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Abstract
We realise Buchweitz and Flenner’s semiregularity map (and hence a fortiori Bloch’s semiregularity map) for a
smooth variety X as the tangent of a generalised Abel–Jacobi map on the derived moduli stack of perfect complexes
on X. The target of this map is an analogue of Deligne cohomology defined in terms of cyclic homology, and
Goodwillie’s theorem on nilpotent ideals ensures that it has the desired tangent space (a truncated de Rham complex).

Immediate consequences are the semiregularity conjectures: that the semiregularity maps annihilate all obstruc-
tions, and that if X is deformed, semiregularity measures the failure of the Chern character to remain a Hodge class.
This gives rise to reduced obstruction theories of the type featuring in the study of reduced Gromov–Witten and
Pandharipande–Thomas invariants. We also give generalisations allowing X to be singular, and even a derived stack.
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Introduction

In [Blo], Bloch defined a semiregularity map

𝜏 : H1 (𝑍,𝒩𝑍/𝑋 ) → H𝑝+1(𝑋,Ω𝑝−1
𝑋 )

for every local complete intersection Z of codimension p in a smooth proper complex variety X,and
showed that curvilinear obstructions lie in the kernel of 𝜏. He also showed that if X is deformed, then
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2 J.P. Pridham

𝜏 measures the curvilinear obstruction to [𝑍] remaining a Hodge class, and conjectured that these
statements should hold for all obstructions, not just curvilinear ones.

In [BF1], Buchweitz and Flenner extended 𝜏 to give maps

𝜎𝑞 : Ext2𝒪𝑋
(ℱ,ℱ) → H𝑞+2 (𝑋,Ω𝑞𝑋 )

for any perfect complex ℱ on X, given (up to scalar) by composing with the qth power of the Atiyah
class and then taking the trace. They then showed that curvilinear obstructions to deforming ℱ lie in
the kernel of 𝜎𝑞 . If X is allowed to deform, they showed the same holds provided ch𝑝 (ℱ) deforms as a
Hodge class, with consequences for the variational Hodge conjecture [BF1, §5].

Obstruction spaces feature in the construction of virtual fundamental classes in enumerative geometry,
used to construct Gromov–Witten and similar invariants. Often the natural obstruction spaces are too
large, killing the naïvely defined invariants, but the semiregularity conjectures yield smaller reduced
obstruction theories ker(𝜏) and ker(𝜎𝑞) in many cases, paving the way for nontrivial reduced invariants
to be defined.

Buchweitz and Flenner [BF1, §1, p. 138] also conjectured that the semiregularity map should
arise as a morphism of obstruction spaces associated to a morphism of deformation theories and then
speculated that this morphism would most likely take the form of a generalised Abel–Jacobi map from
the deformation groupoid to an intermediate Jacobian or to Deligne cohomology. The underlying idea
is that for a deformation ℱ̃ of ℱ, we must have ch(ℱ) = ch(ℱ̃) because the cohomological Chern
character takes rational values. The homotopy between cycles representing ch𝑞+1 (ℱ) and ch𝑞+1 (ℱ̃)
should then be given by 𝜎𝑞 (ℱ̃).

When seeking functorial obstruction theories, one is naturally drawn to derived deformation theory,
which generates obstruction spaces as higher tangent spaces (e.g., see Lemma 1.8) and guarantees
functoriality of obstruction maps. In [Man, IM], Manetti and Iacono constructed explicit infinitesimal
derived Abel–Jacobi maps by 𝐿∞ methods, proving Bloch’s first semiregularity conjecture in the case
where Z is smooth, and then for complete intersections of hypersurfaces.1 Like [BF1], [IM] identified
H2𝑝 (𝑋,Ω<𝑝𝑋 ) as a more natural target for the semiregularity map than H𝑝+1(𝑋,Ω𝑝−1

𝑋 ). Other work such
as [STV, KT] focuses on the case 𝑝 = 1, where this discrepancy does not arise.2

In this paper, we construct a morphism of derived deformation theories of the form envisaged in
[BF1], but to a slightly different target. This leads to the following theorem, which proves and generalises
the conjectures of [BF1] and hence [Blo], showing that the semiregularity map measures the failure of
the unique horizontal lift of the Chern character to remain in 𝐹 𝑝:

Theorem. Take a local Artinian C-algebra A, a smooth morphism 𝑋 → Spec 𝐴 of Artin stacks and
square-zero ideal 𝐼 ⊂ 𝐴 with quotient 𝐵 = 𝐴/𝐼. Then for any perfect complex ℱ over 𝑋 ′ := 𝑋 ⊗𝐴 𝐵,
with obstruction 𝑜(ℱ) ∈ Ext2

𝒪𝑋′
(ℱ,ℱ ⊗𝐵 𝐼) to deforming ℱ to a complex of 𝒪𝑋 -modules, the image

of the Chern character ch𝑝 (ℱ) under the map

H2𝑝 (𝑋 ′(C)an,Q) � H2𝑝 (𝑋 (C)an,Q) → H2𝑝 (𝑋 (C)an, 𝐴) � H2𝑝 (𝑋,Ω•𝑋/𝐴)

lies in 𝐹 𝑝H2𝑝 (𝑋,Ω•
𝑋/𝐴
) if and only if 𝑜(ℱ) maps to zero under the composite map

Ext2𝒪𝑋′
(ℱ,ℱ ⊗𝐵 𝐼)

𝜎𝑝−1
−−−−→ H𝑝+1(𝑋, 𝐼Ω𝑝−1

𝑋/𝐴
) → H2𝑝 (𝑋,Ω<𝑝

𝑋/𝐴
).

In fact, we establish a more general statement, Corollary 2.25, using derived differential forms to
remove the smoothness hypothesis and allowing derived objects. Note that if the family X is constant

1Nearly a decade after this was first written, Bandiera, Lepri and Manetti [BLM] used Chern–Simons classes to recover the
main results of this paper in the absolute case 𝑅 = C for smooth proper varieties X, including the first semiregularity conjecture.

2In that special case, the derived Picard stack already provides a suitable target (since the trace 𝜎0 is an isomorphism for line
bundles), with the Abel–Jacobi map simply corresponding to the derived determinant.

https://doi.org/10.1017/fms.2024.132 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.132


Forum of Mathematics, Sigma 3

over A (i.e., 𝑋 � 𝑋0 × Spec 𝐴), then the condition ch𝑝 (ℱ) ∈ 𝐹 𝑝 is automatically satisfied and the
obstruction 𝑜(ℱ) always maps to zero (Remark 2.23).

The theorem produces reduced obstruction theories for the stable pairs and stable curves featuring in
the study of Pandharipande–Thomas and Gromov–Witten invariants (Remarks 2.27 and Remark 2.28).
The latter follows by considering perfect complexes of the form R 𝑓∗𝒪𝑍 to produce reduced obstruction
theories for proper morphisms 𝑓 : 𝑍 → 𝑋 . As a special case, this establishes Bloch’s semiregularity
conjectures in the generality envisaged (Remark 2.29). Since we can apply the theorem to gerbes, it also
leads to reduced obstructions for 𝜇-twisted sheaves (Remark 2.26).

The previous theorem is a consequence of the following more general result, which only involves
cohomology groups of algebraic, not analytic or topological, origin (cf. Corollary 2.24 for the derived
generalisation not requiring smoothness):

Theorem. Take a smooth morphism 𝑓 : 𝑋 → 𝑆 of Artin stacks overQ, with a closed immersion 𝑆′ ↩→ 𝑆
defined by a nilpotent ideal ℐ. Then for 𝑋 ′ := 𝑋 ×𝑆 𝑆

′, the Chern character refines to give maps Ξ𝑝
from 𝐾0(𝑋

′) to the vector spaces

H2𝑝 (𝑋,Ω•𝑋/𝑆 ×Ω•𝑋′/𝑆′ 𝐹
𝑝Ω•𝑋 ′/𝑆′ )

= H2𝑝 (𝑋,ℐ𝒪𝑋
𝑑
−→ ℐΩ1

𝑋/𝑆

𝑑
−→ . . .

𝑑
−→ ℐΩ𝑝−1

𝑋/𝑆

𝑑
−→ Ω𝑝

𝑋/𝑆

𝑑
−→ Ω𝑝+1

𝑋/𝑆

𝑑
−→ . . .).

If ℐ2 = 0, then for any perfect complex ℱ over 𝑋 ′, the obstruction to lifting Ξ𝑝 (ℱ) to
H2𝑝 (𝑋, 𝐹 𝑝Ω•

𝑋/𝑆
) is given by applying the composite map

Ext2𝒪𝑋′
(ℱ,ℱ ⊗𝒪𝑆′

ℐ)
𝜎𝑝−1
−−−−→ H𝑝+1(𝑋,ℐΩ𝑝−1

𝑋/𝑆
) → H2𝑝 (𝑋,ℐΩ<𝑝

𝑋/𝑆
)

to the obstruction 𝑜(ℱ) to deforming ℱ to a complex of 𝒪𝑋 -modules.

The crucial observation enabling our construction Ξ is that if we modify Deligne cohomology
slightly, replacing rational Betti cohomology with any other cohomology theory which is formally étale
(i.e., invariant under nilpotent thickenings), then the obstruction spaces are unchanged. The theory we
work with is Hartshorne’s algebraic de Rham cohomology DRalg in the guise of derived de Rham
cohomology, which is formally étale by Goodwillie’s theorem on nilpotent ideals [Goo1]. Our map Ξ is
then induced from the Goodwillie–Jones Chern character ch−.

Given a smooth morphism 𝑋 → Spec 𝑅 over C, we set 𝐽 𝑝 (𝑋/𝑅,C) [2𝑝] to be the cocone (i.e.,
shifted cone or homotopy fibre) of

DRalg(𝑋/C) → RΓ(𝑋,Ω<𝑝
𝑋/𝑅
),

noting that, in general, X will not be smooth over C. This definition also adapts in the obvious way to any
base Q-algebra k in place of C and admits further generalisations to derived stacks with no smoothness
hypothesis (Definition 2.13).

To establish existence of the Abel–Jacobi map and functoriality, we reformulate in terms of cyclic
homology. Derived de Rham cohomology is isomorphic to periodic cyclic homology HP, giving∏

𝑝

𝐽 𝑝 (𝑋/𝑅, 𝑘) 	 HP𝑘 (𝑋) ×ℎHP𝑅 (𝑋 )
HN𝑅 (𝑋),

for negative cyclic homology HN. The generalised Abel–Jacobi maps

Ξ𝑝 : 𝐾 (𝑋) → 𝐽 𝑝 (𝑋/𝑅, 𝑘)

are then induced from the Goodwillie–Jones Chern character ch− : 𝐾 (𝑋) → HN𝑘 (𝑋).
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4 J.P. Pridham

Now, Ξ𝑝 restricts from K-theory to a map on the ∞-groupoid Perf (𝑋) of perfect complexes on X.
As we change the base, setting 𝑋𝐴 := 𝑋 ⊗𝑅 𝐴 and 𝐽 𝑝𝑋 (𝐴, 𝑘) := 𝐽 𝑝 (𝑋𝐴/𝐴, 𝑘), this gives us morphisms

Ξ𝑝 : Perf (𝑋𝐴) → 𝐽 𝑝𝑋 (𝐴, 𝑘),

functorial in simplicial R-algebras A.
Goodwillie’s Theorem on nilpotent ideals implies that HP𝑘 (𝑋𝐴) is formally étale as a functor in A,

so 𝐽 𝑝𝑋 (−, 𝑘) has the same derived tangent space as cyclic homology with a degree shift. On derived
tangent spaces, Ξ𝑝 thus induces maps

𝜉𝑝 : Ext𝑟𝒪𝑋𝐴
(ℱ,ℱ ⊗𝐴 𝑀) → H

2𝑝−2+𝑟 (𝑋, (𝒪𝑋 → . . .→ Ω𝑝−1
𝑋 ) ⊗𝑅 𝑀),

for A-modules M; in Proposition 1.17, we show that 𝜉𝑝 is just the (𝑝 − 1)th component of the Lefschetz
map L of [BNT], and hence (Remark 2.21) equivalent to the semiregularity map 𝜎𝑝−1 of [BF1].

The étale hypersheaves Perf𝑋 and 𝐽 𝑝𝑋 (−, 𝑘) satisfy homotopy-homogeneity,3 a left-exactness property
analogous to Schlessinger’s conditions, which in particular gives a functorial identification of higher
tangent spaces with obstruction spaces. Since 𝐽 𝑝𝑋 (−, 𝑘) has the same obstruction space as Deligne
cohomology, the map Ξ𝑝 thus fully realises the hope expressed in [BF1, §1].

Given a square-zero extension 𝑒 : 𝐴→ 𝐵 of simplicial algebras with kernel I, and a perfect complex
ℱ on 𝑋𝐵, the obstruction 𝑜𝑒 (ℱ) to lifting ℱ to 𝑋𝐴 lies in Ext2𝒪𝑋𝐵

(ℱ,ℱ ⊗𝐵 𝐼). Derived functoriality
and homotopy-homogeneity then ensure (Corollary 2.22) that the obstruction to lifting Ξ𝑝 (ℱ) from
H0𝐽

𝑝
𝑋 (𝐵, 𝑘) to H0𝐽

𝑝
𝑋 (𝐴, 𝑘) is just

𝜉𝑝 (𝑜𝑒 (ℱ)) ∈ H
2𝑝 (𝑋, (𝒪𝑋 → Ω1

𝑋/𝑅 → . . .→ Ω𝑝−1
𝑋/𝑅
) ⊗𝑅 𝐼),

leading to the theorems above (Corollaries 2.25 and 2.24), corresponding to the choices 𝑘 = C and
𝑘 = 𝑅 = 𝐴, respectively. Our formulation in terms of cyclic homology and the Lefschetz map L also
extends these results to certain noncommutative spaces (Corollary 1.20), where one effectively has to
consider all values of p simultaneously.

Notation and conventions

The Dold–Kan correspondence gives an equivalence of categories between simplicial abelian groups
and nonnegatively graded chain complexes, with homotopy groups corresponding to homology groups,
and we will pass between these categories without further comment.

Given a chain complex V, we will write 𝑉 [𝑛] for the chain complex given by 𝑉 [𝑛]𝑖 = 𝑉𝑛+𝑖; beware
that this is effectively opposite to the standard convention for cochain complexes. We also write 𝜏≥0𝑉
for the good truncation [Wei2, Truncations 1.2.7] of V in nonnegative chain degrees, which we can then
regard as a simplicial abelian group by the Dold–Kan correspondence above.

For a morphism 𝑓 : 𝑉 → 𝑊 of chain complexes, cocone( 𝑓 ) will denote the shifted cone, a model
for the homotopy fibre of f, which fits into an exact triangle

cocone( 𝑓 ) → 𝑉 → 𝑊 → cocone( 𝑓 ) [−1] .

Definition 0.1. Given a commutative ring A and a flat A-algebra E, write HC𝐴(𝐸) (resp. HN𝐴(𝐸), resp.
HP𝐴(𝐸), resp. HH𝐴(𝐸)) for the chain complex associated to cyclic (resp. negative cyclic, resp. periodic
cyclic, resp. Hochschild) homology of E over A, as in [Wei2, §9.6].

Given a simplicial commutative ring A and a simplicial A-algebra E with each 𝐸𝑛 flat over 𝐴𝑛, together
with a homology theory H as in the previous paragraph, define the complex H𝐴(𝐸) by first forming the
simplicial chain complex given by H𝐴𝑛 (𝐸𝑛) in level n, then taking the product total complex.

3Later terms for this concept are infinitesimal cohesiveness on one factor and (on Artinian input) being a formal moduli problem,
although the property neither associates genuine moduli problems to such functors nor is automatically satisfied by such.

https://doi.org/10.1017/fms.2024.132 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.132


Forum of Mathematics, Sigma 5

Remark 0.2. When working with cyclic homology, it is usual to fix a base ring and to omit it from the
notation. Since varying the base will be crucial to our constructions, we have introduced the superscript
A above. Also beware that the cohomology theories HN and HP are frequently denoted by HC− and
HCper in the literature and that our complexes are related to cyclic homology groups by

HC𝐴
𝑖 (𝐸, 𝑀) := H𝑖HC𝐴(𝐸, 𝑀)

etc. In the notation of [Wei2, Ch. 9], the complexes HH,HC,HN,HP are denoted by
CCℎ∗ ,Tot CC∗∗,Tot ΠCC𝑁

∗∗ ,Tot ΠCC𝑃
∗∗.

When A is a discrete ring, note that the complexes above are those studied in [Goo2].

Definition 0.3. As in [Wei2, §9.8.2], when the A-algebra E is commutative, each of the homology
theories H above admits a Hodge decomposition, which we denote by

H𝐴(𝐸) =
∏
𝑝∈Z

H𝐴(𝐸) (𝑝) .

Note that in the case of HC, we have HC𝐴(𝐸) (𝑝) = 0 for 𝑝 < 0, with degree bounds on the other
terms (specifically, HC𝐴(𝐸) (𝑝) concentrated in chain degrees ≥ 𝑝) making the infinite product a direct
sum in that case only.

For E commutative, recall from [Wei2, §9.6.1] that there are exact triangles (the SBI sequences)

HN𝐴(𝐸) (𝑝)
I
−→ HP𝐴(𝐸) (𝑝) S

−→ HC𝐴(𝐸) (𝑝−1) [−2] B
−→ HN𝐴(𝐸) (𝑝) [−1]

HH𝐴(𝐸) (𝑝)
I
−→ HC𝐴(𝐸) (𝑝)

S
−→ HC𝐴(𝐸) (𝑝−1) [−2] B

−→ HH𝐴(𝐸) (𝑝) [−1],

compatible with the projection map 𝜋HH : HN𝐴(𝐸) (𝑝) → HH𝐴(𝐸) (𝑝) and S : HP𝐴(𝐸) (𝑝) →
HC𝐴(𝐸) (𝑝) . For E noncommutative, these sequences still exist once we drop the superscripts (𝑝),
there being no Hodge decomposition in this case. See Proposition 2.4 below for the relation of these
sequences with the Hodge filtration on derived de Rham cohomology.

Definition 0.4. Given a simplicial ring E, we follow [Wal] in writing 𝐾 (𝐸) for the simplicial set
constituting the K-theory space of E (the 0th part of the K-theory spectrum). This is an infinite loop
space with 𝜋𝑖𝐾 (𝐸) = 𝐾𝑖 (𝐸).

1. The Abel–Jacobi map for rings

Fix a simplicial commutative Q-algebra R and a simplicial associative R-algebra 𝑂 (𝑋), which need not
be commutative. Assume that each 𝑂 (𝑋)𝑛 is flat as an 𝑅𝑛-module. We will write 𝐹 (𝑋) := 𝐹 (𝑂 (𝑋))
when F is a functor such as 𝐾,HP,HC,HN,HH.

Write 𝑠CAlg𝑅 for the category of simplicial commutative R-algebras. We use its model structure
induced from the Kan–Quillen model structure on simplicial sets. We call a functor from 𝑠CAlg𝑅 to a
model category homotopy-preserving if it preserves weak equivalences.

1.1. The Abel–Jacobi map

Definition 1.1. Define chain complexes

𝐽 (𝑋/𝑅) := cocone(HPQ(𝑋) S
−→ HC𝑅 (𝑋) [−2]),

𝐽 𝑝 (𝑋/𝑅) := cocone(HPQ(𝑋) (𝑝) S
−→ HC𝑅 (𝑋) (𝑝−1) [−2]),

the latter only being defined when 𝑂 (𝑋) is commutative, with 𝐽 (𝑋/𝑅) =
∏
𝑝∈Z 𝐽

𝑝 (𝑋/𝑅).

https://doi.org/10.1017/fms.2024.132 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.132


6 J.P. Pridham

These are functors on the category of arrows (𝑅 → 𝑂 (𝑋)) in 𝑠CAlgQ, so we may then define functors
𝐽𝑋 and 𝐽 𝑝𝑋 from 𝑠CAlg𝑅 to chain complexes by setting 𝐽𝑋 (𝐴) := 𝐽 (𝑋𝐴/𝐴) and 𝐽 𝑝𝑋 (𝐴) := 𝐽 𝑝 (𝑋𝐴/𝐴),
where 𝑂 (𝑋𝐴) := 𝑂 (𝑋) ⊗𝑅 𝐴.

Note that the equivalence cocone(HP𝑅 (𝑋) S
−→ HC𝑅 (𝑋) [−2]) 	 HN𝑅 (𝑋) gives a homotopy fibre

product characterisation
𝐽 (𝑋/𝑅) 	 HPQ(𝑋) ×ℎHP𝑅 (𝑋 )

HN𝑅 (𝑋);

the motivation for this construction is that HN𝑅 (𝑋) behaves like the Hodge filtration over R, while
HPQ(𝑋) behaves in some respects like Betti cohomology.

The Goodwillie–Jones Chern character

ch− : 𝐾 (𝑋) → 𝜏≥0HNQ(𝑋)

of [Goo2, Theorem II.3.1] (there denoted 𝛼) or [HJ, §5], or rather its promotion to a natural ∞-
transformation as in [Goo2, §III.2.3], then combines with the map

HNQ(𝑋) → HPQ(𝑋) ×ℎHP𝑅 (𝑋 )
HN𝑅 (𝑋),

natural in X and R, to give a natural map

Ξ : 𝐾 (𝑋) → 𝜏≥0𝐽 (𝑋/𝑅)

in the∞-category of simplicial sets,4 which we call the (generalised) Abel–Jacobi map.

Definition 1.2. Given a simplicial ring S, define Perf (𝑆) to be the simplicial set given by first forming
the core (i.e., the subcategory of quasi-isomorphisms) of the simplicial category Perf(𝑆) of perfect
S-modules in complexes, then taking the nerve; see, for instance, [Pri1, Definitions 2.8 and 2.29] or
[TV2, §1.3.7]. This becomes a simplicial semiring with addition given by block sum and multiplication
by tensor product.

Definition 1.3. By [Wal, Theorem 2.3.2] and [TT, Theorem 1.9.8], there is a natural map Perf (𝑋) →
𝐾 (𝑋). Composing this with the Abel–Jacobi map above gives us a map

Ξ : Perf (𝑋) → 𝜏≥0𝐽 (𝑋/𝑅).

1.2. Homogeneity and obstructions

Say that a map 𝐴→ 𝐵 in 𝑠CAlg𝑅 is a nilpotent extension if it is levelwise surjective, with the kernel I
satisfying 𝐼𝑛 = 0 for some n, where both the kernel and its powers are defined levelwise. In other words,
the maps 𝐴𝑖 → 𝐵𝑖 are all nilpotent surjections, with a common bound on the index of nilpotency.

Definition 1.4. We say that a homotopy-preserving functor F from 𝑠CAlg𝑅 to a model category C is
homotopy-homogeneous if for 𝐴→ 𝐵 a nilpotent extension in 𝑠CAlg𝑅 and 𝐶 → 𝐵 any morphism, the
map

𝐹 (𝐴 ×𝐵 𝐶) → 𝐹 (𝐴) ×ℎ𝐹 (𝐵) 𝐹 (𝐶)

(to the homotopy fibre product) is a weak equivalence. When C is the category of chain complexes, this
is equivalent to saying that we have an exact triangle

𝐹 (𝐵) [1] → 𝐹 (𝐴 ×𝐵 𝐶) → 𝐹 (𝐴) ⊕ 𝐹 (𝐶) → 𝐹 (𝐵).

4Note that we are here following our stated convention of reinterpreting chain complexes as simplicial abelian groups. The
natural ∞-transformation is given by a zigzag alternating natural transformations with natural weak equivalences, which is thus
a natural transformation of the associated simplicial functor on hammock localisations.
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Definition 1.5. Define the simplicial set-valued functor Perf𝑋 on 𝑠CAlg𝑅 by Perf𝑋 (𝐴) :=
Perf (𝑂 (𝑋) ⊗𝑅 𝐴).

Definition 1.6. Given a homotopy-homogeneous functor F from 𝑠CAlg𝑅 to simplicial sets (with the
Kan–Quillen model structure), an element 𝑥 ∈ 𝐹 (𝐴)0 and an A-module M in simplicial abelian groups,
define the tangent space

𝑇𝑥 (𝐹, 𝑀)

to be the homotopy fibre of 𝐹 (𝐴⊕𝑀) → 𝐹 (𝐴) over x, for the trivial square-zero extension 𝐴⊕𝑀 → 𝐴.
Note that homotopy-homogeneity of F ensures that 𝑇𝑥 (𝐹, 𝑀) has an infinite loop space structure;

see, for instance, [Pri2, Lemma 1.12]. We thus define tangent cohomology to be the abelian groups
D𝑛−𝑖
𝑥 (𝐹, 𝑀) := 𝜋𝑖𝑇𝑥 (𝐹, 𝑀 [−𝑛]), which are well-defined by that lemma.

Definition 1.7. Define a square-zero extension 𝐼 → 𝐴 → 𝐵 in 𝑠CAlg𝑅 to be a levelwise surjection
𝐴→ 𝐵 in 𝑠CAlg𝑅 with kernel I being a square-zero simplicial ideal.

Lemma 1.8. Take a homotopy-preserving and homotopy-homogeneous simplicial set-valued functor F
on 𝑠CAlg𝑅 and a square-zero extension 𝐼 → 𝐴

𝑒
−→ 𝐵 in 𝑠CAlg𝑅. Then there is a naturally associated

section 𝑜𝑒 : 𝐹𝐵→ 𝐹 (𝐵 ⊕ 𝐼 [−1]) in the∞-category of simplicial sets, such that for any 𝑥 ∈ (𝐹𝐵)0, the
homotopy fibre (𝐹𝐴)𝑥 of 𝐹 (𝑒) over x is naturally homotopic to the space {𝑜𝑒 (𝑥)} ×ℎ𝑇𝑥 (𝐹,𝐼 [−1]) {0} of
paths from 0 to 𝑜𝑒 (𝑥).

In particular, we have a functorial obstruction

𝑜𝑒 (𝑥) ∈ D1
𝑥 (𝐹, 𝐼),

which is zero if and only if [𝑥] lies in the image of

𝑒∗ : 𝜋0 (𝐹𝐴) → 𝜋0 (𝐹𝐵).

Proof. This is contained in [Pri2, Lemma 1.17] and its proof, in which the obstruction maps given here
are just one term in a long exact sequence of homotopy groups.

Explicitly, the Čech nerve of A over B gives a bisimplicial R-algebra by sending n to the (𝑛 + 1)-fold
fibre product of A over B, and taking the diagonal gives us a simplicial R-algebra �̃�. The natural map
�̃�→ 𝐵 is a square-zero extension with acyclic kernel J, where 𝐽𝑛 � (𝐼𝑛)𝑛+1 acyclicity follows because
J is the diagonal of a levelwise acyclic bisimplicial module. The diagonal embedding gives a natural
map 𝐼 ↩→ 𝐽, with the square-zero property ensuring that 𝐼 ⊂ �̃� is a simplicial ideal. We then have an
isomorphism �̃�/𝐼 � 𝐵 ⊕ (𝐽/𝐼), and since J is acyclic, the B-module 𝐽/𝐼 is naturally weakly equivalent
to 𝐼 [−1]. The obstruction map 𝑜𝑒 then comes from the zigzag of simplicial sets

𝐹 (𝐵)
∼
←− 𝐹 (�̃�) → 𝐹 (𝐵 ⊕ (𝐽/𝐼))

∼
−→ 𝐹 (𝐵 ⊕ 𝐼 [−1]).

Moreover, for the zero section 𝐵 → 𝐵 ⊕ 𝐽/𝐼, we have �̃� ×𝐵⊕(𝐽/𝐼 ) 𝐵 � 𝐴, and hence,
𝐹 (𝐴) 	 𝐹 (𝐵) ×ℎ

𝑜𝑒 ,𝐹 (𝐵⊕𝐼 [−1]) ,0 𝐹 (𝐵), giving the required fibre sequence on taking homotopy fibres over
𝑥 ∈ 𝐹 (𝐵). �

The following is well-known (see, for instance, [Pri1, Theorem 4.12]; although stated for 𝑂 (𝑋)
commutative, the proof works verbatim in our generality):

Lemma 1.9. The functor Perf𝑋 is homotopy-preserving and homotopy-homogeneous. At
ℱ ∈ Perf𝑋 (𝐴), the tangent space 𝑇ℱ (Perf𝑋 , 𝑀) is 𝜏≥0(RHom𝑂 (𝑋 ) ⊗𝑅𝐴

(ℱ,ℱ ⊗𝐴 𝑀) [−1]), so the
tangent cohomology groups are

D𝑖
ℱ (Perf𝑋 , 𝑀) � Ext𝑖+1𝑂 (𝑋 ) ⊗𝑅𝐴(ℱ,ℱ ⊗𝐴 𝑀).
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1.3. Goodwillie’s theorem

The following is [Goo2, Lemma I.3.3], a reformulation of Goodwillie’s theorem on nilpotent ideals
([Goo1, Theorems II.5.1 and IV.2.6]):

Theorem 1.10. If 𝑆 → 𝑇 is a map of simplicial Q-algebras such that 𝜋0𝑆 → 𝜋0𝑇 is a nilpotent
extension, then the map

HPQ(𝑆) → HPQ(𝑇)

is a quasi-isomorphism of chain complexes.

Proposition 1.11. The functor 𝐽𝑋 from 𝑠CAlg𝑅 to chain complexes is homotopy-homogeneous.

Proof. The chain complexes HC𝑅𝑛 (𝑂 (𝑋)𝑛) of flat 𝑅𝑛-modules satisfy HC𝑅𝑛 (𝑂 (𝑋)𝑛) ⊗𝑅𝑛 𝐴𝑛 �
HC𝐴𝑛 (𝑂 (𝑋𝐴)𝑛) by construction and lie in nonnegative degrees. These tensor products are thus derived
tensor products, and since HC is concentrated in nonnegative chain degrees, the product total complex
in our definition of HC𝑅 (𝑋) and HC𝐴(𝑋𝐴) is just a total direct sum. Thus, HC𝐴(𝑋𝐴) 	 HC𝑅 (𝑋) ⊗L

𝑅 𝐴

for all 𝐴 ∈ 𝑠CAlg𝑅, which ensures that the functor 𝐴 ↦→ HC𝐴(𝑋𝐴) is homotopy-homogeneous by
exactness of derived tensor products.

Take a morphism 𝐶 → 𝐵 and a nilpotent extension 𝐴 → 𝐵 in 𝑠CAlg𝑅 with kernel I. Now, since
𝐴 ×𝐵 𝐶 → 𝐶 is a nilpotent extension, having kernel 𝐼 × {0}, Theorem 1.10 gives quasi-isomorphisms

HPQ(𝑋𝐴×𝐵𝐶 ) → HPQ(𝑋𝐶 ), HPQ(𝑋𝐴) → HPQ(𝑋𝐵).

Thus, HPQ(𝑋𝐴×𝐵𝐶 ) is trivially quasi-isomorphic to the cocone of

HPQ(𝑋𝐶 ) ⊕ HPQ(𝑋𝐴) → HPQ(𝑋𝐵),

that is, to the homotopy fibre product HPQ(𝑋𝐴) ×ℎHPQ (𝑋𝐵)
HPQ(𝑋𝐶 ), so the functor 𝐴 ↦→ HPQ(𝑋𝐴) is

also homotopy-homogeneous. The result for 𝐽𝑋 now follows by taking homotopy fibres. �

Lemma 1.12. For all [ 𝑓 ] ∈ H0 (𝐽𝑋 (𝐴)), the tangent space 𝑇 𝑓 (𝜏≥0 (𝐽𝑋 , 𝑀)) is canonically quasi-
isomorphic to 𝜏≥0(HC𝑅 (𝑋) ⊗L

𝑅 𝑀 [−1]).
If 𝑂 (𝑋) is commutative, then the tangent space 𝑇 𝑓 (𝜏≥0(𝐽

𝑝
𝑋 , 𝑀) is canonically quasi-isomorphic to

𝜏≥0 (HC𝑅 (𝑋) (𝑝−1) ⊗L
𝑅 𝑀 [−1]).

Proof. Since 𝐴 ⊕ 𝑀 → 𝐴 is a nilpotent extension, substituting in Theorem 1.10 gives

𝐽𝑋 (𝐴 ⊕ 𝑀) = cocone
(
HPQ(𝑋𝐴⊕𝑀 )

S
−→ HC𝐴⊕𝑀 (𝑋𝐴⊕𝑀 ) [−2]

)
,

∼
←− cocone

(
HPQ(𝑋𝐴)

S
−→ HC𝑅 (𝑋) ⊗L

𝑅 (𝐴 ⊕ 𝑀) [−2]
)
,

	 𝐽𝑋 (𝐴) ⊕ (HC𝑅 (𝑋) ⊗L
𝑅 𝑀 [−1]),

and similarly for 𝐽 𝑝𝑋 . �

1.4. The semiregularity map

Definition 1.13. Given a simplicial A-algebra S with ideal J, such that S and 𝑆/𝐽 are both levelwise
flat over A, write HC𝐴(𝑆 → 𝑆/𝐽) := cocone(HC𝐴(𝑆) → HC𝐴(𝑆/𝐽)) and define HH𝐴(𝑆 → 𝑆/𝐽) and
HN𝐴(𝑆 → 𝑆/𝐽) similarly.

Following the convention that weights are additive with respect to tensor products, a grading W on a
ring compatible with the multiplication induces gradings W on the various cyclic homology complexes
as in [Wei2, §9.9], with all natural constructions automatically preserving the gradings.
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Take a simplicial commutative Q-algebra A, a simplicial A-module M, and a (possibly noncommu-
tative) simplicial A-algebra E, with M and E levelwise flat over A. Then we may put a grading on the
trivial square-zero extension 𝐶 := 𝐴 ⊕ 𝑀 of A by setting A to have weight 0 and M to have weight 1.
Also setting E to have weight 0, we then have the following lemma.

Lemma 1.14. There is a commutative diagram, for ⊗ = ⊗𝐴,

HC𝐴(𝐸) ⊗W1𝐶
I𝐸 ⊗id
←−−−−−− HH𝐴(𝐸) ⊗W1HH𝐴(𝐶) (0)

id⊗B𝐶
−−−−−−→
∼

HH𝐴(𝐸) ⊗W1HH𝐴(𝐶) (1) [1]��� I𝐸⊗𝐶
⏐⏐�∼ (id⊗prHH(1) )◦𝜋HH

	⏐⏐∼
W1HC𝐶 (𝐸 ⊗ 𝐶)

𝜙
←−−−−−− W1HC𝐴(𝐸 ⊗ 𝐶)

B𝐸⊗𝐶
−−−−−−→
∼

W1HN𝐴(𝐸 ⊗ 𝐶) [1],

where ∼ denotes quasi-isomorphism, 𝜙 is the map induced by base change 𝐴→ 𝐶, and the map on the
right combines 𝜋HH : HN→ HH with the Künneth isomorphism HH𝐴(𝐸 ⊗𝐴𝐶) � HH𝐴(𝐸) ⊗𝐴HH𝐴(𝐶)
and projection prHH(1) : HH𝐴(𝐶) → HH𝐴(𝐶) (1) .

Proof. The first square commutes by compatibility of I with base change, since HH𝐶 (𝐶) = 𝐶. For
commutativity of the second square, observe that, by definition,

𝜋HH ◦ B𝐸⊗𝐶 ◦ I𝐸⊗𝐶 = B𝐸⊗𝐶 : HH𝐴(𝐸 ⊗ 𝐶)
B𝐸 ⊗id+id⊗B𝐶
−−−−−−−−−−−→ HH𝐴(𝐸 ⊗ 𝐶),

with projection to HH𝐴(𝐶) (1) then killing the identity term on HH𝐴(𝐶) (0) .
By Goodwillie’s Theorem over A (in the form of [Wei2, Corollary 9.9.2], based on the proof of

[Goo1, Theorem II.5.1]), W𝑖HP𝐴(𝐸 ⊗ 𝐶) is acyclic for all 𝑖 > 0, so the map B𝐸⊗𝐶 : HC𝐴(𝐸 ⊗ 𝐶) →
HN𝐴(𝐸 ⊗ 𝐶) [1] is a quasi-isomorphism in all nonzero weights by the SBI sequence.

Since we discard higher weights, the quasi-isomorphism B𝐶 : W1HH𝐴(𝐶) (0) →W1HH𝐴(𝐶) (1) [1]
can be seen from the HKR equivalence for HH𝐴(Symm𝐴𝑀), via which it corresponds to the de Rham
derivative 𝑑 : W1𝐶

∼
−→W1Ω1

𝐶/𝐴
.

It thus remains only to show that the middle map I𝐸⊗𝐶 is a quasi-isomorphism. Writing HC := HC𝐴,
HH := HH𝐴, we can characterise it as the composite of the quasi-isomorphisms

HH(𝐸) ⊗ 𝑀
(I𝐸 ,0) ⊗id
−−−−−−−→ cocone

(
HC(𝐸)

S𝐸
−−→ HC(𝐸)

)
⊗ 𝑀

→ cocone
(
HC(𝐸) ⊗W1HC(𝐶)

S𝐸 ⊗id−id⊗S𝐶
−−−−−−−−−−−→ HC(𝐸) ⊗W1HC(𝐶) [−2]

)
	W1HC(𝐸 ⊗ 𝐶).

Here, the first map is a quasi-isomorphism by the SBI sequence. The second map is well-defined
because S vanishes on HC(𝐶) (0) , with the natural isomorphism 𝑀 � W1HC(𝐶) (0) inducing a quasi-
isomorphism 𝑀 → W1HC(𝐶) by [Wei2, Exercise 9.9.1]. The final quasi-isomorphism is from the
Künneth formula for cyclic homology [Lod, Corollary 4.3.12]. �

Lemma 1.15. In the setting of Lemma 1.14, the obvious map

𝜙 : HC𝐴(𝐸 ⊗𝐴 𝐶 → 𝐸) →cocone
(
HC𝐶 (𝐸 ⊗𝐴 𝐶) → HC𝐴(𝐸)

)
� cocone

(
HC𝐴(𝐸) ⊗𝐴 𝐶 → HC𝐴(𝐸)

)
	 HC𝐴(𝐸) ⊗𝐴 𝑀
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is naturally homotopic to the composite

HC𝐴(𝐸 ⊗𝐴 𝐶 → 𝐸)
B
−→
∼

HN𝐴(𝐸 ⊗𝐴 𝐶 → 𝐸) [1]
𝜋HH
−−−→ HH𝐴(𝐸 ⊗𝐴 𝐶 → 𝐸) [1] � HH𝐴(𝐸) ⊗𝐴 HH𝐴(𝐶 → 𝐴) [1]
I⊗𝛿
−−−→ HC𝐴(𝐸) ⊗𝐴 𝑀,

where 𝛿 : HH𝐴(𝐶 → 𝐴) [1] → 𝑀 is the map induced by the canonical derivation Ω1
𝐶/𝐴
� 𝑀 .

Proof. Since HC(𝐸) ⊗ 𝑀 has weight 1, we may restrict to W1. In particular, 𝜙 is given by the natural
map 𝜙 from Lemma 1.14 composed with projection to W1

The statement now follows by substitution in Lemma 1.14, once we note that 𝛿 is left inverse to the
quasi-isomorphism B𝐶 : W1HH𝐴(𝐶) (0) →W1HH𝐴(𝐶) (1) [1]. �

Definition 1.16. Following [BNT, §4.3], given a levelwise flat simplicial A-algebra E and a perfect
E-complex ℱ, define the Lefschetz map L𝐸/𝐴 : RHom𝐸 (ℱ,ℱ) → HH𝐴(𝐸) to be given by

RHom𝐸 (ℱ,ℱ) 	 ℱ ⊗L
𝐸 RHom𝐸 (ℱ, 𝐸)

∼
←−
𝛽
(ℱ ⊗L

𝐴 RHom𝐸 (ℱ, 𝐸)) ⊗L
𝐸⊗L

𝐴
𝐸opp 𝐸

ev⊗id
−−−−→ 𝐸 ⊗L

𝐸⊗L
𝐴
𝐸opp 𝐸,

where ev : ℱ ⊗L
𝐴 RHom𝐸 (ℱ, 𝐸)) → 𝐸 is the evaluation map.

Derived Morita invariance of Hochschild homology [Kel2, Theorem 5.2] gives a quasi-isomorphism
HH𝐴(𝐸) → HH𝐴(per𝑑𝑔 (𝐸)), where per𝑑𝑔 (𝐸) is the dg category of cofibrant perfect E-complexes
given by applying [Kel2, §4.6] to the dg algebra given by the Dold–Kan normalisation of E equipped
with the Eilenberg–Zilber shuffle product. Writing P (𝑋,𝑌 ) := Hom𝐸 (𝑌, 𝑋), the bar construction
HH𝐴(per𝑑𝑔 (𝐸)) contains, for ℱ cofibrant, a subcomplex given by the total complex of

. . .→
(
P (ℱ, 𝐸) ⊗𝐴 P (𝐸, 𝐸)⊗

𝑛−1
𝐴 ⊗𝐴 P (𝐸,ℱ)

)
⊕ P (𝐸, 𝐸)⊗𝑛+1𝐴 → . . .

. . .→ (P (ℱ, 𝐸) ⊗𝐴 P (𝐸,ℱ)) ⊕ (P (𝐸, 𝐸) ⊗𝐴 P (𝐸, 𝐸)) → P (ℱ,ℱ) ⊕ P (𝐸, 𝐸),

which is a quasi-isomorphic subcomplex since it is just a copy of

cone
(
HH𝐴(𝐸,Hom𝐸 (𝐸,ℱ) ⊗𝐴 Hom𝐸 (ℱ, 𝐸))

(𝛽,HH𝐴 (ev))
−−−−−−−−−−→ Hom𝐸 (ℱ,ℱ) ⊕ HH𝐴(𝐸)

)

and 𝛽 is a quasi-isomorphism. It thus follows that the Lefschetz map can alternatively be characterised
as the composite Hom𝐸 (ℱ,ℱ) → HH𝐴(per𝑑𝑔 (𝐸))

∼
←− HH𝐴(𝐸).

Proposition 1.17. Given ℱ ∈ Perf (𝑋), the tangent map

𝑇ℱ (Ξ, 𝑀) : 𝑇ℱ (Perf𝑋 , 𝑀) → 𝑇Ξ(ℱ) (𝜏≥0𝐽𝑋 , 𝑀)

𝜏≥0(RHom𝑂 (𝑋 ) (ℱ,ℱ ⊗𝑅 𝑀) [−1]) → HC𝑅 (𝑋) ⊗L
𝑅 𝑀 [−1]

on simplicial R-modules M is given by the composite map

RHom𝑂 (𝑋 ) (ℱ,ℱ ⊗𝑅 𝑀)
L𝑂 (𝑋 )/𝑅
−−−−−−−→ HH𝑅 (𝑋) ⊗L

𝑅 𝑀
I
−→ HC𝑅 (𝑋) ⊗L

𝑅 𝑀.
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Proof. Writing 𝐶 = 𝑅 ⊕ 𝑀 and 𝐸 = 𝑂 (𝑋), with 𝜆 the equivalence of Lemma 1.12 and 𝜃 : HNQ(𝐸 ⊗Q
−) → 𝐽𝑋 the canonical map, we have a homotopy commutative diagram

HCQ(𝐸 ⊗L
𝑅 𝐶 → 𝐸) [−1] B

∼
��

��

HNQ(𝐸 ⊗L
𝑅 𝐶 → 𝐸)

������
����

����
��

𝜃

��

HC𝑅 (𝐸 ⊗L
𝑅 𝐶 → 𝐸) [−1]

�̄�

��

B
∼

�� HN𝑅 (𝐸 ⊗L
𝑅 𝐶 → 𝐸)

(I⊗𝛿)◦𝜋HH������
����

����
���

HC𝑅 (𝐸) ⊗L
𝑅 𝑀 [−1] 𝜆

∼
�� 𝐽𝑋 (𝐶 → 𝑅)

for 𝜙 and (I⊗𝛿)◦𝜋HH as in Lemma 1.15, which gives commutativity of that triangle; the top quadrilateral
commutes by naturality of B, and the outer rectangle commutes up to canonical homotopy by the SBI
sequence.

Now, Ξ = 𝜃 ◦ ch−, and the composite map 𝐾 ch−
−−→ HN

𝜋HH
−−−→ HH is just the Dennis trace ch, so

commutativity of the lower triangle in the diagram above gives the tangent map of Ξ as the composite

𝑇ℱ (Perf, 𝑀)
ch−ch(ℱ)
−−−−−−−→ HH𝑅 (𝐸) ⊗L

𝑅 HH𝑅 (𝐶 → 𝑅)
I⊗𝛿
−−−→ HC𝑅 (𝐸) ⊗L

𝑅 𝑀 [−1] .

Since 𝑇ℱ (Perf𝐸 , 𝑀 [−1]) deloops 𝑇ℱ (Perf𝐸 , 𝑀), the map is determined by its behaviour on mor-
phisms (𝜏≥0RHom𝐸 (ℱ,ℱ ⊗𝑅 𝑀)) [−1].

Take ℱ to be cofibrant and write 𝐸 ′ for the simplicial ring corresponding to the dg algebra
𝜏≥0Hom𝐸 (ℱ,ℱ) (taking levelwise flat replacement if necessary). The Dennis trace ch𝐸′ : GL1(𝐸

′ ⊗𝑅
𝐶) → HH𝑅 (𝐸 ′ ⊗𝑅 𝐶) maps g to 𝑔−1 ⊗ 𝑔, so for 𝛼 ∈ 𝐸 ′ ⊗𝑅 𝑀 , we have

𝛿(ch𝐸′ (1 + 𝛼)) = 𝛿((1 − 𝛼) ⊗ (1 + 𝛼)) = (1 − 𝛼)𝛼 = 𝛼 ∈ HH𝑅 (𝐸 ′) ⊗𝑅 𝑀,

meaning the composite 𝛿◦ch𝐸′ : 𝐸 ′⊗𝑅𝑀 [−1] → HH𝑅 (𝐸 ′)⊗L
𝑅𝑀 [−1] is just the natural inclusion map.

Morita functoriality allows us to pass from ch𝐸′ to ch𝐸 by composing with the maps HH𝑅 (𝐸 ′) →

HH𝑅 (per𝑑𝑔 (𝐸))
∼
←− HH𝑅 (𝐸), yielding the Lefschetz map L𝐸/𝑅. �

Combining Lemma 1.8 with Proposition 1.17 (after base change 𝑅 → 𝐵) gives the following:

Corollary 1.18. Given a square-zero extension 𝐼 → 𝐴
𝑒
−→ 𝐵 in 𝑠CAlg𝑅 and ℱ ∈ Perf𝑋 (𝐵), the space

Perf𝑋 (𝐴)ℱ of deformations of ℱ over A (i.e., the homotopy fibre of Perf𝑋 (𝐴) → Perf𝑋 (𝐵) over {ℱ})
fits into a natural commutative diagram

Perf𝑋 (𝐴)ℱ −−−−−−→ {ℱ}
𝑜𝑒

−−−−−−→ 𝜏≥0(RHom𝑋𝐵
(ℱ,ℱ ⊗L

𝐵 𝐼) [−2])

Ξ
⏐⏐� Ξ

⏐⏐� ⏐⏐�I◦L𝑂 (𝑋𝐵 )/𝐵

𝐽𝑋 (𝐴) −−−−−−→ 𝐽𝑋 (𝐵)
𝑜𝑒

−−−−−−→ 𝜏≥0(HC𝑅 (𝑋) ⊗L
𝑅 𝐼 [−2])

of homotopy fibre sequences, for the Lefschetz map L of Definition 1.16.

Remark 1.19. At this stage, everything being affine, the corollary implies that deformations of objects
are unobstructed, simply because in this affine setting, the obstruction space HC𝑅−2(𝑋, 𝐼) is 0. Taking
derived global sections leads to the constructions for schemes and stacks in §2, where the relevant space
becomes nontrivial.
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1.5. dg algebras and dg categories

The definitions of 𝐽𝑋 and Ξ generalise in the obvious way to dg algebras, and indeed dg categories, in
place of simplicial R-algebras O(𝑋). Although we will not need these results in §2, we now discuss the
extent to which the preceding results extend to those settings.

When chain complexes are not bounded below, there are some subtleties in generalising Definition 0.1.
Spaltenstein K-flatness [Spa] is the relevant flatness condition. As in [Kel1, §3.2], the Hochschild
complex HH has a natural analogue as a double complex, whose direct sum total complex we take to
be the Hochschild complex HH. The complexes HC,HN are then obtained from this in the usual way
[Kel1, §3.4], as Tot CC∗∗ and Tot ΠCC𝑁

∗∗ , while HP has to be taken as a product-sum total complex
Tot Π,⊕CC𝑃

∗∗ to ensure quasi-isomorphism invariance.
Given a dg category C for which PerfC is homotopy-homogeneous, the proof of Corollary 1.18

then automatically applies provided the conclusion of Goodwillie’s Theorem holds for C (i.e., provided
HPQ(C ⊗L

𝑅 𝐴)
∼
−→ HPQ(C ⊗L

𝑅 𝐵) for all square-zero extensions 𝑒 : 𝐴→ 𝐵 of simplicial R-algebras).
From the long exact sequence of homology, the obstruction IL(C⊗𝑅𝐵)/𝐵 (𝑜𝑒 (ℱ)) to liftingΞ(ℱ) from

𝜋0𝐽C (𝐵) to 𝜋0𝐽C (𝐴) is then guaranteed to vanish whenever the natural map HC𝑅−2(C, 𝐼) → H−1𝐽C (𝐴)
is injective, where 𝐼 = ker 𝑒. Injectivity of HC𝑅−2 (C, 𝐼) → HC𝑅−2 (C, 𝐴) would imply this; in particular, it
holds if R is a field and 𝜋∗𝐴 � 𝜋∗𝐵. Thus, for any such dg category C, the obstruction 𝑜𝑒 (ℱ) to lifting
a perfect C ⊗𝑅 𝐵-module ℱ from the derived category D(C ⊗𝑅 𝐵) to D(C ⊗𝑅 𝐴) would then lie in

ker
(
IL(C⊗𝑅𝐵)/𝐵 : Ext2C⊗𝑅𝐵 (ℱ,ℱ ⊗𝐵 𝐼) → HC𝑅−2(C, 𝐼)

)
.

Goodwillie’s Theorem and hence Corollary 1.18 do not extend to all dg algebras and dg categories, but
they are true for dg algebras concentrated in nonnegative chain degrees, via their Quillen equivalence with
simplicial algebras given by the Dold–Kan and Eilenberg–Zilber constructions. All variants of cyclic
homology are derived Morita invariant, preserve exact sequences in the Morita homotopy category, and
are additive with respect to semi-orthogonal decompositions [Kel2, Theorem 5.2a]. Thus, the class of
small Q-linear dg categories for which the conclusion of Goodwillie’s Theorem holds is closed under
those operations. As a special case, we have the following:

Corollary 1.20. If N is a geometric noncommutative scheme in the sense of [Orl, Definition 4.3] over
a characteristic 0 field k, then for any square-zero extension 𝑒 : 𝐴 → 𝐵 of commutative k-algebras
with kernel I and for any perfect N ⊗𝑘 𝐵-complex ℱ, the obstruction 𝑜𝑒 (ℱ) to lifting ℱ to a perfect
N ⊗𝑘 𝐴-complex lies in

ker
(
L(N ⊗𝑘𝐵)/𝐵 : Ext2N ⊗𝑘𝐵 (ℱ,ℱ ⊗

L
𝐵 𝐼) → HH𝑘

−2(N ) ⊗𝑘 𝐼
)
.

Proof. Up to derived Morita equivalence, N is defined to be an admissible dg subcategory of the dg
category per𝑑𝑔 (𝒪𝑌 ) of perfect complexes on a smooth proper R-scheme Y. By [Orl, §4.4 following
Theorem 3.25], N is thus a smooth proper dg category, so [TV1, Lemma 2.8 and Corollary 3.15] imply
that PerfN is a derived Artin∞-stack, and hence homotopy-homogeneous.

Since N is a semi-orthogonal summand of per𝑑𝑔 (𝒪𝑌 ), [Kel2, Theorem 5.2a] implies that it gives
rise to a direct summand on all variants of cyclic homology. Because Y is quasi-compact and semi-
separated, the Thomason–Trobaugh excision argument of [Kel1, §5] as summarised in [Kel2, Theorem
5.2b,c] means we can calculate cyclic homology of per𝑑𝑔 (𝒪𝑌 ) ⊗𝑘 𝐴 using Čech complexes, so the map
HPQ(N ⊗𝑘 𝐴) → HPQ(N ⊗𝑘 𝐵) is a quasi-isomorphism as a consequence of Goodwillie’s theorem
applied Zariski locally on Y.

Corollary 1.18 thus extends to this setting. Since k is a field, the morphism 𝐴→ 𝐵 admits a k-linear
splitting, so H0𝐽N (𝐴) → H0𝐽N (𝐵) is surjective and IL(𝑜𝑒 (ℱ)) = 0.

Finally, as in Remark 2.27, the Lefschetz principle makes I injective for per𝑑𝑔 (𝒪𝑌 ). Thus,
I : HH𝑘

∗ (N ) → HC𝑘∗ (N ) is also injective, being a restriction to direct summands, soL(𝑜𝑒 (ℱ)) = 0. �
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Remark 1.21. Until the final step, the proof of Corollary 1.20 only requires that N be a smooth proper
dg subcategory of per𝑑𝑔 (𝒪𝑌 ), for Y quasi-compact and semi-separated. In such cases, we can still say
that IL(𝑜𝑒 (ℱ)) = 0.

We can even replace𝒪𝑌 with any presheaf 𝒜 of simplicial associative R-algebras on the site of affine
open subschemes of Y for which 𝜋∗𝒜 admits a quasi-coherent 𝒪𝑌 -algebra structure. In particular, we
can take 𝒜 to be the structure hypersheaf 𝒪𝑌 ′ of any derived scheme 𝑌 ′ with underived truncation Y,
using [Pri3, Theorem 6.14], or to be any quasi-coherent simplicial associative 𝒪𝑌 ′-algebra.

The extension to 𝒜 follows because the excision argument of [Kel1, §5], implying Zariski descent
for HP, just relies on the functors 𝑗∗ : per𝑑𝑔 (𝒜(𝑈)) → per𝑑𝑔 (𝒜(𝑉)) being dg quotient maps whose
dg kernels depend only on the complement 𝑈 \ 𝑉 . This follows from [Dri, Proposition 1.4ii] and the
isomorphism H∗( 𝑗∗𝑀) � 𝒪(𝑉) ⊗𝒪 (𝑈 ) H∗𝑀 given by the algebraic Eilenberg–Moore spectral sequence.

2. The Abel–Jacobi map for (derived) schemes and stacks

From now on, all rings will be commutative.

2.1. Derived de Rham cohomology

Definition 2.1. Given 𝐴 ∈ 𝑠CAlgQ and 𝐵 ∈ 𝑠CAlg𝐴, define the de Rham complex to be the chain
complex

DR(𝐵/𝐴) :=
∏
𝑛≥0

Ω𝑛 (𝐵/𝐴) [𝑛] =
∏
𝑛≥0
(Λ𝑛𝐵Ω

1(𝐵/𝐴)) [𝑛],

with differential given by combining the differentials on the chain complexes Ω𝑛 (𝐵/𝐴) with the de
Rham differential (i.e., the derivation induced by 𝑑 : 𝐵 → Ω1(𝐵/𝐴). This has a Hodge filtration given
by 𝐹 𝑝DR(𝐵/𝐴) :=

∏
𝑛≥𝑝 Ω

𝑛 (𝐵/𝐴) [𝑛]).

Beware that the de Rham complex is usually regarded as a cochain complex, so negative homology
groups will correspond to positive cohomology groups; we are using chain complexes to facilitate
comparison with cyclic homology.

The functors Ω𝑛 (−/𝐴) clearly preserve weak equivalences between cofibrant (and indeed levelwise
ind-smooth) simplicial A-algebras and the product total complex sends column quasi-isomorphisms of
second quadrant double complexes to quasi-isomorphisms (see e.g. [Wei2, Acyclic Assembly Lemma
2.7.3]), so DR(−/𝐴) preserves weak equivalences between such objects.

Definition 2.2. Given 𝐴 ∈ 𝑠CAlgQ and 𝐵 ∈ 𝑠CAlg𝐴, define the left-derived de Rham complex
LDR(𝐵/𝐴) by first taking a cofibrant replacement �̃� → 𝐵 over A in the model structure of [Qui,
§II.4], and then setting

LΩ𝑝 (𝐵/𝐴) := Ω𝑝 (�̃�/𝐴), LDR(𝐵/𝐴) := DR(�̃�/𝐴).

Note that this is well-defined up to quasi-isomorphism, that such replacements can be chosen functorially
in both B and A, and that LΩ1(𝐵/𝐴) is a model for the cotangent complex L(𝐵/𝐴).

The complex LDR(𝐵/𝐴) has a Hodge filtration 𝐹 𝑝LDR(𝐵/𝐴) := 𝐹 𝑝DR(�̃�/𝐴), and we write
LDR(𝐵/𝐴)/𝐹 𝑝 := LDR(𝐵/𝐴)/𝐹 𝑝LDR(𝐵/𝐴).

Remark 2.3. Following the ideas of [Gro] as developed in [Sim, GR], there is a more conceptual
interpretation of the derived de Rham complex.

For any functor F on 𝑠CAlg𝐴, we may define 𝐹inf (𝐶) := 𝐹 ((𝜋0𝐶)
red), and then 𝐹strat (𝐶) :=

Im (𝜋0𝐹 (𝐶) → 𝐹inf (𝐶)) whenever images make sense. Note that if F is represented by a smooth
algebraic space, then 𝐹strat = 𝐹inf .
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Now for 𝐴→ 𝐵 as above, derived Hom in the model category 𝑠CAlg𝐴 gives a simplicial set-valued
functor RSpec 𝐵 = Hom𝑠CAlg𝐴

(�̃�,−) on 𝑠CAlg𝐴, with (RSpec 𝐵)inf (𝐶) � HomCAlg𝜋0𝐴
(𝜋0𝐵, (𝜋0𝐶)

red).
Now, 𝐹strat (𝐶) is equivalent to the Čech nerve of 𝐹 (𝐶) over 𝐹inf (𝐶), which for 𝐹 = RSpec 𝐵

is represented in level n by formal completions of the diagonal map �̃�⊗𝐴 (𝑛+1) → �̃�. Homology of
symmetric powers then shows that LDR(𝐵/𝐴) 	 RΓ((RSpec 𝐵)strat,𝒪), where 𝒪 is the hypersheaf
given by 𝒪(𝐶) = 𝐶.
Proposition 2.4. For a levelwise flat morphism 𝐴→ 𝐵 in 𝑠CAlgQ and for all 𝑝 ∈ Z, there are canonical
quasi-isomorphisms

HP𝐴(𝐵) (𝑝) 	 LDR(𝐵/𝐴) [−2𝑝], HC𝐴(𝐵) (𝑝) 	 (LDR(𝐵/𝐴)/𝐹 𝑝+1) [−2𝑝],

HN𝐴(𝐵) (𝑝) 	 𝐹 𝑝LDR(𝐵/𝐴) [−2𝑝], HH𝐴(𝐵) (𝑝) 	 LΩ𝑝 (𝐵/𝐴) [−𝑝],

with the SBI sequences corresponding to the short exact sequences 0 → 𝐹 𝑝LDR → LDR →
LDR/𝐹 𝑝 → 0 and 0→ LΩ𝑝 [−𝑝] → LDR/𝐹 𝑝+1 → LDR/𝐹 𝑝 → 0.
Proof. When A and B are concentrated in degree 0, with B smooth over A, this is a well-known conse-
quence of the Hochschild–Kostant–Rosenberg theorem, as in [Wei2, Theorem 9.8.13], and that proof im-
mediately generalises to filtered colimits of smooth morphisms, including infinite polynomial algebras.
As observed in [Maj, §5], the general case for HH and HC then follows by taking a cofibrant replacement
for B and passing to the total complex of the resulting bisimplicial diagram. The expressions for HN
and HP follow similarly because product total complexes respect the relevant quasi-isomorphisms. �

Remark 2.5. Note that [Emm, Theorem 2.2] (following [FT, Theorem 5]) shows that for a finitely
generated algebra B over a characteristic zero field k, the complex HP𝑘 (𝐵) (𝑝) [2𝑝] is quasi-isomorphic to
the infinitesimal cohomology complex, or equivalently to Hartshorne’s algebraic de Rham cohomology
[Har] over k. For an alternative proof, see [Bha].

2.2. Global constructions

As in [Wei1], we now use naturality of the affine constructions for cyclic homology to pass from local
to global.

Fixing terminology, we will refer to a simplicial set-valued functor on 𝑠CAlg𝑅 as a derived∞-stack
over R if it preserves weak equivalences and satisfies étale hyperdescent, for étale morphisms in the
sense of [TV2, Theorem 2.2.2.6]; this is a 𝐷−-stack in the terminology of [TV2, Definition 2.2.2.14].
Derived affine schemes of the form RSpec 𝐴 for 𝐴 ∈ 𝑠CAlg𝑅 (see Remark 2.3) are known as derived
affine schemes.

2.2.1. Perfect complexes
Definition 2.6. Given a derived ∞-stack X over Q, define the simplicial set Perf (𝑋) to be the space
RΓ(𝑋, Perf) of maps from X to Perf in the simplicial category of simplicial set-valued functors on
𝑠CAlg𝑅.

Note that this is consistent with Definition 1.2 when X is a derived affine scheme, by the model
Yoneda lemma.
Remarks 2.7. Using the explicit hyperdescent formulae of [Pri3, Examples 1.15], when X is a strongly
quasi-compact derived Artin n-stack, the simplicial semiring Perf (𝑋) can be constructed as follows.
First, [Pri3, Theorem 4.7] provides the existence of a suitable resolution of the étale hypersheaf X by
a derived Artin hypergroupoid 𝑋•, which is a simplicial derived affine scheme satisfying properties
analogous to those of a Kan complex [Pri3, Examples 3.5]. We then define a cosimplicial simplicial
semiring given by C𝑛 (𝑋•, Perf (𝒪𝑋 )) := Perf (𝑋𝑛), and set

Perf (𝑋) = RTot 𝑠SetC•(𝑋•, Perf (𝒪𝑋 )),
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where RTot 𝑠Set is the derived total functor from cosimplicial simplicial sets to simplicial sets, as in [GJ,
§VIII.1].

Because Perf forms an étale hypersheaf, the definition of Perf(𝑋) above agrees with the standard
definition for underived schemes, and indeed for algebraic stacks. In the case when X is a quasi-compact
semi-separated scheme, 𝑋• can just be constructed by taking the Čech nerve of an affine cover, in which
case C• is just a Čech complex.

In our main applications in §2.5, X will be of the form 𝑌 ⊗𝑅 𝐴, for 𝐴 ∈ 𝑠CAlg𝑅 and Y a smooth
quasi-compact semi-separated scheme over a Noetherian ring R. For such applications, we can regard
X as being the derived scheme associated to a dg scheme (or even a dg manifold) in the sense of [CFK]
(for instance, by the construction of [Pri3, §6.4]). Then Perf(𝑋) corresponds to the space of compact
objects in the dg derived category of A-modules in complexes of quasi-coherent sheaves on Y, via the
equivalences summarised in [EP, Remark 5.32].

2.2.2. Derived de Rham cohomology
We begin with very general definitions; readers interested in nothing more exotic than a derived Artin
n-stack can jump straight to Lemma 2.10 and take it as a definition.

Definition 2.8. Given a derived∞-stack X over R, we write 𝐹 𝑝LDR(𝑋/𝑅) := RΓ(𝑋, 𝐹 𝑝LDR(𝒪/𝑅)),
where 𝒪𝑋 is the étale hypersheaf RSpec 𝐴 ↦→ 𝐴 on the site of derived affine R-schemes over X.
Equivalently, 𝐹 𝑝LDR(𝑋/𝑅) is the homotopy end

∫ ℎ
𝐴∈𝑠CAlg𝑅

𝐹 𝑝LDR(𝐴/𝑅)𝑋 (𝐴) .

For such X and 𝐴 ∈ 𝑠CAlg𝑅, we then write 𝑋𝐴 for the derived∞-stack X over A given by base change
(i.e., composition with the forgetful functor 𝑠CAlg𝐴→ 𝑠CAlg𝑅).

More generally, given a morphism 𝑋 → 𝑌 of derived ∞-stacks, we can define the étale hypersheaf
𝑋𝒪𝑌 (taking values in derived ∞-stacks over 𝒪𝑌 ) on the site of derived affine R-schemes 𝑉 	 RSpec 𝐴
over Y by letting 𝑋𝒪𝑌 (𝑉) be the derived∞-stack over A sending B to RMap𝑌 (RSpec 𝐵, 𝑋)

Definition 2.9. Given a morphism 𝑋 → 𝑌 of derived ∞-stacks over R, set 𝐹 𝑝LDR(𝑋/𝑌 ) :=
RΓ(𝑌, 𝐹 𝑝LDR(𝑋𝒪𝑌 /𝒪𝑌 )), the RΓ(𝑌,𝒪𝑌 )-module of derived global sections of the 𝒪𝑌 -module
𝐹 𝑝LDR(𝑋𝒪𝑌 /𝒪𝑌 ) in unbounded complexes.

Equivalently, for the functors 𝐹 𝑝LDR(−/−) and (𝑋/𝑌 ) : (𝐴 → 𝐵) ↦→ 𝑋 (𝐵) ×ℎ
𝑌 (𝐵)

𝑌 (𝐴) on the
arrow category 𝑠CAlg[1]𝑅 , we can interpret 𝐹 𝑝LDR(𝑋/𝑌 ) as derived global sections of (𝑋/𝑌 ) with
values in 𝐹 𝑝LDR (i.e., as the homotopy end

∫ ℎ
(𝐴→𝐵)

𝐹 𝑝LDR(𝐵/𝐴) (𝑋/𝑌 ) (𝐴→𝐵) ).

For morphisms 𝑋 → 𝑌 of strongly quasi-compact derived Artin n-stacks, the following lemma
allows us to express 𝐹 𝑝LDR(𝑋/𝑌 ) simply in terms of the algebraic complexes from Definition 2.2,
since double application of [Pri3, Theorem 4.7] gives resolutions by derived affine schemes of the
required form. When Y itself is a derived affine scheme, we can take 𝑌• = 𝑌 , and the condition is then
just that �̃�• be a hypercover of X.

We could alternatively take this formula as a definition, observing that since hypercovers yield quasi-
isomorphisms of such complexes, it defines a functor on the relative category of strongly quasi-compact
derived Artin n-stacks, by [EP, Theorem 6.11].

Lemma 2.10. Given a morphism 𝑋 → 𝑌 of derived ∞-stacks over R, a simplicial hypercover 𝑌• → 𝑌
for the étale topology, and a relative simplicial hypercover �̃�• → 𝑋 ×ℎ𝑌 𝑌•, the complex 𝐹 𝑝LDR(𝑋/𝑌 )
is quasi-isomorphic to the product total complex of the double complex 𝑛 ↦→ 𝐹 𝑝LDR( �̃�𝑛/𝑌𝑛).

Proof. Given a morphism from (𝐴 → 𝐵) to (𝐴′ → 𝐵′) in 𝑠CAlg[1]𝑅 with 𝐴 → 𝐴′ and 𝐵 → 𝐵′ étale,
we have a natural quasi-isomorphism LΩ𝑝 (𝐵/𝐴) ⊗L

𝐵 𝐵
′ → LΩ𝑝 (𝐵/𝐴). Thus, the functor LΩ𝑝 from

the arrow category 𝑠CAlg[1]𝑅 to the category of R-linear unbounded complexes satisfies hyperdescent
with respect to the topology 𝜏 generated by finite families {(𝐴 → 𝐵) → (𝐴′(𝑖) → 𝐵′(𝑖))}𝑖 for which
the maps 𝐴→ 𝐴′(𝑖) and 𝐵→ 𝐵′(𝑖) are étale and

∐
𝑖 Spec 𝜋0𝐵

′(𝑖) → Spec 𝜋0𝐵 is surjective. By taking
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homotopy limits of finite extensions, it follows that the functor LDR on the arrow category also satisfies
𝜏-hyperdescent.

The question thus reduces to showing that the simplicial diagram 𝑛 ↦→ ( �̃�𝑛/𝑌𝑛) is a 𝜏-hypercover of
(𝑋/𝑌 ). This in turn reduces to showing that if𝑌 ′ → 𝑌 and 𝑋 ′ → 𝑋 ×𝑌 𝑌

′ are étale local epimorphisms,
then (𝑋 ′/𝑌 ′) → (𝑋/𝑌 ) is a 𝜏-local epimorphism, but this follows easily from the factorisation

𝑋 ′(𝐵) ×ℎ𝑌 ′ (𝐵) 𝑌
′(𝐴) →(𝑋 ×ℎ𝑌 𝑌

′) (𝐵) ×ℎ𝑌 ′ (𝐵) 𝑌
′(𝐴)

	 𝑋 (𝐵) ×ℎ𝑌 (𝐵) 𝑌
′(𝐴) → 𝑋 (𝐵) ×ℎ𝑌 (𝐵) 𝑌 (𝐴). �

Definition 2.11. Given an Artin n-stack X locally of finite presentation over C, we can form a resolution
�̃�• of X by l.f.p. C-schemes as in [Pri3, Theorem 4.7], giving a simplicial topological space �̃�•(C)an on
taking the analytic topology. Since �̃�• is unique up to smooth hypercovers and since hypercovers induce
equivalences on categories of local systems and their cohomology, the homotopy type of the homotopy
colimit is independent of choices made. It can be realised by the fat geometric realisation | �̃�•(C)an |, and
we denote it simply by |𝑋 (C)an |. When X is an algebraic space, note that this just recovers 𝑋 (C)an.

Given a derived Artin n-stack X over C whose underived truncation 𝜋0𝑋 is locally of finite type, we
write |𝑋 (C)an | := | (𝜋0𝑋) (C)an |; the notation is justified because X and 𝜋0𝑋 have the same C-points.

When working over Artinian simplicial C-algebras (i.e., simplicial C-algebras which are levelwise
Artinian with bounded Dold–Kan normalisation), we can compare derived de Rham cohomology with
Betti cohomology of this analytic space of C-points:
Lemma 2.12. For X a derived Artin n-stack over a local Artinian simplicialC-algebra A, with underived
truncation locally of finite type, there is a canonical zigzag of quasi-isomorphisms LDR(𝑋/𝐴) 	
RΓ(|𝑋 (C)an |, 𝐴).
Proof. Given a cofibrant simplicial A-algebra B with 𝜋0𝐵 finitely generated, we can write B as the
filtered colimit of its levelwise finitely generated cofibrant A-subalgebras 𝐵′ with 𝜋0𝐵

′ � 𝜋0𝐵. We then
have zigzags

RΓ((Spec 𝜋0𝐵)an, 𝐴𝑛) → RΓ( �(Spec 𝐵′𝑛)an,Ω
•,an
𝒪/𝐴𝑛
) ← Ω̂•𝐵′𝑛/𝐴𝑛

,

where completions are with respect to the map 𝐵′𝑛 → 𝜋0𝐵, with �(Spec 𝐵′𝑛)an being the formal Stein space
of [Har, §I.6] and Ω•,an the analytic de Rham cohomology complex; note that Ω̂•

𝐵′𝑛/𝐴𝑛
is Hartshorne’s

algebraic de Rham cohomology of 𝜋0𝐵 over 𝐴𝑛. Since everything in sight is flat over the local Artinian
ring 𝐴𝑛, to see that these maps are quasi-isomorphisms, it suffices to know that they are so after base
change along 𝐴𝑛 → C, which they are by [Har, Theorem IV.1.1].

Now consider the zigzag DR(𝐵/𝐴) ← lim
−−→𝐵′

DR(𝐵′/𝐴) → lim
−−→𝐵′

�DR(𝐵′/𝐴), where we write�DR(𝐵′/𝐴) := Tot ΠΩ̂•
𝐵′•/𝐴•

. Again, these maps are all quasi-isomorphisms because after base change
along 𝐴 → C, they are all quasi-isomorphic to HPC(𝜋0𝐵 ⊗𝜋0𝐴 C): the first two cases follow from
Proposition 2.4 combined with Theorem 1.10 (replacing Q with C in Goodwillie’s proof), and the
third because [Emm, Theorem 2.2] (following [FT] and Goodwillie’s theorem) gives Ω̂•

𝐵′𝑛/𝐴𝑛
⊗𝐴𝑛 C 	

HPC(𝜋0𝐵 ⊗𝜋0𝐴 C) for all n and 𝐵′.
Putting everything together and taking filtered colimits, we have a canonical zigzag DR(𝐵/𝐴) 	

RΓ((Spec 𝜋0𝐵)an, 𝐴). Applying this locally to a cofibrant simplicial A-algebra resolution �̃�𝑋 for𝒪𝑋 and
taking derived global sections then gives us the required zigzag LDR(𝑋/𝐴) 	 RΓ(|𝑋 (C)an |, 𝐴). �

2.3. Generalised Abel–Jacobi maps

Definition 2.13. Given a morphism 𝑋
𝑓
−→ 𝑌 of derived∞-stacks over a simplicial Q-algebra k, define

𝐽 𝑝 (𝑋/𝑌, 𝑘) := cocone(LDR(𝑋/𝑘) → LDR(𝑋/𝑌 )/𝐹 𝑝) [−2𝑝] .
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Note that when X is affine, Proposition 2.4 gives an equivalence 𝐽 𝑝 (𝑋/𝑅,Q) 	 𝐽 𝑝 (𝑋/𝑅) with the
construction of Definition 1.1.
Example 2.14. If 𝐶 → 𝐴 is a morphism of Artinian local C-algebras and X a smooth proper scheme
over A, then the complexes 𝐽 𝑝 (𝑋/𝐴,𝐶) admit an underived analytic description as follows.

Applying GAGA to graded pieces as in [Blo, Proposition 3.8] gives a quasi-isomorphism
RΓ(𝑋,Ω•

𝑋/𝐴
/𝐹 𝑝) → RΓ(𝑋 (C)an,Ω•𝑋an/𝐴

/𝐹 𝑝), and Lemma 2.12 gives a compatible quasi-
isomorphism RΓ(𝑋,LDR(𝒪𝑋/𝐶)) 	 RΓ(𝑋 (C)an, 𝐶). Combining these, we have

𝐽 𝑝 (𝑋/𝐴,𝐶) 	 RΓ(𝑋 (C)an, 𝐶 → 𝒪an
𝑋/𝐴

𝑑
−→ Ω1,an

𝑋/𝐴

𝑑
−→ . . .

𝑑
−→ Ω𝑝−1,an

𝑋/𝐴
) [−2𝑝],

giving our space an interpretation as a form of Deligne cohomology.
Definition 2.15. Given a simplicial commutative Q-algebra R and a derived ∞-stack X over R, define
𝐽 𝑝𝑋 to be the functor on 𝑠CAlg𝑅 given by 𝐽 𝑝𝑋 (𝐴) := 𝐽 𝑝 (𝑋𝐴/𝐴,Q).

Note that Proposition 2.4 ensures this is equivalent to Definition 1.1 when X is a derived affine
scheme represented by a simplicial R-algebra 𝑂 (𝑋) chosen to be levelwise flat.

Since Lemma 1.12 and Proposition 2.4 give a canonical zigzag of quasi-isomorphisms between the
corresponding affine constructions, passing to homotopy limits gives the following:
Lemma 2.16. For 𝑓 ∈ H0 (𝐽

𝑝
𝑋 (𝐴)), the tangent space 𝑇 𝑓 (𝜏≥0(𝐽

𝑝
𝑋 , 𝑀)) is canonically quasi-isomorphic

to 𝜏≥0 (((LDR(𝑋/𝑅)/𝐹 𝑝) ⊗L
𝑅 𝑀) [2𝑝 − 1]).

Remark 2.17. Although not needed for our applications, if we replace Q with any simplicial Q-algebra
k throughout Definition 2.15, the description of the tangent space in Lemma 2.16 remains valid.
Definition 2.18. Globalising definition 1.3, define the Abel–Jacobi map

Ξ𝑘 : Perf (𝑋) → 𝜏≥0
∏
𝑝≥0

𝐽 𝑝 (𝑋/𝑌, 𝑘)

(which we simply denote as Ξ when 𝑘 = Q) as follows. Via the equivalences of Proposition 2.4, the
Goodwillie–Jones Chern character gives us maps

ch−𝑝 : Perf (𝒪𝑋 ) → 𝜏≥0 (𝐹
𝑝LDR(𝑋/𝑘) [−2𝑝]).

We then take derived global sections RΓ(𝑋,−) and compose with the natural maps

RΓ(𝑋, 𝜏≥0(𝐹
𝑝LDR(𝑋/𝑘) [−2𝑝])) → 𝜏≥0 (RΓ(𝑋, 𝐹 𝑝LDR(𝑋/𝑘)) [−2𝑝]) → 𝜏≥0𝐽

𝑝 (𝑋/𝑌, 𝑘).

Definition 2.19. For ℱ ∈ Perf𝑋 (𝐴) and a simplicial A-module M, write

𝜉𝑖 : Ext𝑖+1𝒪𝑋𝐴
(ℱ,ℱ ⊗L

𝐴 𝑀) →
∏
𝑝≥0

H2𝑝+𝑖−1((LDR(𝑋/𝑅)/𝐹 𝑝) ⊗L
𝑅 𝑀)

for the tangent map

D𝑖
ℱ (Ξ, 𝑀) : D𝑖

ℱ (Perf𝑋 , 𝑀) →
∏
𝑝≥0

D𝑖
Ξ𝑝 (ℱ)

(𝜏≥0𝐽
𝑝
𝑋 , 𝑀).

Substituting our hypersheaves in Proposition 1.17 and taking derived global sections yields the
following:
Proposition 2.20. The tangent map 𝜉𝑖𝑝 is given by composing the Lefschetz map
L𝑋/𝑅 : Ext𝑖+1

𝒪𝑋𝐴
(ℱ,ℱ⊗L

𝐴𝑀) → H
𝑝+𝑖 (𝑋,LΩ𝑝−1

𝑋/𝑅
⊗L
𝑅𝑀) with the canonical map I : H𝑝+𝑖 (𝑋,LΩ𝑝−1

𝑋/𝑅
⊗L
𝑅

𝑀) → H2𝑝+𝑖−1(𝑋, (LDR(𝒪𝑋/𝑅)/𝐹 𝑝) ⊗L
𝑅 𝑀).
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Remark 2.21. The construction of the Atiyah–Hochschild character AH(ℱ) of [BF2, §5] just makes it
the dual of the Lefschetz map, in the sense that L(𝛼) = tr(AH(ℱ) ◦𝛼). Thus, [BF2, Theorem 5.1.3 and
Proposition 6.2.1] ensure that L is the same as the semiregularity map 𝜎 of [BF1], given by applying
the exponential of the Atiyah class then taking the trace.

Thus, the semiregularity map 𝜎 is induced by our Abel–Jacobi map Ξ𝑝,C, which Example 2.14
interprets as a Chern character taking values in a form of Deligne cohomology, exactly as anticipated in
[BF1, §1].

Combining Lemma 1.8 with Proposition 2.20 and Remark 2.21, or just substituting in Corollary 1.18
and taking derived global sections, gives the following:

Corollary 2.22. Given a square-zero extension 𝐼 → 𝐴
𝑒
−→ 𝐵 in 𝑠CAlg𝑅 and an object ℱ ∈ Perf𝑋 (𝐵),

the space Perf𝑋 (𝐴)ℱ of deformations of ℱ over A fits into a natural commutative diagram

Perf𝑋 (𝐴)ℱ −−−−−−→ {ℱ}
𝑜𝑒

−−−−−−→ 𝜏≥0 (RHom𝒪𝑋𝐵
(ℱ,ℱ ⊗L

𝐵 𝐼) [−2])

Ξ𝑝
⏐⏐� Ξ𝑝

⏐⏐� L𝑝−1
⏐⏐�=𝜎𝑝−1

𝐽 𝑝𝑋 (𝐴) −−−−−−→ 𝐽 𝑝𝑋 (𝐵)
𝑜𝑒

−−−−−−→ 𝜏≥0RΓ(𝑋, (LDR(𝒪𝑋/𝑅)/𝐹 𝑝) ⊗L
𝑅 𝐼 [−2𝑝])

of homotopy fibre sequences, for the Lefschetz map L of [BNT] and semiregularity map 𝜎 of [BF1].
Thus, the image of L𝑝−1(𝑜𝑒 (ℱ)) in H2𝑝 (𝑋, (LDR(𝒪𝑋/𝑅)/𝐹 𝑝) ⊗L

𝑅 𝐼)) is the obstruction to lifting
Ξ(ℱ) from H0𝐽𝑋 (𝐵) to H0𝐽𝑋 (𝐴).

Remark 2.23. In particular, if 𝐴→ 𝐵 admits a section in the derived category of R-modules (automatic
if R is a field and 𝜋∗𝐴 � 𝜋∗𝐵), then 𝐽 𝑝𝑋 (𝐴) 	 𝐽

𝑝
𝑋 (𝐵)⊕ (LDR(𝑋/𝑅)/𝐹 𝑝)⊗𝑅 𝐼, so H0𝐽𝑋 (𝐴) → H0𝐽𝑋 (𝐵)

is surjective and Corollary 2.22 implies that

𝑜𝑒 (ℱ) ∈ ker(L𝑝−1 : Ext2𝒪𝑋𝐴
(ℱ,ℱ ⊗L

𝐴 𝐼) → H
2𝑝 (𝑋, (LDR(𝒪𝑋/𝑅)/𝐹 𝑝) ⊗L

𝑅 𝐼)).

2.4. Horizontal sections

We now introduce variants of the obstruction L𝑝−1(𝑜(ℱ)) which are potentially weaker but tend
to be more tractable. Our most generally applicable result is the following, writing LΩ 𝑗 (𝑋/𝑆) :=
RΓ(𝑆,RΓ(𝑋𝒪𝑆 ,LΩ

𝑗
𝑋𝒪𝑆
/𝒪𝑆
)) and LℐΩ 𝑗 (𝑋/𝑆) := RΓ(𝑆,RΓ(𝑋𝒪𝑆 ,ℐ ⊗

L
𝒪𝑆

LΩ 𝑗
𝑋𝒪𝑆
/𝒪𝑆
)):

Corollary 2.24. Take a morphism 𝑓 : 𝑋 → 𝑆 of derived ∞-stacks over Q and a closed immersion
𝑒 : 𝑆′ ↩→ 𝑆 [TV2, Definition 2.2.3.5] defined by an ideal ℐ with 𝜋0ℐ nilpotent in 𝒪𝜋0𝑆 = 𝜋0𝒪𝑆 .

Then for 𝑋 ′ := 𝑋 ×ℎ𝑆 𝑆
′, the Goodwillie–Jones Chern character ch−𝑝 for 𝒪𝑋 ′ over 𝒪𝑆 induces a form

of Abel–Jacobi map Ξ𝑝,𝑆 from 𝐾0(𝑋
′) to the cohomology group

H2𝑝Tot Π (LℐΩ0 𝑑
−→ LℐΩ1 𝑑

−→ . . .
𝑑
−→ LℐΩ𝑝−1 𝑑

−→ LΩ𝑝 𝑑
−→ LΩ𝑝+1 𝑑

−→ . . .) (𝑋/𝑆).

If ℐ is square-zero, then for any perfect complex ℱ over 𝑋 ′, the image of Ξ𝑝,𝑆 (ℱ) in
H2𝑝LℐΩ<𝑝 (𝑋/𝑆) is given by applying the composite map

Ext2𝒪𝑋′
(ℱ,ℱ ⊗L

𝒪𝑆′
ℐ)

L𝑝−1
−−−−−→
=𝜎𝑝−1

H𝑝+1LℐΩ𝑝−1(𝑋/𝑆) → H2𝑝LℐΩ<𝑝 (𝑋/𝑆)

to the obstruction 𝑜𝑒 (ℱ) to deforming ℱ to an 𝒪𝑋 -module in complexes.
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Proof. The map Ξ𝑝,𝑆 is defined as the composite of Ξ𝑝 with the natural map

𝐽 𝑝 (𝑋 ′/𝑆′,Q) = cocone(LDR(𝑋 ′/Q) → LDR(𝑋 ′/𝑆′)/𝐹 𝑝) [−2𝑝]
∼
←− cocone(LDR(𝑋/Q) → LDR(𝑋 ′/𝑆′)/𝐹 𝑝) [−2𝑝]
→ cocone(LDR(𝑋/𝑆) → LDR(𝑋 ′/𝑆′)/𝐹 𝑝) [−2𝑝] =: 𝐽 𝑝 (𝑋 ′/𝑆′, 𝑆),

where the equivalence of the second line follows from Theorem 1.10 because 𝜋0𝑋 ′ → 𝜋0𝑋 is a
nilpotent thickening. Since LℐΩ 𝑗 (𝑋/𝑆) 	 cocone(LΩ 𝑗 (𝑋/𝑆) → LΩ 𝑗 (𝑋 ′/𝑆′)), this gives the target
in the required form.

When ℐ is square-zero, substituting in Corollary 2.22 and taking derived global sections over S then
gives us the first two rows of the commutative diagram

Perf (𝑋)ℱ −−−−−−→ {ℱ}
𝑜𝑒

−−−−−−→ RHom𝒪𝑋
(ℱ,ℱ ⊗L

𝑓 −1𝒪𝑆
𝑓 −1ℐ) [−2]

Ξ𝑝
⏐⏐� Ξ𝑝

⏐⏐� L𝑝−1
⏐⏐�=𝜎𝑝−1

𝐽 𝑝 (𝑋/𝑆,Q) −−−−−−→ 𝐽 𝑝 (𝑋 ′/𝑆′,Q)
𝑜𝑒

−−−−−−→ LℐΩ<𝑝 (𝑋/𝑆) [−2𝑝]⏐⏐� ⏐⏐� ���
𝐹 𝑝LDR(𝑋/𝑆) [−2𝑝] −−−−−−→ 𝐽 𝑝 (𝑋 ′/𝑆′, 𝑆)

𝑜𝑒
−−−−−−→ LℐΩ<𝑝 (𝑋/𝑆) [−2𝑝]

of homotopy fibre sequences, where we have omitted 𝜏≥0 from all complexes to lighten the notation; the
third sequence follows from the simple calculation that cone(𝐹 𝑝LDR(𝑋/𝑆) → 𝐽 𝑝 (𝑋 ′/𝑆′, 𝑆) [2𝑝]) 	
LℐΩ<𝑝 (𝑋/𝑆). This diagram yields the required description since the first two composite vertical maps
are ch−𝑝 and Ξ𝑝,𝑆 . �

Corollary 2.24 relates the semiregularity map to the Goodwillie–Jones Chern character. Over C, we
now give a slightly weaker, but more accessible, statement in terms of the topological Chern character.

When applied to the case where X is a smooth proper scheme over a local Artinian C-algebra A,
the following corollary establishes the conjectures of [BF1] and hence those of [Blo]. By analogy with
[Blo, 3.9], we can regard it as saying that the semiregularity map constrains deformations of the Chern
character ch𝑝 (ℱ) as a horizontal section in 𝐹 𝑝 .

Writing 𝐹 𝑝H∗(LDR(𝑋/𝐴)) := Im (H∗(𝐹 𝑝LDR(𝑋/𝐴)) → H∗(LDR(𝑋/𝐴))), we have the follow-
ing:

Corollary 2.25. Take a local Artinian simplicial C-algebra A, a derived Artin n-stack X over A whose
underived truncation is locally of finite type, and a square-zero simplicial ideal 𝐼 ⊂ 𝐴 with quotient
𝑒 : 𝐴→ 𝐵.

Then for any perfect complexℱ over 𝑋 ′ := 𝑋⊗L
𝐴𝐵, with 𝑜𝑒 (ℱ) ∈ Ext2

𝒪𝑋′
(ℱ,ℱ⊗𝐵 𝐼) the obstruction

to deforming ℱ to an𝒪𝑋 -module in complexes, the image of the Chern character ch𝑝 (ℱ) under the map

H2𝑝 (|𝑋 ′(C)an |,Q) � H2𝑝 (|𝑋 (C)an |,Q) → H2𝑝 (|𝑋 (C)an |, 𝐴) � H2𝑝 (LDR(𝑋/𝐴))

lies in 𝐹 𝑝H2𝑝 (LDR(𝑋/𝐴)) if and only if the image of L𝑝−1(𝑜𝑒 (ℱ)) under the mapH𝑝+1(𝑋,LΩ𝑝−1
𝑋/𝐴
⊗L
𝐴

𝐼) → H2𝑝 (𝑋,Tot Π (LΩ<𝑝
𝑋/𝐴

, 𝑑)), coming from the inclusion 𝐼 ↩→ 𝐴, is zero.

Proof. The obstruction 𝜅 is given by the image of ch𝑝 (ℱ) in H2𝑝 (LDR(𝑋/𝐴)/𝐹 𝑝), which Lemma 2.12
tells us is the image of the Chern character chdR

𝑝 (ℱ) ∈ H2𝑝 (LDR(𝑋 ′/C)) � H2𝑝 (LDR(𝑋/C)) under
the morphism

H2𝑝 (LDR(𝑋/C)) → H2𝑝 (LDR(𝑋/𝐴)/𝐹 𝑝).
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By compatibility of the Goodwillie–Jones Chern character with more classical Chern characters as
in [HJ] and references therein, chdR

𝑝 (ℱ) is the image of Ξ𝑝 (ℱ) under the natural map 𝐽 𝑝 (𝑋 ′/𝐵) →
LDR(𝑋 ′/C) [−2𝑝]. It thus follows that 𝜅 is the image of Ξ𝑝,𝐴(ℱ) under the composite map

H0𝐽
𝑝 (𝑋 ′/𝐵, 𝐴) = H2𝑝cone(LDR(𝑋/𝐴) → LDR(𝑋 ′/𝐵)/𝐹 𝑝)

→ H2𝑝LDR(𝑋/𝐴) → H2𝑝 (LDR(𝑋/𝐴)/𝐹 𝑝),

which is the same as the composite map

H0𝐽
𝑝 (𝑋 ′/𝐵, 𝐴)

𝑜𝑒
−−→ H2𝑝cone(LDR(𝑋/𝐴)/𝐹 𝑝 → LDR(𝑋 ′/𝐵)/𝐹 𝑝)
� H2𝑝 (𝑋,LΩ<𝑝

𝑋/𝐴
⊗L
𝐴 𝐼) → H

2𝑝 (𝑋,LΩ<𝑝
𝑋/𝐴
),

so the description of 𝑜𝑒 (Ξ𝑝,𝐴(ℱ)) from Corollary 2.24 completes the proof. �

Remark 2.26 (𝜇-twisted sheaves). Because the group scheme 𝜇𝑟 of rth roots of unity is étale over
Q and 𝜇𝑟 is reductive, H∗(𝐵𝜇𝑟 ,LΩ𝑝

𝐵𝜇𝑟 /Q
) vanishes for 𝑝 > 0 and is Q for 𝑝 = 0, so the Künneth

isomorphism applied to the Čech nerve of �̃�𝛼 → 𝑋 gives H∗( �̃�𝛼,LΩ𝑝) � H∗(𝑋,LΩ𝑝) for all 𝜇𝑟 -
gerbes �̃�𝛼 over X (i.e., homotopy fibres of maps 𝛼 : 𝑋 → 𝐵2𝜇𝑟 ). Since 𝜇𝑟 -twisted perfect complexes
on X (i.e., maps 𝑋 → [Perf/𝐵𝜇𝑟 ]) give rise to perfect complexes on such gerbes, replacing X with �̃�𝛼
in Corollaries 2.24 and 2.25 immediately extends their conclusions to 𝜇𝑟 -twisted perfect complexes ℱ
on 𝑋 ′ with twist [𝛼] ∈ H2

ét (𝑋
′, 𝜇𝑟 ) � H2

ét (𝑋, 𝜇𝑟 ).

2.5. Reduced obstructions

Remark 2.27. Assume that R is a Noetherian Q-algebra, with X a smooth proper scheme over
Spec 𝑅. Then the Lefschetz principle and degeneration of the Hodge–de Rham spectral sequence [Del,
§5–6] imply there exists an R-linear quasi-isomorphism DR(𝑋/𝑅)/𝐹 𝑝 	

⊕𝑝−1
𝑖=0 RΓ(𝑋,Ω𝑖

𝑋/𝑅
) [𝑖], and

in particular that the morphism RΓ(𝑋,Ω𝑝−1
𝑋/𝑅
) [𝑝 − 1] → DR(𝑋/𝑅)/𝐹 𝑝 admits an R-linear retraction.

For any simplicial ideal I in a simplicial R-algebra A for which 𝜋∗𝐼 → 𝜋∗𝐴 is injective, the map

H𝑝+1(𝑋,Ω𝑝−1
𝑋/𝑅
⊗𝑅 𝐼) → H

2𝑝 (𝑋, (DR(𝒪𝑋/𝑅)/𝐹 𝑝) ⊗𝑅 𝐴)

is therefore injective. In particular, this means that the element L𝑝−1(𝑜𝑒 (ℱ)) in H𝑝+1(𝑋,Ω𝑝−1
𝑋/𝑅
⊗𝑅 𝐼)

will vanish provided its image in H2𝑝 (𝑋,DR(𝒪𝑋𝐴/𝐴)/𝐹
𝑝) does so.

In the case where X is a smooth proper scheme over an ArtinianC-algebra, vanishing ofL𝑝−1(𝑜𝑒 (ℱ))
itself is thus equivalent to the conditions of Corollary 2.25 (taking 𝑅 = 𝐴), which we can paraphrase
as saying that L𝑝−1(𝑜𝑒 (ℱ)) is the obstruction to the unique horizontal lift of chdR

𝑝 (ℱ) still lying in
𝐹 𝑝H2𝑝DR(𝑋/𝐴), or equivalently remaining of pure Hodge type (𝑝, 𝑝).

Taking an open substack 𝔐 ⊂ Perf𝑋 for which that obstruction vanishes at all points [ℱ] (for
instance, by restricting to the Hodge locus of [Voi]), we then have a functorial obstruction theory

([ℱ] ∈ 𝔐(𝐵)) ↦→ ker
(
L𝑝−1 : Ext2𝒪𝑋𝐵

(ℱ,ℱ ⊗L
𝐵 −) → H𝑝+1(𝑋,Ω𝑝−1

𝑋/𝑅
) ⊗L

𝑅 −
)

for 𝔐 as a subspace of the standard obstruction theory.
Such reduced obstruction theories for pairs (𝑋,ℱ) are required in the study of Pandharipande–

Thomas invariants.

Remark 2.28. There is a morphism from the derived moduli stack of proper schemes over X ([Pri1,
Theorem 3.32]) to the derived stack Perf𝑋 , given by sending ( 𝑓 : 𝑍 → 𝑋𝐵) to R 𝑓∗𝒪𝑍 . Since the
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obstruction maps of Lemma 1.8 are functorial, this gives rise to a morphism

𝜓 : Ext2𝒪𝑍
(L𝑍/𝑋𝐵 ,𝒪𝑍 ⊗

L
𝐵 −) → Ext2𝒪𝑋𝐵

(R 𝑓∗𝒪𝑍 ,R 𝑓∗𝒪𝑍 ⊗L
𝐵 −)

of obstruction theories.
For X smooth and proper over R, Remark 2.27 then implies that L𝑝−1 ◦ 𝜓 annihilates obstructions to

deforming Z over X provided the unique horizontal lift of ch𝑝 (R 𝑓∗𝒪𝑍 ) remains of Hodge type. For any
open substack 𝔑 of the moduli stack of proper schemes over X which parametrises schemes satisfying
that condition, this gives rise to a reduced global obstruction theory, sending [𝑍 → 𝑋𝐵] ∈ 𝔑(𝐵) to

ker
(
L𝑝−1 ◦ 𝜓 : Ext2𝒪𝑍

(L𝑍/𝑋𝐵 ,𝒪𝑍 ⊗
L
𝐵 −) → H𝑝+1(𝑋,Ω𝑝−1

𝑋/𝑅
) ⊗L

𝑅 −
)
;

in particular, this applies to stable curves Z over X, as required in the study of Gromov–Witten invariants
(see for instance [KT, §2.2]).

Remark 2.29. The proof of Proposition 1.17 characterises the Lefschetz map L as a deformation of the
Dennis trace. This means that for any proper LCI morphism 𝑓 : 𝑍 → 𝑋𝐵, the Grothendieck–Riemann–
Roch theorem allows us to interpret the semiregularity map L ◦ 𝜓 of Remark 2.28 as the deformation
of the Todd class 𝑓∗(Td(𝑇 𝑓 )) as f varies.

When 𝑍 ⊂ 𝑋 is a codimension p LCI subscheme of a smooth proper scheme, [BF1, Proposition 8.2]
combines with Remark 2.21 to show that the map

L𝑝−1 ◦ 𝜓 : H1 (𝑍,𝒩𝑍/𝑋 ) → H𝑝+1(𝑋,Ω𝑝−1
𝑋 )

is just Bloch’s semiregularity map from [Blo], which is defined in a relatively elementary way in terms
of Grothendieck–Verdier duality.
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