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Abstract

We show that the only finite quasi-simple non-abelian groups that can faithfully act on
rationally connected threefolds are the following groups: A5, PSL2(F7), A6, SL2(F8), A7,
PSp4(F3), SL2(F7), 2.A5, 2.A6, 3.A6 or 6.A6. All of these groups with a possible exception
of 2.A6 and 6.A6 indeed act on some rationally connected threefolds.

2020 Mathematics Subject Classification: 14E07, 14L30, 14J45 (Primary); 20D05, 20D99,
14J30, 20B25 (Secondary)

1. Introduction

The complex projective plane P2 and projective space P3 are among the most basic
objects of geometry. They provide motivation for the study of two exceptionally compli-
cated objects, the groups Cr2(C) and Cr3(C) of their birational transformations, known as
the plane Cremona group and the space Cremona group, respectively. The group Cr2(C)
has been studied intensively over the last two centuries, and many facts about it were estab-
lished. The structure of the group Cr3(C) is much more complicated and mysterious. It still
resists most attempts to study its global structure.

One approach to studying Cremona groups is by means of their finite subgroups. An
almost complete classification of finite subgroups of the plane Cremona group Cr2(C) was
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obtained Dolgachev and Iskovskikh in [DI09] (see also [Bla11, Tsy11, Tsy13] for further
developments). For example, this classification implies that there are exactly three iso-
morphism classes of non-abelian simple finite subgroups of Cr2(C), namely those of A5,
PSL2(F7) and A6.

Recent achievements in three-dimensional birational geometry allowed Prokhorov to
prove

THEOREM 1·1 ([Pro12, theorem 1·1]). There are exactly six isomorphism classes of non-
abelian simple finite subgroups of Cr3(C), given by

A5, PSL2(F7), A6, SL2(F8), A7, and PSp4(F3).

This classification became possible thanks to the general observation that a birational
action of a finite group G on projective space can be regularized, that is, replaced by a
regular action of this group on some more complicated rational threefold. Thus, instead of
studying finite subgroups in the space Cremona group, one can consider a more general (and
perhaps more natural) problem:

Question 1·2. What are the isomorphism classes of finite groups acting faithfully on
rationally connected threefolds?

The classical technique to study this (hard) problem goes as follows. Let X be a rationally
connected threefold faithfully acted on by a finite group G. Taking the G-equivariant res-
olution of singularities and applying the G-equivariant Minimal Model Program, we can
replace X by a G-Mori fiber space. Thus, we may assume that X has terminal singularities,
every G-invariant Weil divisor on X is Q-Cartier, and there exists a G-equivariant surjective
morphism

φ : X −→ Z

whose general fibers are Fano varieties, and the morphism φ is minimal in the following
sense: rk Pic(X/Z)G = 1. If Z is a point, then X is a Fano threefold, so that we say that X
is a GQ-Fano threefold. Similarly, if Z = P1, then X is fibered in del Pezzo surfaces, and
we say that φ is a G-del Pezzo fibration. Finally, if Z is a rational surface, then the general
geometric fiber of φ is P1, and φ is said to be a G-conic bundle. In this case, we may assume
that both X and Z are smooth due to a result of Avilov [Avi14]. A priori, the threefold X
can be non-rational. However, if X is rational, then any birational map X ��� P3 induces an
embedding

G ↪→ Cr3
(
C

)
.

Vice versa, every finite subgroup of Cr3(C) arises in this way. Thus, keeping in mind that
every smooth cubic threefold is non-rational, we see that Theorem 1·1 follows from the
following (more explicit) result:

THEOREM 1·3 ([Pro12, theorem 1·5]). Let X be a Fano threefold with terminal singular-
ities, and let G be a finite non-abelian simple subgroup in Aut(X) such that rk Cl(X)G = 1.
Suppose also that G is not isomorphic to A5, PSL2(F7) or A6. Then the following
possibilities hold:
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(i) G �A7, and X is the unique smooth intersection of a quadric and a cubic in P5 that
admits a faithful action of the group A7;

(ii) G �A7, and X is P3;

(iii) G � PSp4(F3), and X is P3;

(iv) G � PSp4(F3), and X is the Burkhardt quartic in P4;

(v) G � SL2(F8), and X is the unique smooth Fano threefold of Picard rank 1 and genus
7 that admits a faithful action of the group SL2(F8);

(vi) G � PSL2(F11), and X is the Klein cubic threefold in P4;

(vii) G � PSL2(F11), and X is the unique smooth Fano threefold of Picard rank 1 and genus
8 that admits a faithful action of the group PSL2(F11) (which is non-equivariantly
birational to the Klein cubic threefold).

In this text, we extend the study of simple groups to quasi-simple groups.

Definition 1·4. A group is said to be quasi-simple if it is perfect, that is, it equals its
commutator subgroup, and the quotient of the group by its center is a simple non-abelian
group.

Taking the quotient by the center, which is again a rationally connected threefold, it fol-
lows from Theorem 1·3 that the only finite quasi-simple non-simple group that can (possibly)
faithfully act on rationally connected threefolds are 2.A5 or

SL2(F7), SL2(F11), Sp4(F3), n.A6, n.A7 with n = 2, 3, 6. (1·4·1)

As the group 2.A5 is a subgroup of SL2(C), there are many ways to embed it into Cr2(C) (see
[Tsy13]), and hence in Cr3(C). However, none of the groups of (1·4·1) embeds in Cr2(C)
(see Theorem 2·5). Some of them indeed act on rationally connected threefolds. The goal of
this paper is to prove the following result:

THEOREM 1·5. Every finite quasi-simple non-simple group that faithfully acts on a
rationally connected threefold is isomorphic to one of the following groups

SL2(F7), 2.A5, 2.A6, 3.A6, and 6.A6.

Moreover, the groups 2.A5 and 3.A6 act faithfully on rational threefolds, and the group
SL2(F7) acts faithfully on rationally connected threefolds.

Unfortunately, we do not know whether the groups 2.A6 and 6.A6 can act on a rationally
connected threefold or not (see Appendix B for a discussion), and do not know if SL2(F7)
can act on a rational threefold.

We now give examples that prove the existence part of Theorem 1·5 (we omit the case of
2.A5, already explained above).

Example 1·6. Let G = 3.A6 act on V := C3 and let φ(x1, x2, x3) be the invariant of degree 6
(unique up to scalar multiplication). Then we have the following induced actions:

(i) on P3 = P(V ⊕C),

(ii) on the hypersurface X6 ⊂ P(13, 2, 2) given by φ + y3
1 + y3

2 = 0;
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(iii) on the hypersurface X6 ⊂ P(13, 2, 3) given by z2 + y3 + φ = 0;

(iv) on the hypersurface X6 ⊂ P(14, 3) given by φ + x6
4 = y2;

(v) on P(OP2 (d) ⊕OP2) where d ≥ 1 is not a multiple of 3.

Example 1·7. The group SL2(F7) has an irreducible four-dimensional representation, which
makes it act faithfully on P4 and on P(1, 1, 1, 1, 3).

(i) The weighted projective space P(1, 1, 1, 1, 3) contains a SL2(F7)-invariant sextic
hypersurface (see [Edg47, MS73]). This hypersurface, that we denote by X, is unique.
In appropriate quasihomogeneous coordinates, the threefold X is given by

w2 = 8x6 − 20x3yzt − 10x2y3z − 10x2yt3 − 10x2z3t − 10xy3t2

−10xy2z3 − 10xz2t3 − y5t − 15y2z2t2 − yz5 − zt5,

where x, y, z, t are coordinates of weight 1, and w is a coordinate of weight 3. One
can check that X is smooth, so that X is a smooth Fano threefold with Pic(X) =Z · KX

and −K3
X = 2. Note that X is non-rational (see [Isk80b]).

(ii) The group SL2(F7) also acts on the smooth quartic X4 ⊂ P4 given by y4 = φ4, where
φ4(x1, x2, x3, x4) is an invariant of degree 4. This variety is also non-rational [IM71].

The structure of the paper is as follows. In Section 2, we prove or recall some preliminary
results we will use throughout the remainder of the paper. In Section 3, we begin with an
analysis of Fano threefolds with at worst canonical Gorenstein singularities. In Section 4,
we prove the main theorem except for the case of 3.A7, which is handled in Section 5.

The appendices are not needed for the proof of the main theorem, but are likely of inde-
pendent interest. In Appendix A, we introduce the Amitsur subgroup: a new equivariant
birational invariant inspired from arithmetic geometry. The Amitsur subgroup is used in
Appendix B, where we prove that the group 6.A6 does not act non-trivially on a conic bundle
over a surface (see Theorem B·6).

2. Preliminaries
2·1. Notation

Throughout this paper the ground field is supposed to be the field of complex numbers C.
We employ the following standard notations used in the group theory:

(i) µn denotes the multiplicative group of order n (in C∗);

(ii) An denotes the alternating group of degree n;

(iii) SLn(Fq) (resp. PSLn(Fq)) denotes the special linear group (resp. projective special
linear group) over the finite field Fq;

(iv) Spn(Fq) (resp. PSpn(Fq)) denotes the symplectic group (resp. projective symplectic
group) over the finite field Fq;

(v) n.G denotes a non-split central extension of G by µn;

(vi) z(G) (resp. [G, G]) denotes the center (resp. the commutator subgroup) of a group G.

All simple groups are supposed to be non-cyclic.
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LEMMA 2·2. Let C be a smooth curve with a faithful action of a finite group G of genus
g < |G|/4. Then

2g − 2

|G| + 2 =
∑

r

cr

(
1 − 1

r

)
,

where r varies over the orders of cyclic subgroups of G, and {cr} are non-negative integers.

Proof. This is a standard consequence of the Riemann-Hurwitz formula for the quotient
morphism C → C/G:

2g − 2 = |G|(2gq − 2) +
∑

p

(ep − 1),

where p varies over the branch points, ep are the ramification indices, and gq is the genus of
the quotient. Recall that the stabilisers of all points must be cyclic, so we get a contribution
of the form |G|(r − 1)/r = ep − 1 for each G-orbit (free orbits contributing 0). Solving for
g, we see that gq = 0 or else g ≥ 1

4 |G|.
LEMMA 2·3 (see, e.g., [Car57, p. 98]). Let X be an irreducible algebraic variety, let P

be a point in X, and let G be a finite group in Aut(X) that fixes the point P. Then the natural
linear action of G on the Zariski tangent space TP,X is faithful.

THEOREM 2·4 ([Bli17]). Let G ⊂ GL3(C) be a finite quasi-simple subgroup. Then G is
isomorphic to one of the following groups:

2.A5, A5, 3.A6, PSL2(F7).

THEOREM 2·5 ([DI09]). Let G ⊂ Cr2(C) be a finite quasi-simple subgroup such that
G/z(G) 	�A5. Then G is conjugate to one of the following actions:

(i) A6 acting on P2;

(ii) PSL2(F7) acting on P2;

(iii) PSL2(F7) acting on a unique del Pezzo surface of degree 2.

In particular, G is simple.

LEMMA 2·6. Let G be a group isomorphic to one in the list (1·4·1).

(i) If G ⊂ Aut
(
P3

)
, then G � 3.A6 and the action is induced by the reducible representa-

tion V = V1 ⊕ V3 with dim V1 = 1, dim V3 = 3.

(ii) If G ⊂ Aut(X), where X = Xd ⊂ P4 is a an irreducible hypersurface of degree d ≤ 4,
then G � SL2(F7), X is smooth quartic, and the action is induced by the reducible
representation V = V1 ⊕ V4 with dim V1 = 1, dim V4 = 4.

(iii) If G ⊂ Aut
(
P5

)
, then there exists no G-invariant quadric Q ⊂ P5 of corank ≤ 2.

(iv) If G ⊂ Aut
(
P5

)
, then there exists no G-invariant irreducible complete intersection of

two quadrics.

Proof. The assertion (i) follows from Table 1.
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Table 1. Representations and invariants of low degrees.

Invariants in Low Degrees

Group Dim 2 3 4 5 6 7 8 9 10

PSL2(F7) 3 1 1 1 1
6 1 2 3 4 8 10 15 22 30
7 1 1 4 2 10 10 25 28 58
8 1 2 3 5 15 19 44 72 120

SL2(F7) 4 1 1 3 2
6 1 2 10 16
8 2 10 44 106

PSL2(F11) 5 1 1 2 1 2 3 3
10 1 4 1 16 10 54 56 176
10 1 2 4 8 16 28 54 98 176
11 1 1 3 4 20 24 78 134 300
12 1 1 4 8 25 49 124 258 558

SL2(F11) 6 1 1 4 4
10 1 6 44 124
10 3 6 44 134
12 4 15 124 516

A6 5 1 1 2 2 4 3 6 6 9
8 1 1 2 3 9 9 23 34 60
9 1 2 4 7 14 23 46 80 140

10 1 7 2 25 20 94 108 308

2.A6 4 2
8 1 4 23 46

10 4 11 80 248

3.A6 3 1
6 2 7 16
9 2 14 80

15 2 126 2234

6.A6 6 1
12 29

A7 6 1 1 2 2 4 4 6 7 10
10 3 6 2 20 11 54
14 1 2 4 8 21 42 105 233 506
14 1 2 5 9 22 46 109 237 518
15 1 1 5 4 25 45 150 320 826
21 1 2 8 24 110 362 1284 4023 12046
35 1 4 37 225 1582 8864 47098 223591 985678

2.A7 4 1
14 1 8 94 438
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Table 1. Continued.

Invariants in Low Degrees

Group Dim 2 3 4 5 6 7 8 9 10

20 3 64 919 7845
20 7 68 929 7905
36 38 1749 57807 1264859

3.A7 6 1 3 5
15 1 23 314
15 3 33 404
21 2 110 4023
21 120 3806
24 2 208 11146

6.A7 6
24 177
36 1749

PSp4(F3) 5 1 1 1 2
6 1 1 1 2 1 3 2 4

10 1 2 5 2 8
15 1 1 3 6 13 21 48 90 180
15 1 1 3 2 9 9 30 44 115
20 1 2 5 10 26 56 151 380 980
24 1 2 6 12 41 117 409 1268 4006
30 1 9 7 108 267 1785 5816 26198
30 2 5 15 89 361 1560 6526 25024
40 9 38 361 1987 12432 64242 318717
45 14 65 655 4365 29347 170291 925070
60 1 4 34 320 3316 30266 252784 1903375 13127051
64 1 2 38 409 4706 46253 411176 3283749 23975553
81 1 4 94 1258 18430 225424 2483426 24523546 220742112

Sp4(F3) 4
20 1 7 103 765
20 2 9 106 783
20 6 96 755
36 3 184 5631 122657
60 26 3148 252182 13116046
60 29 3153 252155 13116416
64 34 4579 411176 23967693
80 79 16801 2256083 196172329

(ii) Regard P4 as the projectivisation of a vector space V =C5 and consider a lifting
G̃ ⊂ SL(V), where G̃ is quasi-simple. Since G is not simple, z(G̃) is not a subgroup of scalar
matrices, i.e. there exists a non-trivial decomposition V = V ′ ⊕ V ′′ of G̃-modules, where
dim V ′ > dim V ′′. Then dim V ′′ ≤ 2 and so the action of G̃ on V ′′ must be trivial and on V ′ it
is faithful with dim V ′ = 3 or 4. Then G̃ has an invariant of degree ≤ d on V ′. From Table 1,
the only possibility is G̃ � SL2(F7) and d = 4.

(iii) and (iv) follow from Table 1.
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LEMMA 2·7. Let X be a threefold with terminal singularities and a faithful action of a
group G from the list (1·4·1). Assume that X has a G-fixed point P. Then one of the following
holds:

(i) P ∈ X is smooth and G � 3.A6;

(ii) P ∈ X is of type 1
2 (1, 1, 1) and G � 3.A6.

Proof. First, consider the case where P ∈ X is Gorenstein. The group G faithfully acts on
the tangent space TP,X . If P ∈ X is smooth, then dim TP,X = 3 and G � 3.A6 by Theorem 2·4.
If P ∈ X is singular, then there exists an analytic equivariant embedding (X, P) ⊂ (T , 0),
where T �C4 and the action on T is linear. Let φ(x1, . . . , x4) = 0 be the (invariant) equation
of X in T . Write φ = ∑

φd, where φd is homogeneous of degree d. By the classification
of terminal singularities [Rei87], we conclude φ2 	= 0. If moreover G ↪→ GL4(C) = GL(T)
is irreducible, then the group G/z(G) faithfully acts on P(T) = P3. In this case φ2 = 0
defines an invariant quadric Q ⊂ P3 which must be smooth. Thus Q � P1 × P1 and then
the simple group G/z(G) embedds into PGL2; impossible for G in the list (1·4·1). Let
G ↪→ GL4(C) = GL(T) be reducible. We have a decomposition T = T ′ ⊕ T ′′, where T ′ is
irreducible faithful with dim T ′ < 4. If dim T ′ = 3, then G � 3.A6. Again 3.A6 has no invari-
ants of degree ≤ 3 on T ′, so φ2 = x2

4 and φ3 = λx3
4. This contradicts the classification of

terminal singularities. Hence dim T ′ = 2 and G � 2.A5. Again we have a contradiction.
Consider the case where (X, P) is a singularity of index r > 1. Let π : (X�, P�) → (X, P)

be the index one cover and let G� ⊂ Aut(X�, P�) be the natural lifting of G. We have an exact
sequence

1 −→ µr −→ G� ν−→ G −→ 1.

Since G is a quasi-simple group and Aut(µr) is abelian, this is a central extension. Let Z� ⊂
G� be the preimage of z(G). Since z(G) is cyclic, Z� is an abelian group with two generators
and one of these generators is of order 2 or 3. In this situation, the automorphism group
Aut(Z�) is solvable. Hence Z� coincides with the center of G�. Thus either G� = µr × G or
Z� � µ6 and G/z(G) �A6 or A7. In both cases there exists a quasi-simple subgroup G′ ⊂ G�

such that ν(G′) = G. By the above G′ � 3.A6 and P� ∈ X� is smooth. Since the representation
of G′ on TP�,X� is irreducible, r = 2.

2·8. Varieties of minimal degree

THEOREM 2·8·1 (F. Enriques, see e.g. [EH87]). Let Y = Yd ⊂ PN be an irreducible
subvariety of degree d and dimension n which is not contained in a hyperplane. Then
d ≥ N − n + 1 and the equality holds if and only if Y is one of the following:

(i) Y = PN ;

(ii) Y = Y2 ⊂ PN, a smooth quadric;

(iii) a rational scroll PP1 (E), where E is an ample rank n vector bundle on P1, embedded
by the linear system |O(1)|;

(iv) a Veronese surface F4 ⊂ P5;

(v) a cone over one of the varieties from (ii), (iii) or (iv).
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2·9. Group actions on K3 surfaces

THEOREM 2·9·1 ([Muk88]) Let a finite quasi-simple group G faithfully act on a K3
surface S. Then G �A5, A6 or PSL2(F7). In particular, G is simple. Moreover, if G �A6 or
PSL2(F7), then rk Pic(S) = 20 and rk Pic(S)G = 1.

COROLLARY 2·9·2. Let S be a K3 surface with at worst Du Val singularities. Suppose S
admits a faithful action of a quasi-simple group G, where G 	�A5. Then S is smooth.

2·10. Linearisations

Let X be a proper complex variety with a faithful action of a finite group G. Let E be a
vector bundle on X. We say that E is G-invariant if there exist isomorphisms φg : g∗E → E
for every g ∈ G. We say that E is G-linearisable if E is G-invariant and one can select the
isomorphisms {φg}g∈G such that φgh = φh ◦ h∗(φg) for all g, h ∈ G. Equivalently, this means
that G acts on the total space of E linearly on the fibers and the projection to X is equivariant.
The particular choice of action on E is called a linearization.

PROPOSITION 2·11. If X is a smooth G-variety, then the canonical line bundle has a
canonical linearization.

Proof. The points of the total space of the tangent bundle TX are of the form (x, t) where
x ∈ X and t ∈ TxX. For g ∈ G, g(x, t) := (g(x), dg(t)) defines an action on TX which is linear
on the fibers. Thus TX is linearizable, and so is the canonical bundle.

LEMMA 2·12 ([DI09, lemma 5·11]) Let f : X → Y be a double cover of smooth vari-
eties whose branch divisor B ⊂ Y is given by an invertible sheaf L together with a section
sB ∈ H0(Y , L⊗2) (see [Wav68]) and let τ is the Galois involution. Suppose a group G acts
on Y leaving invariant B. Then there exists a subgroup G′ ⊂ Aut(X) fitting into the exact
sequence

1 −→ 〈τ 〉 −→ G′ δ−→ G −→ 1,

where δ is induced by G′ → Aut(Y). The sequence splits if and only if L admits a G-

linearisation and in the corresponding representation of G in H0
(

Y , L⊗2
)

the section sB

is G-invariant.

3. Gorenstein Fano threefolds
3·1. Special Fano threefolds

Recall that a GQ-Fano variety is a variety X with only terminal Q-factorial singularities
equipped with an action of a group G such that the anticanonical class −KX is ample and the
invariant part Pic(X)G of the Picard group is of rank 1. We say that X is a G-Fano variety if
additionally the singularities of X are Gorenstein.

PROPOSITION 3·1·1. Let G be a group from the list (1·4·1) and let X be a G-Fano
threefold (with only terminal Gorenstein singularities). Then rk Pic(X) = 1.
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Proof. The lattice Pic(X) is equipped with a pairing

(D1, D2) = −KX · D1 · D1.

which is G-invariant and non-degenerate (by the Hodge index theorem). Hence the group G
acts on the orthogonal complement W := K⊥

X of KX in Pic(X). According to [Pro13b] we
have rk Pic(X) ≤ 4 and so rkW ≤ 3. Since rk Pic(X)G = 1, we have WG = 0. But the groups
from the list (1·4·1) have no rational representations of dimension ≤ 3, a contradiction.

Fano threefolds with Fano index ι(X) = 2 are also called del Pezzo threefolds.

PROPOSITION 3·1·2. Let X be a Fano threefold with with at worst canonical Gorenstein
singularities. Assume that ι(X) = 2 and (−KX/2)3 ≤ 4. Furthermore, assume that Aut(X)
contains a subgroup G from the list (1·4·1). Then (X,G) is as in Example 1·6(iii).

Proof. Let A = −KX/2 and d(X) := A3. Consider the possibilities for d(X) case by case.
We use the classification of del Pezzo threefolds [Fuj90], [Shi89].

Case d(X) = 1. Here Bs|A| = {P} and G faithfully acts on TP,X . Hence G � 3.A6 by
Theorem 2·4. Let G̃ be the universal central extension of G (see, e.g., [Asc00, section 33]).
Then the action of G on X lifts to an action of G̃ on H0(X, tA) for any t. Hence G̃ acts on the
graded algebra

R(X, A) :=
⊕
t≥0

H0(X, tA).

In our case R(X, A) is generated by its elements x1, x2, x2, y, z with deg xi = 1, deg y = 2,
deg z = 3 and a unique relation of degree 6.

There exists a natural isomorphism H0(X, A) � TP,X . The subspace

S2(H0(X, A)) ⊂ H0(X, −KX)

is invariant. Since dim H0(X, −KX) = 7 and dim S2(H0(X, A)) = 6, the element y ∈
H0(X, −KX) can be taken to be a relative invariant of G̃. Similarly, the subspace of the
10-dimensional space H0(X, 3A) generated by x1, x2, x3, y is invariant and of codimension
1. Hence the element z ∈ H0(X, 3A) can be taken to be a relative invariant of G̃. Since the
action on x1, x2, x3 has no invariants of degree < 6 and has a unique invariant φ6 of degree 6,
X ⊂ P(13, 2, 3) is given by the equation

z2 + y3 + φ6

and so we are in the situation of Example 1·6(iii).

Case d(X) = 2. In this case the map given by the linear system |A| is a finite morphism
�|A| : X → P3 of degree 2 branched over a quartic B ⊂ P3. The group G acts non-trivially on
P3. Therefore, G/z(G) is either PSL2(F7) or A6. In the case G/z(G) =A6, the group G has
no invariant quartic. Hence G/z(G) = PSL2(F7) and G � SL2(F7).

Similar to the above considered case R(X, A) is generated by x1, . . . , x4, y with deg xi = 1,
deg y = 2 with a unique relation of degree 4. We may take y to be a relative invariant for G̃.
Hence X ⊂ P(14, 2) can be given by the equation

y2 + yφ2 + φ4 = 0
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Since the action on x1, . . . , x4 has no invariants of degree ≤ 2, φ2 = 0. Now we see that z(G)
acts trivially on X (cf. Lemma 2·12), a contradiction.

Case d(X) = 3. This case does not occur by Lemma 2·6(ii).

Case d(X) = 4. In this case X is an intersection of two quadrics Q1 and Q2 in P5, which is
impossible by Lemma 2·6(iv).

COROLLARY 3·1·3. Let G be a group from the list (1·4·1) and let X be a G-Fano threefold
with ι(X) = 2. Then X is as in Example 1·6(iii).

Proof. By Proposition 3·1·2 we may assume that (−KX/2)3 ≥ 5 and by Proposition 3·1·1
we have rk Pic(X) = 1. Hence by [Pro13a, theorem 1·7] and [CS16, proposition 7·1·10] we
have (−KX/2)3 = 5, X is smooth, and Aut(X) � PSL2(C). On the other hand, PSL2(C) does
not contain finite non-solvable groups different from A5, a contradiction.

LEMMA 3·2 (cf. [Pro12, lemma 5·2]) Let X be a Fano threefold with at worst canonical
Gorenstein singularities. Assume that Aut(X) contains a subgroup G as in the list (1·4·1).
Then the linear system |−KX| is base point free.

Proof. Assume that dim Bs|−KX| = 0, then by [Shi89] Bs|−KX| is a single point, say P,
and X has at P terminal Gorenstein singularity of type cA1. By Lemma 2·7 this is impossible.

Thus dim Bs|−KX| > 0, then by [Shi89] Bs|−KX| is a smooth rational curve C contained
in the smooth locus of X. The action of G on C must be trivial and we obtain a contradiction
as above.

LEMMA 3·3. Let X be a Fano threefold with at worst canonical Gorenstein singularities.
Assume that Aut(X) contains a subgroup G from the list (1·4·1). If the linear system |−KX|
is not very ample, then (X,G) is as in Examples 1·7(i), 1·6(iii) or 1·6(iv).

Proof. (cf. [Pro12, lemma 5·3]). Assume that the linear system |−KX| defines a morphism
ϕ : X → Pg+1 which is not an embedding. Let Y = ϕ(X) and let Ḡ be the image of G in
Aut(X). Then ϕ is a double cover and Y ⊂ Pg+1 is a subvariety of degree g − 1 (see [Isk80a]
and [PCS05]). Hence either Ḡ � G or Ḡ is the quotient of G by a subgroup of order 2. Let
H be the class of a hyperplane section of Y and let B ⊂ Y be the branch divisor. Then

−KX = ϕ∗H, KX = ϕ∗(KY + 1
2 B

)
, KY + H + 1

2 B = 0. (3·3·1)

Apply Theorem 2·8·1. The case where Y is a quadric (case 2·8·1(ii)) does not occur by
Lemma 2·6(ii) and [Pro12, lemma 3·6].

If Y � P3 (the case 2·8·1(i)), then the morphism ϕ : X → P3 is a double cover with branch
divisor B ⊂ P3 of degree 6 by (3·3·1). The groups A7 and PSp4(F3) have no non-trivial
invariant hypersurfaces of degree 6. If Ḡ � PSL2(F7), then we get Example 1·7(i). Likewise,
if Ḡ �A6, we get the case 1·6(iv).

If Y is a cone over the Veronese surface (case 2·8·1(iv)), then Y � P(1, 1, 1, 2) and
OP(B) = OP(6) by (3·3·1). Hence ι(X) = 2 and X is a del Pezzo threefold of degree 1. This
case was considered in Proposition 3·1·2.

Finally consider the case where Y is either a rational scroll, a cone over a rational scroll,
or a cone over a rational normal curve. Then Y is the image of Ŷ := PP1 (E), where E is a
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nef rank n vector bundle on P1, under the map defined by the linear system |O(1)|. Thus
ν : Ŷ → Y is the “minimal” resolution of singularities which is given by the blowup of the
maximal ideal of Sing(Y). In particular, ν is G-equivariant. Then we have the following
equivariant commutative diagram

,

where X̂ is the normalization of the fiber product. The morphism η is a crepant con-
traction and X̂ has at worst canonical Gorenstein singularities [PCS05, lemma 3·6]. The
group Ḡ trivially acts on P1, so it non-trivially acts on each fiber F � P2 of π . Write
E = OP1 (d1) ⊕ OP1(d2) ⊕ OP1(d3), where d3 ≥ d2 ≥ d1 ≥ 0. If d1 < d2, then the surjection
E → OP1(d2) ⊕ OP1(d3) defines an invariant subscroll Ŷ2 ⊂ Ŷ such that Y2 ∩ F is a line.
According to Theorem 2·4 this is impossible. Thus we may assume that d1 = d2 and, sim-
ilarly, d2 = d3. So, Ŷ � P2 × P1 � Y . Note that B intersects F along a quartic curve which
must be invariant by (3·3·1). Then the only possibility is that B is a divisor of bidegree (4,
0) or a (reducible) divisor of bidegree (4,2), where Ḡ � PSL2(F7). In the former case X is
the product of P1 and del Pezzo surface of degree 2. In the latter case X is described in
[Kry16, example 1·8] as the threefold X1. In both cases the group G splits by Lemma 2·12,
a contradiction.

Remark 3·3·2. Assume that −KX is very ample. Then, by Proposition 2·11, our group G
acts faithfully on the space H0(X, −KX)∨ so that the induced action on its projectivization
P(H0(X, −KX)∨) = Pg+1 is also faithful. This implies that the representation H0(X, −KX)∨
of G is reducible.

LEMMA 3·4. Let X be a Fano threefold with at worst canonical Gorenstein singularities.
Assume that Aut(X) contains a subgroup G as in the list (1·4·1). Assume that the linear sys-
tem |−KX| is very ample but the image X = X2g−2 ⊂ Pg+1 is not an intersection of quadrics.
Then (X,G) is as in Example 1·7(ii).

Proof. By our assumption g ≥ 3. If g = 3, then X = X4 ⊂ P4 is a quartic. Inspecting the
list (1·4·1) one can see that the only possibility is G � SL2(F7), which implies that (X, G) is
as in Example 1·7(i).

Now assume that g > 3. Since X = X2g−2 ⊂ Pg+1 is projectively normal [Isk80a], the
restriction map

H0(Pg+1, OPg+1(2)) −→ H0(X, OX(2))

is surjective. This allows us to compute that the number of linear independent quadrics
passing through X is equal to

1
2 (g − 2)(g − 3) > 0.

Let Y ⊂ Pg+1 be the intersection of all quadrics containing X. It is known that Y is a reduced
irreducible variety of minimal degree (see [Isk80a] and [PCS05]). Thus Y is described by
Theorem 2·8·1.
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If g = 4, then Y is a (unique) quadric passing through X and X is cut out on Y by a cubic,
say Z. We may assume that Z is G-invariant. Thus our group G has invariants of degrees
2 and 3. Hence, z(G) is of order 6 and so G ⊃ 6.A6. But then G has no faithful reducible
representations of dimension 6 by Table 1.

Thus it remains to consider the case where Y is either a rational scroll, a cone over a ratio-
nal scroll, or a cone over a rational normal curve. Arguing as in the proof of Lemma 3·3 and
using [PCSO5, lemma 4·7], we conclude that there exists a G-equivariant crepant extraction
η : X̂ → X and a degree 3 del Pezzo fibration X̂ → P1. This gives us a contradiction (see
Theorem 2·5).

LEMMA 3·5. Let X be a Fano threefold with at worst canonical singularities and G ⊂
Aut(X) be a finite group contained in the list (1·4·1). Assume that there exists a G-invariant
divisor S ∈ |−KX| such that the pair (X, S) is not plt and either S is irreducible or (X, S) is
not lc. Then G has a fixed point P ∈ S such that (X, S) is not plt at P.

Proof. Let c be the log canonical threshold of (X, S), that is, the pair (X, cS) is maximally
lc. Then c ≤ 1 and −(KX + cS) is nef.

Consider the case c < 1. Then −(KX + cS) is ample. Let � ⊂ X be the locus of lc singu-
larities of (X, cS). By Shokurov’s connectedness principle (see [Sho93] and [Kol92, chapter
17]), � is connected (and clearly G-invariant). If dim � = 0, then � must be an invariant
point. Suppose dim � = 1. If there exists a zero-dimensional center of lc singularities, then
replacing cS with small invariant perturbation (c − ε)S + � we get a zero-dimensional locus
of lc singularities and may argue as above (see [Pro12, claim 4·7·1]). Otherwise � must
be a minimal center of lc singularities and by Kawamata subadjunction theorem [Kaw98,
theorem 1] � is a smooth rational curve, because −(KX + cS) is ample. Since G cannot act
non-trivially on P1, the action of G on � is trivial.

Now consider the case c = 1 and S is irreducible. Then (X, S) is lc. Let ν : S′ → S be the
normalisation. Write

0 ∼ ν∗(KX + S) |S = KS′ + D′,

where D′ is the different, an effective integral Weil divisor on S′ such that the pair (S′, D′) is
lc (see [Sho93, section 3], [Kol92, chapter 16], and [Kaw07]). The group G acts naturally
on S′ and ν is G-equivariant. Now consider the minimal resolution μ : S̃ → S′ and let D̃ be a
uniquely defined) divisor such that

KS̃ + D̃ = μ∗(KS′ + D′) ∼ 0, μ∗D̃ = D′.

is usually called the log crepant pull-back of D′. Here D̃ is again an effective reduced divisor.
Run G-equivariant MMP on S̃. Clearly, the whole D̃ cannot be contracted. We get a model
(Smin, Dmin) such that (Smin, Dmin) is lc, (KSmin + Dmin) ∼ 0, and Dmin 	= 0. Assume that Smin

has an equivariant conic bundle structure π : Smin → B. Then Dmin has one or two horizontal
components which must be G-invariant. By adjunction any horizontal component of Dmin is
either rational or elliptic curve. Such a curve does not admit a non-trivial action of G, so the
action of G on the corresponding component D̃1 ⊂ D̃ and ν(μ(D̃1)) must be trivial. Similarly,
if Smin is a del Pezzo surface with rk Pic(Smin)G = 1, then K2

Smin
= 2 or 9 by Theorem 2·5
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and so D̃ has at most 3 components. Arguing as above we get that the action of G on some
component D̃1 ⊂ D̃ is trivial.

4. Proof of main result

In this section, we prove Theorem 1·5 omitting the proof that 3.A7 cannot act faithfully
on a rationally connected threefold. The case of 3.A7 will be dealt with in Section 5 later.

4·1. Singularities of quotients

First, we need two auxiliary local results.

LEMMA 4·1·1. Let (X � P) be a threefold terminal singularity of index 1. Suppose that a
group A of order 2 acts on (X � P) so that either the action is free in codimension 1 or the
fixed point locus is a Q-Cartier divisor. Then the quotient (X � P)/A is canonical.

Proof. Denote (Y � Q) := (X � P)/A. If A acts freely in codimension one, then the asser-
tion is a consequence of [KSB88, proposition 6·12]. Let Fix(A, X) contain a divisor, say D.
We have an A-equivariant embedding (X � P) ⊂ (C4 � 0) and we may assume that the action
on C4 is diagonalizable. If this action is of type 1

2 (1, 0, 0, 0), then C4/A is smooth and so Y
is Gorenstein. Since the quotient singularities are always rational [KM98, proposition 5·13],
this implies that (Y � Q) is canonical [KM98, corollary 5·24]. Thus we may assume that the
action is of type 1

2 (1, 1, 0, 0) and the equation of X is of the form

φ = x1φ1(x1, . . . , x4) + x2φ2(x1, . . . , x4) = 0.

But then the fixed point locus is not a Q-Cartier divisor.

LEMMA 4·1·2. Let (X � P) be a threefold terminal cyclic quotient singularity of index 2
acted upon by a finite group GP such that z(GP) contains a subgroup A � µ2. Suppose that
the center of any extension of GP by µ2 does not contain an element of order 4. Then the
quotient (X � P)/A is canonical.

Proof. Let π : (X� � P�) → (X � P) be the index-one cover, so that (X � P) = (X� �
P�)/µ2 where the action of µ2 is free outside P� [KM98, definition 5·19]. By our assump-
tion (X� � P�) � (C3, 0) and the action of A is of type 1

2 (1, 1, 1). The action of GP lifts to

an action of G�
P on (X� � P�), where G�

P is an extension of GP by µ2. Let A� ⊂ G�
P be the

preimage of A (a group of order 4).
If A� � µ2 × µ2, then the elements of this group act as follows: 1

2 (1, 1, 1), 1
2 (1, 1, 0),

1
2 (0, 0, 1). It is easy to see that in this case the quotient is canonical Gorenstein.

Assume that the extension A� � µ4. Then the action on C3 is of type 1
4 (1, 1, 1) or

1
4 (1, 1, −1). By our assumption the former case does not occur. In the latter case the quotient
is terminal.

4·2. G-birationally superrigid Fano threefolds

Second, we need the following global result.

THEOREM 4·3. Let X be a Fano threefold with terminal Gorenstein singularities, and let
G be a finite subgroup in Aut(X). Suppose that X and G fit one of the following seven cases:
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(i) G �A7, and X is the unique smooth intersection of a quadric and a cubic in P5 that
admits a faithful action of the group A7;

(ii) G �A7 and X = P3;

(iii) G � PSp4(F3) and X = P3;

(iv) G � PSp4(F3) and X is the Burkhardt quartic in P4;

(v) G � PSL2(F11) and X is the Klein cubic threefold in P4;

(vi) G � PSL2(F11) and X is the unique smooth Fano threefold of Picard rank 1 and genus
8 that admits a faithful action of the group PSL2(F11).

Let ρ : X ��� V be a G-birational map such that V is a Fano variety with at most canonical
singularities. Then ρ is biregular.

The proof of this result is based on the following technical result, which originated in
[CS12, CS14, CS16, CS17].

PROPOSITION 4·4. Let X be a Fano threefold with terminal Gorenstein singularities, and
let G be a finite subgroup in Aut(X). Write −KX ∼ nH, where H is a Cartier divisor on X,
and n = ι(X) is the Fano index of the threefold X. Let M be a linear system on the threefold
X that does not have fixed components, and let λ be a positive rational number such that

λM ∼Q −KX .

Suppose that (X, λM) does not have terminal singularities. Then one of the following (non-
exclusive) possibilities holds:

(i) there exists a G-orbit � ⊂ X such that

|�| = h0(OX
(
(n + 1)H

)) − h0(OX
(
(n + 1)H

) ⊗ I�

)
,

where I� is the ideal sheaf of �;

(ii) there exists a G-irreducible reduced curve C that consists of r � 1 pairwise disjoint
smooth isomorphic irreducible components C1, . . . , Cr such that 2g − 2 � nd, rd �
H3n2 and

r((n + 1)d − g + 1) = h0(OX
(
(n + 1)H

)) − h0(OX
(
(n + 1)H

) ⊗ IC
)

,

where d = H · Ci, g is the genus of any curve Ci, and IC is the ideal sheaf of C.

Proof. Since −KX is Cartier, the log pair (X, 2λM) does not have klt singularities by
[CS14, lemma 2·2]. Choose μ� 2λ such that (X, μM) is strictly lc. Let Z be a minimal
center of lc singularities of the log pair (X, μM), see [Kaw97, Kaw98] for a precise defini-
tion. Then θ(Z) is also a minimal center of lc singularities of this log pair for every θ ∈ G.
Moreover, we have

Z ∩ θ(Z) 	=∅ ⇐⇒ Z = θ(Z)

by [Kaw97, proposition 1·5].
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Since M does not have fixed components, the center Z is either a curve or a point. Observe
that

μM ∼Q

μ

λ
nH,

where μ/λ� 2. It would be easier to work with (X, μM) if it did not have centers of lc
singularities that are different from θ(Z) for θ ∈ G. This is possible to achieve if we replace
the boundary μM by (a slightly more complicated) effective boundary BX such that

BX ∼Q

(μ

λ
n + ε

)
H

for some positive rational number ε that can be chosen arbitrary small. This is known as
the Kawamata–Shokurov trick or the perturbation trick (see [CS16, lemma 2·4·10] and
the proofs of [Kaw97, theorem 1·10] and [Kaw98, theorem 1]). By construction, we may
assume that

μ

λ
n + ε � 2n + ε < 2n + 1. (4·4·1)

Note that the coefficients of BX depend on ε. But we can chose ε as small as we wish, so
that the number μn/λ + ε can be as close to 2n as we need.

Let � be the union of all log canonical centers θ(Z) for θ ∈ G. Then � is either a G-orbit
or a disjoint union of irreducible isomorphic curves, which are transitively permuted by G.
In both cases, we have an exact sequence of vector spaces

0 −→ H0(OX
(
(n + 1)H

) ⊗ I�

) −→ H0(OX
(
(n + 1)H

))
−→ H0(O� ⊗ OX

(
(n + 1)H

)) −→ H1(OX
(
(n + 1)H

) ⊗ I�

)
, (4·4·2)

where I� is an ideal sheaf of the locus �, and O� is its structure sheaf. Note that I� is
the multiplier ideal sheaf of the log pair (X, BX). Since

KX + BX ∼Q

((μ

λ
− 1

)
n + ε

)
H,

we can apply Nadel’s vanishing (see [Laz04, theorem 9·4·17]) to deduce that

h1(OX((n + 1)H) ⊗ I�

) = 0.

In particular, if Z is a point, it follows from (4·4·2) that

|�| = h0(OX
(
(n + 1)H

)) − h0(OX
(
(n + 1)H

) ⊗ I�

)
.

To complete the proof of the proposition, we may assume that � is disjoint union of
irreducible isomorphic curves C1 = Z, C2, . . . , Cr, which are transitively permuted by G. In
particular, if r = 1, then � = C1 = Z is a G-invariant irreducible curve in X.

Let d = H · Ci. Then rd � H3n2. This immediately follows from Corti’s [Cor00, theorem
3·1]. Namely, observe that (X, μM) is not klt at general points of every curve Ci. Let M and
M′ be general surfaces in M. Then, applying [Cor00, theorem 3·1] to the log pair (X, μM)
at general point of the curve Ci, we obtain

multCi

(
M · M′)� 4

μ2
.

https://doi.org/10.1017/S030500412200041X Published online by Cambridge University Press

https://doi.org/10.1017/S030500412200041X


Finite quasisimple groups acting on rationally connected threefolds 547

Then

n2

λ2
H3 = H · M · M′ �

r∑
i=1

H · CimultCi

(
M · M′)� rd

4

μ2
,

so that rd � H3n2μ2/4λ2 � H3n2 as claimed.
By Kawamata’s subadjunction [Kaw98, theorem 1], each curve Ci is smooth. Let g be

its genus. Moreover, for every ample Q-Cartier Q-divisor A on X, it follows from [Kaw98,
theorem 1] that

(KX + BX + A)

∣∣∣
Ci

∼Q KCi + BCi

for some effective Q-divisor BCi on the curve Ci. Computing the degrees of the left hand side
and the right-hand side in this Q-linear equivalence, we see that 2g − 2 � nd. In particular,
the divisor (n + 1)H|Ci is non-special on Ci, so that

h0(OCi

(
(n + 1)H|Ci

)) = (n + 1)d − g + 1

by the Riemann–Roch formula. Now using (4·4·2), we get

r((n + 1)d − g + 1) = h0(OX
(
(n + 1)H

)) − h0(OX
(
(n + 1)H

) ⊗ I�

)
,

which complete the proof of the proposition.

Remark 4·5. In the notations and assumptions of Proposition 4·4, there exists a central
extension G̃ of the group G such that the line bundle H is G̃-linearisable. Recall the
Riemann–Roch theorem for a divisor D on a smooth threefold X:

χ(OX(D)) = 1

6
D3 − 1

4
D2 · KX + 1

12
D · K2

X + 1

12
D · c2(X) + χ(OX).

Thus, the vector space H0(OX((n + 1)H)) is a representation of the group G̃ of dimension

h0(OX((n + 1)H)) = (n + 1)(2n + 1)(3n + 2)

12
H3 + 2n + 2

n
+ 1.

Then the exact sequence (4·4·2) in the proof of Proposition 4·4 is an exact sequence of
G̃-representations.

Proof of Theorem 4·3. Suppose that there exists a non-biregular G-birational map
ρ : X ��� V such that V is a Fano variety with at most canonical singularities. Applying
[CS16, theorem 3·2·1], we see that there exists a G-invariant linear system M on the three-
fold X such that M does not have fixed components, and the singularities of the log pair
(X, λM) are not terminal, where λ is a positive rational number such that λM ∼Q −KX . We
will obtain a contradiction using Proposition 4·4 and Remark 4·5.

Let m = (n + 1)(n + 2)/12H3 + 2/n. Note that the divisor H is very ample in each of
our cases, and h0(OX(H)) = m + 1. Thus, we may identify X with its image in Pm. Then G
is a subgroup in PGLm+1(C). Let G̃ be a finite subgroup in GLm+1(C) that maps surjec-
tively to G by the natural projection. We may assume that G̃ is the smallest group with this
property.

The vector space H0(OX(H)) is an irreducible representation of the group G̃. From
Table 1, this is immediate in all cases except 4·3(vi). In this remaining case, G � PSL2(F11)
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and X the unique smooth Fano threefold of Picard rank 1 and genus 8 that admits a faithful
action of the group PSL2(F11) (see [Pro12, example 2·9]). The space H0(OX(H)) is isomor-
phic to the representation

∧2 V , where V is a 5-dimensional faithful representation of G.
Recall that

χ∧2 V (g) = 1

2

(
χV (g)2 − χV

(
g2

))
,

where g ∈ G and χ∧2 V (resp. χV ) is the character of
∧2 V (resp. V). Evaluating g at any

element of order 2 in PSL2(F11), we conclude that
∧2 V is irreducible from the character

table [CCN+85].
Since H0(OX(H)) is an irreducible representation of the group G̃, the threefold X does not

contain G-invariant subvarieties contained in a proper linear subspace of Pm.
Applying Proposition 4·4, we see that either X contains a G-orbit � such that

m < |�| = h0(OX
(
(n + 1)H

)) − h0(OX
(
(n + 1)H

) ⊗ I�

)
,

where I� is the ideal sheaf of �, or there exists a G-irreducible reduced curve C that is
a disjoint union of smooth irreducible curves C1, . . . , Cr of genus g and degree d = H · Ci

such that rd � H3n2, 2g − 2 � nd and

r((n + 1)d − g + 1) = h0(OX
(
(n + 1)H

)) − h0(OX
(
(n + 1)H

) ⊗ IC
)

,

where IC is the ideal sheaf of the curve C. In the former case, by Remark 4·5, the number
|�| is the dimension of some G̃-subrepresentation in H0(OX((n + 1)H)). Likewise, in the lat-
ter case, the number r((n + 1)d − g + 1) is also the dimension of some G̃-subrepresentation
in H0(OX((n + 1)H)). Moreover, if r = 1, then the natural homomorphism G → Aut(C) is
injective, because C is not contained in a hyperplane in this case. Thus, if r = 1, then

84(g − 1) � |G| (4·5·1)

by Hurwitz’s automorphisms theorem.

Case 4·3(i). Here G �A7 and X is the unique smooth intersection of a quadric and a cubic in
P5 that admits a faithful action of the group A7. We have n = 1, H3 = 6, m = 5, G̃ �A7 and
h0(OX(2H)) = 20. Note that H0(OX(H)) is the irreducible A7-representation obtained as the
quotient of the standard permutation representation by the trivial representation.

Suppose that there exists a G-orbit � in X such that 5 < |�|� 20. Using Table 2, we see
that |�| is either 7 or 15. In the case |�| = 15, a stabilizer of a point in � is isomorphic to
PSL2(F7). The restriction of the representation H0(OX(H)) to PSL2(F7) is the quotient of a
transitive permutation representation so it has no trivial subrepresentations. Since PSL2(F7)
is simple, it therefore has no one-dimensional subrepresentations. The action cannot fix a
point so this case is impossible. In the case |�| = 7, the stabiliser is isomorphic to A6. In
this case, there is a fixed point in the ambient space P5 corresponding to the fixed point of
the natural permutation action. One checks that this point does not lie on X by explicitly
checking the defining equations, which are just elementary symmetric functions.

Thus, the threefold X contains a G-irreducible reduced curve C that is a disjoint union
of smooth irreducible curves C1, . . . , Cr of genus g and degree d such that rd � 6 and
2g − 2 � d. As above, this shows that r = 1, so that d � 6 and g � 4, which contradicts
(4·5·1).

https://doi.org/10.1017/S030500412200041X Published online by Cambridge University Press

https://doi.org/10.1017/S030500412200041X


Finite quasisimple groups acting on rationally connected threefolds 549
Table 2. Conjugacy classes of maximal subgroups with indices.

A5 A6 A7

A4 5 A5 6 A6 7
D10 6 A5 6 PSL2(F7) 15
S3 10 µ2

3 �µ4 10 PSL2(F7) 15
S4 15 S5 21
S4 15 (A4 × µ3) �µ2 35

PSL2(F7) PSL2(F11) PSp4(F3)

S4 7 A5 11 µ4
2 �A5 27

S4 7 A5 11 S6 36
µ7 �µ3 8 µ11 �µ5 12 SU3(F2) �µ3 40

D12 55 µ3
3 �S4 40

µ2 · (A4 � µ2) 45

Case 4·3(ii). Here G �A7 and X = P3. We have n = 4, H3 = 1, m = 3, G̃ � 2.A7 and
h0(OX(5H)) = 56. Note that H0(OX(H)) is an irreducible four-dimensional representation
of the group G̃.

Suppose that P3 contains a G-orbit � such that 3 < |�|� 56. Going through the list of
subgroups in G of index � 56, we see that

|�| ∈ {
7, 15, 21, 35, 42

}
.

Let GP be the stabiliser of a point P ∈ �. Using Table 2, we conclude GP is isomorphic to one
of the following groups: A6, PSL2(F7), S5, (A4 × µ3) �µ2, or A5. Let G̃P be a subgroup in
G̃ that is mapped to GP. We claim that the restriction of the representation V = H0(OX(H))
to G̃P does not contain one-dimensional subrepresentations, which contradicts the fact that
GP fixes the point P ∈ P3. Let χ be the 4-dimensional representation of G̃; we will consider
restricted characters of χ (see [CCN+85]). We have χ(g) = −(1 ± √−7)/2 when g ∈ G̃
has order 7; if GP � PSL2(F7) then the only possibility is that G̃P � PSL2(F7) and V|G̃P

is
irreducible. We have χ(g) = −1 when g has order 5, which means that V|G̃P

is irreducible
if GP ∼=A5 (and a fortiori S5 and A6). It remains to consider GP ∼= (A4 × µ3) �µ2, which
contains a 3-Sylow subgroup H ⊆ G. For some elements g of order 3, we have χ(g) = −2
meaning that χ |H does not have any trivial subrepresentations. Since the group GP has no
non-trivial maps to µ3, we conclude that there are no one-dimensional subrepresentations.
With the claim proved, we see this case is impossible.

Thus, there is a G-irreducible reduced curve C in P3 with the following properties: C is
union of smooth irreducible curves C1, . . . , Cr of genus g and degree d, rd � 16, 2g − 2 � 4d
and

r
(
5d − g + 1

)
� 56.

As above, we see that r ∈ {1, 7, 15}. If r = 15, then d = 1, so that g = 0 and

90 = r
(
5d − g + 1

)
� 56,

which is absurd. Likewise, if r = 7, then d � 2, so that g = 0 and

35d + 7 = 7
(
5d + 1

) = r
(
5d − g + 1

)
� 56,
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so that d = 1. In this case, the stabilizer of the line C1 is isomorphic to A6, which is impossi-
ble, since the restriction of the representation H0(OX(H)) to the subgroup 2.A6 is irreducible.
Thus, we see that r = 1, so that C is irreducible. Using (4·5·1), we see that g ∈ {31, 32, 33}.
By Lemma 2·2, one of the expressions

169

22 · 3 · 7
,

5071

23 · 32 · 5 · 7
,

634

32 · 5 · 7

is a non-negative integer combination of expressions of the form 1 − 1/r for

r = 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14.

Since 1/2 + 2/3 + 6/7 is larger than these expressions, this is impossible.

Case 4·3(iii). Here G � PSp4(F3) and X = P3. We have n = 4, H3 = 1, m = 3, G̃ �
Sp4(F3) and h0(OX(5H)) = 56. We will see that H0(OX(5H)) is a direct sum of irreducible
representations of G̃ of dimensions 20 and 36. Indeed, h0(OX(H)) is an irreducible 4-
dimensional representation V of G̃ with character χ . Note that every summand of S5V must
be a faithful representation of G̃ since 5 is coprime to 2. Via the Newton identities, we have
the standard formula for the 5th symmetric power

S5χ(g) = 1

120

[
χ(g)5 + 10χ

(
g2

)
χ(g)3 + 15χ

(
g2

)2
χ(g)

+ 20χ
(

g3
)

χ(g)2 + 20χ
(

g3
)

χ
(

g2
)

+ 30χ(g4)χ(g) + 24χ
(

g5
) ]

,

where g is an element of G̃. From the character table [CCN+85], we see that χ(g) = −1 for
any element g of order 5. We compute that S5χ(g) = 1 and conclude from the character table
that the only possibility is a sum of characters of degree 20 and 36 as desired.

Suppose that P3 contains a G-orbit � such that |�| is the dimension of some G̃-
subrepresentation in H0(OX(5H)). Then

|�| ∈ {20, 36, 56}.
Using Table 3, we see that |�| = 36. Let GP be the stabiliser of a point P ∈ �. Then GP �
S6. The group G contains one such subgroup up to conjugation. Let G̃P be a subgroup in G̃
that is mapped to GP. Then G̃P � 2.S6, and the restriction of the representation H0(OX(H))
to G̃P does not contain one-dimensional subrepresentations. This contradicts the fact that
GP fixes the point P ∈ P3.

Thus, there is a G-irreducible reduced curve C in P3 that is a union of smooth irreducible
curves C1, . . . , Cr of genus g and degree d such that rd � 16, 2g − 2 � 4d and

r
(
5d − g + 1

)
� 56.

Arguing as above, we see that r = 1, so that d � 16 and g � 33, which is impossible by
(4·5·1).

Case 4·3(iv). Here G � PSp4(F3) and X is the Burkhardt quartic in P4. We have n = 1,
H3 = 4, m = 4, G̃ � G and h0(OX(2H)) = 15. Note that P3 does not contain a G-orbit �

such that 4 < |�|� 15, because G does not contain subgroups of such index. Thus, there is
a G-irreducible reduced curve C in P3 that is union of smooth irreducible curves C1, . . . , Cr
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of genus g and degree d such that rd � 4 and 2g − 2 � d. Since there are no subgroups of
index 2, 3, or 4, we have r = 1. Thus d � 4 and g � 3, which contradicts (4·5·1).

Case 4·3(v). Here G � PSL2(F11) and X is the Klein cubic threefold in P4. We have
n = 2, H3 = 3, m = 4, G̃ � G and h0(OX(3H)) = 34. If χ is the character of the rep-
resentation V = h0(OX(3H)) of G, then the character of the third symmetric power is
given by

S3χ(g) = 1

6

[
χ(g)3 + 3χ

(
g2

)
χ(g) + 2χ

(
g3

) ]
for g ∈ G. The trivial character occurs exactly once in S3V by Table 1. From the character
table [CCN+85], for any element g ∈ G of order 3 we have χ(g) = −1 and thus S3χ(g) = 2.
Note that all irreducible characters ρ satisfy ρ(g) ∈R, but only the trivial and 10-dimensional
ones have ρ(g) > 0. Since there is only one trivial subrepresentation, this forces the exis-
tence of at least one 10-dimensional irreducible subrepresentation. The possible irreducible
characters have degrees 1,5,10,11,12, thus 1 + 10 + 12 + 12 is the only possibility for S3V .
For any h ∈ G of order 5, χ(h) = 0 and S3χ(h) = 0 while ρ(h) 	= 0 for the 12-dimensional
irreducible representations. We conclude that the vector space H0(OX(3H)) splits as a
sum of two non-isomorphic twelve-dimensional representations, and one ten-dimensional
representation.

Suppose that X contains a G-orbit � such that |�| is the dimension of some G-
subrepresentation in H0(OX(3H)). Going through the list of subgroups in G of index � 34,
we see that |�| = 12. Let GP be the stabilizer of a point P ∈ �. Then GP � µ11 �µ5, and
the restriction of the representation H0(OX(H)) to GP is irreducible. This contradicts to the
fact that GP fixes a point in P4.

Thus, there is a G-irreducible reduced curve C in P4 that is union of smooth irreducible
curves C1, . . . , Cr of genus g and degree d such that rd � 12, 2g − 2 � 2d and r

(
3d − g + 1

)
� 34. Going through the list of subgroups in G of index � 12, we see that r ∈ {1, 11, 12}. If
r = 12 or r = 11, then d = 1, so that g = 0, which gives

11 × 4 � 4r = r
(
3d + 1

) = r
(
3d − g + 1

)
� 34,

which is absurd. Thus, we have r = 1, so that C is irreducible. Then d � 12 and g � 13. Using
(4·5·1), we see that g � 9, so that g ∈ {9, 10, 11, 12, 13}. Since |G| = 25920 = 26 · 34 · 5 and
2g − 2 is never divisible by 25 or 33, the expression on the left hand side from Lemma 2·2
has 22 · 32 in the denominator when written in lowest terms. However, it is a non-negative
integer combination of expressions of the form 1 − 1

r for r = 1, 2, 3, 4, 5, 6, 9, 12. Thus, this
case is impossible.

Case 4·3(vi). Here G � PSL2(F11) and X is the unique smooth Fano threefold of Picard
rank 1 and genus 8 that admits a faithful action of the group PSL2(F11). We have n = 1, H3 =
14, m = 9, G̃ � G and h0(OX(3H)) = 40. Going through the list of subgroups in G of index �
40, we see that either GP �A5 or GP � µ11 �µ5. Since X is smooth, the embedded tangent
space at P is 3-dimensional and has a faithful GP action. This means that the restriction of
the representation H0(OX(H)) to GP has a trivial representation and a 3-dimensional faithful
subrepresentation. This is impossible if GP � µ11 �µ5, so GP �A5. From the character
table [CCN+85] of PSL2(F11, we see that any faithful irreducible character χ of degree

https://doi.org/10.1017/S030500412200041X Published online by Cambridge University Press

https://doi.org/10.1017/S030500412200041X


552 J. BLANC, I. CHELTSOV, A. DUNCAN AND YU. PROKHOROV

≤ 10 must have χ(g) = 0 for all g ∈ G of order 5. However, we have ρ(g) = (1 ± √
5)/2 for

an irreducible character ρ of A5 of degree 3. Thus there must be two 3-dimensional faithful
A5-subrepresentations of H0(OX(H)) along with a trivial subrepresentation. The remaining
character must be a character σ of A5 of degree 2 such that σ (g) = −2. No such characters
exist, so this case is impossible.

Thus, there is a G-irreducible reduced curve C in X that is a union of smooth irreducible
curves C1, . . . , Cr of genus g and degree d such that rd � 14, 2g − 2 � d and r(2d − g + 1)
� 40. Arguing as above, we see that r ∈ {1, 11, 12}. As above, denote by G1 the stabiliser
of the curve C1. If r = 12, then d = 1, so that C1 is a line, which implies that the restriction
of the representation H0(OX(H)) to G1 contains a two-dimensional subrepresentation. But
we already checked that this is not the case, so that r 	= 12. Similarly, we see that r 	= 11,
because G1 �A5 in this case, and the restriction of the representation H0(OX(H)) to G1 does
not have two-dimensional subrepresentations either. Hence, we see that r = 1, so that C is
irreducible. Then d � 14 and g � 8, which is impossible by (4·5·1). This completes the proof
of Theorem 4·3.

4·6. The proof

Now we are ready to prove:

PROPOSITION 4·7. Let X be a rationally connected threefold. Then the group Aut(X)
does not contain a subgroup isomorphic to SL2(F11), Sp4(F3), 2.A7 or 6.A7.

Proof. Let X be a rationally connected threefold. Let G be a subgroup in Aut(X). Suppose
that G is one of the following groups SL2(F11), Sp4(F3), 2.A7 or 6.A7. We seek a contradic-
tion. We may assume that G 	� 6.A7 because in this case taking the quotient by a subgroup
of order 3 in the center reduces the problem to 2.A7. Thus z(G) � µ2. We may assume that
X has a structure of G-Mori fiber space π : X → S. By Theorem 2·5 the base S is a point, i.e.
X is a GQ-Fano threefold.

Let Y = X/z(G), let π : X → Y be the quotient map and let Ḡ := G/z(G). Then Y has
canonical singularities by Lemmas 4·1·1, 4·1·2 and Claim 4·7·2 below. Using Theorem 1·3,
we see that Y is Ḡ-birational to one of the Fano threefolds listed in Theorem 4·3 and by
this theorem Y, in fact, is Ḡ-isomorphic to one of the varieties in the list. In all our cases Y
is a Ḡ-Fano with at worst isolated ordinary double points (in fact, Y is smooth except for
the case 4.3(iv)). Moreover, Cl(Y)Ḡ = Pic(Y) by [CPS16, lemma 2·2]. The Hurwitz formula
gives

KX = π∗(KY + 1
2 B

)
, (4·7·1)

where B is the branch divisor. Thus B is non-zero Ḡ-invariant and there exists a Cartier
divisor D such that 2D ∼ B. In particular, the Fano index of Y is even. Therefore, we are left
with the cases 4·3(ii), 4·3(iii), 4·3(v). But in the case 4·3(ii) we have Y � P3, Ḡ �A7 and
deg B ≤ 6 by (5·7·1) which is impossible because the minimal degree of invariants in this
case is at least 8 (see Table 1). Likewise we obtain a contradiction in the cases 4·3(iii) and
4·3(v).

CLAIM 4·7·2. Any z(G)-fixed point of X satisfies the conditions of Lemma 4·1·1 or
Lemma 4·1·2.
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Proof. Note that the fixed point locus of z(G) on X is G-invariant and so its divisorial
part must be a Q-Cartier divisor. Hence any Gorenstein point of X satisfies conditions
of Lemma 4·1·1. Assume that X is a non-Gorenstein Fano threefold. Let P ∈ X be a
non-Gorenstein point and let GP ⊂ G be its stabiliser.

Arguing as in the proof of [Pro12, lemma 6·1] or Lemma 5·5 below one can show that
P ∈ X is a cyclic quotient singularity of type 1

2 (1, 1, 1). As in Lemma 4·1·2, consider the

index-one cover π : (X� � P�) → (X � P) and the lifting G�
P to Aut(X� � P�). Since the length

of the orbit of P is at most 15 (see [Pro12, lemma 6·1] or Lemma 5·5), we see that there are
only the following possibilities [CCN+85], [GAP18]:

(i) G � 2.A7, GP � 2.A6;

(ii) G � 2.A7, GP � SL2(F7);

(iii) G � SL2(F11), GP � 2.A5;

(iv) G � SL2(F11), GP � µ22 �µ5.

Now one can see that in the cases (i)-(iii) any extension G�
P of GP by µ2 splits. Consider

the case (iv). Assume that the center of G�
P contains an element z of order 4. Then the kernel

of the homomorphism G�
P → µ5 must be a cyclic group µ44. But then G�

P has no faithful
3-dimensional representation, a contradiction.

5. 3.A7

The aim of this section is to prove the following.

PROPOSITION 5·1. Let X be a rationally connected threefold. Then the group Aut(X)
does not contain a subgroup isomorphic to 3.A7.

Let G = 3.A7. Assume that G ⊂ Aut(X) where X is a rationally connected threefold. We
may assume that X has the structure of a G-Mori fiber space π : X → S. By Theorem 2·5,
the base S is a point, i.e. X is a GQ-Fano threefold. We distinguish two cases: 5·2 and 5·3.

5·2. Actions on Gorenstein Fano threefolds

First we consider the case where KX is Cartier, i.e. the singularities of X are at worst
terminal Gorenstein. By Propositions 3·1·1 and 3·1·2 we have Pic(X) =Z · KX . Let g = g(X)
be the genus of X. Thus (−KX)3 = 2g − 2. By Lemmas 3·2 and 3·3 the linear system |−KX|
defines an embedding to Pg+1. By [Pro16] we have g 	= 12. Recall that any Fano threefold
X with terminal Gorenstein singularities admits a smoothing, i.e. a deformation X→D � 0
over a disk D⊂C such that the central fiber X0 is isomorphic to X and a general fiber is
smooth [Nam97]. The numerical invariants such as the degree, the Picard number, and the
Fano index are constant in such a family X/D. Now by the classification of smooth Fano
threefolds [Isk80a] or [IP99] we conclude that g ≤ 10. By Lemma 2·7 the group G has no
fixed points.

CLAIM 5·2·1. X has no G-invariant hyperplane sections.

Proof. Assume that there exists a G-invariant divisor S ∈ |−KX|. By Theorem 2·9·1 the
pair (X, S) is not plt. By Lemma 3·5 the surface S is reducible and reduced. Since Pic(X) =
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Z · [S], the linear system |−KX| = |S| has no fixed components. By Bertini’s theorem this
G-invariant surface S ∈ |−KX| is unique. Write S = ∑m

i=1 Si. Then∑
(−KX)2 · Si = 2g − 2 ≤ 18.

So the cardinality of the orbit of S1 equals 7 or 14 by Table 2. In both cases g = 8 so that
dim H0(X, OX(−KX)) = 10. We get a contradiction with Table 1.

Let V := H0(X, OX(−KX))∨. The group G faithfully acts on V and P(V). Hence the
representation V of G is reducible. Since dim V = g + 2 ≤ 12, we have V = V ′ ⊕ V ′′ (as
a G-module), where V ′ and V ′′ are irreducible representations with dim V ′′ = dim V ′ = 6.
Thus g = 10.

LEMMA 5·2·2. Let U be an irreducible 6-dimensional representation of 3.A7 and let
Q ⊂ S2U∨ be a 6-dimensional subrepresentation. Then the base locus of Q on P(U) is empty.

Proof. Observe from Table 1, that all 6-dimensional irreducible representations U have
a unique invariant cubic in P(U) defined by a polynomial f . Then the quadratic polyno-
mials ∂f /∂xi generate a 6-dimensional irreducible subrepresentation Q ⊆ S2U∨ which is
isomorphic to U. The complement U′ of Q in S2U∨ is 15-dimensional. If U is faithful,
then so must be U′ and we conclude immediately from the character table [CCN+85] that
S2U∨ � U ⊕ U15, where U15 is a faithful irreducible representation of dimension 15. If U is
not faithful, then from Table 1 we see that U′ contains a unique trivial subrepresentation. In
this case, S2U∨ �C⊕ U ⊕ W14, where W14 is a non-faithful irreducible representation of
dimension 14. From the character table, the only possibility is that U′ is a direct sum of an
irreducible 14-dimensional representation and a trivial representation. In either case, Q is the
the unique 6-dimensional irreducible subrepresentation. One can check that the hypersurface
f = 0 in P(U) is smooth. Hence quadrics from Q have no common zeros in P(U).

Remark 5·2·3. Let X3 a cubic fourfold in P5 that admits a faithful action of the group A7.
Then X3 is one of two hypersurfaces that (implicitly) appear in the proof of Lemma 5·2·2.
For one of them, the action of A7 is given by the standard irreducible six-dimensional rep-
resentation of the group A7. For the other, the action is given by an irreducible faithful
six-dimensional representation of the group 3.A7. In the former case, one has αA7 (X3) �
2/3, because P4 contains an A7-invariant quadric hypersurface. Here, αA7(X3) is the A7-
invariant α-invariant of Tian defined in [Tia87]. However, in the latter case, one has
αA7(X3) � 1. Indeed, suppose that αA7(X3) < 1. Then there exists an effective A7-invariant
divisor D on X3 such that D ∼Q −KX3 and (X3, D) is not lc. This follows from the alge-
braic formula for αA7(X3) given in [CS08, appendix A]. Choose positive rational number
μ < 1 such that (X3, μD) is strictly lc. Let Z be a minimal center of lc singularities of the
log pair (X3, μD). Then dim(Z) � 2, because P6 does not contain A7-invariant hyperplanes
and quadric hypersurfaces. Using the perturbation trick (see the proofs of [Kaw97, theo-
rem 1·10] and [Kaw98, theorem 1]), we may assume that all log canonical centers of the
log pair (X3, μD) are of the form θ(Z) for some θ ∈ G. Moreover, by [Kaw97, proposition
1.5], either Z ∩ θ(Z) =∅ or Z = θ(Z) for every θ ∈ G. On the other hand, it follows from
[Laz04, theorem 9·4·17] that the union of all log canonical centers of the log pair (X3, μD)
is connected, which implies that Z is A7-invariant. In particular, since P6 does not have A7-
fixed points, the center Z is not a point, and A7 acts faithfully on Z. However, Kawamata’s
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subadjunction [Kaw98, theorem 1] implies that Z is a normal Fano type subvariety, so that
either it is a smooth rational curve or a rational surface with at most quotient singularities.
This is impossible, because A7 is not contained in Cr2(C) by [DI09]. Thus, we see that
αA7(X3) � 1 in the case when the action of A7 on P6 is given by an irreducible faithful
six-dimensional representation of the group 3.A7. In particular, this hypersurface admits a
Kähler–Einstein metric by [Tia87]. Now, we know from [Liu22] that all smooth cubic four-
folds are Kähler–Einstein. However, when we originally wrote this paper, the only known
examples of Kähler–Einstein smooth cubic fourfolds were described in [AGP06], and our
A7-invariant cubic fourfold was not one of them: in appropriate homogeneous coordinates
on P6 it is given by

x3
1 + x3

2 + x3
3 + x3

4 + x3
5 + x3

6 + x1x2x3 + x1x2x4

+ x1x2x5 + x1x4x5 + x1x5x6 + x2x4x5 + x2x4x6 + x3x4x5

+ ω2x1x3x4 + ω2x1x4x6 + ω2x2x3x5 + ω2x2x5x6 + ωx1x2x6 + ωx1x3x5

+ ωx1x3x6 + ωx2x3x4 + ωx2x3x6 + ωx3x4x6 + ωx3x5x6 + ωx4x5x6 = 0,

where ω is a primitive cubic root of unity. This implies that it does not contain planes, while
Kähler–Einstein smooth cubic fourfolds found in [AGP06] always contain many planes.

Let Q := H0(X, JX(2)) ⊂ S2V∨ be the space of quadrics passing through X. Then
dim Q = 28. Consider the decomposition

S2V =
(

S2V ′
)

⊕
(

S2V ′′
)

⊕ (V ′ ⊗ V ′′). (5·2·4)

Since X 	⊃ P(V ′) and X 	⊃ P(V ′′) we have

Q ∩ S2V ′ 	= 0, Q ∩ S2V ′′ 	= 0.

If both representations V ′ and V ′′ are faithful, then V ′ 	� V ′′ and (5·2·4) has the form

S2V = S2V ′ ⊕ S2V ′′ ⊕ V ′ ⊗ V ′′

� � �

V ′′ ⊕ U15 V ′ ⊕ U′
15 C⊕ W14 ⊕ W21,

where U15, U′
15 are different faithful 15-dimensional irreducible representations, and Wk,

k = 14, 21 are irreducible representations of A7 with dim Wk = k. The symmetric powers
follow from the proof of Lemma 5·2·2. Since V ′ and V ′′ are dual, the trace shows there
is a trivial subrepresentation of V ′ ⊗ V ′′. If χ is the character of the product V ′ ⊗ V ′′, we
observe that χ(g) = 0 for all non-central g of order 3 and 4. Since the trivial representation
is already a summand, we require (non-faithful) subrepresentations with characters whose
values are not ≥ 0 for such g. Looking at the character table V ′ ⊗ V ′′ �C⊕ W14 ⊕ W21 is
the only possibility.

If V ′′ is not faithful, then similarly (5·2·4) has the form

S2V = S2V ′ ⊕ S2V ′′ ⊕ V ′ ⊗ V ′′

� � �

U6 ⊕ U15 C⊕ W6 ⊕ W14 U′
15 ⊕ U21.

In this case, that V ′ ⊗ V ′′ � U′
15 ⊕ U21 is the only possibility can be seen by considering the

values of faithful characters on the trivial element and an involution.
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In both these decompositions all the irreducible summands are pairwise non-isomorphic.
Counting dimensions one can see that either Q ∩ S2V ′ or Q ∩ S2V ′′ contains a 6-dimensional
subrepresentation. Suppose that this holds, for example, for Q ∩ S2V ′. This implies that X ⊂
P(V ′′), a contradiction.

5·3. Actions on non-Gorenstein Fano threefolds

Now we consider the case where KX is not Cartier.

LEMMA 5·3·1 ([Kaw92, Rei87] Let X be a (terminal) Q-Fano threefold whose non-
Gorenstein singularities are exactly N cyclic quotient points of type 1

2 (1, 1, 1). Then we have

−KX · c2 = 24 − 3N
2 , (5·3·2)

dim |−KX| = 1
2 (−KX)3 − 1

4 N + 2, (5·3·3)

dim |−2KX| = 5
2 (−KX)3 − 1

4 N + 4. (5·3·4)

ASSUMPTION 5·4. Let G = 3.A7 and let X be a non-Gorenstein GQ-Fano threefold. Let
Sing′(X) be the set of non-Gorenstein points and let N be its cardinality.

LEMMA 5·5. The following assertions hold:

(i) G has no fixed points on X;

(ii) G acts transitively on Sing′(X);

(iii) every non-Gorenstein point P ∈ X is cyclic quotient singularity of type 1
2 (1, 1, 1):

(iv) for the stabiliser GP of P ∈ Sing′(X) there are the following possibilities:

(a) GP �A6, N = 7 or 14;
(b) GP � PSL2(F7) × µ3, N = 15.

Proof. Take a point P ∈ Sing′(X). Let r be the index of P, let � be its orbit, and let and
n := |�|. Bogomolov–Miyaoka inequality [Kaw92, KMMT00] gives us

0 < −KX · c2 = 24 −
∑

(ri − 1/ri) = 24 − 3N/2 ≤ 24 − 3n/2.

Then using the list of maximal subgroups from Table 2 one can obtain the following
possibilities:

(i) GP � 3.A6, n = 7;

(ii) GP � PSL2(F7) × µ3, n = 15.

Then one can proceed similarly to [Pro12, lemma 6·1].

COROLLARY 5·6. Let σ : XP → X be the blowup of P ∈ Sing′(X) and let EP = σ−1(P) be
the exceptional divisor. Then XP is smooth along EP, EP � P2, OEP(EP) � OP2 (−2), and the
action of GP on EP has no fixed points.
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5·7. First we consider the case |−KX | =∅.

LEMMA 5·7·1. In the above notation, N = 14 or 15,

(−KX)3 = 1
2 N − 6 ≥ 1, (5·7·2)

dim |−2KX| = N − 11 ≥ 3. (5·7·3)

LEMMA 5·7·4. The linear system |−2KX| has no fixed components.

Proof. As in [Pro12, claim 6·8·1] one can show that the Weil divisor class group Cl(X) is
torsion free. Thus Cl(X)G �Z. Let A be the ample generator of this group. Write −KX = aA.
Since KX is not Cartier, a is odd. On the other hand, a3A3 = (−KX)3 = 1 or 3/2. Since
aA3 ∈Z/2, this implies a = 1, i.e. Cl(X)G �Z · KX . Since |−KX| =∅ the assertion follows.

LEMMA 5·8. Let M = |−2KX|. Then the log pair (X, 3M/2) is lc.

Proof. Suppose that (X, 3M/2) is not lc. We seek a contradiction. Choose μ < 3/2 such
that (X, μM) is strictly lc. Let Z be a minimal center of lc singularities of the log pair
(X, μM). Then Z is either a point or a curve, because the base locus of |−2KX| does not
have surfaces by Lemma 5·7·4.

Observe that θ(Z) is also a minimal center of lc singularities of this log pair for every
θ ∈ G. Moreover, for every θ ∈ G, either Z ∩ θ(Z) =∅ or Z = θ(Z) by [Kaw97, proposition
1·5]. Using the perturbation trick (see [CS16, lemma 2·4·10] or the proofs of [Kaw97, the-
orem 1·10] and [Kaw98, theorem 1]), for every sufficiently small ε > 0, we can replace the
boundary μM by an effective boundary BX such that

BX ∼Q −2(μ + ε)KX ,

the log pair (X, BX) is strictly lc, and all its (not necessarily minimal) centers of lc singulari-
ties are the subvarieties θ(Z) for θ ∈ G. In particular, there are minimal log canonical centers
of the log pair (X, BX). We may assume that μ + ε < 3/2, since μ < 3/2.

Let � be the union of all log canonical centers θ(Z) for θ ∈ G. Then � is either a G-orbit
or a disjoint union of irreducible isomorphic curves, which are transitively permuted by G.
In the latter case, each such curve is smooth by Kawamata’s [Kaw98, theorem 1]. Let I�

be the ideal sheaf of the locus �. Then

h1(OX
(−2KX

) ⊗ I�

) = 0,

by [Laz04, theorem 9·4·17] or [Kol97, theorem 2·16], because −2KX − (KX + BX) is ample.
In particular, if Z is a point, we see that

|�| = h0(O� ⊗ OX
(−2KX

)) = h0(OX
(−2KX

)) − h0(OX
(−2KX

) ⊗ I�

)
� 5,

which must be a point since 3.A7 does not have nontrivial subgroups of index ≤ 5. This is
impossible by Lemma 2·7.

Thus, we see that � is a disjoint union of irreducible isomorphic smooth curves. Denote
them by C1 = Z, C2, . . . , Cr. Let d = −2KX · Ci and let g be the genus of the curve C1. By
Kawamata’s subadjunction [Kaw98, theorem 1], for every ample Q-divisor A on X, we have
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(KX + BX + A)

∣∣∣
Ci

∼Q KCi + BCi

for some effective Q-divisor BCi on the curve Ci. This gives d > 2g − 2, so that d � 2g − 1.
Thus, we have

r(d − g + 1) = h0(O� ⊗ OX
(−2KX

)) = h0(OX
(−2KX

)) − h0(OX
(−2KX

) ⊗ I�

)
� 5

by the Riemann–Roch formula applied to each curve Ci. Now, using r(d − g + 1) � 5 and
d � 2g − 1, we deduce that r = 1 and g � 5. This implies that Z = C1 is pointwise fixed by
G, since G cannot act non-trivially on a smooth curve of genus � 5. This is a contradiction,
since G does not fix a point in X by Lemma 2·7.

By (5·7·3) we have that the dimension of H0(X, OX(−2KX)) is at most 5. Hence the action
of G = 3.A7 on this space is trivial.

Let S be a general surface in |−2KX|. We claim that S is normal. Indeed, it follows from
Lemma 5·8 that (X, M) is lc. Then, by [Kol97, theorem 4·8], the log pair (X, S) is also lc,
so that S has lc singularities by [Kol97, theorem 7·5]. In particular, the surface S is normal.
Take another general surface S′ ∈ |−2KX| and consider the invariant curve S ∩ S′. Write

S ∩ S′ =
∑

miCi.

Put d := −2KX · Ci. Since −2KX is an ample Cartier divisor, the numbers di are integral and
positive. Then by (5·7·2)∑

midi = (−2KX) · (S ∩ S′) = (−2KX)3 = 4(N − 12) = 8 or 12.

From Table 2, we see that G = 3.A7 has at least one invariant component, say C1. We have

−2KS · C1 =
(∑

miCi

)
· C1 ≤ (−2KX) ·

(∑
miCi

)
≤ (−2KX)3 ≤ 12.

In particular, C2
1 ≤ 12 and KS · C1 ≤ 6. Then by the genus formula

2pa(C1) − 2 = (KS + C1) · C1 ≤ 18, pa(C1) ≤ 10.

But the according to the Hurwitz bound the action of G = 3.A7 on C1 must be trivial. This
contradicts Lemma 2·7. Thus the case |−KX| =∅ does not occur.

5·9. Consider the case dim |−KX| = 0. Then (−KX)3 = N/2 − 4 ≤ 7/2. Let S ∈ |−KX| be the
unique anticanonical member. By Theorem 2·9·1 the singularities of S are worse than Du
Val. Since G has no fixed points, by Lemma 3·5 the pair (X, S) is lc and S is reducible:
S = ∑m

i=1 Si. Then
∑

(−2KX)2 · Si ≤ 14. So the cardinality of the orbit of S1 equals 7. Let
ν : S′ → S1 be the normalisation. Then by the adjunction KS′ + D′ = ν∗(KX + S)|S1 ∼ 0 and
the pair (S′,D′) is lc. Since D′ 	= 0, the surface S′ is either rational or birationally equivalent
to a ruled surface over an elliptic curve. On the other hand, The pair (S′, D′) has a faithful
action of the stabilizer 3.A6 ⊂ 3.A7. This is impossible.

5·10. Now we consider the case dim |−KX| > 0.

LEMMA 5·10·1 ([Pro12, lemma 6·6]) The pair (X, |−KX|) is canonical and therefore a
general member S ∈ |−KX| is a K3 surface with Du Val singularities.
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Let σ : Y → X be the blowup of all non-Gorenstein points and let E = ∑
Ei be the excep-

tional divisor. Thus Y has at worst terminal Gorenstein singularities and it is smooth near E.
Since (X, |−KX|) is canonical, the linear system |−KY | is the birational transform of |−KX|.
Put

g := dim |−KX|−1 = 1
2 (−KX)3 − 1

4 N + 1,

LEMMA 5·10·2 ([Pro12, lemma 6·7]) The image of the (G-equivariant) rational map
� : X → Pg+1 given by the linear system |−KX| is three-dimensional.

Proof. Suppose that dim �(X) < 3. Since X is rationally connected, G acts trivially on
�(X) and on Pg+1, this contradicts Theorem 2·9·1.

LEMMA 5·10·3. The divisor −KY is nef and big.

Proof. Assume that −KY is not nef. Then −KY · C′ < 0 for some curve C′. Let C be the
G-orbit of C′. Then −KY · C < 0 and C is G-invariant. Note that C ∩ Ei is contained in the
base locus of the restricted linear system |−KY ||Ei which is a linear system of lines. Thus
C ∩ Ei is a GEi-invariant point on Ei. This contradicts Corollary 5·6. Thus −KY is nef. By
Lemma 5·10·2 it is big.

LEMMA 5·10·4. The linear system |−KY | is base point free and defines a crepant
birational morphism

� : Y −→ Ȳ ⊂ Pg+1

whose image Ȳ is a Fano threefold with at worst canonical Gorenstein singularities.
Moreover, Ȳ is an intersection of quadrics.

Proof. Follows from Lemmas 3·2, 3·3, and 3·4.

Let �i := �(Ei). Then �1, . . . , �N are planes in Pg+1. Fix a plane, say �1 and let
G1 ⊂ G be its stabiliser. Suppose that �1 ∩ �i := l is a line for some i. Then the G1-orbit
of l is given on �1 � P2 by an invariant polynomial, say φ, which is a product of linear
terms. By [Coh76, p. 412] one can see that deg φ ≥ 45 if G1 � 3.A6 and deg φ ≥ 21 if
G1 � PSL2(F7) × µ3. But this implies that N ≥ 21, a contradiction.

If �1 ∩ �i := p is a point for some i, then we can argue as above because by duality the
G1-orbit of p has at least 21 elements.

Therefore, the planes �1, . . . , �N are disjoint. Then � is an isomorphism and Y is a Fano
threefold with terminal Gorenstein singularities and rk Pic(Y) ≥ 8 because the divisors Ei

are linear independent elements of Pic(Y). Moreover, Y is GQ-factorial and rk Pic(Y)G = 2.
There exists an G-extremal Mori contraction ϕ : Y → Z which is different from σ : Y → X.
Now ϕ is birational and not small. But then the ϕ-exceptional divisor D meets E and so
none of the components of D are contracted to points. Therefore, Z is a Fano threefolds
with GQ-factorial terminal Gorenstein singularities and rk Pic(Y)G = 1. This contradicts the
above considered case 5·2.

Appendix A. Amitsur Subgroup

Here we review linearizations of line bundles and define a useful equivariant birational
invariant. Much of this simply mirrors known results in the arithmetic setting, but our proofs
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have a more geometric flavor. First, we review some facts about linearization of line bundles;
see [Dol99, sections 1 and 2] for a more thorough discussion.

Let X be a proper complex variety with a faithful action of a finite group G. One defines
a morphism of G-linearised line bundles to be a morphism of line bundles such that the
map on the total spaces is equivariant. We denote the group of isomorphism classes of
G-linearised line bundles by Pic(X, G). Note that a line bundle L is G-invariant if and only
if [L] ∈ Pic(X)G. There is an evident group homomorphism Pic(X, G) → Pic(X)G obtained
by forgetting the linearisation.

Given a G-invariant line bundle L, one constructs a cohomology class δ(L) ∈ H2(G, C×)
as follows. Select an arbitrary isomorphism φg : g∗L → L for each g ∈ G. Recall that any
automorphism of a line bundle corresponds to muliplication by a non-zero scalar since X is
proper. Define a function c : G × G →C× via

c(g, h) := φ(gh)
(
φh ◦ h∗(φg)

)−1

for all g, h ∈ G. One checks that c is a 2-cocycle and its cohomology class is independent of
the isomorphism class of the line bundle.

We have the following exact sequence of abelian groups:

1 −→ Hom(G, C×) −→ Pic(X, G) −→ Pic(X)G −→ H2(G, C×) .

We define the Amitsur subgroup as the group

Am(X, G) := im(Pic(X)G → H2(G, C×)) .

This is the name used for the arithmetic version in [Lie17].
Note that Am(X, G) is a contravariant functor in X via pullback of line bundles. In fact, it

is actually a birational invariant of smooth projective G-varieties. This is well known in the
arithmetic case (see, for example, [CKM08, section 5]).

THEOREM A·1. If X and Y are smooth projective G-varieties that are G-equivariantly
birationally equivalent, then Am(X, G) = Am(Y , G).

Proof. First, assume that the theorem holds in the case where X → Y is a blow-up of a
smooth G-invariant subvariety.

Let f : X ��� Y be a G-equivariant birational map. By [RY02], we may resolve indeter-
minacies and obtain a sequence of equivariant blow-ups Z → X with smooth G-invariant
centers and an equivariant birational morphism Z → Y . By functoriality, we have an inclu-
sion Am(Y , G) ⊆ Am(Z, G). By assumption, we have equality Am(Z, G) = Am(X, G). Thus
Am(Y , G) is naturally a subset of Am(X, G). Repeating the same argument for f −1 shows
that the two sets are equal.

We now may assume that π : X → Y is a blow up of a smooth G-invariant subvariety
C. Let E be the exceptional divisor on X. We have Pic(X)G = π∗Pic(Y)G ⊕Z[OX(E)] and
so Am(X, G) = Am(Y , G) +Zδ([OX(E)]). To complete the proof, we show that OX(E) is
G-linearisable.

Let L be a very ample line bundle on X giving an embedding X ⊆ Pn for some n. Since
H2(G, C×) is torsion, by replacing L by a sufficiently divisible power L⊗n we may assume
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that L is G-linearisable and that C = X ∩ L where L is a linear subspace of Pn. We obtain E
as the pullback of the exceptional divisor of the blow-up of Pn along L.

Thus, the theorem reduces to showing that the exceptional divisor E on the blow-up X of
a linear subspace L of Pn with dimension m, is G-linearizable where G has a linearizable
action on Pn. This follows from Lemma A·2 below.

LEMMA A·2. Let X be the blow-up of Pn along a linear subspace L of dimension m. Let
G be a finite group acting faithfully on X. Then the line bundle associated to the exceptional
divisor is G-linearizable.

Proof. In this case, X is a toric variety. The Picard group is generated by the class H of
the pullback of a hyperplane in Pn and and class E of the exceptional divisor. The Cox ring
R may be described as the polynomial ring

R := C[x0, . . . , xm, y1, . . . , yn−m, z]

along with a grading and irrelevant ideal described as follows. The grading is determined
by its values on the generators: deg(xi) = H, deg(yi) = H − E and deg(z) = E. The irrelevant
ideal is the radical ideal of R whose corresponding subvariety C is the union of the subspaces
defined by x0 = · · · = xm = 0 and y1 = · · · = yn−m = z = 0. Let S be the Neron-Severi torus
dual to Pic(X). For a multihomogeneous element m ∈ R with grading aH + bE, then (λ, μ) ∈
S acts on S via (λ, μ) · (m) = λaμbm. The variety X is obtained as the quotient of Spec(R) \ C
by S.

From section 4 of [Cox95], the group of invertible elements among the graded ring of
endomorphisms of R form a group Ãut(X) normalising S with quotient Aut(X). The group
Ãut(X) is isomorphic to U � (GLm+1(C) × GLn−m(C) ×C×) where C× acts by scalar mul-
tiplication on z, GLm+1 acts linearly on x0, . . . , xm, GLn−m acts linearly on y1, . . . , yn−m

and elements u ∈ U are all of the form id + n where n is a linear map from the span
of x0, . . . , xm to zy1, . . . , zyn−m. Since G is finite, we may assume that G has a preim-
age in G̃ in the subgroup SLm+1(C) × SLn−m(C) of Ãut(X). Thus G̃ ∩ S = (μd, 1) where
d = gcd (m + 1, n − m).

Recall that the canonical bundle on Pn is always linearizable, so to show that E is lineariz-
able it suffices to show that that G has an action on the global sections of the very ample
line bundle OX(E + d(n + 1)H). From [Cox95], the vector space H0(X, OX(E + d(n + 1)H))
is isomorphic to vector subspace of R with grading [E + d(n + 1)H]. This is spanned
by monomials xa

i yb
j zc where a + b = d(n + 1) and c = b + 1. Now s = (λ, μ) ∈ S acts via

s(m) = λd(n+1)μm on every such monomial, thus G̃ ∩ S acts trivially. We conclude the action
G̃ factors through G as desired.

Remark A·3. Note that there is a much shorter proof of Theorem A·1 when X and Y are
surfaces (which is actually the only case we need). One reduces to the case where π : X → Y
is a blow-up of a G-orbit of points. We only need to show that the exceptional divisor E
is G-linearisable as before. This is immediate since KX = π∗KY + E and both KX and KY

are G-linearisable. This proof fails in higher dimensions since the exceptional divisor may
appear with multiplicity.
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We have the following due to proposition 2·2 of [Dol99]:

PROPOSITION A·4. If X is a smooth curve with a faithful action of G, then Am(X, G) =
H2(G, C×) for all subgroups G ⊆ Aut(X).

Since the canonical bundle is always linearizable, we have the following:

PROPOSITION A·5. If X is a smooth Fano variety of index 1 with rk Pic(X)G = 1, then
Am(X, G) is trivial for all subgroups G ⊆ Aut(X).

LEMMA A·6. If f : X → Y is a G-equivariant morphism, then the morphism
f ∗ : Am(Y , G) → Am(X, G) is injective. If moreover, f has a G-equivariant section, then
Am(Y , G) is a direct summand of Am(X, G).

Proof. Let L be an element of Pic(Y)G and suppose E is the extension of G that acts on
the total space of L. Then E also acts on f ∗L. If f ∗L is G-linearisable, then E splits; thus
L must also be linearisable. Now suppose s:Y → X is a section. By definition f ◦ s = idY , so
the map induced by functoriality Am(Y , G) → Am(X, G) → Am(Y , G) is the identity.

It is easy to determine the possible values of the invariant for rational surfaces (c.f.
proposition 5·3 of [CKM08] for the arithmetic case).

PROPOSITION A·7. Suppose X is a rational surface with G ⊆ Aut(X). We have the
following possibilities:

(i) X is G-equivariantly birationally equivalent to P2 and Am(X, G) is isomorphic to
Z/3Z or 0;

(ii) X is G-equivariantly birationally equivalent to P1 × P1, and Am(X, G) is isomorphic
to Z/2Z×Z/2Z, Z/2Z or 0;

(iii) X is G-equivariantly birationally equivalent to Fn. If n is odd then Am(X, G) = 0. If
n ≥ 2 is even, then Am(X, G) is isomorphic to Z/2Z or 0;

(iv) if X is G-equivariantly birationally equivalent to a minimal conic bundle surface with
singular fibers, then Am(X, G) is isomorphic to Z/2Z or 0;

(v) otherwise, X is isomorphic to a del Pezzo surface of degree ≤ 6 and Am(X, G) is
trivial.

Proof. It suffices to assume X is a G-minimal surface.
If X is a G-minimal del Pezzo surface, then either X = P2, X = P1 × P1, or it has Fano

index 1. In the last case, Am(X, G) = 0 by Proposition A·5.
For P2, the index is 3 and there exist non-linearizable line bundles. Thus Am(X, G) = 0 or

Z/3Z.
For P1 × P1, we consider two cases. First, assume the fibers are interchanged by G.

Then Pic(X)G �Z and −KX has index 2. Not every group is linearizable, so we have
Am(X, G) = 0 or Z/2Z.

Now suppose the fibers are not interchanged. Taking G = G1 × G2 with each Gi acting
on each P1 separately, one may have O(1, 0) and O(0, 1) be non-linearizable with dis-
tinct classes in H2(G, C×). Thus Z/2Z×Z/2Z and all its subgroups are a possibility for
Am(X, G).
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Suppose X is a ruled surface Fn. Since we have a G-invariant section, by Lemma A·6
Am(X, G) = Am(P1, G) so it only depends on the group G. From [DI09], we see that the
reductive part of Aut(X) is isomorphic to C× � PSL2(C) if n is even and C× � SL2(C) if n
is odd. The subgroup C× acts trivially on the base, so Am(X, G) = 0 if n is odd, but can be
Am(X, G) =Z/2Z if n is even.

If X → P1 is a minimal G-conic bundle, then Pic(X)G is generated by −KX and
π∗Pic(P1, G). Since −KX is always linearisable, Am(X) is either trivial or Z/2Z. Note that,
for example, Z/2Z×A5 acts on an exceptional conic bundle (see proposition 5·3 of [DI09]).
Thus Am(X) can be non-trivial.

Note that the Amitsur subgroup can distinguish between equivariant birational equiva-
lence classes quickly that might be more involved using other methods.

Example A·8. The action of A5 on P2 has trivial Amitsur subgroup Am(P2, A5) since
A5 ⊆ PGL3(C) lifts to GL3(C). The action of A5 on P1 × P1 is not linearisable since
A5 ⊆ PGL2(C) does not lift to GL2(C). Thus Am(P2, A5) and Am(P1 × P1, A5) are not
equal. Thus P2 and P1 × P1 are not A5-birationally equivalent. This also follows from [17,
theorem 6·6·1].

Appendix B. Conic bundles

Let X be a smooth projective variety, and let G be a finite subgroup in Aut(X). Suppose
that there exists a G-equivariant conic bundle η : X → Y such that Y is smooth, and the
morphism η is flat. These assumptions mean that η is regular conic bundle in the sense of
[Sar82, definition 1·4]. Note that G naturally acts on Y . But this action is not necessarily
faithful. In general, we have an exact sequence of groups

1 −→ Gη −→ G −→ GY −→ 1,

where GY is a subgroup in Aut(Y), and the subgroup Gη acts trivially on Y . If

Pic(X)G = η∗Pic(Y)GY ⊕Z,

we say that the conic bundle η : X → Y is a G-minimal or G-standard (cf. [Pro18, section
1] and [Sar82, definition 1·12]). In this case, the conic bundle η : X → Y is a G-Mori fiber
space.

LEMMA B·1. Let G1 ⊂ Gη be a non-trivial subgroup and let Fix(G1) be its fixed point
set. Then Fix(G1) does not contain any component of a reduced fiber.

Proof. Let C = η−1(Q) be a reduced fiber and let C1 ⊂ C be an irreducible component
and let P ∈ C be a smooth point Assume that Fix(G1) ⊃ C1. Consider the exact sequence

0 −→ TP,C −→ TP,X −→ η∗(TQ,Y
) −→ 0. (B·1·1)

If G1 does not act faithfully on the curve C1, then it does not act faithfully on the tangent
space TP,C, and it also acts trivially on the tangent space TP,Y . Thus, in this case, G1 does
not act faithfully on TP,X , which is impossible by Lemma 2·3, since G1 acts faithfully on X
by assumption.
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Suppose, in addition, that Gη � µn for n � 2. Let B be the union of codimension one
subvarieties in X that are pointwise fixed by the subgroup Gη. Then B is smooth (see
Lemma 2·3). Since all smooth fibers of the conic bundle η are isomorphic to P1, we see
that the subgroup Gη fixes exactly two points in each (see Lemma B·1). Thus, if C is a
general fiber of η, then the intersection B ∩ C consists of two distinct points. This implies
that B · C = 2 for every fiber C of the conic bundle η. Hence, the morphism η induces a
generically two-to-one morphism φ : B → Y .

LEMMA B·2. Let C be a reduced fiber of the conic bundle η. If n = |Gη|� 3, then Gη

leaves invariant every irreducible component of C.

Proof. We may assume that C is reducible. Then C = C1 ∪ C2, where C1 and C2 are
smooth irreducible rational curves that intersects transversally at one point. Denote this point
by O. Then O is fixed by Gη.

If n = |Gη| is odd, then both C1 and C2 are Gη-invariant. Thus, to complete the proof,
we may assume that n is even and neither C1 nor C2 is Gη-invariant. Let us seek for a
contradiction.

Let z be a generator of the group Gη. Then z swaps the curves C1 and C2. In particular,
this shows that

B ∩ C = B ∩ C1 = B ∩ C2 = C1 ∩ C2 = O.

On the other hand, the element z2 leaves both curves C1 and C2 invariant. By Lemma B·1,
we see that z2 acts faithfully on both these curves. Since C1 � P1, the element z2 fixes a point
P ∈ C1 such that P 	= O. Moreover, using (B·1·1), we see that there exists a two-dimensional
subspace in the tangent space TP,X consisting of zero eigenvalues of the element z2. By
[BB73, theorem 2·1] this shows that z2 pointwise fixes a surface B1 in X such that P ∈ B1.

Since P 	∈ B, we see that B1 is not an irreducible component of the surface B. On the other
hand, the surface B is also pointwise fixed by z2, because it is pointwise fixed by z. Let C′ be
a general fiber of the conic bundle η. Then Gη acts faithfully on C′ by Lemma B·1, so that
z2 fixes exactly two points in C′. On the other hand, it also fixes all points of the intersection
B1 ∩ C′ and all points of the intersection B ∩ C′. This shows that z2 fixes at least three points
in C′, which is absurd. The obtained contradiction shows that z does not swap the curves C1

and C2, which completes the proof of the lemma.

Let � ⊂ Y be the discriminant locus of η, i.e. the locus consisting of points P ∈ Y such that
the scheme fiber η−1(P) is not isomorphic to P1. Then � is a (possibly reducible) reduced
GY -invariant divisor that has at most normal crossing singularities in codimension 2. If P is
a smooth point of �, then the fiber of η over P is isomorphic to a reducible reduced conic in
P2. If P is a singular point of �, then F is isomorphic to a non-reduced conic in P2.

LEMMA B·3. Suppose that Gη leaves invariant every irreducible component of each
reduced fiber of the conic bundle η. Then φ : B → Y is an étale double cover over
Y \ Sing(�).

Proof. Fix a point Q ∈ Y such that Q 	∈ Sing(�). Let C be the fiber of the conic bundle
of η over the point Q. By Lemma B·2, the center Gη acts faithfully on every irreducible
component of the fiber C. In particular, we see that C 	⊂ B. Since B · C = 2, we see that
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either |B ∩ C| consists of two distinct points or |B ∩ C| consists of a single point. In the
former case, the morphism φ is étale over Q. Thus, we may assume that the intersection
B ∩ C consists of a single point. Denote this point by P.

Suppose first that C is smooth. Then C is tangent to B at the point P. Then TP,C ⊂ TP,B,
so that Gη acts trivially on TP,C. This is impossible by Lemma 2·3, since Gη acts faithfully
on C.

We see that C = C1 ∪ C2, where C1 and C2 are smooth irreducible rational curves that
intersects transversally at one point. Denote this point by O. If P 	= O, then TP,C1 ⊂ TP,B. As
above, this leads to a contradiction, since Gη acts faithfully on the curve C1. Thus, we have
O = P.

Recall that Gη is cyclic by assumption. Denote by z its generator. Then z must fix a point
P′ ∈ C1 that is different from P. Using the exact sequence

0 −→ TP′,C1 −→ TP′,X −→ η∗(TQ,Y
) −→ 0,

we see that there exists a two-dimensional subspace in the tangent space TP′,X consisting of
zero eigenvalues of the element z. By [BB73, theorem 2·1] this shows that z pointwise fixes
a surface B′ in X such that P′ ∈ B′.

Since P = B ∩ C, we see that P′ 	∈ B, so that B′ is not an irreducible component of the
surface B. On the other hand, the surface B′ is also pointwise fixed by z. This contradicts the
definition of the surface B.

COROLLARY B·4. If |Gη|� 3, then φ : B → Y is an étale double cover over Y \ Sing(�).

COROLLARY B·5. Suppose that |Gη|� 3 or Gη leaves invariant every irreducible com-
ponent of each reduced fiber of the conic bundle η. Suppose also that η : X → Y is
G-minimal, and Y is simply connected. Then � = 0, and there exists a central extension
G̃Y of the group GY such that

X � P
(
L1 ⊕ L2

)
for some G̃Y-linearisable line bundles L1 and L2 on Y, where the splitting L1 ⊕ L2 is also
G̃Y-invariant, and η : X → Y is a natural projection.

Proof. By Lemma B·3 and Corollary B·4, the morphism φ : B → Y is an étale double
cover over Y \ Sing(�). Since Y is simply connected, we see that

B = B1 ∪ B2,

where B1 and B2 are rational sections of the conic bundle η. Now G-minimality implies that
� = 0, so that η is a P1-bundle. Since φ : B → Y is an étale double cover, we see that B is a
disjoint union of the divisors B1 and B2, and both B1 and B2 are sections of the P1-bundle η.
This implies the remaining assertions of the corollary.

Now we are ready to prove:

THEOREM B·6. Let X be a rationally connected threefold that is faithfully acted upon by
the group 6.A6. Then there exists no 6.A6-equivariant dominant rational map π : X ��� S
such that its general fibers are irreducible rational curves or irreducible rational surfaces.
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Proof. Using 6.A6-equivariant resolution of singularities and indeterminacies, we may
assume that both X and S are smooth, and π is a morphism. If S is a curve, then we imme-
diately obtain a contradiction, since A6 cannot faithfully act on a rational curve, and 6.A6

cannot faithfully act on a rational surface. Thus, we may assume that S is a surface, and
the general fiber of π is P1. Using [Avi14, theorem 1], we may assume that π : X → S is
6.A6-minimal standard conic bundle.

Since X is rationally connected, we see that S is rational. Thus, none of the groups 6.A6,
3.A6 and 2.A6 can faithfully act on S. This shows that there exists an exact sequence of
groups

1 −→ Gπ −→ 6.A6 −→ GS −→ 1,

where GS is a subgroup in Aut(S) that is isomorphic to A6, and Gπ is the center of the
group 6.A6 that acts trivially on S. Applying Corollary B·5, we see that there exists a central
extension G̃S of the group GS �A6 such that

X � P
(
L1 ⊕ L2

)
for some G̃S-linearisable line bundles L1 and L2 on S, where the splitting L1 ⊕ L2 is also
G̃S-invariant.

A priori, we know that G̃S is one of the following groups A6, 2.A6, 3.A6 or 6.A6. On the
other hand, the induced action of G̃S on X gives our action of 6.A6 on the threefold X. This
shows that Am(S, A6) � µ6. On the other hand, it follows from [DI09] that S is A6-birational
to P2, where Am(P2, A6) � µ3, contradicting Lemma A·1.
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