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Abstract

We study in a general graph-theoretic formulation a long-range percolation model
introduced by Lamperti [27]. For various underlying digraphs, we discuss connections
between this model and random exchange processes. We clarify, for all n ∈N, under
which conditions the lattices Nn

0 and Z
n are essentially covered in this model. Moreover,

for all n ≥ 2, we establish that it is impossible to cover the directed n-ary tree in our
model.
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1. Introduction

Percolation theory is a fascinating area of modern probability, which tries to understand
under which conditions infinite components arise in random structures. In the present article,
we study the properties of a Boolean percolation model on directed graphs and relate this
model to a classical Markov chain known as the random exchange process.

Let G = (V, E) be a directed graph with an infinite, countable vertex set V . For all vertices
x, y ∈ V , we let d(x, y) ∈N0 ∪ {∞} denote the distance from x to y in G. Note that d : V × V →
N0 ∪ {∞} is an extended quasimetric on V , which is symmetric if and only if the graph G is
undirected, i.e. (x, y) ∈ E implies (y, x) ∈ E for all x, y ∈ V . Moreover, for all x ∈ V and n ∈N0,
we let Bn(x) denote the open ball of radius n starting from x, which is the set of all vertices
y ∈ V with d(x, y) < n. So, B0(x) = ∅ and B1(x) = {x} for all x ∈ V .

Let μ = (μn)n∈N0 be a probability vector and let (Yx)x∈V be a family of independent and
identically distributed (i.i.d.) random variables satisfying P[Yx = n] = μn for all n ≥ 0. In our
percolation model, for all x ∈ V , the random variable Yx represents the coverage radius of the
vertex x. Hence the set of covered, respectively uncovered, vertices are

Vμ := Vμ(G) :=
⋃
x∈V

BYx (x) ⊆ V, Vc
μ := Vc

μ(G) := V \ Vμ(G).

Note that if μ0 + μ1 = 1, this Boolean percolation model reduces to Bernoulli percolation on
the sites of the graph G, as every vertex may only cover itself.
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756 G. BRAUN

FIGURE 1. Illustration of the lattices N2
0 (a) and Z

2 (b).

As we are interested in the properties of the random sets Vμ and Vc
μ, we will always assume

μ0 ∈ (0, 1), since Vμ = V almost surely in the case of μ0 = 0, and Vμ = ∅ almost surely for
μ0 = 1. Moreover, in our study we will assume that G is weakly connected.

Let x, y ∈ V and V ′ = Vμ or V ′ = Vc
μ. Then, if both x and y are contained in V ′ and connected

by a path in G, which uses only vertices from V ′, we will say that x and y are in the same cluster.
To state our results, we introduce the following notation. Let n ∈N, V =N

n
0, or V =Z

n

(see Figure 1), and E be the set of all pairs (x, x + ej), where x ∈ V , j = 1, . . . , n, and
ej = (δij)i=1,...,n. Then we denote the resulting graph G = (V, E) by N

n
0, respectively Z

n.
Furthermore, for all n ≥ 2, we define the infinite directed n-ary tree Dn := (Vn, En) by

Vn :=
⋃
m≥0

{1, . . . , n}m, where {1, . . . , n}0 := ∅,

En := {(∅, 1), . . . , (∅, n)} ∪ {(x, (x, j)) | x ∈ Vn \ {∅}, j = 1, . . . , n}.

In this article we will clarify under which conditions the graphs Nn
0 and Z

n are (essentially)
covered by a distribution μ; see Theorems 1 and 2 below. On the other hand, in Theorem 3, we
will see that for any distribution μ and n ≥ 2, #Vc

μ(Dn) = ∞ almost surely.
To the best of our knowledge, the present percolation model was first studied by Lamperti

[27] for G =N0. This research was motivated by statistical physics and included the following
description. At each location n ∈N0 there is a fountain, which sprays water to the right and
is wetting the segment from n + 1 to n + Yn. As μ0 > 0, with some positive probability, a
fountain fails to operate at all.

Our percolation model and variants of it have been studied by various authors; see [6], [15],
[23], [24], [25], and [29]. For a recent survey, see [23]. At this point, however, we want to
postpone the discussion of how our new insights and results are related to these articles.

We can interpret our percolation model as the spread of a rumour through a network, a
firework process, or a discrete version of Boolean percolation. The latter model was introduced
by Gilbert [17]. First, points are chosen randomly in R

n according to a Poisson point process.
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Then, in the simplest case, around these points, the unit sphere is covered. For monographs
concerned with Boolean percolation, see [19], [30], [33], and [34].

We also want to mention that the discrete percolation model of the present paper was used
by Bezborodov and Krueger [8] to study the growth of continuous-time frog processes.

Apart from our Boolean percolation itself, we also investigate its connection to a rather
classical Markov chain, which is sometimes called random exchange process. As far as we
know, it was first observed by Zerner [36, Section 1] that these two stochastic models are
related to each other.

Let (Yn)n≥0 denote a sequence of i.i.d. random variables, which, as before, are distributed
according to μ. Then we set X0 := Y0 and recursively define

Xn+1 := max{Xn − 1, Yn+1}, n ∈N0.

To the best of our knowledge, this process (Xn)n≥0 first occurred in a statistical research article
on deepwater exchange of a fjord; see [14]. It was later studied in a more general form in [20]
and [21]. In the following, we call the Markov chain (Xn)n≥0 a (constant decrement) random
exchange process. By construction, it has time-homogeneous transition probabilities and is
irreducible on its state space X , which is equal to N0 if μ is unbounded, and otherwise takes
the form {0, 1, . . . , n0}, where n0 := sup{n ∈N | μn �= 0}. The transition matrix P associated
with (Xn)n≥0 is

P := Pμ := (Pμ;x,y)x,y∈X , where Pμ;x,y :=

⎧⎪⎨
⎪⎩

μy, y ≥ x,∑x−1
z=0 μz, y = x − 1,

0, y ≤ x − 2.

As (Xn)n≥0, respectively P, is irreducible, for all z > 0, the Green’s function

G(x, y | z) :=
∞∑

n=0

Pμ;x,yzn

either converges or diverges simultaneously for all x, y ∈X ; see [35, Chapter 1.1]. Therefore,
independent of the choice of x, y ∈X , we can define the spectral radius of (Xn)n≥0, respectively
P, by

ρ(P) := lim sup
n→∞

(Pμ;x,y)1/n ∈ (0, 1].

More generally, if A is an arbitrary irreducible matrix with non-negative entries, we can define
ρ(A) ∈ [0, ∞] in exactly the same way.

Let us now state connections between the set Vμ of covered vertices in our percolation
model and the Markov chain (Xn)n≥0. We start by reformulating previous results as follows.

Theorem 1. For any law μ, the following statements are equivalent.

(i) Almost surely, #Vc
μ(Z) < ∞.

(ii) Almost surely, Vμ(Z) =Z.

(iii) The Markov chain (Xn)n≥0 is not positive recurrent.

(iv) The expectation of μ is infinite, i.e.
∑

n≥0 nμn = ∞.
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It is not difficult to verify, more generally, that (i) and (ii) are equivalent if we replace Z

with an arbitrary vertex-transitive graph.
By applying the Borel–Cantelli lemma, we can directly verify that (ii) and (iv) are equivalent

statements. This equivalence was also observed, in a more general form, in [24, Section 2.2]
and [6, Section 4]. For any graph G = (V, E), we have Vμ = V almost surely if and only if

∑
x∈V

∑
k≥d(x,y)

μk = ∞ for all y ∈ V .

For example, for all n ≥ 1, Vμ(Zn) =Z
n almost surely if and only if the nth moment of

μ diverges. This kind of phenomenon is well known in the context of Boolean percolation
models, and thus it seems convenient to include some previous literature results at this point.

Hall [19] studied Boolean percolation on R
n with spheres of random i.i.d. radii and proved

[19, Theorem 3.1] that the entire space is almost surely covered if and only if the nth moment
of the radius distribution diverges. Gour [18] established that if the nth moment of the radius
distribution is finite, there exists a critical value for the intensity of the underlying Poisson
process. Recently, more results on phase transitions were deduced in [2] and [13]. However,
there are also results on other aspects of Boolean percolation. For example, Ahlberg et al. [1]
showed that this model is noise-sensitive, and Last et al. [28] studied the capacity functional.

Athreya et al. [3] and Bezborodov [7] studied Boolean percolation on [0, ∞)n when, instead
of the sphere around a point x, the set x + [0, Rx)d is occupied, where Rx is the radius associated
with x. The results in [3] characterize under which conditions the entire space is essentially
covered, and interestingly depend on whether n = 1 or n ≥ 2. Bezborodov [7] observed, for
n = 1 and some radius distributions, that the covered volume fraction is one, but all clusters are
bounded almost surely.

Coletti and Grynberg [11] studied a model on Z
n in which first Bernoulli percolation with

parameter p ∈ (0, 1) is performed, and then, independently around the present points, random
i.i.d. balls are covered. Again, the occupied region is almost surely Z

n if and only if the nth
moment of the radius distribution diverges. For a study of this percolation model on doubling
graphs, see also [12].

Let us return to Theorem 1. The equivalence of (iii) and (iv) was first observed by Helland
[20, Section 3] and also mentioned by Kellerer [26, comments after Theorem 2.6]. We can
deduce it as follows. Due to the form of the transition probabilities of the Markov chain
(Xn)n≥0, any invariant measure τ = (τx)x∈X has to satisfy

τx =
∑
z∈X

τzPμ;z,x =
x∑

z=0

τzμx + τx+1

x∑
z=0

μz, provided that x, x + 1 ∈X ,

or respectively

τx+1 =
(

(1 − μx)τx −
x−1∑
z=0

μxτz

)/(
x∑

z=0

μz

)
.

We obtain τ1 = τ0(1 − μ0)μ−1
0 ,

τ2 = τ0(1 − μ0 − μ1)μ−1
0 (μ0 + μ1)−1,
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and more generally the representation

τx = τ0

(∑
z≥x

μz

)(
x−1∏
y=0

y∑
z=0

μz

)−1

, x ∈X . (1)

Indeed, from a careful look at this formula, it follows that (iii) and (iv) are equivalent.
Moreover, if the distribution μ has a finite expectation, we can determine the stationary solution
of (Xn)n≥0 from (1) via normalization. In Section 3 we will present some concrete examples,
and we also want to mention that results on positive recurrence of more general exchange
processes with random decrements are given in [21, Section 2].

Our first main result is an analogue to Theorem 1, which characterizes transience of the
random exchange process (Xn)n≥0.

Theorem 2. For any law μ, the following statements are equivalent.

(a) There exists n ∈N with #Vc
μ

(
N

n
0

)
< ∞ almost surely.

(b) For all n ∈N, #Vc
μ

(
N

n
0

)
< ∞ almost surely.

(c) The Markov chain (Xn)n≥0 is transient.

(d)
∑

m≥0
∏m

k=1
∑k−1

l=0 μl < ∞.

Moreover, if one of these conditions is satisfied, then E
[
#Vc

μ

(
N

n
0

)]
< ∞ for all n ∈N and

there exists α ∈ (0, ∞) with E
[
exp

(
α#Vc

μ

(
N0
))]

< ∞.

This theorem improves on previous works by revealing that, rather surprisingly, the value
of n ∈N does not influence whether all but finitely many points of the graph N

n
0 are covered

by a distribution μ. In the appendix of Lamperti’s paper [27], Kesten gives a proof of the fact
that #Vc

μ(N0) < ∞ almost surely if and only if condition (d) in Theorem 2 is satisfied. This
result was later rediscovered by various authors, partly in a different and more general form;
see [26, comments to Proposition 6.6], [24, Theorem 2.1], [15, Theorem 1], [6, Section 3], and
[8, Section 3].

As observed by Zerner [36, Proposition 1.1] and suggested by our notation, we can couple
the set of covered points Vμ(N0) and the random exchange process (Xn)n≥0 by using the same
sequence of random variables (Yn)n≥0 in both definitions. Then, by construction,

Vμ(N0) = {n ∈N0 | ∃k ∈ {0, . . . , n} : Yk > n − k}
=
{

n ∈N0
∣∣ max

0≤k≤n
(Yk − (n − k)) > 0

}
= {n ∈N0 | Xn > 0}.

Consequently, we know that the Markov chain (Xn)n≥0 is transient if and only if #Vc
μ(N0) < ∞

almost surely.
Let n ≥ 2 and consider the infinite directed n-ary tree Dn = (Vn, En). Then, interestingly,

we can associate a multitype branching process (Zm)m≥0 to our percolation model on Dn in the
following way.

Let k ∈N0 and y ∈ Vn with d(∅, y) = k. Then we identify the vertex y with an individual of
the kth generation of (Zm)m≥0 if and only if y ∈ Vμ and y is contained in the same cluster as
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the root ∅. In other words, we demand that all vertices forming the path from ∅ to y in Dn are
contained in Vμ(Dn). If this condition is satisfied, we define the type of y by

zy := max{Yx − d(x, y) | x ∈ Vn, d(x, y) < ∞}.
By construction, if Y∅ ≥ 1, the branching process (Zn)n≥0 starts with one individual of type Y∅.
However, on the event Y∅ = 0, there are no individuals at all. For a vertex y ∈ Vn to be identified
with an individual in (Zm)n≥0, necessarily y ∈ Vμ, i.e. there exists x ∈ Vn with Yx > d(x, y).
Hence, as μ0 ∈ (0, 1), the type space of the branching process (Zm)n≥0 is Z =X \ {0}.

We can describe the reproduction in this branching process as follows. Every individual has
up to n children, and given the type of the parent, the types of the children are independent.
Moreover, every individual of type x ≥ 2 has exactly n children. For each of them, the proba-
bility of type y ∈Z is Mx,y := Px,y. On the other hand, an individual of type 1 has n potential
children, which are again independent of each other. For all z ∈Z , the probability that a given
potential child is born and of type z is M1,z := P1,z. However, with probability μ0, a potential
child is not born.

As the type space Z is infinite in general, we distinguish between the local and global
extinction of (Zm)m≥0. This process dies out globally if, at some moment, the total number of
individuals vanishes. It dies out locally if, for all z ∈Z , only finitely many individuals of type
z are born. While global extinction always implies local extinction, the reverse is not true in
general for branching processes with infinitely many types.

Theorem 3. Let n ≥ 2. Then, for any distribution μ, #Vc
μ(Dn) = ∞ almost surely. Moreover,

the following statements are equivalent.

(A) Almost surely, Vμ(Dn) contains a path of infinite length.

(B) With positive probability, (Zm)m≥0 will not die out globally.

(C) With positive probability, (Zm)m≥0 will not die out locally.

(D) ρ(M) > n−1, where M := (Mx,y)x,y∈Z .

If one of these statements holds, then almost surely Vμ(Dn) contains infinitely many distinct
infinite clusters. Otherwise, almost surely there are no infinite clusters in Vμ(Dn).

Note that, up to multiplication with n ≥ 2, M is the mean matrix of the branching process
(Zm)m≥0. To some degree, this explains why condition (D) is related to (B) and (C). Also,
observe that M arises from the transition matrix P of the random exchange process (Xn)n≥0
simply by deleting both the first row and first column.

For an introduction to infinite-type branching processes, we recommend Braunsteins’ expo-
sition [9, Chapter 2] and the references mentioned therein. This presentation also explains the
rather well-understood results on the extinction of finite-type branching processes.

We also want to note that the branching processes (Zn)n≥0, which we consider in the present
article, have a mean matrix of upper Hessenberg form. Recently, Braunsteins and Haupthenne
[10] studied the extinction of branching processes with a lower Hessenberg mean matrix.

2. Proof of Theorems 2 and 3

Proof of Theorem 2. (b)=⇒(c)=⇒(a) From our coupling between Vμ(N0) and (Xn)n≥0,
we know that (Xn)n≥0 is transient if and only if Vc

μ(N0) < ∞ almost surely. In particular, the
implications (b)=⇒(c) and (c)=⇒(a) follow.
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(d)=⇒(a) By Kolmogorov’s 0–1 law, for any probability distribution μ, either #Vc
μ(N0) <

∞ almost surely or #Vc
μ(N0) = ∞ almost surely. By observing

E
[
#Vc

μ

(
N0
)]=∑

m≥0

qm =
∑
m≥0

m∏
k=1

k−1∑
l=0

μl, (2)

where qm := P
[
m ∈ Vc

μ

(
N0
)]

for all m ≥ 0, the implication follows.
Finally, let us assume that condition (a) holds for a distribution μ. We will show (a)=⇒(d)

and (a)=⇒(b).
In the first step, we verify that we can restrict ourselves to the case n = 1. For this, suppose

#Vc
μ

(
N

n
0

)
< ∞ almost surely for some n ≥ 2. Then, consider the subgraph G′ = (V ′, E′) of Nn

0,
which is induced by the vertex set V ′ of all (x1, . . . , xn) ∈N

n
0 with xj = 0 for all j = 2, . . . , n.

By construction, G′ is isomorphic to N0, and we know that Vc
μ(G′) = Vc

μ

(
N

n
0

)∩ V ′ is finite
almost surely. Consequently, #Vc

μ(N0) < ∞ almost surely.
In the second step, we prove all remaining claims. As 0 < μ0 < 1,

p := P[Vμ(N0) =N] > 0.

Therefore, by the strong Markov property, we know that #Vc
μ(N0) is geometrically distributed

with parameter p. In particular, this random variable has a finite exponential moment, and
moreover, we can deduce (d) via (2).

Let n ∈N and x = (x1, . . . , xn) ∈N
n
0. For all j = 1, . . . , n, let πj denote the unique path from

(x1, . . . , xj−1, 0, xj+1, . . . , xn) to x. Then, for all j = 1, . . . , n, the path πj consists of xj edges
in direction ej, and, for all i �= j, the paths πi and πj only share one vertex, which is their
endpoint x = (x1, . . . , xn). So, for the event

{
x ∈ Vc

μ

(
N

n
0

)}
to occur, it is necessary that for each

j = 1, . . . , n there exists no vertex y contained in the path πj such that Zy > d(y, x). This defines
n independent events, whose probabilities can be described with the sequence (qm)m≥0 defined
above. All in all,

E
[
#Vc

μ

(
N

n
0

)]= ∑
x∈Nn

0

P
[
x ∈ Vc

μ

(
N

n
0

)]

≤
∑

(x1,...,xn)∈Nn
0

n∏
j=1

qxj

=
∑
x1≥0

qx1

∑
x2≥0

qx2 · · ·
∑

xn−1≥0

qxn−1

∑
xn≥0

qxn

=E
[
#Vc

μ

(
N0
)]n

< ∞.

In particular, for all n ≥ 2, #Vc
μ

(
N

n
0

)
< ∞ almost surely, and condition (b) holds. Since we have

already verified (b)=⇒(c), this finishes the proof. �

Proof of Theorem 3. First we verify that for all n ≥ 2 and any law μ, #Vc
μ(Dn) = ∞ almost

surely. For this, for all m ∈N, we set

rm := P
[∃y ∈ Vc

μ(Dn) : d(∅, y) = m
]
.
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As 0 < μ0 < 1, we know that rm ∈ (0, 1) for all m ∈N. Moreover, for all j = 1, . . . , n, we let
Gj denote the induced subgraph obtained from Dn by restricting to all vertices, which can be
reached from j ∈ Vn.

Let m ≥ 2. Then we know that there exists a y ∈ Vc
μ(Dn) with d(∅, y) = m if and only if

Y∅ ≤ m and, for some j = 1, . . . , n, there exists a vertex z in the graph Gj with d(j, z) = m − 1,
which is not covered by any other vertex of Gj. Note that the latter event is independent of Y∅
and that the graphs G1, . . . , Gn are isomorphic to Dn. Consequently, for all m ≥ 1, we obtain
the recurrence relation

rm+1 = (1 − (1 − rm)n) F(m + 1), where F(k) :=
k∑

l=0

μl. (3)

Let N ∈N with F(N) > 1/2. Then, by (3), for all m ≥ N,

rm+1 ≥ (1 − (1 − rm)2)F(N) = rm(2 − rm)F(N). (4)

The map fN : [0, 1] → [0, 1], x �→ x(2 − x)F(N), is monotone increasing. Hence, due to the
estimate (4), iteration of the function fN yields

rm ≥ f m−N
N (rN) for all m ≥ N + 1.

The map fN has the two fixed points 0 and xN := 2 − F(N)−1 ∈ (0, 1]. Hence, by monotonicity,
if rN ≥ xN , then also rm ≥ xN for all m ≥ N. On the other hand, if rN < xN , then, since fN is
concave and f ′

N(0) > 1, we have f k
N(rN) → xN for k → ∞. In both cases, we can deduce

lim inf
m→∞ rm ≥ xN = 2 − F(N)−1.

As N ∈N can be chosen arbitrarily large in this argument, it follows that rm → 1 for m → ∞.
In particular, Vc

μ(Dn) is almost surely non-empty.
By Kolmogorov’s 0–1 law, we know that either #Vc

μ(Dn) is finite almost surely, or this ran-
dom variable is infinite almost surely. In the first case, due to μ0 ∈ (0, 1), it would follow that
Vc

μ(Dn) is empty with probability greater than zero. As this is not possible, we can conclude
#Vc

μ(Dn) = ∞ almost surely.
In the second step of this proof, we now verify that indeed the statements (A), (B), (C), and

(D) are equivalent to each other.
(C)=⇒(B) This implication is clear.
(A)⇐⇒(B) If (A) holds, then, with positive probability, Vμ(Dn) contains an infinite path

starting from the root ∅. On this event, (Zn)n≥0 does not die out globally, i.e. condition (B)
holds. Conversely, if (B) holds, then, with positive probability, Vμ(Dn) contains an infinite
path. By Kolmogorov’s 0-1 law, (A) follows.

(C)⇐⇒(D) Since the mean matrix M of the branching process (Zn)n≥0 is irreducible, this
equivalence follows from the theory of multitype branching processes; see [9, Theorem 9],
[16], and [5].

(B)=⇒(C) Suppose, for some distribution μ, that (Zn)n≥0 dies out locally almost surely but
survives forever with positive probability. Then, as (Zn)n≥0 starts with a single individual of
random type Y∅, with some positive probability, (Zn)n≥0 survives forever, and no individuals of
type 1 are born. On this event, we would know that #Vc

μ(Dn) < ∞, and this is a contradiction
to our first claim. The implication follows.
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Finally, let us verify the two claims regarding infinite clusters of Vμ(Dn). Note that Vμ(Dn)
contains an infinite cluster if and only if it contains an infinite path, and due to Kolmogorov’s
0–1 law the probability for this is either 0 or 1. So, we only need to prove that if Vμ(Dn)
contains an infinite path almost surely, then there exist infinitely many such paths so that every
path of this collection is contained in a separate cluster of Vμ(Dn).

First, let us extend some of our notation. For a vertex y in Dn, let Gy again denote the
subgraph of Dn that arises by restricting to the vertex y and all vertices z of Dn with d(y, z) <

∞. Again, this graph is isomorphic to Dn.
Choose a sequence of vertices (yk)k≥1 in Dn so that the vertex sets of the graphs Gyk , k ≥ 1,

are pairwise disjoint.
Now, we first verify that for any choice of μ and for all k ≥ 1, almost surely infinitely

many vertices of Gyk are not covered. For this, note that as μ0 > 0, with positive probability
all vertices x in Dn with d(x, yk) < ∞ and x �= yk satisfy x ∈ Vc

μ(Dn). On this event, as Dn and
Gyk are isomorphic, we know that almost surely infinitely many vertices of Gyk are contained
in Vc

μ(Dn). So, by Kolmogorov’s 0–1 law, indeed for all μ and k ≥ 1, infinitely many vertices
of Gyk are not covered by μ.

As a consequence, for all k ≥ 1, we can choose a random vertex wk in Gyk that satisfies
wk ∈ Vc

μ(Dn) almost surely (for example, choose the smallest element of Vc
μ(Dn) in Gyk with

respect to the lexicographical order). Consider, for all k ≥ 1, the random subgraph Gwk of Gyk .
As these graphs are almost surely isomorphic to Dn, almost surely each of them contains an
infinite path using only vertices from Vμ(Dn). Moreover, as the graphs Gyk , k ≥ 1, are disjoint,
so are the random graphs Gwk , k ≥ 1, and these infinite paths. Finally, as wk ∈ Vc

μ(Dn) almost
surely, we also know that in this collection of infinite paths in Vμ(Dn), every path is contained
in a separate cluster of Vμ(Dn). �

3. Examples

Example 1. Let m ∈N, m ≥ 2, and μ be the uniform distribution on {0, 1, . . . , m − 1}. Then,
by (1), the stationary solution τ of (Xn)n≥0 is

τn = m!
mm

(m − n)
mn−1

n! , n ∈ {0, . . . , m − 1}.

This law τ is a terminating member of the Kemp family of generalized hypergeometric prob-
ability distributions; see [22, Section 2.4.1]. However, it also naturally arises from Naor’s urn
model [31, Appendix]; see also [22, Section 11.2.12]. Assume that there are m balls in an urn,
of which one is red and the rest are white. In each step, pick one ball, and if it is white, replace
it with a red ball. Continue until the first time T at which a red ball gets chosen. Then the
distribution of T is

P[T = n] = (m − 1)! m−n n

(m − n)! , n ∈ {1, . . . , m},

and m − T , i.e. the number of tries not needed, has distribution τ .

Example 2. Let p ∈ (0, 1) and μ be the geometric distribution with parameter 1 − p. Then, by
(2), the stationary solution τ of (Xn)n≥0 is

τn = τ0 pn

(
n∏

k=1

(1 − pk)

)−1

= τ0
pn

(p; p)n
, n ∈N0,
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where (a; q)n is the q-Pochhammer symbol. By normalization,

τ0 =
(∑

n≥0

pn

(p; p)n

)−1

= 1

(p; p)∞
= φ(p)−1,

where we have applied the q-binomial theorem (see [32, Section 17.2(iii)]), and φ denotes
Euler’s function. Benkherouf and Bather [4, Section 4] discussed this distribution τ in a more
general form, and referred to it as an Euler distribution. For more information, see also [22,
Section 10.8.2].

Example 3. Assume that there exists c ∈ (0, ∞) and n0 ∈N with

∑
k>n

μk = c

n
for all n ≥ n0.

Then, as the expectation of μ is infinite, we know that statements (i)–(iv) from Theorem 1
hold. Moreover,

(
n+1∏
k=1

k−1∑
l=0

μl

)/(
n∏

k=1

k−1∑
l=0

μl

)
=

n+1∑
l=0

μl = 1 − c

n + 1
for all n ≥ n0,

and consequently, by the Gaussian ratio test, we know that condition (d) in Theorem 2 is
satisfied if and only if c > 1. According to [21, Theorem 3.2], for any value of c ∈ (0, ∞),

lim
n→∞ P[Xn n−1 ≤ y] = yc(y + 1)−c for all y ∈ (0, ∞).

This limit is an inverse Beta distribution with α = c and β = 1.

Example 4. Assume that μ = (μn)n≥0 has finite support. Then (Xn)n≥0 has a stationary solu-
tion and ρ(P) = 1. Moreover, ρ(M) is the spectral radius and Perron–Frobenius eigenvalue of
M. As in the proof of Theorem 3, we define, for the case n = 2,

rm := P
[∃y ∈ Vc

μ(D2) : d(∅, y) = m
]
, m ∈N.

Then, observe that for all m ≥ n0 := sup{n ∈N | μn �= 0}, the recurrence relation (3) simplifies
to

rm+1 = (1 − (1 − rm)2) = rm(2 − rm).

This recursion is a modified version of the logistic equation. It follows that

rm = 1 − exp (−c 2m) for all m ≥ n0,

where c ∈ (0, ∞) is a fixed parameter.
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Example 5. Let n ∈N, p ∈ (0, 1), μn := p, and μ0 := 1 − p. Then the matrix M = Mn,p has
dimension n and is of the form

Mn,p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · · · · 0 p

1 − p 0 · · · · · · 0 p

0 1 − p 0 · · · 0 p
...

. . .
...

...
. . .

...

0 · · · · · · 0 1 − p p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The characteristic polynomial χn,p = χn,p(z) of Mn,p satisfies

χn,p(z) = det(z1n − Mn,p) = zχn−1,p(z) − p(1 − p)n−1,

and this recurrence relation can be deduced from a Laplace expansion of the first row of Mn,p.
It follows from χ1,p(z) = z − p that

χn,p(z) = p(1 − p)n + (z − 1)zn

p + z − 1
.

We know that ρ(Mn,p) is the largest zero of this polynomial in (0, 1).
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