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Abstract

This study examined associations between pregnancy and infant birth outcomes with child
telomere length at age 17 years; and investigated if there are sex differences between pregnancy
complications and telomere length. We utilised the population-based prospective Raine cohort
study in Western Australia, Australia. 2900 pregnant women were recruited at 16–20 weeks’
gestation (Gen 1), and their children (Gen 2) were followed up over several years. Generalised
linear models were used to examine relationships between pregnancy or birth outcomes
(gestational diabetes, pre-eclampsia, preterm birth, low birth weight, macrosomia), and as a
composite, with telomere length, measured via a DNA sample from blood at 17 years of age.
Analyses were adjusted for a range of confounders. Among the 1202 included children, there
were no differences in child telomere length for any of the individual maternal or birth weight
pregnancy outcomes nor were there any significant interactions between each of the
complications (individual or composite) and the sex of the child. However, females born from
any of the 5 adverse outcomes had shorter telomeres (estimated mean (SE) = -0.159 (0.061),
p= 0.010) than females born in the absence of these complications. Specifically, females born
from a pre-eclamptic pregnancy had shorter telomeres than females not born from a pre-
eclamptic pregnancy (estimated mean (SE)= -0.166 (0.072), p= 0.022). No relationships were
observed inmales. Further longitudinal studies are needed to understandmediating factors that
are important in predicting offspring telomere length and the necessity to investigate females
and males independently.

Introduction

Increasing evidence shows that what occurs early in life impacts future health. In Australia,
around 315,000 babies are born each year, of which 16.3% are born from a mother who had
gestational diabetes (GDM), 3%–4% from gestational hypertension and 8.2% are born preterm.1

Children born from a pregnancy complication have a 6-fold increased risk of developing chronic
diseases like type 2 diabetes and heart disease, later in life.2–4

In addition to heightened risk for chronic disease, risk factors are already elevated in children
if they were born after a pregnancy complication. Compared to non-exposed children, those
born to mothers who had GDM have a 2-fold increased risk of metabolic syndrome in
childhood5, increased risk of cardiac functional abnormalities in infancy6, and increased risk of
obesity, elevated glucose and blood pressure in adolescence and early adulthood.7 Offspring
born from a pre-eclamptic pregnancy are at an increased risk of higher blood pressure and
obesity8, and those born preterm are at an increased risk of higher blood pressure in adolescence
and in adulthood.9 Critically, few studies have confirmed these results prospectively, due to the
need for large longitudinal studies with appropriate and relevant data collection. The fact that
these offspring are at an increased risk means it is imperative to identify which children born
from a complicated pregnancy are likely to suffer from later chronic disease.

Screening to identify children born after a complicated pregnancy may be possible by using
markers of accelerated ageing, such as telomere length. Shorter telomeres are associated with a
20%–40% greater likelihood of developing diabetes, cancer and heart disease in adulthood.10,11

Risk factors for heart disease, such as elevated plasma glucose and blood pressure also associate
with shorter telomeres.12 We have demonstrated that 10-year-old children whose mothers had
metabolic syndrome in pregnancy had shorter telomeres, than children of mothers without
these risk factors.13, however, among 841 children from the Longitudinal Study of Australian
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Children cohort, there was no association between pregnancy
complications and child telomere length at 11–12 years of age.14

Therefore, given the relationship between pregnancy complica-
tions and future chronic disease risk, child telomere length may be
an indicator of this risk. The objective of this study is to examine
associations between maternal and infant pregnancy outcomes
(GDM, pre-eclampsia, preterm birth, low birth weight, macro-
somia), with offspring telomere length at 17 years of age. We also
investigated the relationship between pregnancy complications
and sex in offspring telomere length given the known sex
differences in the prevalence of chronic diseases such as heart
disease, cancer and kidney disease,15–17.

Methods

Study population

Participants were enrolled in the Raine Study, a population-based
prospective pregnancy cohort study in Perth, Western Australia,
between May 1989 and November 1991. Initially, 2900 pregnant
women were recruited between 16–20 weeks’ gestation at King
Edward Memorial Hospital into a randomised controlled trial to
evaluate the effects of repeated ultrasound in pregnancy.18 Women
(Gen 1) and their children (Gen 2) have been followed up over
multiple waves of data collection.19 Complete information is
available including anthropometry (body mass index, BMI) and
blood pressure, intrauterine, and perinatal data. The cohort has
been demonstrated to be representative of the population
presenting to the antenatal tertiary referral centre in Western
Australia.18–20 The ethics committees of King Edward Memorial
Hospital and Princess Margaret Hospital granted approval for the
study protocols. The primary caregiver, who was the mother in
most cases, provided written and informed consent. The parents of
2868 live born children consented for follow-up at the ages of 1, 2,
3, 5, 8, 10, 14 and 17 years. At regular intervals since birth, Gen 2
have had anthropometry (BMI, waist circumference) and blood
pressuremeasured, with physical activity and cardiometabolic data
recorded from adolescence. Most questionnaires were self-
completed by the participants, fasted blood samples were collected
by a trained phlebotomist and clinical measurements were taken by
a trained research assistant.

Exposure variables

Women completed questionnaires regarding a range of exposures at
18 and 34 weeks’, with detailed obstetric, pregnancy, birth and
neonatal information also collected.18 The major pregnancy
complications in the current study analysis include GDM and
pre-eclampsia (diagnoses based on clinical records) and pretermbirth
defined as birth< 37 weeks’ gestation. Birth weight was also obtained
from the medical records. Birth outcomes included low birth weight,
defined as birth weight ≤2500 g, and macrosomia, defined as birth
weight ≥4000 g. Uncomplicated pregnancies were defined as not
having any of the diagnosed condition described above.

Outcome

The primary outcome was offspring telomere length, measured via
a DNA sample from blood, at 17 y of age. Telomere length was
provided as part of the data available from the Raine Study. Briefly,
DNAwas extracted from peripheral bloodmononuclear cells using
a commercially available kit (Qiagen). All DNA samples had a
260/280 nm and 260/230 nm between 1.8–1.95 and DNA integrity

was assessed by agarose gel electrophoresis. Only high quality, high
molecular DNA was used for subsequent analyses. The following
primers were used in qPCR for Tel F 5’-CGGTTTG(TTTG
GG)5TT-3’ and R 5’-GGCTTGCC(TTACC)5T-3’21 and single
copy gene TBP F 5’-CCACAGCTCTTCCACTCACA-3’ and
R 5’-CTGCGGTACAATCCCAGAAC-3’. All qPCR reactions
were performed at the King Edward Memorial Hospital, Perth,
Western Australia. qPCR was performed using a Rotorgene 3000
in 10 μl reactions with a total of 30 ng DNA, 1 μl 10X ImmoBuffer,
0.05 μl IMMOLASEDNA Polymerase, 2 mMMgCl2, 0.2 μl 10 mM
dNTP, 0.3 μM each primer, 0.1 μl 10x EvaGreen dye and nuclease
free water. The following PCR cycling conditions were used:
10 min at 95°C followed by 28 cycles of 15 s at 95°C, 10 s at 56°C
and 5 s at 72°C. A standard curve using 1:3 dilutions of pooled
DNAwas included in each qPCR run. qPCR reactions were carried
out in triplicate with a no template control and reference DNA
positive control. Relative telomere length was calculated as per
Cawthorn et al.21 The ratio of telomere repeat copy number to a
single copy gene (T/S ratio or ΔCq) was calculated. Relative T/S
ratio (ΔΔCq) was calculated by subtracting ΔCq ratio of the
reference gene from ΔCq of each unknown sample. Normalised
relative T/S ratio was calculated using 2-ΔΔCq. Data on telomere
length was screened to include eligible participants (Figure S1) but
due to the large variation in telomere length (0.0180 – 24.50),
we excluded telomere length data that was outside the interquartile
range (Figure S2).22–24

Covariates

Covariates were determined a priori using a directed acyclic
graph. Model 0 was the unadjusted model. Socioeconomic status
can be described using the publicly available Index of Relative
Socioeconomic Disadvantage of the Socioeconomic Indexes for
Areas by the Australian Bureau of Statistics.25 These data were
available either during pregnancy, at birth, or at age 1 year for
approximately half of the Raine Study participants who partici-
pated in the 14-year follow-up assessment. Thus, as a surrogate
assessment of socioeconomic status, family income and schooling
level were used as confounding variables. Model 1 included the
following covariates: maternal age, population/race (Caucasian,
other), schooling level (none, further/vocational training, tertiary
studies, other), total family income before tax (1989–1991), per
year (unknown/< $36,000AUD, $36,000AUD), smoking status,
collected at 16–18 weeks’ gestation (none, 1 to 10/day, 11/day), and
alcohol intake, collected at 16–18 weeks’ gestation (none, any
drinking during pregnancy). The GDM model was additionally
corrected for diabetes or GDM treatment. We could not adjust for
family history of hypertension in the pre-eclampsia model because
responses to the question were inconsistent between the data
dictionary and survey question. For the GDM, pre-eclampsia and
preterm birth models, Model 2 was: Model 1 plus infant sex and
birth weight. When data were analysed by infant sex, Model 2 was
Model 1 plus birth weight. For the macrosomia and low birth
weight models, Model 2 was Model 1 plus infant sex.

Statistical analyses

Descriptive and frequency data were reported as percentages,
mean and standard deviation (SD). This was a complete case
analysis. The relationships between each exposure of interest
(GDM, pre-eclampsia, preterm birth, low birth weight, macro-
somia) and telomere length at 17 years of age were analysed using
the generalised linearmodel (GLM) function of the stats package in
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the R environment. GLMs were also used to explore the
relationships between having any of maternal (GDM, pre-
eclampsia, preterm birth) or maternal and birth (GDM, pre-
eclampsia, preterm birth, low birth weight, macrosomia) preg-
nancy outcome, with telomere length, or having an uncomplicated
pregnancy (i.e., pregnancies that were not complicated by GDM,
pre-eclampsia, preterm birth, or babies born of low birth weight or
with macrosomia). Within group comparisons were also made for
males and females at 17 years of age. All models were corrected for
the mother’s age, population/race, schooling level, smoking status,
alcohol status and family income. The confint function from the
stats package in the R environment was used to generate
confidence intervals for the estimated effects of the outcomes of
interest. To test for sex-specific effects of each exposure on
telomere length, AIC values were compared between glm models
with and without an interaction term for infant sex and each
exposure. Models with smaller AIC values were selected.

Results

Participant demographics

From the possible 2868 Raine Study participants, 1533 did not have
telomere data, 133 were excluded due to telomere length out
of IQR-based thresholds, leaving 1202 participants analysed
(Figure S1). The mothers had a mean (SD) maternal age of
28.97 (SD 5.77) years at 16–18 weeks’ gestation (Table 1). Most
mothers were Caucasian (90.5%) and approximately 23% smoked
one or more cigarettes per day during pregnancy. At the time of
pregnancy, 61% reported a median salary < $36,000 AUD which
would be equivalent to approximately $85,000 AUD in 2022. There
were a similar number of female (48%) and male (52%) offspring.
Maternal complications defined as GDM, pre-eclampsia or
premature birth affected 28% of pregnancies. Low birth weight
(≤2500 g) occurred in approximately 7.7% of births and
macrosomia ( 4000 g) in 9.4% of the cohort. When combining
maternal and birth complications, 447 (37%) of the cohort was
affected (Table 1).

The mean (IQR) telomere length of the 17-year-old children
was 1.41 (range 0.018–3.313). Differences between those who did
and did not have assessment of telomere length is reported in
Table S1. Of the 1202 children with telomere length data, 877 had
systolic and diastolic blood pressure measurements recorded.
The respective mean (SD) values for systolic blood pressure
and diastolic blood pressure were 113.46 (10.28) mmHg and
58.74 (6.39) mmHg. BMI was recorded in 882 children, with a
mean (SD) of 23.12 (4.45) kg/m2.

Complicated versus uncomplicated pregnancies and
offspring telomere length

There was no difference in child telomere length between children
born from any of the 3 maternal complications versus children
who were born from an uncomplicated pregnancy (Table 2,
Test 1). However, children born from any of the 5 maternal and/or
birth weight complications had shorter telomeres than children
who were born from an uncomplicated pregnancy (Figure 1,
Table 2, Test 3; coefficient= –0.099, p= 0.019). There was no
significant interaction between any of the pregnancy complications
and sex of the offspring. However among the females (Table 3;
Table S2; Figure S3B), those born from any of the 3 maternal

Table 1. Participant characteristics in the mothers and infants (n = 1202)

Mother’s characteristics Mean (SD) or n (%)

Age (years) 28.97 (5.77)

Population/race

Caucasian (European descent) 1088 (90.5%)

Other 111 (9.2%)

Highest level of education

None 551 (45.8%)

Further/vocational training 238 (19.8%)

Tertiary studies 341 (28.4%)

Other 69 (5.7%)

Smoking status (16–18 weeks’ gestation)

None 928 (77.2%)

1–10 per day 271 (22.5%)

≥1 per day 3 (0.2%)

Alcohol status (16–18 weeks’ gestation)

None 615 (51.3%)

Any drinking during pregnancy 584 (48.7%)

Family income (1989–1991) (AUD)

<$36,000 735 (61.1%)

≥$36,000 417 (34.7%)

Treated for diabetes or gestational diabetes

No 1169 (97.3%)

Yes 33 (2.7%)

Gestational diabetes

No 1175 (97.8%)

Yes 24 (2%)

Preterm birth (<37 weeks’ gestation)

No 1114 (92.7%)

Yes 85 (7.1%)

Pre-eclampsia

No 929 (77.3%)

Yes 269 (22.4%)

Any maternal complication

No 861 (71.6%)

Yes 341 (28.4%)

Any maternal and/or birth complication

No 755 (62.8%)

Yes 447 (37.2%)

Infant characteristics

Birth weight 3328.79 (592)

Male/female 621 (51.7%) / 581 (48.3%)

Macrosomia (≥4000 g)

No/yes 1089 (90.6%) / 113 (9.4%)

Low birth weight (≤2500 g)

No/yes 1110 (92.3%) / 92 (7.7%)

Three participants (0.2%) had no data for GDM, preterm birth, race, or highest level of
education; four participants (0.3%) had no data for pre-eclampsia; 50 women (4.2%) did not
report on their family income.
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complications (Model 2, Estimated means and 95% CI: meanyes
1.20; 95% CI 1.06, 1.34 vs. meanno 1.37; 95% CI: 1.26, 1.48)
or 5 maternal/birth complications (Model 2, Estimated means;
95% CI: meanyes 1.22; 95% CI: 1.09, 1.35 vs. meanno 1.38; 95% CI:
1.27, 1.49) had shorter telomeres than females not born from any of
these complications. These relationships were not observed in
males (Table 3; Table S3; Figure S3C).

When considering only the cohort of children who were not
exposed to any pregnancy complications (i.e., an uncomplicated
pregnancy), male and female offspring had the same telomere
lengths (Table 2, Test 15; Figure S4A).

Individual pregnancy complications and offspring
telomere length

In the 1202 children there was no association between offspring
telomere length and individual pregnancy complications, that is,
GDM, pre-eclampsia (Figure 2A), preterm birth, macrosomia, or
low birth weight (Table 2). There was also no significant
interaction between males and females for any individual
pregnancy outcome and telomere length (Table 2). However,
telomere length was shorter among female offspring exposed to
pre-eclampsia compared to unexposed females (Figure 2B;
Table S2; Model 2 Estimated means; 95% CI: meanyes 1.19; 95%
CI: 1.03, 1.34 vs. meanno 1.35; 95% CI: 1.25, 1.46). This was not
observed in females for any other individual pregnancy compli-
cation, and it was not observed in the group of males (Figure 2C,
Table S3).

Discussion

Main findings

Children born from any of the 5 maternal and/or birth weight
complications had shorter telomeres than children who were born
from an uncomplicated pregnancy, but there was no interaction

between pregnancy complications and sex of the offspring. Among
the female offspring only, telomere length was shorter among those
exposed to pre-eclampsia compared to unexposed females.

Strengths and limitations

The Raine Study in Australia is the largest prospective multi-
generational observational study across pregnancy, childhood and
adolescence that has been carried out anywhere in the world. It is
one of the few studies where information is available on the mother
during pregnancy with follow-up data from the child. Strengths
include objectively collected clinical assessments at nearly every
follow-up plus a range of subjective questionnaire assessments.
The cohort is typically representative of the Western Australian
population. Limitations include the sample of 17-year-old children
who did not provide a sample for assessment of telomere length.
This might have biased the sample as mothers of participants with
missing data were not typically similar in demographics or
outcome data to those with complete data; estimates will be less
precise than if data were available for all participants. However,
the participants with missing data were a random sample of those
who were intended to be observed. A further limitation is
the predominant Caucasian ethnicity; thus our findings may
not be generalisable across different races. Further, we observed
large variation in telomere length, however this is common in
other studies that have measured telomere length23,24, and we
utilised informed processes to remove the potential outliers using
interquartile ranges.22–24

Interpretation (in light of other evidence)

To our knowledge, this is the first study to assess the impact of
major pregnancy complications on telomere length measured
during adolescence in the offspring. The importance of telomere
length in adults and the relationship to cardiovascular and other
chronic diseases is evidenced in longitudinal and cross-sectional

Table 2. Estimated effect of each predictor variable on relative telomere length in 17-year-old children and the interaction by sex

Model 0 Model 1 Model 2

Test Relative telomere length Coefficient SE P >|t| Coefficient SE P >|t| Coefficient SE P >|t|

1 Any 3 maternal complications, all children –0.085 0.044 0.051 –0.086 0.0450 0.056 –0.087 0.046 0.061

2 Maternal complications x sex –0.162 0.087 0.064 –0.143 0.090 0.111 –1.431 9.00 0.110

3 Any 5 maternal and/or birth complications,
all children

–0.094 0.041 0.021 –0.099 0.042 0.019 –0.099 0.042 0.019

4 Maternal and/or birth complications x sex 0.110 0.081 0.176 –0.098 0.084 0.242 –9.715 8.380 0.247

5 GDM, all children –0.073 0.141 0.603 –0.049 0.146 0.738 –0.053 0.146 0.716

6 GDM x sex –0.105 0.285 0.713 –0.101 0.293 0.732 –1.056 2.939 0.720

7 Pre-eclampsia, all children –0.084 0.047 0.074 –0.083 0.049 0.087 –0.083 0.049 0.091

8 Pre-eclampsia x sex 0.177 0.0945 0.062 –0.155 0.097 0.109 –1.570 9.698 0.106

9 Preterm birth, all children –0.026 0.077 0.737 –0.025 0.082 0.759 –0.010 0.096 0.916

10 Preterm birth x sex –0.211 0.154 0.173 –0.221 0.166 0.182 –2.224 1.661 0.181

11 Low birth weight, all children –0.119 0.074 0.107 –0.120 0.077 0.118 –0.169 0.100 0.090

12 Low birth weight x sex 0.139 0.149 0.350 0.180 0.155 0.245 1.850 1.549 0.232

13 Macrosomia, all children –0.018 0.067 0.790 –0.033 0.070 0.640 –0.064 0.081 0.432

14 Macrosomia x sex –0.075 0.136 0.581 –0.061 0.141 0.665 –6.174 1.411 0.662

15 Uncomplicated pregnancy, all children 0.017 0.050 0.729 0.015 0.052 0.772 0.016 0.052 0.765
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studies.26,27 Yet, although pregnancy complications are a predictor
for later disease, and so too is telomere length, few studies have
assessed the impact of pregnancy complications on telomere length
of the offspring.13,14,28 Our findings that males and females born
from a healthy/uncomplicated pregnancy have the same relative
telomere length, but that females born from a mother with
pre-eclampsia had shorter telomeres than non-exposed females,
are important.

Few studies have assessed the effect of pre-eclampsia and
offspring telomere length, demonstrating inconsistent results.
A small study of 9 women with pre-eclampsia showed no
difference in cord blood telomere length compared to uncompli-
cated pregnancies (n= 14).29 Comparatively, telomere length in
placenta was shorter in pre-eclampsia (n= 14), intrauterine

growth restriction (n= 14), or pre-eclampsia plus intrauterine
growth restriction placentas (n= 9) compared to controls
(n= 20)30, and was shorter in cord blood from pre-eclamptic
pregnancies (n= 27) compared to controls (n= 54).31 These
studies assessed cord blood or placental telomere length, but the
impact of telomere length on future cardiovascular diseases has not
been longitudinally assessed. We found that within the group
of females, telomeres were shorter than females not exposed to
pre-eclampsia. Our findings are valuable and support the impact of
in utero programming. The 17-year-old females in this cohort will
inevitably have their own pregnancies. Although shorter telomeres
in women has been associated with recurrent miscarriage
and ovarian insufficiency32, it has also been theorised that
despite the reduction of telomeres with ageing and during oocyte

Figure 1. Mean (± SD) telomere lengths of the
17-year olds whose mothers did or did not have
any of the maternal (gestational diabetes,
preeclampsia and preterm birth) or infant
(macrosomia >4000 g and low birthweight
<2500 g) complications in (A) the entire cohort
(A); in (B) females only and (C) males only.
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development, telomere length resets across generation.33

Therefore, further research is required to determine if
telomere length continues to shorten in females in subsequent
generations.

The indication that telomere length was not shorter following
the other individual major pregnancy complications or between
sexes following any of the pregnancy complications is intriguing.
Some studies demonstrate no associations with GDM and fetal
telomere length measured in cord blood34–37, there are mixed
reports for longer and shorter telomere lengths in babies born
preterm38,39, and no association was reported for babies born small
for gestational age.40 However, Xu et al showed shorter telomere
lengths in cord blood leucocytes following a GDM pregnancy
compared with control offspring37; Hjort et al found shorter blood
telomeres in children aged 9–16 years if their mother had GDM28,
and McAninch et al reported shorter telomere lengths in 10-year-
old children born from women who had metabolic syndrome in
pregnancy.13 Interestingly, the study by Hjort found that the
relationship with shorter telomeres from GDM was primarily
driven by shortened telomeres in female offspring.28 The
inconsistent results between our study and others may be
explained by a lack of power, the age of the offspring assessed
and confounding variables. As telomere length is most variable at
the time of birth41,42 telomere length may be less variable in later
childhood and adolescence. Further studies are needed to improve
our understanding on pregnancy complications and telomere
length across a range of ages after birth and after a pregnancy
complication.

Conclusion

Males and females born from a healthy, uncomplicated pregnancy
have the same relative telomere length, but females born after a
pre-eclamptic pregnancy had shorter telomeres than females who
were not born from a pre-eclamptic pregnancy. Further
longitudinal assessment is warranted to understand mediating
factors that are important in predicting offspring telomere length
and the necessity to investigate females and males independently.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/S2040174424000291.
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Table 3. Within sex comparisons and the estimated effect of each predictor variable on relative telomere length in 17-year-old children

Model 0 Model 1 Model 2

Relative Telomere Length Coefficient SE P >|t| Coefficient SE P >|t| Coefficient SE P >|t|

Any 3 maternal complications

Males –0.009 0.060 0.884 –0.014 0.062 0.822 –0.004 0.064 0.956

Females –0.170 0.063 0.007 –0.159 0.0650 0.015 –0.170 0.067 0.012

Any 5 maternal and/or birth complications

Males –0.042 0.056 0.451 –0.041 0.058 0.479 –0.040 0.058 0.490

Females –0.152 0.059 0.010 –0.157 0.061 0.010 –0.159 0.061 0.010

GDM

Males –0.030 0.184 0.868 0.019 0.193 0.920 0.016 0.193 0.934

Females –0.136 0.219 0.536 –0.122 0.225 0.560 –0.123 0.227 0.588

Pre-eclampsia

Males –0.005 0.064 0.943 –0.011 0.066 0.865 –0.004 0.067 0.953

Females –0.181 0.070 0.010 –0.166 0.072 0.021 –0.166 0.072 0.022

Preterm birth

Males 0.094 0.115 0.416 0.099 0.127 0.433 0.188 0.145 0.195

Females –0.117 0.103 0.256 –0.121 0.108 0.261 –0.179 0.131 0.172

Low birth weight

Males –0.195 0.111 0.078 –0.224 0.116 0.055 –0.275 0.147 0.063

Females –0.056 0.100 0.574 –0.049 0.103 0.635 –0.087 0.137 0.526

Macrosomia

Males 0.013 0.089 0.884 0.010 0.092 0.912 –0.036 0.109 0.739

Females –0.062 0.103 0.548 –0.078 0.107 0.471 –0.103 0.124 0.407
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Figure 2. Mean (± SD) telomere lengths of the
17-year olds whose mothers did or did not have
pre-eclampsia in (A) the entire cohort (A); in (B)
females only and (C) males only.
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