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Abstract Just like group actions are represented by group automorphisms, Lie algebra actions are
represented by derivations: up to isomorphism, a split extension of a Lie algebra B by a Lie algebra X
corresponds to a Lie algebra morphism B → Der(X) from B to the Lie algebra Der(X) of derivations
on X. In this article, we study the question whether the concept of a derivation can be extended to other
types of non-associative algebras over a field K, in such a way that these generalized derivations charac-
terize the K-algebra actions. We prove that the answer is no, as soon as the field K is infinite. In fact,
we prove a stronger result: already the representability of all abelian actions – which are usually called
representations or Beck modules – suffices for this to be true. Thus, we characterize the variety of Lie
algebras over an infinite field of characteristic different from 2 as the only variety of non-associative alge-
bras which is a non-abelian category with representable representations. This emphasizes the unique role
played by the Lie algebra of linear endomorphisms gl(V ) as a representing object for the representations
on a vector space V .
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Introduction

Groups act by automorphisms, and Lie algebras act by derivations: thus, via the semi-
direct product construction, actions are equivalent to split extensions, while (up to
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isomorphism) any split extension of a group B by a group X corresponds to a group
homomorphism B → Aut(X), and likewise for Lie algebras, with Aut(X) replaced by the
Lie algebra Der(X) of derivations on X. In this article, we study the question whether
the concept of a derivation can be extended from Lie algebras to other types of non-
associative algebras, in such a way that these generalized derivations characterize the
algebra actions.

The situation sketched here has a categorical description due to F. Borceux,
G. Janelidze and G. M. Kelly called action representability [3, 4], which is expressed
by saying that split extensions by an object X are representable by an object [X]. This
means that we have a bijection SpltExt(B, X) ∼= Hom(B, [X]), natural in B, between
the set of isomorphism classes of split extensions of B by X and the set of morphisms
from B to [X]. The object [X] corresponds to the group of automorphisms Aut(X) in
the case of groups or the algebra of derivations Der(X) in the case of Lie algebras.
In [3, 4], other examples such as Boolean rings are studied, as well as equivalent descrip-
tions of the condition. A slightly different, more ‘object-wise’ approach appears in [7],
where also an overview of the relevant literature is given.

In the present article, we work in the general setting of varieties of algebras over a field
– ‘variety’ in the sense of universal algebra, which is different from its use in algebraic
geometry. For a variety of non-associative algebras V over a field K, we seek an algebra
[X] in V that represents the split extensions of a given V -algebra X. We show that such
an algebra [X] cannot exist for each X in V , as soon as the field K is infinite, unless V is
either LieK, qLie

K
, or an abelian category. We thus characterize the varieties of (quasi-)Lie

algebras over an infinite field as the only varieties of non-associative algebras that form
a non-abelian action representable category.

Our method actually proves a significantly stronger result: it turns out that there is
no loss in reducing the representability condition to abelian actions. These are usually
called representations or Beck modules [2] and in the present context amount to actions
on an abelian algebra – that is, an algebra whose multiplication is zero, so that the
identity xy = 0 holds; see below for a detailed explanation. We say that V has repre-
sentable representations when for each abelian algebra X, the contravariant functor
Rep(−,X) : V → Set that sends an algebra B to the set of B-module structures on X is
a representable functor, which means that it is naturally isomorphic to Hom(−, [X]) for
some V -algebra [X]. We show that, when it is a non-abelian category, such a variety V is
either LieK or qLie

K
, in which case [X] is necessarily gl(X), the Lie algebra of linear endo-

morphisms of the vector space X. The object gl(X) is typical for (quasi-)Lie algebras, in
the sense that no other non-abelian variety of K-algebras has an object [X] representing
the module structures on X. In other words, changing the variety breaks gl(X) beyond
repair.

Overview of the text

The article is organized as follows. In § 1, we recall some basic definitions and results
concerning varieties of non-associative algebras. We introduce actions and the condition
that they are representable in the context of semi-abelian categories. We explain what
this amounts to in varieties of non-associative algebras. Then, we discuss the concept of
a representation.
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In § 2, we prove that for a variety, representability of its representations implies a
condition called algebraic coherence. This allows us to work with the λ/μ-rules, which
are identities of degree three, useful in what follows. In § 3, the idea is to show that some
identities of degree two – necessarily commutativity or anti-commutativity – follow from
representability of representations. In order to get these results, we use two computer
programs, which probably makes § 3 the most innovative section of this paper. In § 4,
the goal is to observe that only anti-commutativity is consistent with representability of
representations, as long as the variety is non-abelian. From this, we deduce that the λ/μ-
rules can be reduced to the Jacobi identity. In § 5, we answer a final question which arises
naturally from the previous sections. A priori, anti-commutativity and the Jacobi identity
need not be the only identities satisfied in a variety with representable representations.
We prove that there is indeed nothing else.

In § 6, we conclude with Theorem 6.1, the goal and main result of this paper. We
position our work within the context of similar results in the literature and discuss some
open problems.

1. Preliminaries

1.1. Varieties of algebras

An algebra A on a field K is a K-vector space equipped with a bilinear map
A×A→ A : (x, y) �→ xy = x · y = [x, y] called the multiplication or bracket. A morphism
of algebras is therefore a K-linear map f : A→ B which preserves this multiplication.
This determines the category Alg

K
of algebras over K. We remark that for now we do not

require the multiplication to be associative.
We call a collection of K-algebras a variety of (non-associative) algebras over K if

the collection contains all the algebras satisfying a chosen set of polynomial equations.
For example, the variety LieK of Lie algebras corresponds to the collection of all alge-
bras over K satisfying the Jacobi identity (x(yz) + y(zx) + z(xy) = 0) and alternativity
(xx = 0), while qLie

K
denotes the variety of quasi-Lie algebras where alternativity

is replaced by anticommutativity (xy + yx = 0). Of course when char(K) �= 2, quasi-Lie
algebras and Lie algebras are the same. However, for characteristic 2, alternativity implies
anticommutativity but the converse is not true. In this case, the variety of Lie algebras
is strictly smaller than the variety of quasi-Lie algebras.

We say that an algebra is abelian if xy = 0 holds for every x and y in the algebra.
The variety of abelian K-algebras is trivially equivalent to the (abelian) category VectK

of vectors spaces over K. Each variety of K-algebras contains all abelian algebras over K,
and these are precisely those algebras that admit an internal abelian group structure in
the category V .

Remark 1.2. Any variety V of non-associative algebras is a Janelidze–Márki–Tholen
semi-abelian category [22]. Indeed, any variety of algebras is in particular a variety of
Ω-groups in the sense of Higgins [21].

We recall some additional concepts in order to cite two theorems we shall need later
on. Let F : Set → Alg

K
be the free algebra functor sending a set S to the free algebra

over K generated by the elements of S. We recall that it is a left adjoint functor (its
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558 X. Garćıa-Mart́ınez, M. Tsishyn, T. Van der Linden and C. Vienne

right adjoint being the forgetful functor) which factorizes through the free magma functor
M : Set → Mag (sending S to the magma M(S) of non-empty words in S) and the magma
algebra functor K[−] : Mag → Alg

K
. A (non-associative) polynomial ϕ on a set S is an

element of K[M(S)]. We say that ϕ is a monomial if it is a scalar multiple of an element
of M(S). The type of a monomial ϕ = ϕ(x1, . . . , xn) is a n-tuple (k1, . . . , kn) ∈ Nn

where ki is the number of times xi appears in ϕ. Its degree is the number k1 + · · · + kn.
A polynomial is said to be homogeneous if all its monomials are of the same type. We
can decompose every polynomial into its homogeneous components.

Proposition 1.3. If V is a variety of non-associative K-algebras satisfying a non-
trivial homogeneous identity of degree 2, then V is either a subvariety of the variety of
commutative algebras, or a subvariety of the variety of anticommutative algebras.

Proof. We want to prove that essentially the only two possibilities are commutativity
(xy = yx) and anticommutativity (xy = −yx). In fact, alternativity is also a non-trivial
identity. But since xx = 0 implies anticommutativity, we can assume ϕ to be xy + λyx = 0
for some λ ∈ K without any loss of generality. This implies that xy = −λyx and thus
(1 − λ2)xy = 0. Therefore, either V is an abelian variety, or λ = ±1, which proves the
result. �

Theorem 1.4 (Bahturin [1] and Zhevlakov et al [29]). If V is a variety of algebras
over an infinite field, then all of its identities are of the form φ(x1, . . . , xn) = 0, where
φ(x1, . . . , xn) is a polynomial, each of whose homogeneous components ψ(xi1 , . . . , xim

)
again gives rise to an identity ψ(xi1 , . . . , xim

) = 0 in V .

Unless we specify it otherwise, we shall always assume that K is an infinite field, so
that we can use the previous result. For instance, when V is a variety of K-algebras
that satisfies a non-trivial identity involving monomials of degree 2, then Proposition 1.3
applies and tells us that V consists of either commutative or anticommutative algebras.

A homogeneous polynomial is multilinear if its monomials are of the type
(1, 1, . . . , 1). A multilinear identity is therefore an identity ϕ(x1, . . . , xn) = 0 where
ϕ is a multilinear polynomial.

Theorem 1.5 (Theorem 3 in § 4.2 of [1]). In a subvariety of LieK, any non-trivial
identity has a non-trivial multilinear consequence.

1.6. Actions of algebras

Let V be a semi-abelian category [22] and B be an object in V . We write PtB(V ) for
the category of points over B whose objects are triples (A, p, s) where A is an object
in V and p : A→ B is a split epimorphism with a given section s. It is well known
[5] that the functor K : PtB(V ) → V sending a point (A, p, s) over B to the kernel
of p is monadic. The corresponding monad on V is the functor B�(−) : V → V : X �→
B�X where the object B�X is the kernel of (1B , 0) : B +X → B, together with certain
natural transformations ηB : 1V ⇒ B�(−) and μB : B�(B�(−)) ⇒ B�(−). Here μB

X is a
restriction of the codiagonal (B +B) +X → B +X and ηB

X sends an element of X to
itself, considered as an element of B�X. A B�(−)-algebra (X, ξ) is an object X together
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with a morphism ξ : B�X → X called an action of B on X, such that the diagrams

X

��
��

��
��

��
��

��
��

ηB
X �� B�X

ξ

��
X

and

B�(B�X)

1B�ξ

��

μB
X �� B�X

ξ

��
B�X

ξ

�� X

commute. We write Act(B, X) for the set of actions of B on X. One equivalent way of
viewing actions uses split extensions:

Lemma 1.7 (Borceux [4] and Bourn & Janelidze [5]). Given objects B and X
in a semi-abelian category, there is a bijection SpltExt(B, X) ∼= Act(B, X) between the
set of isomorphism classes of split extensions of B by X and the set of actions of B on
X.

In fact, for any action ξ : B�X → X there is a split extension of B by X

0 �� X
k �� H

p
��
B

s
�� �� 0

and vice versa. The object H in this split extension is called the semi-direct product
of B with (X, ξ), written B �ξ X. In a variety of non-associative algebras, what is its
structure?

First, since it is the kernel of the morphism (1B , 0) : B +X → B, the object B�X
consists of polynomials with variables in B and X which can be written in a form where
all of their monomials contain variables in X.

Then, by applying the forgetful functor U : V → Vect, we observe that, as a vec-
tor space, B �ξ X is the direct sum/Cartesian product B ⊕X ∼= B ×X. Next, routine
calculations show us that the multiplication has to be

(b, x) · (c, y) = (bc, by + xc + xy), (*)

where by and xc are notation for the image by ξ inX of by and xc, respectively. Sometimes,
for the sake of simplicity, we will just write by or xc. We remark that starting with a
morphism ξ : B�X → X (not necessary an action) we can still define a semi-direct product
K-algebra by (*). The question is now, whether this algebra belongs to the variety V .

Lemma 1.8. Let V be a variety of non-associative algebras over a field K, let B and
X be two algebras and ξ : B�X → X a morphism in V such that ξ ◦ ηB

X = 1X . Then ξ is
an action in V if and only if B �ξ X is in V .
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Proof. The first implication directly comes from the equivalence in Lemma 1.6. For
the converse, we construct the split extension

0 �� X
k �� B �ξ X

p
��
B

s
�� �� 0

in V , where k(x) = (0, x), p(b, x) = b and s(b) = (b, 0). Lemma 1.6 then gives us an
action χ : B�X → X in V which is, by construction, the only morphism satisfying
k◦χ = (s, k)◦l where l is the kernel of (1B , 0) : B +X → B. But ξ obviously satisfies
this condition and therefore coincides with χ. �

This description of actions, analogous to Theorem 2.5 of [7], will be useful all along
this paper, whenever we wish to check that an action is well defined. For example, let V
be the variety of commutative algebras over an arbitrary field K, and let V be an algebra
in this variety. Then V acts on itself by vw = v · w and vw = v · w. Indeed, the semi-
direct product K-algebra is in V , since for all v, v′, w, w′ ∈ V we have (v, w) · (v′, w′) =
(v′, w′) · (v, w).

1.9. Action representability

Let V be a semi-abelian category. For a fixed object X in the category,
Act(−,X) : V → Set defines a contravariant functor sending an object B ∈ V to the
set of actions of B on X. We say that the category V is action representable when
for each object X in V the functor Act(−,X) is representable [4]. This means that there
exists an object [X], called the actor of X, in V and a natural isomorphism

Act(−,X) ∼= Hom(−, [X]).

An interesting question is the role of the actor in concrete examples: What is then its
structure? In Grp, the actor of an object X is the automorphism group Aut(X); in LieK,
the actor of X is the Lie algebra of its derivations Der(X). More examples are studied
in [4], and new examples continue to be studied, as for crossed modules (in [28]) and for
cocommutative Hopf algebras (in [17]).

Proposition 1.10. Let V be a variety of non-associative algebras over K. Then V
is action representable if and only if for every object X in V there exists an object [X]
acting on X which has the following property: for any object B with an action on X
there is a unique morphism ϕ : B → [X] such that bx = ϕ(b)x and xb = xϕ(b) for every
x ∈ X and b ∈ B.

Proof. This is a reformulation of Proposition 3.1 from [7] for the context of varieties
of non-associative algebras, which are all categories of groups with operations in the sense
of [27]. �

In [4], it is explained that action representability in so-called locally well-presentable
semi-abelian categories is equivalent to the condition that Act(−, X) preserves binary
coproducts for every object X. Actually, the isomorphism Act(−,X) ∼= Hom(−, [X]) eas-
ily implies that Act(B +B′, X) ∼= Act(B, X) × Act(B′, X), which can be understood as
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the condition that ‘having an action of B +B′ on X is the same as having two actions
on X, one of B and the other of B′.’

From this observation, we may now deduce an interesting and useful technique. Indeed,
by Lemma 1.7, the object (B +B′) �X is in V and as such should satisfy the identities
characterizing V , whenever the variety is action representable. We remark that this stays
true with a finite number of algebras acting onX. Checking this condition is an important
proof method used throughout this article. Let us give a concrete example of how this
works, by reproving the known result that in the variety of associative algebras, the actor
cannot always exist:

Proposition 1.11. Let K be a field, and AAlg
K

the variety of associative algebras over
K (defined by (xy)z = x(yz)). Then AAlg

K
is not action representable.

Proof. Suppose that AAlg
K

is action representable. Let B1 and B2 be two algebras
with trivial multiplication respectively generated by the elements b1 and b2. Let X be
the algebra with trivial multiplication generated by the elements x, y1, y2, z12 and z21.
Those algebras are in AAlg

K
. We define the actions of Bi on X by:

bix = xbi = yi, biyj = yjbi =

{
zij if i �= j

0 otherwise
and bizjk = zjkbi = 0,

where i, j, k ∈ {1, 2} and j �= k. These choices determine morphisms of V -algebras
ξi : Bi�X → X, and Lemma 1.8 implies that those are well-defined actions. Since
we supposed AAlg

K
action representable, also the algebra B1 +B2 acts on X. Yet

(B1 +B2) �X is not in AAlg
K
, which is a contradiction. Indeed, we have that b1(xb2) =

z12 �= z21 = (b1x)b2. �

Theorem 1.12. LieK and qLie
K

are action representable for any field K.

Proof. For Lie algebras, this is a well-known result proved in [3, 4]. The case of quasi-
Lie algebras, for a field of characteristic 2, is not explicit there, but the essence of the
proof stays valid. In any case, the actor of an object X in one of those categories is the
algebra of derivations Der(X). �

1.13. Representations and their representability

Given an object B in V , a Beck module [2] over B, also called a B-module or a
representation of B, is an abelian group object in the slice category (V ↓ B). As is
well known (and explained in detail for instance in [20]), in a semi-abelian category that
satisfies the so-called Smith is Huq condition, a B-module structure on a (necessarily
abelian) object X of V is the same thing as a B-action on X – an ‘abelian action’. Com-
bining the results of [23, 24] with the fact that any variety of non-associative K-algebras
is a category of groups with operations in the sense of [27], we see that this interpretation
holds in the context where we are working. So here, Rep(B, X) = Act(B, X) when X is
an abelian object.

In the case of Lie algebras, we regain the classical concept of a Lie algebra repre-
sentation, which is often defined as a morphism B → gl(X), where gl(X) is the Lie
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algebra of linear endomorphisms of the vector space X. For f , g : X → X, the bracket
[f, g] = f◦g − g◦f is a Lie algebra structure on Hom(X, X), because composition of
endomorphisms is associative.

As we shall see below, it makes sense to restrict the representability condition from
actions to representations, as follows: we say that V has representable representations
when for each abelian algebra X, the contravariant functor

Rep(−,X) = Act(−,X) : V → Set

that sends an algebra B to the set of B-module structures on X is a representable functor.
For instance, if V = LieK, then Rep(−,X) is represented by gl(X), which means

Rep(−,X) ∼= Hom(−, gl(X)). On the other hand, the proof of Proposition 1.9 can
be used to show that the variety of associative algebras does not have representable
representations.

This condition is clearly weaker than action representability; it will, however, turn out
to be sufficient for our purposes. Of course, everything we said above about actions stays
valid for representations.

2. Algebraic coherence

A first step towards the main result of this paper is proving that in the context of non-
associative algebras, action representability/representability of representations implies a
condition called algebraic coherence [10]. The reason we want this comes from the fact
that an algebraically coherent variety satisfies some identities of degree three, useful in
the next sections. From [15], we have the following characterization:

Theorem 2.1. Let K be an infinite field. If V is a variety of non-associative K-algebras,
then the following conditions are equivalent:

(i) V is algebraically coherent;

(ii) V is an Orzech category of interest [26];

(iii) V is a 2-variety: for any ideal I of an algebra A, the subalgebra I2 of A is again
an ideal;

(iv) there exist λ1, . . . , λ8, μ1, . . . , μ8 in K such that

z(xy) = λ1(zx)y + λ2(xz)y + λ3y(zx) + λ4y(xz)

+ λ5(zy)x+ λ6(yz)x+ λ7x(zy) + λ8x(yz)

and

(xy)z = μ1(zx)y + μ2(xz)y + μ3y(zx) + μ4y(xz)

+ μ5(zy)x+ μ6(yz)x+ μ7x(zy) + μ8x(yz)

are identities in V .
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We call those two identities together the λ/μ-rules. One should understand them as
some ‘general associativity rules’. We remark that the case where λ1 = 1 = μ8 and the
other coefficients are zero is just associativity. It is easy to see that the Jacobi identity is
another particular case of the λ/μ-rules.

Theorem 2.2. Let K be an infinite field and V be a variety of non-associative alge-
bras over K. If V has representable representations, then it is an algebraically coherent
category.

Proof. Consider the free non-associative algebra on the set {b, b′, x}. We quotient it
by the ideal I generated by xb, bx, b′x, xb′, xx, bb, b′b′ and all monomials of degree 3
or higher in which one of the variables b, b′, x is repeated. We reflect the result into
the variety V by dividing out the ideal generated by the identities of V and obtain an
algebra Q. Since K is an infinite field, by Theorem 1.4, the sub-vector space generated by
the classes of the elements of the form (bb′)x (all possible permutations and bracketings)
consists entirely of classes of linear combinations of such elements of degree 3. We call
this vector space A, and view it as an abelian K-algebra.

We write B for the abelian V -algebra generated by b, B′ for the abelian V -algebra gen-
erated by b′ and C for the free vector space generated by c, viewed as an abelian K-algebra.
In V , we then define a representation of B +B′ on the abelian algebra V = A× C
by ba = 0 = ab, b′a = 0 = ab′ , bb′a = b′ba = 0 = abb′ = ab′b where a is any element of
A, bc = 0 = cb, b′c = 0 = cb

′
and bb′c = (bb′)x, b′bc = (b′b)x, cbb′ = x(bb′), cb

′b = x(b′b).
We need to verify that this does indeed determine an action. To do so, let us give
an explicit description of the corresponding V -algebra morphism ξ : (B +B′)�V → V .
We first consider four V -algebra morphisms B +B′ +A+ C → Q× C, one which sends
θ(b, b′, a, c) – where θ is a polynomial in n+ 3 variables and a ∈ An for some n ∈ N –
to (θ(b, b′, 0, x), 0), and three others, which send it to (θ(0, 0, a, 0), 0), (θ(0, 0, 0, x), 0)
and (0, θ(0, 0, 0, c)), respectively. We combine them into the K-linear map

B +B′ +A+ C → Q× C :

θ(b, b′, a, c) �→ (θ(b, b′, 0, x) − θ(0, 0, 0, x) + θ(0, 0, a, 0), θ(0, 0, 0, c)).

Since this map vanishes on monomials in a and c that contain at least one element of A
and one c, it factors through the quotient

(B +B′) + (A+ C) → (B +B′) + (A× C) = (B +B′) + V

to a K-linear map (B +B′) + V → Q× C, which in turn restricts to a K-linear map
(B +B′)�V → Q× C. It is easy to check that this map factors over the inclusion of
A× C = V intoQ× C. The resulting factorization is a K-linear map ξ : (B +B′)�V → V ,
which is actually a morphism of K-algebras, because it sends all binary products in
(B +B′)�V to zero, as it should. We may now check that ξ satisfies the axioms of a
B�(−)-algebra, which follows immediately from the definitions – see 1.2.
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Since V has representable representations in V , the action ξ is necessarily zero, because
that is where it is sent by the canonical isomorphism

Rep(B +B′, V ) → Rep(B, V ) × Rep(B′, V )

defined by restricting an action of B +B′ on V to an action of B on V together with an
action of B′ on V . It follows that (bb′)x, (b′b)x, x(bb′) and x(b′b) vanish in A. This means
that the identities of V allow us to write each of them as a linear combination of some
degree 3 elements of the ideal I, which can only mean that the λ/μ-rules hold in V . In
other words, V is algebraically coherent. �

Remark 2.3. If in Theorem 2.2 the variety V has representable actions, then an
alternate proof may be given, which uses that action representability implies a weaker
condition called action accessibility [6]. As it turns out, a variety of non-associative alge-
bras over an infinite field is action accessible if and only if it satisfies the equivalent
conditions of Theorem 2.1. Indeed, as A. Montoli proved in [25], all Orzech categories of
interest are action accessible, which yields one implication. The converse makes non-trivial
use of Lemma 2.9 in [11].

3. Identities of degree two

We proved that from the representability of representations, we may deduce certain iden-
tities of degree three. The goal of this section is to go for the identities of degree two
necessary to obtain Lie algebras. In fact, action representability does not characterize the
Jacobi identity alone, since the variety LeibK of Leibniz algebras over K is not action rep-
resentable in general. This observation comes from Theorem 5.5 of [9], but it is possible
to give a proof, similar to the one of Proposition 1.9, showing that LeibK does not have
representable representations.

We are now going to show that any variety of non-associative algebras with repre-
sentable representations over an infinite field satisfies non-trivial identities of degree two.
We start with fields of characteristic zero in Proposition 3.1 and continue with fields of
prime characteristic in Proposition 3.4.

Our main technique is to obtain a system of polynomial equations, which we then prove
is inconsistent. To do so, we use computer algebra in two distinct ways: first, we need
to produce the system of equations itself; due to the complexity of the manipulations
needed here, we preferred to do this on a computer, rather than by hand: see below and
[14] where this is explained in further detail. Next, the system of equations thus obtained
has to be shown inconsistent. The size of the system makes it impossible to do this by
hand; we used the open-source software package Singular [12] which gives us an explicit
reason for the system’s inconsistency. How this is done is explained below. Part of the
code used is displayed in Figure 1, and the full code and its output are accessible as a set
of ancillary files in the arXiv version of our paper.

Proposition 3.1. Let K be a field of characteristic 0 and V be a variety of non-
associative algebras over K. If V has representable representations, then V satisfies a
non-trivial identity of degree two.
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Figure 1. Singular code.

Proof. Let us assume that V is a variety with representable representations, all of
whose non-trivial identities are of degree three or higher. From Theorem 2.2, we already
know that V satisfies the λ/μ-rules. The strategy of this proof is to show that repre-
sentability of representations forces the coefficients λi and μi to satisfy a specific system
of polynomial equations whose set of solutions is empty (unless some degree two identi-
ties are satisfied, but we assumed that it is not the case). This then means that algebraic
coherence, and therefore representability of representations, cannot hold in V – which is
a contradiction.

In order to do so, we let X be the 79-dimensional abelian algebra generated by the
elements {x, yi

α, z
ij
αβ , t

ijk
αβγ | α, β, γ ∈ {r, l} and (i j k) ∈ S3}, where r stands for right and

l for left, while i, j, k ∈ {1, 2, 3} are pairwise non-equal. Furthermore, Bi is the abelian
algebra generated by bi, for i ∈ {1, 2, 3}. Those algebras are in V because they are
abelian. We now define (abelian) actions of the algebras Bi on X:

bix = yi
l xbi = yi

r

biyj
α =

{
zji
αl if i �= j

0 otherwise
yj

αb
i =

{
zji
αr if i �= j

0 otherwise

bizjk
αβ =

{
tjki
αβl if i �= j and i �= k

0 otherwise
zjk

αβb
i =

{
tjki
αβr if i �= j and i �= k

0 otherwise

while bitjkm
αβγ = tjkm

αβγ b
i = 0. Those actions are well defined. Indeed, the λ/μ-rules are sat-

isfied since any product of three elements in the semi-direct product Bi �X vanishes. In
order to familiarize ourselves with those actions which will appear again later, we first
give some examples of their behaviour in (B1 +B2 +B3) �X:

(b1(b2x))b3 = t213llr , ((b2x)b3)b2 = 0, b1(b2y3
r) = t321rll .

Next, as explained in § 1, by representability of representations the semi-direct product
(B1 +B2 +B3) �X is in V and thus all elements of this semi-direct product have to
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satisfy the λ/μ-rules. We construct an equational system on the λi and μi whose set of
solutions is empty, by checking the λ/μ-rules for some specific elements. For example,
since (xb1)b2 is in (B1 +B2 +B3) �X, decomposing it a first time gives:

(xb1)b2 = μ1(b2x)b1 + μ2(xb2)b1 + μ3b
1(b2x) + μ4b

1(xb2)

+ μ5(b2b1)x+ μ6(b1b2)x+ μ7x(b2b1) + μ8x(b1b2).

Then we apply the λ/μ-rules again on the monomials where x is isolated and write
everything on the same side. This gives us a linear combination

∑
fk(λi, μj)z

ij
αβ which

must be equal to zero. Since the zij
αβ are linearly independent, all the polynomials fk ∈

Q[λ1, . . . , λ8, μ1, . . . , μ8] vanish. Following this procedure for (xb1)b2 gives us the eight
first polynomials of Figure 1 (lines 2–9, written in Singular [12] code). To compute
the fk for k = 9, . . . , 32, we repeat this procedure on the elements (b1x)b2, b2(b1x) and
b2(xb1). The details of the computations are done and explained in [14].

Next, we use the fact that (b1b2)b3 and b1(b2b3) should also satisfy the λ/μ-rules
since they are elements of (B1 +B2 +B3) �X. Making the decomposition work on
(b1(b2b3))x, x(b1(b2b3)), ((b1b2)b3)x and x((b1b2)b3) – again, a procedure explained in
[14] – we find the last 192 polynomials in the system of equations.

Finally, we employ the computer algebra system Singular [12], which uses Gröbner
bases, to look for a common root of the polynomials. Based on the code in Figure 1, the
computer system tells us that 1 is a linear combination in Q[λ1, . . . , λ8, μ1, . . . , μ8]
of the polynomials f1, . . . , f224. The arXiv version of this paper includes an ancil-
lary file containing an explicit way to write 1 as a linear combination of the (fi)i in
Q[λ1, . . . , λ8, μ1, . . . , μ8]. Hence the set of solutions of the polynomial system is empty,
which completes the proof. �

Remark 3.2. The parameter dp in line 1 means that degree reverse lexicographical
ordering of polynomials is chosen. This choice does not have any impact in the proof
other than the efficiency of the computation.

Remark 3.3. The system of equations in Figure 1 is not the smallest inconsistent
system of equations involving the λi and μi. For instance, from the output in the ancillary
files, it is immediately clear that f140 can be removed from the system while maintaining
its inconsistency. Actually, the system may be reduced significantly: we checked that
equations number 1, 3, 4, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26,
27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 56, 82,
92 together still form an inconsistent system of polynomial equations. However, giving
the explicit polynomials that prove the system’s inconsistency becomes harder as its size
goes down.

In order to have the result for all infinite fields, we extend this to prime characteristics.
The proof needs fine-tuning since in characteristic zero rational coefficients are allowed,
something which is not the case in prime characteristic.

Proposition 3.4. Let K be an infinite field of prime characteristic and V a variety of
non-associative algebras over K. If V has representable representations, then V satisfies
a non-trivial identity of degree two.
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Proof. In this proof, we mimic the trick used in Theorem 4.2 of [16]. Indeed, in
the proof of Proposition 3.1, we wrote 1 as a linear combination of the (fi)1≤i≤224 in
Q[λ1, . . . , λ8, μ1, . . . , μ8]. Instead of doing this, we will write some m ∈ N as a linear
combination in Z[λ1, . . . , λ8, μ1, . . . , μ8] of these 224 polynomials because, then, we
will just have to check that the system has an empty set of solutions for all infinite
fields whose characteristic divides m. The problem is that the natural number m, equal
to 14567995908455980243096953055378044954631566240653468532985722705486804720
45472116250386006867468944668940571897397172623649920632890267296075654343504
20878447841877721000590295768558884307124148778177377876830064916666592523291
59304174905496937087738581344349487066880186556945585175775695576209957462932
78480812431412260574404024455598320441859722042018260900473969846828608645627
87183059873566162910333424228212906065894343670540539725147842861513488173278
22021774577694196501188227813156363270426620366150688257342489840683094034209
50318, which we find with a first computation in Singular is 541 digits long. This
makes finding its prime divisors very difficult. The trick is to compute the Gröbner basis
with a different monomial order. This will give us another natural number m′ and we will
only need to check the inconsistency of the system of equations for the common prime
divisors of m and m′. A different monomial order may be chosen in line 1 of the code in
Figure 1: for instance, swapping μ7 and μ8 is expressed as

ring r=0,(x(1..8),y(1..6),y(8),y(7)),dp;

This leads us to the number m′ which is equal to 52571763195879165827354282293287553
62779444821170590472983556155224447303866073034964879226451745451233297544838
18964761098115453534593150454043600868151586630528071290312031929148817936277
58784552281330948466297460892213124611259557307705714671224295558125970110748
22233317864875426854341643972018163355893297334149632686212253120055566461120
4869818358 and only 353 digits long. Obviously, 2 is a common prime divisor. Using
the Euclidean algorithm, it is rapidly seen that it is the only one. In order to conclude,
we prove as before, using Singular, that I = K[λ1, . . . , λ8, μ1, . . . , μ8] for any field K

of characteristic 2, where I is the ideal of K[λ1, . . . , λ8, μ1, . . . , μ8] generated by the
polynomials fk for k = 1, . . . , 224. This is done in Singular by using

ring r=2,(x(1..8),y(1..8)),dp;

in line 1 of the code in Figure 1. Again, explicit linear combinations are given in the arXiv
version of this paper as an ancillary file. �

Corollary 3.5. If V is a variety of non-associative algebras over an infinite field
whose representations are representable, then V is either a subvariety of the variety
of commutative algebras, or a subvariety of the variety of anticommutative algebras.

Proof. Combine the above with Proposition 1.3. �
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4. Anticommutativity and the Jacobi identity

The last proposition of the previous section gives us two identities: commutativity and
anticommutativity. The goal of this section is to show that representability of represen-
tations rules out the first case. Next, we will prove that from anticommutativity and the
λ/μ-rules (which are both consequences of representability of representations), we can
deduce that if the variety is non-abelian, then it has to satisfy the Jacobi identity.

Proposition 4.1. Let V be a variety of non-associative algebras over an infinite
field of characteristic different from 2. If V is a variety of commutative algebras whose
representations are representable, then it is an abelian variety.

Proof. First, since V has representable representations, it is algebraically coherent by
Theorem 2.2. Hence the λ/μ-rules hold. By commutativity, these can be rewritten as

x(yz) = λ(xy)z + μy(xz) (†)

for some λ, μ ∈ K.
Now we need to use essentially the same algebras and actions as in the proof of

Proposition 3.1, but without considerations for left and right, so that the actions sat-
isfy the commutativity rule. In other words, for all bi in Bi and w in X we define the
actions such that bw = wb. Such actions are well defined, and thus the semi-direct product
(B1 +B2 +B3) �X is an object of V by representability of representations. Therefore,
its elements should satisfy the identity (†). Let us check this on b1(b2x): indeed, b1(b2x) =
λ(b1b2)x+ μb2(b1x) = λ2(xb1)b2 + λμb1(xb2), so that 0 = (λ2 + μ)z12 + (λμ− 1)z21. By
linear independence of {z12, z21}, either V is abelian or λ = μ = −1.

The second case would mean that the identity (†) is now

x(yz) = −(xy)z − y(xz). (‡)

Therefore, since b1(b2b3) is an element of the semi-direct product we have that b1(b2b3) =
−(b1b2)b3 − b2(b1b3) as an action, and in particular on x this implies

(b1(b2b3))x = −((b1b2)b3)x− (b2(b1b3))x.

Decomposing each element on the left side and on the right side twice by applying (‡) gives
us t123 + t132 + t231 + t321 = −t312 − t321 − t123 − t213 − t213 − t231 − t132 − t312, which
is equivalent to 2t312 + 2t321 + 2t123 + 2t213 + 2t132 + 2t231 = 0. Since char(K) �= 2 and
all these elements are linearly independent, we encounter a contradiction. Hence V is
abelian. �

Remark 4.2. If char(K) = 2, then commutativity and anticommutativity are the
same condition. Therefore, we do not have to care about it to state our next result.
However, one should remember that quasi-Lie algebras and Lie algebras do not coincide
when the characteristic of the field is 2.

Proposition 4.3. Let K be an infinite field and V a variety of non-associative alge-
bras over K that satisfies the λ/μ-rules and anticommutativity. If V has representable
representations, then the Jacobi identity holds in V .
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Proof. Because of anticommutativity, the λ/μ-rules can be rewritten as

x(yz) = λ(xy)z + μy(xz) (§)

for some λ, μ ∈ K. We consider the actions we defined in the proof of Proposition 4.1,
corrected for anticommutativity. So we decree that an element bi acting on the left is the
same as bi acting on the right times −1. For instance, b1y2 = −y2b1 and b2x = −xb2. In
order to check the identity (§) on b1(b2x), we compute:

b1(b2x) = λ(b1b2)x+ μb2(b1x) = −λ2(xb1)b2 − λμb1(xb2) + μb2(b1x).

By linear independence, this yields the system μ− λ2 = 0, 1 − λμ = 0 whose solution is
λ = μ = 1. Thus (§) becomes the Jacobi identity. �

Corollary 4.4. Let V be a variety of non-associative algebras over an infinite field
K. If V has representable representations, then V is a subvariety of LieK or qLie

K
if

char(K) = 2, and a subvariety of LieK otherwise.

5. What about subvarieties?

We concluded the previous section by saying that the only potential identities of degree
two for varieties with representable representations are xy = 0, xy = −yx and xx = 0,
and that the Jacobi identity necessarily holds. The question we answer in this section is:
‘Did we miss any other identities?’ As we have already explained above, such identities
would have to be of degree at least 3. The next proposition proves that we cannot add
any non-trivial identities without making the variety abelian.

Proposition 5.1. Let K be an infinite field and V be a subvariety of LieK or qLie
K

determined by a collection of identities of degree 3 or higher. Then V is an abelian variety
if and only if it has representable representations.

Proof. Let V be a non-abelian variety of K-algebras with representable representa-
tions. In the previous sections, it was explained that there are no identities of degree two
besides xy = −yx or xx = 0, and that the Jacobi identity holds. The idea here is to first
prove that there is no identity of degree three besides Jacobi, and then we show that no
other identities (of degree n > 3) can hold.

First, suppose that V satisfies some degree three identities. Because of anticommuta-
tivity and Theorem 1.5, we may assume this identity to be x(yz) = λ(xy)z + μy(xz) for
certain λ, μ ∈ K. Then we may recycle the ideas of the proof of Proposition 4.3 to reduce
it to the Jacobi identity.

Now, the goal is to prove by induction that the existence of an identity of degree
n > 3 is in contradiction with Theorem 1.5. Let us assume that no other identities of
degree lower than or equal to n > 3 are satisfied. Let ψ be a homogeneous identity
of degree n+ 1 with n > 3 which holds in V . We consider a non-trivial multilin-
ear consequence ϕ(x1, . . . , xn, x0) = 0 of ψ, whose existence is assured by Theorem
1.5. Using anticommutativity and the Jacobi identity, we can rewrite ϕ in the shape
0 =

∑
i=1 λiϕi(x1, . . . , xix0, . . . , xn). We observe that if λi = 0 for all i, then ϕ is just a
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consequence of xy = −yx and x(yz) + y(zx) + z(xy) = 0, or in other words a trivial iden-
tity. Note that it is impossible to be a consequence of other identities by the induction
hypothesis. Proving that the λi’s are zero will then bring us to a contradiction.

We consider the same actions we used in Proposition 4.3 but extended to n algebras
Bi acting on X (which is also enlarged to more elements). Those are again well defined
and thus we have that (B1 + . . .+Bn) �X lies in V as already explained. Therefore
the element ψ((b1, 0), (b2, 0), . . . , (bn, 0), (0, x)) = ψ(b1, . . . , bn, x) of this semi-direct
product has to vanish and the multilinear consequence ϕ as well, which allows us to write
0 =

∑
i=1 λiϕi(b1, . . . , bix, . . . , bn). Again, by construction of the actions, the elements

ϕi(b1, . . . , bix, . . . , bn) of X are linearly independent and thus λi = 0 for all i – which
completes the proof. �

6. Conclusion and final remarks

We can now conclude with the main result of this article:

Theorem 6.1. Let K be an infinite field. Let V be a variety of non-associative algebras
over K. If V has representable representations – which happens, for instance, when it is
action representable – then V is either the variety of Lie algebras LieK, the variety of
quasi-Lie algebras qLie

K
, or the category of vector spaces VectK.

Proof. This is a direct consequence of Corollary 4.4 and Proposition 5.1. �

In [16], the first and third authors of the current article gave a different and a priori
unrelated categorical description of Lie algebras, through a condition called local algebraic
Cartesian closedness (LACC) introduced by J. R. A. Gray [19, 13, 18]. Let us recall the
main result:

Theorem 6.2. Let K be an infinite field and V a variety of n-algebras over K which
is a non-abelian locally algebraically Cartesian closed category. Then n = 2 and

(1) if char(K) �= 2, then V = LieK = qLie
K
;

(2) if char(K) = 2, then V = LieK or V = qLie
K
.

This naturally leads to a number of questions which we hope to investigate in the
future.

6.3. First question

Theorem 6.1 together with Theorem 6.2 tell us that, for non-associative algebras over
an infinite field, action representability, representability of representations and (LACC)
are equivalent conditions. On the other hand, for arbitrary semi-abelian categories, this
is known to be false in general. Indeed, the category Bool of Boolean rings is action rep-
resentable [4] but does not satisfy (LACC), as explained in Proposition 6.4 of [19]. Today
it remains an open problem whether local algebraic Cartesian closedness implies action
representability/representability of representations, or if some counterexample exists.
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Remark 6.4. We observe that Bool can be seen as the variety of non-associative Z2-
algebras satisfying xx = x. The fact that this category is action representable emphasizes
the necessity in Theorem 6.1 of working with an infinite field.

6.5. Second question

In order to obtain Theorem 6.2, the authors of [16] used a different inconsistent sys-
tem of polynomial equations. Ours has 224 and may be reduced to a smaller system.
Their system consists of 128 polynomials (and can in fact be further reduced as well).
Whence, once again, a main result we were not able to prove without computer assis-
tance. This makes us wonder whether a different proof technique exists, preferably a less
computationally involved one.

6.6. Third question

What if instead of one multiplication, algebras have two? This is a natural question to
ask, since Poisson algebras are an important example of this kind of object. Moreover,
Poisson algebras over a fixed field form an Orzech category of interest, which simplifies the
description of actions in this variety. The problem is that, for a given Poisson algebra X,
the Lie algebra Der(X) of derivations on X need not form a Poisson algebra in general.
Another potentially interesting example is the variety of Lie–Leibniz algebras introduced
in [8].

Therefore, we may ask the following questions: ‘Are there action representable vari-
eties of non-associative algebras with two multiplications? If not, can we prove this, and
generalize the result to n ≥ 2 multiplications?’ This might either result in a natural, cat-
egorical definition of ‘Lie algebras with two multiplications’, or in yet another uniqueness
result for classical Lie algebras.

6.7. Fourth question

What is the scope of representability of representations outside the context of algebras
over a field? For instance, how far is it from action representability? What are examples of
this condition, what are its consequences, does it admit any interesting characterizations?
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