity in equation (2.6). Lemma 3.3 was first obtained
in [GPSU16, Theorem 4.1], see also [CLMS22, Corollary 4.2] for a short self-contained
proof. As a consequence, we can decompose

πV = uk + uk−2 + · · · + u2 + u0, (3.2)

where k ≥ 0 is even, ui ∈ C∞(M , 
i ⊗ S2T M) and uk �= 0. Moreover, since J has degree
0 (that is, it does not depend on the velocity variable v), the commutation relation
[πV, J ] = 0 yields [ui , J ] = 0 for all i ∈ {0, . . . , k}.
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We now set

u := uk ∈ C∞(M , 
k ⊗ S2T M),

the spherical harmonic of highest degree in the decomposition of equation (3.2) of πV.
Using the mapping property in equation (2.5) of X, the equation XπV = 0 then gives
X+u = 0. Such a section u is called a twisted conformal Killing tensor in the literature.
Moreover, since ιvπV := πVv = 0 (becauseV is orthogonal to the span of v and Jv) and
ιv has the mapping properties

ιv : 
k ⊗ S2T M → (
k−1 ⊗ T M) ⊕ (
k+1 ⊗ T M),

we obtain that ιvu ∈ C∞(M , 
k−1 ⊗ T M) is of degree k − 1. The same argument also
shows that ιJvu ∈ C∞(M , 
k−1 ⊗ T M).

Using similarly that ιvιvπV = 〈πVv, v〉 = 0, a refined algebraic argument allows
to show that ιvιvu = ιJvιJvu ∈ C∞(M , 
k−2) is of degree k − 2, see [CLMS21,
Lemma 4.2] for a proof. Furthermore, we have ιvιJvu = ιJvιvu = 0, using that u is
symmetric and J is skew-symmetric, and [u, J ] = 0.

A section u ∈ C∞(M , 
k ⊗ S2T M) satisfying

X+u = 0, ιvu has degree k − 1, ιvιvu has degree k − 2, (3.3)

was called in [CLMS21, §4.1] a normal twisted conformal Killing tensor. (The adjective
normal refers to the conditions on ιvu and ιvιvu.) Here, the section u satisfies the extra
condition [u, J ] = 0. It is thus worth introducing the following terminology.

Definition 3.4. A section u ∈ C∞(M , 
k ⊗ S2T M) satisfying equation (3.3) and
[u, J ] = 0 is called a complex normal twisted conformal Killing tensor.

By Corollary 3.2 and the discussion above, we obtain the following corollary.

COROLLARY 3.5. Let (M , g, J ) be a closed connected Kähler manifold with even
complex dimension m and non-ergodic unitary frame flow. Then, if m �= 4, 28, there exists
a non-zero complex normal twisted conformal Killing tensor u of even degree k ≥ 2.

Proof. Corollary 3.5 follows immediately from Corollary 3.2 and the above discussion,
except for the point that k ≥ 2 which we now prove. If k = 0, then πV = u = u0 is of
degree 0 and thus πV can be identified with a section in C∞(M , S2T M). However, we
must also have ιvπV = 0 for all v ∈ T M by equation (3.3), so πV = 0, which contradicts
the non-vanishing of πV.

The aim of the remaining sections is now to rule out the existence of such a non-zero
complex twisted conformal Killing tensor of even degree k ≥ 2 under a holomorphic
pinching condition λ > λ(m).

4. Bounding the terms in the twisted Pestov identity
Throughout this section, (M , g, J ) is a negatively curved compact Kähler manifold of real
dimension n = 2m with λ-pinched holomorphic curvature, and u ∈ C∞(M , 
k ⊗ S2T M)

is a complex normal twisted conformal Killing tensor of even degree k ≥ 2.
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Our aim is to bound from above the terms appearing on the right-hand side of the
twisted Pestov identity in equation (2.6), namely, the first term 〈R∇S2T M

V
u, ∇S2T M

V
u〉L2

and the second term 〈FS2T Mu, ∇S2T M
V

u〉L2 , and to bound from below the term ‖X−u‖2
L2

on the left-hand side. Sometimes, it will be convenient to consider general vector bundles
E → M rather than the specific bundle S2T M .

To simplify notation, we will drop the volume forms in the integrands. The reader
should keep in mind that integrals over spheres SxM (for x ∈ M) are always computed
with respect to the round measure |dv| on the sphere, while integrals over M are computed
with respect to the Riemannian measure |dx| induced by the metric g. Moreover, we will
often work with expressions involving a local orthonormal basis of a vector bundle E,
usually denoted by (eα)α; for the simplicity of notation, when we write sums over α, we
will mean that the sums are pointwise (and the basis might change from point to point).
We also introduce the following constants:

αn,k := k(n + k − 2), βn,k := (k(n + k − 2)(n − 1))1/2,

γn,k := (n + k − 2)(n + 2k − 4)k

(n + k − 3)(n + 2k − 2)(k − 1)
, δn,k := n + 2k − 4.

4.1. Bounding the first term in the right-hand side. Let E → M be a Euclidean vector
bundle equipped with an orthogonal connection ∇E . Then, the following lemma holds.

LEMMA 4.1. For all f ∈ C∞(M , 
k ⊗ E),

〈R∇E
V

f , ∇E
V

f 〉L2 ≤ −3λ − 2
4

αn,k‖f ‖2
L2 − 3λ

4

∫
M

∫
SxM

∑
α

〈v, J∇Vfα〉2,

where we write locally f = ∑
α fα eα for (eα)α∈I a local orthonormal basis of E.

Proof. Using the upper bound in equation (2.14) on the sectional curvature from
Lemma 2.3,

〈R∇E
V

f , ∇E
V

f 〉L2 =
∫

M

∫
SxM

∑
α

R(v, ∇E
V

fα , ∇E
V

fα , v)

≤ −3λ − 2
4

‖∇E
V

f ‖2
L2 − 3λ

4

∫
M

∫
SxM

∑
α

〈v, J∇Vfα〉2

= −3λ − 2
4

〈	E
V
f , f 〉L2 − 3λ

4

∫
M

∫
SxM

∑
α

〈v, J∇Vfα〉2

= −3λ − 2
4

k(n + k − 2)‖f ‖2
L2 − 3λ

4

∫
M

∫
SxM

∑
α

〈v, J∇Vfα〉2.

Since αn,k := k(n + k − 2), this completes the proof.

4.2. Bounding the second term on the right-hand side. Assume now that E = 
pT M

or E = SpT M for some p ≥ 1. Using the decomposition of the Riemannian curvature
tensor R = R0 + (1 + λ)/2G in equation (2.15), we can write the second term on the
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right-hand side of the Pestov identity in equation (2.6) as

〈FEf , ∇E
V

f 〉L2 = 〈FE
0 f , ∇E

V
f 〉L2 + 1 + λ

2
〈GEf , ∇E

V
f 〉L2 . (4.1)

More precisely, FE
0 and GE are defined from R0 and G, respectively, by extending the

latter to E as in §2.2.1 and using equation (2.7). We now study separately the two terms in
equation (4.1). We start with the following lemma.

LEMMA 4.2. If E = 
pT M or E = SpT M , then for all f ∈ C∞(M , 
k ⊗ E),

|〈FE
0 f , ∇E

V
f 〉L2 | ≤ 4p

3
(1 − λ)βn,k‖f ‖2

L2 .

Lemma 4.2 will be applied with E = T M and E = S2T M .

Proof. The proof is the same as [CLMS21, Lemma 4.5] by inserting the bound in equation
(2.17).

We now study the second term in equation (4.1).

LEMMA 4.3. Let f ∈ C∞(M , 
k ⊗ E) such that ιvf , ιJvf are of degree k − 1. Then, the
following hold:
(i) if E = T M ,

〈GT Mf , ∇T M
V

f 〉L2 = 1
4
δn,k(‖ιvf ‖2

L2 + ‖ιJvf ‖2
L2) + 1

2‖f ‖2
L2

+ 1
2

∫
M

∫
SxM

∑
α

〈v, J∇Vfα〉〈f , J eα〉;

(ii) if E = S2T M and [J , f ] = 0,

〈GS2T Mf , ∇S2T M
V

f 〉L2 = δn,k‖ιvf ‖2
L2 + ‖f ‖2

L2 .

Proof. We start with the proof for E = T M . Note that this equality is an integral equality
over SM . We will actually prove the integral equality over SxM for every x ∈ M , and then
it suffices to integrate over x ∈ M to obtain the result. Recall that G is defined in equation
(2.12). Using the expressions in equations (2.7) and (2.13),

4
∑
α

G(v, ∇Vfα , f , eα) =
∑
α

(〈(v ∧ ∇Vfα)f , eα〉

+ 〈(J v ∧ J∇Vfα)f , eα〉 + 2〈v, J∇Vfα〉〈f , J eα〉). (4.2)

The integral over SxM of the first term on the right-hand side can be immediately
computed using [CLMS21, Lemma 4.6] (in the 
p case with p = 1; we warn the reader
that, in the notation of [CLMS21], G denotes the curvature tensor of the real hyperbolic
space, that is, G = g � g. The term

∑
α

∫
SxM

〈v, f 〉〈∇Vfα , eα〉 − 〈v, eα〉〈∇Vfα , f 〉 thus
corresponds exactly to the term computed in [CLMS21, Equation after (4.14)] with p = 1)
since ιvf is of degree k − 1 and yields
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∫
SxM

∑
α

〈(v ∧ ∇Vfα)f , eα〉 =
∫

SxM

( ∑
α

〈v, f 〉〈∇Vfα , eα〉 − 〈v, eα〉〈∇Vfα , f 〉
)

= (n + 2k − 4)‖ιvf ‖2
L2(SxM)

+ ‖f ‖2
L2(SxM)

,

where we use the notation

‖f ‖2
L2(SxM)

=
∫

SxM

gx(f (v), f (v)), ‖ιvf ‖2
L2(SxM)

=
∫

SxM

|(ιvf )(v)|2.

We claim that the integral over SxM of the second term in equation (4.2) is equal to
(n + 2k − 4)‖ιJvf ‖2

L2(SxM)
+ ‖f ‖2

L2(SxM)
. Indeed, observe first that for each α,

〈(J v ∧ J∇Vfα)f , eα〉 = 〈(v ∧ ∇Vfα)Jf , J eα〉.
Now, since fα = 〈f , eα〉 = 〈Jf , J eα〉, changing the basis (eα) by (J eα), we see that
the second term in equation (4.2) is the same as the first term with f replaced by Jf .
Using ιvJf = −ιJvf , the result now follows from the previous computation. Inserting the
previous equality in equation (4.2) gives the desired result (after integration over M) since
δn,k = n + 2k − 4.

We now deal with the case E = S2T M . As before, using the expressions in equations
(2.7), (2.11) and (2.13),

4
∑
α

GS2T M(v, ∇Vfα , f , eα) =
∑
α

(〈[(v ∧ ∇Vfα), f ], eα〉

+ 〈[(J v∧J∇Vfα), f ], eα〉 − 2〈v, J∇Vfα〉.〈[J , f ], eα〉),
(4.3)

where (eα)α is a local orthonormal basis of S2T M . The integral over SxM of the first term
can be computed using [CLMS21, Lemma 4.6] (case of symmetric 2-tensors) since ιvf is
of degree k − 1 and yields∫

SxM

∑
α

〈[(v ∧ ∇Vfα), f ], eα〉 = 2(n + 2k − 4)‖ιvf ‖2
L2(SxM)

+ 2‖f ‖2
L2(SxM)

. (4.4)

The third term vanishes in equation (4.3) since [J , f ] = 0 by assumption.
We now claim that the integral over SxM of the second term in equation (4.3) is also

equal to 2(n + 2k − 4)‖ιvf ‖2
L2(SxM)

+ 2‖f ‖2
L2(SxM)

, which will finish the proof. Indeed,
observe that JX ∧ JY = −J ◦ (X ∧ Y ) ◦ J for any X, Y ∈ T M , and therefore using also
[J , f ] = 0, we get for each α,

[Jv ∧ J∇Vfα , f ] = −J ◦ [v ∧ ∇Vfα , f ] ◦ J .

Consequently, we can rewrite

〈[Jv ∧ J∇Vfα , f ], eα〉 = 〈−J ◦ [v ∧ ∇Vfα , f ] ◦ J , eα〉 = 〈[v ∧ ∇Vfα , f ], −J ◦ eα ◦J 〉.
Note that (−J ◦ eα ◦J )α is also an orthonormal basis of S2T M , and since f = −J ◦ f ◦
J = − ∑

α fαJ ◦ eα ◦J ,

fα = 〈f , eα〉 = 〈f , −J ◦ eα ◦J 〉.
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The claim thus follows from equation (4.4).

4.3. Bounding from below the left-hand side. Going back to the case E = S2T M , we
now bound from below the term ‖X−u‖2

L2 appearing on the left-hand side of the twisted
Pestov identity in equation (2.6).

LEMMA 4.4. Let u ∈ C∞(M , 
k ⊗ S2T M) be a complex normal twisted conformal
Killing tensor in the sense of Definition 3.4. Then, for k > 0, the following inequality holds:

(k − 1)(n + 2k − 2)

k
‖X−u‖2

L2

≥
(

3λ − 2
2

αn,k−1 − 8(1 − λ)

3
βn,k−1 − 29(1 + λ)

48
− 1 + λ

4
δn,k−1

)
‖ιvu‖2

L2 .

The proof of Lemma 4.4 requires an additional step and is postponed to the end of this
paragraph.

LEMMA 4.5. Let f ∈ C∞(M , 
k ⊗ T M) such that ιvf , ιJvf are of degree k − 1, and
assume λ ∈ [2/3, 1]. Then, the following holds:

k(n + 2k)

k + 1
‖X+f ‖2

L2 ≥
(

3λ − 2
4

αn,k − 4(1 − λ)

3
βn,k − 29(1 + λ)

96

)
‖f ‖2

L2

− 1 + λ

8
δn,k(‖ιvf ‖2

L2 + ‖ιJvf ‖2
L2).

Proof. Using the twisted Pestov identity in equation (2.6) with E = T M , and applying
the bounds provided by Lemmas 4.1, 4.2 and 4.3,

k(n + 2k)

k + 1
‖X+f ‖2

L2

≥ −〈R∇T M
V

f , ∇T M
V

f 〉L2 − 〈FT Mf , ∇T M
V

f 〉L2

≥ 3λ − 2
4

αn,k‖f ‖2
L2 + 3λ

4

∫
M

∫
SxM

∑
α

〈v, J∇Vfα〉2 − 4(1 − λ)

3
βn,k‖f ‖2

L2

− 1 + λ

2

(
1
4
δn,k(‖ιvf ‖2

L2 + ‖ιJvf ‖2
L2) + 1

2
‖f ‖2

L2

+ 1
2

∫
M

∫
SxM

∑
α

|〈v, J∇Vfα〉||〈f , J eα〉|
)

.

We now use the estimate
1
2

∫
M

∫
SxM

∑
α

〈v, J∇Vfα〉〈f , J eα〉 ≤ 1
4ε

‖f ‖2
L2 + ε

4

∫
M

∫
SxM

∑
α

〈v, J∇Vfα〉2,

which holds for all ε > 0, to deduce that

k(n + 2k)

k + 1
‖X+f ‖2

L2 ≥ 3λ − 2
4

αn,k‖f ‖2
L2 + 3λ

4

∫
M

∫
SxM

∑
α

〈v, J∇Vfα〉2

− 4(1 − λ)

3
βn,k‖f ‖2

L2
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− 1 + λ

2

(
1
4
δn,k(‖ιvf ‖2

L2 + ‖ιJvf ‖2
L2) +

(
1
2

+ 1
4ε

)
‖f ‖2

L2

+ ε

4

∫
M

∫
SxM

∑
α

〈v, J∇Vfα〉2
)

.

Taking the specific value ε := 6λ/(1 + λ), we see that the coefficients in front of the
term

∫
M

∑
α

∫
SxM

〈v, J∇Vfα〉2 cancel out. Moreover, since by assumption λ ∈ [2/3, 1],
we have the lower bound ε = 6λ/(1 + λ) ≥ 12/5 and this eventually yields the result.

Remark 4.6. In the last paragraph of the proof of Lemma 4.5, one could decide to keep
using the exact value ε = 6λ/(1 + λ) in the estimate. However, the benefit of doing so
would be minor in the final result so, for simplicity, we decided to use the trivial lower
bound ε ≥ 12/5.

We can now prove Lemma 4.4.

Proof of Lemma 4.4. Using the equality X(ιvu) = ιvXu = ιvX−u and the fact that
ιJvX−u = J (ιvX−u),

‖X−u‖2
L2 ≥ ‖ιvX−u‖2

L2 + ‖ιJvX−u‖2
L2 = 2‖ιvX−u‖2

L2

= 2‖X(ιvu)‖2
L2 = 2‖X+(ιvu)‖2

L2 + 2‖X−(ιvu)‖2
L2

≥ 2‖X+(ιvu)‖2
L2 ,

where in the second line, we used that ιvu and ιJvu are of degree k − 1 and the mapping
property in equation (2.5). By assumption, u is a complex normal twisted conformal
Killing tensor, so this implies that ιvιJvu = ιJvιvu = 0 and ιvιvu = ιJvιJvu is of degree
k − 2. As a consequence, we can apply Lemma 4.5 with f := ιvu (which is of degree
k − 1). Using the fact that ιJvf = 0, together with the fact that

‖ιvf ‖2
L2 = ‖ιvιvu‖2

L2 ≤ ‖ιvu‖2
L2 ,

we obtain the announced result.

5. Pinching estimates
In this section, we prove our main result, Theorem 1.1.

5.1. Computations. We start with the following lemma.

LEMMA 5.1. If u ∈ C∞(M , 
k ⊗ S2T M) is a complex normal twisted conformal Killing
tensor, the following inequality holds:

Bn,k(λ)‖u‖2
L2 + Cn,k(λ)‖ιvu‖2

L2 ≤ 0, (5.1)

where

Bn,k(λ) := 3λ − 2
4

αn,k − 8
3
(1 − λ)βn,k − 1 + λ

2
(5.2)
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and

Cn,k(λ) : = γn,k

(
3λ − 2

2
αn,k−1 − 8(1 − λ)

3
βn,k−1 − 29(1 + λ)

48
− 1 + λ

4
δn,k−1

)
− 1 + λ

2
δn,k . (5.3)

Proof. Straightforward computation, inserting in the twisted Pestov identity in equation
(2.6) the lower bound for ‖X−u‖2 (Lemma 4.4), the upper bounds for the terms on the
right-hand side (Lemmas 4.1 and 4.2 applied to f = u, and Lemma 4.3(ii)), as well as
using the facts that X+u = 0 (by the definition in equation (3.3)) and ‖Z(u)‖2

L2 ≥ 0.

Recall that n = 2m is the real dimension of M. The end of the proof of Theorem 1.1 then
consists in finding a pinching condition λ > λ(m) for which the left-hand side of equation
(5.1) is non-negative, thus forcing the complex normal twisted conformal Killing tensor
u to be zero, which then contradicts Corollary 3.2. More precisely, we have the following
lemma.

LEMMA 5.2. If the inequalities

Bn,k(λ) > 0 and Bn,k(λ) + 1
2Cn,k(λ) > 0 (5.4)

hold, then equation (5.1) implies u ≡ 0.

Proof. If Cn,k(λ) ≥ 0, this is immediate from the first part of equation (5.4). If
Cn,k(λ) < 0, using that ‖u‖2

L2 ≥ ‖ιvu‖2
L2 + ‖ιJvu‖2

L2 = 2‖ιvu‖2
L2 , we get by equation

(5.1):

(Bn,k(λ) + 1
2Cn,k(λ))‖u‖2

L2 ≤ 0,

so u ≡ 0 by the second part of equation (5.4).

Moreover, the following lemma holds.

LEMMA 5.3. Assume n ≥ 4 and k ≥ 2. One has Bn,k > 0 ⇐⇒ λ > λ1(n, k), where

λ1(n, k) := 6αn,k + 32βn,k + 6
9αn,k + 32βn,k − 6

,

and Bn,k + 1
2Cn,k > 0 ⇐⇒ λ > λ2(n, k), where

λ2(n, k) := 6αn,k + 32βn,k + 6 + γn,k(6αn,k−1 + 16βn,k−1 + 29/8 + 3/2δn,k−1) + 3δn,k

9αn,k + 32βn,k − 6 + γn,k(9αn,k−1 + 16βn,k−1 − 29/8 − 3/2δn,k−1) − 3δn,k
.

Proof. Follows immediately from equations (5.2) and (5.3), as the expressions of Bn,k and
Cn,k are affine functions in λ.

Before proving Theorem 1.1, we need to study the variations of the sequences
k �→ λ1(n, k) and k �→ λ2(n, k).

LEMMA 5.4. For n ≥ 4, the sequences k �→ λ1(n, k) and k �→ λ2(n, k) are decreasing
for k ≥ 2.
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Proof. It is straightforward to check that both sequences are positive for k ≥ 2 and n ≥ 4.
Using that αn,k = β2

n,k/(n − 1), we can write

1
λ1(n, k)

− 1 = 3αn,k − 12
6αn,k + 32βn,k + 6

= 3 − 12/αn,k

6 + 32(n − 1)/βn,k + 6/αn,k
.

Since αn,k and βn,k are positive and increasing in k, the numerator in the right-hand
term is increasing in k, whereas the denominator is positive and decreasing in k. Thus,
k �→ λ1(n, k) is decreasing.

Consider now the expression λ2(n, k). Again it is easy to check that λ2(n, k) > 0 for
k ≥ 2 and n ≥ 4, and

1
λ2(n, k)

− 1

= 3αn,k − 12 + γn,k(3αn,k−1 − 29/4 − 3δn,k−1) − 6δn,k

6αn,k + 32βn,k + 6 + γn,k(6αn,k−1 + 16βn,k−1 + 29/8 + 3/2δn,k−1) + 3δn,k

= 3 − 12/αn,k + γn,k/αn,k(3αn,k−1 − 29/4 − 3δn,k−1) − 6δn,k/αn,k

6 + 32βn,k/αn,k + 6/αn,k + γn,k/αn,k(6αn,k−1 + 16βn,k−1 + 29/8 + 3/2δn,k−1) + 3δn,k/αn,k
.

Let us denote this last expression by En,k/Fn,k . We claim that En,k is increasing in k and
Fn,k is decreasing in k.

Using the fact that γn,k/αn,k = (n + 2k − 4)/((n + 2k − 2)αn,k−1),

En,k = 3 + 3
γn,k

αn,k
αn,k−1 − 12 + 6δn,k

αn,k
− 29

4
γn,k

αn,k
− 3

γn,k

αn,k
δn,k−1

= 6
n + 2k − 3
n + 2k − 2

− 6
n + 2k − 2

αn,k
− 29

4
γn,k

αn,k
− 3

γn,k

αn,k
δn,k−1

= 6 − 6
n + 2k − 2

− 6
k

− 6
n + k − 2

− 3
γn,k

αn,k

(
(n + 2k − 4) + 5

12

)
.

To express Fn,k , we remark that

γn,k

αn,k
βn,k−1 = n + 2k − 4

n + 2k − 2
βn,k−1

αn,k−1
= sn,k−1

n + 2k − 2
,

where we denote sn,k := (n + 2k − 2)βn,k/αn,k . A straightforward computation similar to
that for En,k shows that

Fn,k = 6 + 3
n + 2k − 2

αn,k
+ 6

n + 2k − 4
n + 2k − 2

+ 3
2

γn,k

αn,k

(
(n + 2k − 4) + 5

12

)
+ 32

sn,k

n + 2k − 2
+ 16

sn,k−1

n + 2k − 2
.

To prove our claim, it is thus enough to remark that

(n + 2k − 4)
γn,k

αn,k
= (n + 2k − 4)2

(k − 1)(n + k − 3)(n + 2k − 2)

= n − 4
n − 2

· 1
k − 1

+ n

n − 2
· 1
n + k − 3

+ 4
(k − 1)(n + k − 3)(n + 2k − 2)
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is decreasing in k (and thus γn,k/αn,k is decreasing in k too);

sn,k = (n + 2k − 2)

√
(n − 1)k(n + k − 2)

k(n + k − 2)
=

√
(n − 1)

(
4 + (n − 2)2

k(n + k − 2)

)
is decreasing in k, and

n + 2k − 2
αn,k

+ 2
n + 2k − 4
n + 2k − 2

= 2 + n + 2k − 2
k(n + k − 2)

− 4
n + 2k − 2

= 2 + (n − 2)2

k(n + k − 2)(n + 2k − 2)

is decreasing in k.

5.2. Proof of ergodicity. We can now conclude the proof of the ergodicity statement in
Theorem 1.1.

Proof of ergodicity in Theorem 1.1. We need to show that under the pinching condition
λ > λ(m) of Theorem 1.1, the unitary frame flow is ergodic. If the frame flow is not
ergodic, and m �= 4, 28, we know by Corollary 3.2 that there exists a flow-invariant
orthogonal projector πV ∈ C∞(SM , S2N) of even Fourier degree onto a complex vector
bundleV ⊂ N of rank 1 ≤ r ≤ m/2 − 1.

By Corollary 3.5 and Lemma 5.1, this yields the existence of a non-zero complex normal
twisted conformal Killing tensor u ∈ C∞(M , 
k ⊗ S2T ∗M) of even degree k ≥ 2 which
satisfies the inequality in equation (5.1). We distinguish two cases.

Case 1. If k ≥ 4, Lemmas 5.3 and 5.4 show that if the holomorphic pinching λ

satisfies λ > max(λ1(n, 4), λ2(n, 4)), we then have Bn,k > 0 and Bn,k + 1
2Cn,k > 0 which

by Lemma 5.2 implies that u ≡ 0.
Case 2. If k = 2, let πV be the projector given by Corollary 3.2, whose complex rank r

satisfies 1 ≤ r ≤ m/2 − 1. By [CLMS21, Lemma 4.2], one can then show that πV must
be of the form

πV = 2r

n
1T M + u,

with u ∈ C∞(M , 
2 ⊗ S2T ∗M) as above. In particular, since 1T M is parallel, this implies
Xu = 0, that is, X±u = 0. Moreover, a quick algebraic computation (see [CLMS21, p.
38]) gives

‖ιvu‖2
L2 = 2r

n(n − 2r)
‖u‖2

L2 , (5.5)

and since 2r ≤ m − 2 = n/2 − 2,

‖ιvu‖2
L2 ≤ n − 4

n(n + 4)
‖u‖2

L2 . (5.6)

Applying the twisted Pestov identity in equation (2.6) to u for k = 2, using that X±u = 0
(the bound of Lemma 4.4 is therefore useless), and the upper bounds of Lemmas 4.1, 4.2
and 4.3, we find that

https://doi.org/10.1017/etds.2023.72 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.72


On the ergodicity of unitary frame flows on Kähler manifolds 2167

(
3λ − 2

2
n − 8(1 − λ)

3
(2n(n − 1))1/2 − 1 + λ

2

)
‖u‖2

L2 − 1 + λ

2
n‖ιvu‖2

L2 ≤ 0.

Inserting equation (5.5) in the previous inequality, then(
3λ − 2

2
n − 8(1 − λ)

3
(2n(n − 1))1/2 − 1 + λ

2
2n

n + 4

)
‖u‖2

L2 ≤ 0.

This shows that u ≡ 0 when k = 2, as soon as the holomorphic pinching λ satisfies

λ ≥ λ3(n) := 6n + 16(2n(n − 1))1/2 + 6n/(n + 4)

9n + 16(2n(n − 1))1/2 − 6n/(n + 4)
.

Summarizing the two cases k ≥ 4 and k = 2, we have obtained that the the unitary
frame flow is ergodic as soon as the holomorphic pinching λ satisfies

λ > max(λ1(2m, 4), λ2(2m, 4), λ3(2m)) =: λ0(m).

Using a formal computing tool, it can be easily checked that λ0(m) = λ2(2m) for m ≥ 6.
However, for practical reasons, we will give a bound which is slightly less accurate, but
much easier to compute.

Namely, using the obvious inequality ((n + 2)(n − 1))1/2 < n + 1/2, we can write

1
λ1(n, 4)

− 1 = 3αn,4 − 12
6αn,4 + 32βn,4 + 6

= 12(n + 2) − 12
24(n + 2) + 32(4(n + 2)(n − 1))1/2 + 6

>
12n + 12
88n + 86

= 6n + 6
44n + 43

.

Similarly, since 16
√

2 < 68/3,

1
λ3(n)

− 1 = 3n − 12n/(n + 4)

6n + 16(2n(n − 1))1/2 + 6n/(n + 4)
= 3 − 12/(n + 4)

6 + 16(2(n − 1)/n)1/2 + 6/(n + 4)

>
3 − 12/(n + 4)

6 + 68/3 + 6/(n + 4)
= 9n

86n + 362
.

Finally, using the calculation in the proof of Lemma 5.4 together with the obvious
inequalities 64/

√
3 < 37 and

4
3

> γn,4 = 4(n + 2)(n + 4)

3(n + 1)(n + 6)
>

4n

3(n + 1)
for all n ≥ 3,

we obtain
1

λ2(n, 4)
− 1 = 3αn,4 − 12 + γn,4(3αn,3 − 29/4 − 3δn,3) − 6δn,4

6αn,4 + 32βn,4 + 6 + γn,4(6αn,3 + 16βn,3 + 29/8 + 3/2δn,3) + 3δn,4

>
12(n + 2) − 12 + 4n/3(n + 1)(9(n + 1) − 29/4 − 3(n + 2)) − 6(n + 4)

24(n + 2) + 64(n + 1/2) + 6 + 4/3(18(n + 1) + 16
√

3n + 29/8 + 3/2(n + 2)) + 3(n + 4)

>
14n − 77/3

(117 + 64/
√

3)n + 126 + 29/6
>

14n − 26
154n + 131

.

It is straightforward to check that

6n + 6
44n + 43

>
9n

86n + 362
>

14n − 26
154n + 131

for all n ≥ 0,
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which implies 1/λ0(m) − 1 > (14n − 26)/(154n + 131), so eventually

λ0(m) <
154n + 131
168n + 105

= 308m + 131
336m + 105

=: λ(m),

thus proving the ergodicity statement of Theorem 1.1.

We conclude this paragraph by a remark on the remaining cases m = 4, 28.

Remark 5.5. In the case m = 28, one can check (using the LiE program for instance)
that E6 fixes an element of S3C27. As we saw in the proof of Corollary 3.2, the transitivity
group is never semi-simple as it always contains the scalar matrices: Theorem 3.1 therefore
does not exclude that subgroups of E6 × U(1) � U(27) occur as transitivity groups in
complex dimension m = 28. In this case, the transitivity group would fix an orthogonal
projector of End(S3C27). Nevertheless, the argument given below involving the twisted
Pestov identity does not carry over to End(S3C27) because this vector space involves
tensorial powers of too high degree. In other words, the argument would result in a pinching
condition λ > λ(28) for some λ(28) > 1 so the statement would be empty. A similar
remark holds for the case m = 4. This should be compared with [CLMS21, Theorem 3.8]
where we only deal with elements of o(N) with o ∈ {id, S2, 
2, 
3}. The worse pinching
estimate in [CLMS21, Theorem 1.2] comes from the exterior power 
3N.

5.3. Proof of mixing. It now remains to show the mixing property of Theorem 1.1, which
is implied by the following result.

PROPOSITION 5.6. The unitary frame flow on a negatively curved Kähler manifold (M , g)

is ergodic if and only if it is mixing.

Proof. Mixing implies ergodicity so it remains to show that ergodicity implies mixing in
this setting. By [Lef23, Proof of Lemma 3.7], it suffices to show that the equation

XFCMu = iλu, λ ∈ R \ {0}, u ∈ L2(FCM) (5.7)

implies that u ≡ 0. Let u ∈ L2(FCM) be a solution to equation (5.7). Since FCM → SM

is a principal U(m − 1)-bundle over SM , the space L2(FCM) splits as

L2(FCM) =
+∞⊕
k=0

L2(SM , �k), (5.8)

where �k is the vector bundle over SM whose fibre over v ∈ SM is the eigenspace of
the Casimir operator of U(m − 1) acting on functions of the fibre (FCM)v , associated
to the eigenvalue μk ≥ 0 (and μk �= μj for k �= j ). Since XFCM preserves the splitting
equation (5.8) (because the frame flow (�t )t∈R commutes with the right-action of
U(m − 1)), we deduce that for each k ≥ 0, the component uk ∈ L2(SM , �k) of some
function u = ∑

k uk ∈ ⊕+∞
k=0L

2(SM , �k) satisfying equation (5.7) must satisfy

XFCMuk = iλuk .
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Since �0 = C is trivial over SM , the equation XFCMu0 = iλu0 reads Xu0 = iλu0,
where u0 ∈ L2(SM) and X is the geodesic vector field. However, the geodesic flow is
mixing as (M , g) has negative curvature, so we deduce that u0 = 0.

For k �= 0, [Lef23, Proposition 2.7] based on microlocal analysis shows that
uk ∈ L2(SM , �k) is actually smooth, that is, uk ∈ C∞(SM , �k). Moreover,
XFCM |uk|2 = 0, so using the ergodicity assumption on the frame flow (�t )t∈R, we get that
|uk| is constant on FCM . If uk �= 0, then up to rescaling, we obtain that uk : FCM → U(1)

is a well-defined smooth map. To simplify the notation, we will drop the index k from now
on and simply write u instead of uk , and μ instead of μk .

Denote by P the unit circle bundle of the complex line bundle 
m−1,0N→ SM . Now,
observe that there is a natural surjective bundle map ψ : FCM → P given by

ψ : (v, e2, . . . , em) �→
(

v,
1√
2
(e2 −iJ e2) ∧ . . . ∧ 1√

2
(em −iJ em)

)
.

There is a natural unitary parallel transport along geodesic flow-lines of sections of

m−1,0N, so there is a flow (�P

t )t∈R on P with generator XP extending the geodesic
flow (ϕt )t∈R as in §2.3, that is, writing π : P → SM for the projection map, one has
π ◦ �P

t = ϕt ◦ π for all t ∈ R. Moreover, ψ intertwines the frame flow on FCM and the
flow on P, that is

�P
t ◦ ψ = ψ ◦ �t . (5.9)

We claim that the following holds.

CLAIM 5.7. There exists a smooth function w ∈ C∞(P ) such that u = ψ∗w and XP w =
iλw.

Note that, once we know that u = ψ∗w for some function w, the relation XP w = iλw

is immediate using equation (5.9) and XFCMu = iλu.

Proof. We show that u = ψ∗w for some w ∈ C∞(P ). We fix an arbitrary point v0 ∈ SM

and w0 ∈ (FCM)v0 . There is then a commutative diagram

(FCM)v0

ψ ��

∼=
��

Pv0

∼=
��

U(m − 1)
det �� U(1)

(5.10)

where the downward arrows are isometries. Hence, by restricting u to the fibre (FCM)v0

and identifying isometrically (FCM)v0 � U(m − 1), we get a map F := u(v0) such that

F : FCM � U(m − 1) → U(1),

and 	U(m−1)F = μF with μ �= 0 since u takes values in �k for k �= 0. In other words,
F is an eigenfunction of the Casimir operator on U(m − 1) associated to the eigenvalue
μ �= 0 and of constant modulus.

Now, recall that U(m − 1) is a split group extension of the circle group U(1) by the
special unitary group SU(m − 1), that is, det : U(m − 1) → U(1) is a fibre bundle with
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fibres isometric to SU(m − 1). We claim that such a function F must then necessarily be
constant on the SU(m − 1)-fibres of the bundle U(m − 1), that is, F = det∗f for some
f ∈ C∞(U(1)), μ = j2 for some integer j ≥ 0 and f is an eigenfunction of 	U(1) with
eigenvalue j2.

Indeed, since U(m − 1) = SU(m − 1) ×Zm−1 U(1), there is a Zm−1-bundle map p :
SU(m − 1) × U(1) → U(m − 1), p(w, z) = wz, and this map is locally a Rieman-
nian isometry. (The Zm−1-action on SU(m − 1) × U(1) is simply given by (w, z) �→
(wω−k , ωkz) for (w, z) ∈ SU(m − 1) × U(1), k ∈ {0, . . . , m − 2} and ω := e2iπ/(m−1).)
As a consequence, we get that 	SU(m−1)×U(1)p

∗F = μ p∗F . As SU(m − 1) × U(1) is a
Riemannian product, its eigenfunctions are obtained as sums of products of eigenfunctions
on each factor and the eigenvalues are sums of the eigenvalues on each factor. Hence, we
can write

p∗F(w, z) =
N∑

j=1

aj (w)bj (z) =
N∑

j=1

aj (w)zkj

for some finite number N > 0, where (w, z) ∈ SU(m − 1) × U(1), kj ∈ Z and kj1 �= kj2

for j1 �= j2, aj �= 0 is an eigenfunction of 	SU(m−1) associated to the eigenvalue λj and
λj + k2

j = μ > 0. However, we also know that p∗F has constant modulus (equal to 1).
Freezing an arbitrary point w ∈ SU(m − 1) and looking at |p∗F |2(w, z) as a function
of z ∈ S1, we easily get that N must be equal to 1, that is, p∗F(w, z) = a(w)zk for some
k ∈ Z. Hence, a ∈ C∞(SU(m − 1)) satisfies |a| = 1 and 	SU(m−1)a = λa for some λ ≥ 0
(with k2 + λ = μ).

We claim that λ = 0, that is, a is constant, and F is thus constant along the
SU(m − 1)-fibres. Indeed, if λ �= 0, using

0 = 	SU(m−1)|a|2 = (	SU(m−1)a)a + a(	SU(m−1)a) − 2∇a · ∇a

= 2λ − 2|∇a|2,

we get that |∇a| is a non-zero constant. Since SU(m − 1) is simply connected, the map
a lifts to the universal cover of U(1), so there exists a map θ : SU(m − 1) → R such that
a = eiθ . At a critical point of θ , we thus get ∇a = 0, which is absurd.

As a consequence, λ = 0 and this shows that F is constant along SU(m − 1)-fibres of
the bundle map det : U(m − 1) → U(1). In turn, as equation (5.10) commutes, we get that
u is constant on the preimages of the map ψ : FCM → P so u = ψ∗w for some smooth
w ∈ C∞(P ).

We thus have just shown that if there is a non-zero solution to equation (5.7), then there
is also a non-zero solution to

XP w = iλw, λ ∈ R \ {0}, w ∈ C∞(P ). (5.11)

Hence, it remains to show that equation (5.11) has no non-zero solutions, and we will
actually show it for w ∈ L2(P ).
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Assume that w ∈ L2(P ) is a solution to equation (5.11). As above, using that P is a
principal U(1)-bundle, we can decompose

L2(P ) =
⊕
k∈Z

L2(SM , Lk), (5.12)

where the sections of Lk are given by functions f ∈ L2(P ) satisfying Vf = ikf , where V
is the infinitesimal generator of the U(1)-action on the fibres of P. Observe that Lk = L⊗k

for k ∈ Z where L := L1 and L1 � 
m−1,0N. Now, using the splitting equation (5.12),
the equation XP w = iλw reads XP wk = iλwk for all k ∈ Z, where wk ∈ L2(SM , Lk)

(similarly to equation (5.8) and the subsequent argument). By [Lef23, Proposition 2.7], we
also have that wk is smooth, that is, wk ∈ C∞(SM , Lk). Moreover, X|wk|2 = 0, where
|wk|2(v) := ∫

Pv
|wk(v, u)|2 du and u ∈ Pv is the variable in the U(1)-fibre, so |wk| is

constant by ergodicity of the flow (ϕt )t∈R. If k = 0, L0 = C is trivial over SM so the
mixing of the geodesic flow (ϕt )t∈R then implies that w0 ≡ 0. If k �= 0 and wk �= 0,
then we obtain a smooth nowhere vanishing section wk ∈ C∞(SM , Lk), so Lk is trivial.
However, in turn, this implies that the first Chern class of L1 = 
m−1,0N is torsion. From
the proof of Corollary 3.2, we obtain that the canonical bundle KM of M has torsion first
Chern class so the image of c1(KM) in H 2(M , R) vanishes. This is a contradiction since
this image is equal to [−1/(2π)ρ] where ρ is the Ricci form of M, which is not exact since
M has negative definite Ricci tensor. Hence, any solution to equation (5.11) is trivial, and
thus, so is any solution to equation (5.7). This finishes the proof of Proposition 5.6.
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