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Abstract

We define an involution on the elliptic space of tempered unipotent representations of
inner twists of a split simple p-adic group G and investigate its behaviour with respect
to restrictions to reductive quotients of maximal compact open subgroups. In partic-
ular, we formulate a precise conjecture about the relation with a version of Lusztig’s
nonabelian Fourier transform on the space of unipotent representations of the (possibly
disconnected) reductive quotients of maximal compact subgroups. We give evidence for
the conjecture, including proofs for SLn and PGLn.
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1. Introduction

The local Langlands correspondence (LLC) predicts that the depth-zero irreducible smooth rep-
resentations of a reductive p-adic group G are controlled by the geometry of the Langlands dual
group G∨. This idea is most well developed for the class of unipotent representations (or rep-
resentations with unipotent reduction) of G defined by Lusztig in [Lus95], which contains, in
particular, all of the irreducible representations ofG with vectors fixed under an Iwahori subgroup
[IM65, KL87]. A correspondence for unipotent representations has now been defined that satisfies
many of the desired properties of the LLC. These results have come from many years of devel-
opments, starting with the seminal papers of Kazhdan and Lusztig [KL87] for Iwahori-spherical
representations of split adjoint groups, Lusztig [Lus95, Lus02] for unipotent representations of
adjoint groups, Reeder [Ree02] for Iwahori-spherical representations of split groups of arbitrary
isogeny and, finally, the recent papers of Solleveld [Sol23a, Sol23b] (building on [AMS18, AMS17,
FOS20]) for all reductive p-adic groups. Yet not all desired properties of the LLC have been ver-
ified in full generality, and one of the main outstanding questions is to understand stability in
L-packets.

To be more precise, assume for simplicity that G is the group of F -points of an absolutely
simple, split connected reductive group over a non-Archimedean local field F with finite residue
field. In the correspondence mentioned above, the irreducible representations of G (and of its
inner forms) are partitioned into L-packets indexed by the conjugacy classes G∨ · x for x ∈
G∨. From the perspective of abstract harmonic analysis, to understand these L-packets, the
most basic case to consider is that of tempered L-packets, which correspond to the conjugacy
classes G∨ · x where the semisimple part of x is compact. Many representation-theoretic questions
can be reduced further to the case of elliptic tempered L-packets, as defined by Arthur: these
consist of tempered representations that are not irreducibly parabolically induced from proper
parabolic subgroups. As mentioned above, while most of the predicted properties of unipotent L-
packets have now been verified, it is not yet known which linear combinations of Harish-Chandra
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distribution characters of the representations in a given (elliptic) tempered L-packet are stable,
in the sense of being constant on geometric (compact) semisimple conjugacy classes.

To approach this question, a natural first step is to consider the restriction of unipotent
representations to maximal compact open subgroups, as in Mœglin–Waldspurger’s tour de force
[MW03], which tackles the question of stability for elliptic tempered L-packets for the group
SO2n+1. These maximal compact subgroups allow us to pass from representations of p-adic
groups to unipotent representations of certain finite reductive groups, which have a rich struc-
ture (see, e.g., [Luz84a]). In particular, while the characters of irreducible representations of a
finite connected reductive group do not have good intrinsic stability properties, Lusztig’s almost
characters, certain class functions defined in terms of traces of character sheaves, do. The tran-
sition matrix between characters and almost characters is Lusztig’s famous nonabelian Fourier
transform [Luz84a, Lus18]. If we can lift this Fourier transform to the setting of p-adic groups, we
might be able to lift stability properties of combinations of almost characters of finite reductive
groups, as in [MW03, Theorem 4.3].

With this idea in mind, in this paper, we formulate a conjecture that relates a nonabelian
Fourier transform for pure inner twists of a (possibly disconnected) finite reductive group and
an elliptic Fourier transform FT∨

ell (cf. [CO17, Ciu20]) for pure inner twists of G. In addition to
Mœglin and Waldspurger’s work on the elliptic representations of the special orthogonal groups
[MW03, Wal18], our approach is also inspired by Lusztig’s articles proposing a theory of almost
characters for p-adic groups [Lus15, Lus14]. We are also influenced by Reeder’s [Ree01] and
Waldspurger’s [Wal07] ideas relating the classification of elliptic tempered unipotent representa-
tions and the geometry of G∨.

We need two main innovations to formulate a precise conjecture. To understand the first,
note that if we take a maximal compact open subgroup K of G with reductive quotient K, then
FT∨

ell does not necessarily induce a well-defined linear map on the unipotent representation space
for K. Instead we must look at maximal compact open subgroups in all pure inner twists of G at
the same time, and so we form the space C(G)cpt,un defined below. The reductive quotients K are
not necessarily connected, and so the second innovation is to extend the definition of Lusztig’s
nonabelian Fourier transform to disconnected finite reductive groups. To do this, we must look
at all pure inner twists of a disconnected finite reductive group, and the Fourier transform will
mix the corresponding representation spaces. These two ideas are related: for every pure inner
twist H of K, there is a pure inner twist G′ of G and a maximal compact open subgroup K ′ of
G′ such that the reductive quotient K ′ is H.

1.1 Main results
We now describe our work in more detail. As above, let us assume that G is a simple, split
group over F and G = G(F ). Let InnTp(G) denote the set of equivalence classes of pure inner
twists of G. Then the LLC (see § 4) states that the L-packets of irreducible tempered unipotent
representations of the groupsG′ ∈ InnTp(G) are in one-to-one correspondence withG∨-conjugacy
classes of elements x = su ∈ G∨ (Jordan decomposition) such that s is compact. The elements
in the L-packet are parametrized by irreducible representations φ of the group of components
AG∨(x) of the centralizer of x in G∨. Hence, an L-packet is a collection {π(su, φ) | φ ∈ ̂AG∨(su)}.
Let Γu denote the reductive part of the centralizer of u in G∨. In [Wal18, Ciu20], one considered
the set Y(Γu) of pairs (s, h) ∈ Γ2

u of commuting semisimple elements and the subset Y(Γu)ell of
elliptic pairs (see § 8.3). These will play a role below in the Langlands parametrization.

Each group G′ ∈ InnTp(G) has a finite collection of conjugacy classes of maximal compact
open subgroups max(G′). These are classified in terms of the theory of [BT72, IM65] (see § 7).
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A compact group K ′ ∈ max(G′) has a finite quotient K ′ that is the group of k-points of a
(possibly disconnected) reductive group over a finite field k. Write Run(K

′) for the C-vector space
spanned by the irreducible unipotent representations of K ′. As mentioned above, for connected
finite reductive groups, Lusztig [Luz84a] defined the nonabelian Fourier transform, which is the
change-of-basis matrix between the basis of irreducible unipotent characters and the basis of
unipotent almost characters. This is recalled in § 5. We need to define an extension of this map
to disconnected finite groups in the spirit of [Lus86] and [DM90, § 5]. To fit with our picture,
we define a nonabelian Fourier transform for the representations of the pure inner twists of the
finite (possibly disconnected) reductive group K, where K ∈ max(G). See § 6. The point is that
this transform gives an involution

FTcpt,un : C(G)cpt,un → C(G)cpt,un, (1.1)

on the space

C(G)cpt,un =
⊕

G′∈InnTp(G)

⊕
K′∈max(G′)

Run(K
′),

which we can think of as the sum over K ∈ max(G) of the unipotent representation spaces of
the pure inner twists of K. See (7.2) and Definition 7.1. It is important to note that, in general,
FTcpt,un mixes the pure inner twists of a given K.

Since parabolic induction of characters is generally well understood, of particular interest is
the space of elliptic (unipotent) tempered representations for all pure inner twists

Rpun,ell(G) =
⊕

G′∈InnTp(G)

Run(G′)

(see § 9.1). Generalizing [Ree01], we prove the following theorem.

Theorem 1.1 (Theorem 11.1). Suppose that G is split and adjoint. The local Langlands
correspondence induces an isometric isomorphism

LLCpun :
⊕
u

C[Y(Γu)ell]Γu −→ Rpun,ell(G), (s, h) �→ Π(u, s, h), (1.2)

where the left-hand side has a natural elliptic inner product while the right-hand side is endowed
with the Euler–Poincaré product. The element u ranges over representatives of unipotent
conjugacy classes in G∨ and Π(u, s, h) is defined in (9.9).

We remark that Π(u, s, 1) is expected to be the stable combination of characters in the
L-packet, while in general Π(u, s, h) are expected to satisfy the endoscopic identities.

The proof of Theorem 11.1 in § 11 applies in more generality, for example for Iwahori-spherical
representations of groups of arbitrary isogeny (see § 11.4). Since the left-hand side has an obvious
involution given by the flip (s, h)→ (h, s), this defines an involution, the dual elliptic nonabelian
transform

FT∨
ell : R

p
un,ell(G)→ Rpun,ell(G). (1.3)

We note that FT∨
ell mixes representations of the pure inner twists of G. We expect that there is

a commutative diagram as follows.
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Conjecture 1.2 (Conjecture 9.7). Up to certain roots of unity (see Remark 9.8), the following
diagram commutes.

Rpun,ell(G)
FT∨

ell ��

rescpt,un

��

Rpun,ell(G)

rescpt,un

��
C(G)cpt,un

FTcpt,un

�� C(G)cpt,un

Here the vertical arrows are defined by taking invariants by the pro-unipotent radicals of maximal
compact subgroups.

It is also natural to expect that the images of irreducible elliptic tempered characters under
FT∨

ell are the ‘almost characters’ (on elliptic elements) defined in [Lus15]: see, for comparison,
[Lus14, Conjecture 2.2(c)].

Conjecture 1.2 is a generalization of [Ciu20, Conjecture 1.3] with an important difference: we
remark that the role of maximal compact subgroups (rather than maximal parahoric subgroups)
and, hence, of a Fourier transform for pure inner twists of disconnected finite reductive groups
in the conjecture is essential for treating all pure inner twists of G. We verify the conjecture in
some examples. In particular, we have the following theorem.

Theorem 1.3. If G = SLn or PGLn, Conjecture 1.2 holds.

See §§ 13 and 14. We also verify the conjecture for G = Sp4 (§ 12). The results of Waldspurger
[Wal18] show that this conjecture holds when G = SO2n+1.

In future work, we will consider a generalization of Conjecture 1.2 to the space of
compact/rigid tempered representations defined in [CH17, CH21].

1.2 Structure of the paper
In §§ 2, 3, and 4, we review relevant background about inner twists of p-adic groups, the gen-
eralized Springer correspondence, and the LLC. In § 5, we recall Lusztig’s parametrization of
unipotent representations of a connected reductive group over a finite field and the definition of
the nonabelian Fourier transform on the space spanned by these representations. We then extend
Lusztig’s parametrization: for the (possibly disconnected) groups K that arise as reductive quo-
tients of subgroups K ∈ max(G) as defined above, we parametrize the union over all pure inner
twists K ′ of K of the set of unipotent representations of K ′, and we then define a nonabelian
Fourier transform on the space spanned by these representations (see § 6).

In § 7, we return to the setting of p-adic groups. We review the parametrization of maximal
compact open subgroups of G′ ∈ InnTp(G), under the assumption G is F -split. We define the
space C(G)cpt,un in terms of these subgroups, and we use the Fourier transform of § 6 to define
an involution FTcpt,un on C(G)cpt,un. In § 8, we review the definition of Y(Γ)ell for a complex
reductive group Γ. We also review the definition of the elliptic pairing on the Grothendieck group
of a finite group.

Section 9 contains the conjectures outlined above. We first review the Euler–Poincaré pairing
and state Conjecture 9.1, which predicts that the LLC induces an isometric isomorphism at
the level of elliptic spaces. We then define a restriction map rescpt,un : Rpun,ell(G)→ C(G)cpt,un

and state Conjecture 9.7, which predicts that the elliptic nonabelian Fourier transform FT∨
ell is
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compatible with FTcpt,un under rescpt,un. We give evidence for this conjecture in Proposition 9.10,
which considers linear combinations of twists of Steinberg representations.

In § 10, we present an alternative definition of the elliptic nonabelian Fourier transform
motivated by Lusztig’s pairing [Lus14, § 1.3].

In § 11, we prove Conjecture 9.1 in the case when G is simple, split, and adjoint. In § 11.4,
we indicate how the proof can be extended to the non-adjoint case. In the final three sections,
we verify the conjectures for explicit examples: in § 12, we consider the group Sp4(F ); in § 13, we
consider SLn(F ); and in § 14, we consider PGLn(F ).

1.3 Notation and conventions
Given a complex Lie group G, we write ZG for the center of G. Given x ∈ G, we write ZG(x) for
the centralizer of x in G. Similarly, if H is a subgroup of G, we write ZG(H) for the centralizer
of H in G, and if ϕ is a homomorphism with image in G, we write ZG(ϕ) for ZG(im ϕ). We write
G◦ for the identity component of G. If x ∈ G, we write AG(x) = ZG(x)/ZG(x)◦ for the component
group of ZG(x). If u ∈ G is unipotent, we write Γu for the reductive part of ZG(u). Given a torus
T , we write X∗(T ) for the character group of T .

Given a finite group A, we write Â for the set of irreducible characters of A, and we write R(A)
for the C-vector space with basis given by (isomorphism classes of) irreducible representations
of A. Given a finite set S, we write C[S] for the C-vector space of functions S → C.

2. Recollection on inner twists

2.1 Inner twists
Let F be a non-Archimedean local field with finite residue field kF = Fq. We denote by oF the
ring of integers of F . Let Fs be a fixed separable closure of F , and let ΓF denote the Galois group
of Fs/F . Let Fun ⊂ Fs be the maximal unramified extension of F . Let Frob be the geometric
Frobenius element of Gal(Fun/F ) � Ẑ, i.e. the topological generator that induces the inverse of
the automorphism x �→ xq of kF . We denote by FrG the action of Frob on a connected reductive
F -group G. We now review definitions related to inner twists and pure inner twists of a p-adic
group. For details see, e.g., [Vog93, § 2], [Kal16, § 2] and [ABPS17b, § 1.3]. (Note that [Vog93]
uses the term ‘pure rational form’ for what we call a pure inner twist.)

Let G = G(F ). Write Inn(G) for the group of inner automorphisms of G. Recall that given
an algebraic group H over F , an isomorphism α : H→ G defined over Fs determines a 1-cocycle

γα :
ΓF → Aut(G)
σ �→ ασα−1σ−1.

(2.1)

An inner twist of G consists of a pair (H,α), where H = H(F ) for some connected reductive
F -group H, and α : H ∼−−→ G is an isomorphism of algebraic groups defined over Fs such that
im (γα) ⊂ Inn(G). Two inner twists (H,α), (H ′, α′) of G are equivalent if there exists f ∈ Inn(G)
such that

γα(σ) = f−1γα′(σ) σfσ−1 for all σ ∈ ΓF . (2.2)

Denote the set of equivalence classes of inner twists of G by InnT(G).
An inner twist of G is the same thing as an inner twist of the unique quasi-split inner form

G∗ = G∗(F ) of G. Thus the equivalence classes of inner twists of G are parametrized by the
Galois cohomology group H1(F, Inn(G∗)):

InnT(G)←→ H1(F, Inn(G∗)).
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Example 2.1. For G = SLn(F ), there is a one-to-one correspondence

InnT(SLn(F ))←→ Z/nZ. (2.3)

This is given as follows. Let r be an integer mod n and let m = gcd(r, n). Then n = dm and
r/m is coprime to d. Therefore, there exists a division algebra Dd,r/m, central over F and of
dimension dimF Dd,r/m = d2. The corresponding inner twist is SLm(Dd,r/m).

A pure inner twist of G is a triple (H,α, z), where (H,α) is an inner twist and z ∈ Z1(F,G)
such that α−1 ◦ γ(α) = Ad(z(γ)) for any γ ∈ ΓF (see [Kal16, § 2.3]). When G splits over an
unramified extension of F such a cocycle is determined by the image u := z(Frob) ∈ G. The
corresponding inner twist of G is then defined by the functorial image zad ∈ Z1(F, Inn(G∗)) of
z. This pure inner twist is defined by the twisted Frobenius action Fru on G given by Fru =
Ad(u) ◦ FrG.

In cohomological terms, the short exact sequence

1 −→ ZG∗ −→ G∗ −→ Inn(G∗) −→ 1

induces a map in cohomology H1(F, Inn(G∗))→ H2(F,ZG∗). An inner twist of G∗ has a cor-
responding pure inner twist if and only if the corresponding element of H2(F,ZG∗) is trivial
[Vog93, Lemma 2.10]. Denote by InnTp(G∗) the set of equivalence classes of pure inner twists
of G∗. We have [Vog93, Proposition 2.7]

InnTp(G∗)←→ H1(F,G∗). (2.4)

Example 2.2. If G∗ is semisimple adjoint, every inner twist corresponds to a unique pure inner
twist: InnTp(G∗) = InnT(G∗). If G∗ is semisimple and simply connected, H1(F, Inn(G∗)) ∼=
H2(F,ZG∗) and therefore there is only one class of pure inner twists, the quasi-split form,
InnTp(G∗) = {G∗}. When G = SLn(F ), the only pure inner twist is G itself (see [Vog93,
Example 2.12]).

2.2 The L-group
Let G∨ denote the C-points of the dual group of G. It is endowed with an action of ΓF . Let WF

be the Weil group of F (relative to Fs/F ) and let LG := G∨ �WF denote the L-group of G.
Kottwitz proved in [Kot84, Proposition 6.4] that there exists a natural isomorphism

κG : H1(F,G) ∼−−→ Irr
(
π0

(
ZWF
G∨
))
. (2.5)

Let G∨
sc denote the simply connected cover of the derived group G∨

der of G∨. We have G∨
sc =

(Gad)∨, and

κG∗
ad

: H1(F, Inn(G∗)) ∼−−→ Irr
(
ZWF
G∨

sc

)
. (2.6)

All the inner twists of a given group G share the same L-group, because the action of WF on
G∨ is only uniquely defined up to inner automorphisms. This also works the other way around:
from the Langlands dual group LG one can recover the inner-form class of G.

Example 2.3. If G = Sp2n(F ), then we have G∨ = SO2n+1(C) and G∨
sc = Spin2n+1(C), so ZG∨

sc
�

Z/2Z. An inner twist of G is determined by its Tits index [Tit65]. The group G∗ = G is split and
its nontrivial inner twist is the group SU(n, hr), where hr is a nondegenerate Hermitian form of
index r = 
n/2� over the quaternion algebra Q over F (see for instance [Art13, § 9]).

We will consider G as an inner twist of G∗, so endowed with an isomorphism G→ G∗ over Fs.
Via (2.6), G is labelled by a character ζG of ZWF

G∨
sc

. We choose an extension ζ of ζG to ZG∨
sc
.
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3. Generalized Springer correspondence for disconnected groups

Let G be a possibly disconnected complex Lie group. We denote by G◦ the identity component
of G. Let u be a unipotent element in G◦, and let AG◦(u) denote the group of components of
ZG◦(u).

Let φ◦ be an irreducible representation of AG◦(u). The pair (u, φ◦) is called cuspidal if it
determines a G◦-equivariant cuspidal local system on the G◦-conjugacy class of u as defined in
[Lus84b]. In particular, if (u, φ◦) is cuspidal, then u is a distinguished unipotent element in G◦
(that is, u does not meet the unipotent variety of any proper Levi subgroup of G◦), [Lus84b,
Proposition 2.8]. However, in general not every distinguished unipotent element supports a
cuspidal representation.

Example 3.1. For G := SLn(C), the unipotent classes in G are in bijection with the partitions
λ = (λ1, λ2, . . . , λr) of n: the corresponding G-conjugacy class Oλ consists of unipotent matrices
with Jordan blocks of sizes λ1, λ2, . . . , λr. We identify the center ZG with the group μn of complex
nth roots of unity. For u ∈ Oλ, the natural homomorphism ZG → AG(u) is surjective with kernel
μn/ gcd(λ), where gcd(λ) := gcd(λ1, λ2, . . . , λr). Hence the irreducible G-equivariant local systems
on Oλ all have rank one, and they are distinguished by their central characters, which range over
those χ ∈ μ̂n such that gcd(λ) is a multiple of the order of χ. We denote these local systems by
Eλ,χ. The unique distinguished unipotent class in G is the regular unipotent class O(n), consisting
of unipotent matrices with a single Jordan block. The cuspidal irreducible G-equivariant local
systems are supported on O(n) and are of the form E(n),χ, with χ ∈ μ̂n of order n (see [Lus84b,
(10.3.2)]).

The group AG◦(u) may be viewed as a subgroup of the group Au := AG(u) of components of
ZG(u). Let φ be an irreducible representation of AG(u). We say that (u, φ) is a cuspidal pair if
the restriction of φ to AG◦(u) is a direct sum of irreducible representations φ◦ such that one (or,
equivalently, any) of the pairs (u, φ◦) is cuspidal. Let

IG := {(U, E)|U unipotent conjugacy class in G, E irreducible G-equivariant local system on U}.

This set can be identified with the set of G-orbits of pairs (u, φ), where u ∈ G is unipotent and φ ∈
Âu. If (φ, Vφ) is an irreducible Au-representation, we can first regard it as an irreducible ZG(u)-
representation, and then the corresponding local system is E = (G ×ZG(u) Vφ → G/ZG(u) ∼= U).
We denote by IGc the subset of IG of cuspidal pairs. We write I := IG

◦
and Ic := IG

◦
c .

Let JG denote the set of G-orbits of triples j = (M, Uc, Ec) such thatM◦ is a Levi subgroup
of G◦,

M := ZG(Z◦
M◦), (3.1)

and (Uc, Ec) ∈ IM
◦

c . We observe that M has identity component M◦ and that Z◦
M = Z◦

M◦ . We
set J := JG◦

. We note that M =M◦ whenever G = G◦.
Let Z◦

M◦,reg = {z ∈ Z◦
M◦ | ZG(z) =M◦} and Yj(G) =

⋃
x∈G x(Z

◦
M◦,regUc)x−1. Let Y j(G) be

the closure of Yj(G) in G. We set Yj = Yj(G◦) and Y j = Y j(G◦). For example, if j0 = (T, 1, triv)
is the trivial cuspidal pair on the maximal torus T in G◦, then Yj0 is the variety of regular
semisimple elements in G◦, hence Y j0 = G◦.

Set W ◦
j := NG◦(M◦)/M◦. This is a Coxeter group due to the particular nature of the Levi

subgroups in G◦ that support cuspidal local systems (see [Lus84b, Theorem 9.2]).
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One constructs a G◦-equivariant semisimple perverse sheaf Kj supported on Y j that has a
W ◦
j -action and a decomposition [Lus84b, Theorem 6.5] and [AMS18, § 5]

Kj =
⊕

ρ◦∈Ŵ ◦
j

Vρ◦ ⊗Aj,ρ◦ ,

where (ρ◦, Vρ◦) ranges over the (equivalence classes of) irreducible W ◦
j -representations and Aj,ρ◦

is an irreducible G◦-equivariant perverse sheaf. The perverse sheaf Aj,ρ◦ has the property that
there exists a (unique) pair (U, E◦) ∈ I such that its restriction to the variety G◦un of unipotent
elements in G◦ is

(Aj,ρ◦)|G◦
un

[−dim(Z◦
M◦)] ∼= IC(U, E◦)[dim(U)]. (3.2)

In particular, the hypercohomology of Aj◦,ρ◦ on U is concentrated in one degree, namely

HaU (Aj,ρ◦)|U ∼= E◦, where aU = −dim(U)− dim(Z◦
M◦).

If we set J̃ = J̃G◦
:= {(j, ρ◦) : j ∈ JG◦

, ρ◦ ∈ Ŵ ◦
j }, the generalized Springer correspondence for G◦

is the bijection

ν◦ : IG
◦ → J̃G◦

, (U, E) �→ (j, ρ◦), (3.3)

where the relation between (j, ρ◦) and (U, E) is given by (3.2). Let ν◦c : I→ J denote the
composition of ν◦ with the projection from J̃ to J.

We will now explain how, following [AMS18, § 4], one can extend the maps ν◦ and ν◦c to the
case of disconnected groups. Let j = (M, Uc, Ec) ∈ JG . We set Wj := NG(j)/M◦. There exists a
subgroup Rj of Wj such that Wj = W ◦

j � Rj (see [AMS18, Lemma 4.2]). Suppose that �j is a
2-cocycle

�j : Rj ×Rj → Q
×
� .

We view �j as a 2-cocycle on Wj that is trivial on W ◦
j . Then the �j-twisted group algebra of Wj ,

denoted by Q�[Wj , �j ], is defined to be the Q�-vector space Q�[Wj , �j ] with basis
{
fw : w ∈Wj

}
and multiplication rules

fwfw′ = �j(w,w′)fww′ , w, w′ ∈Wj .

One constructs a G-equivariant semisimple perverse sheaf Kj supported on Y j that has a
Wj-action and a decomposition [Lus84b, Theorem 6.5]

Kj =
⊕

ρ∈Irr(Q�[Wj ,�j ])

Vρ ⊗Aj,ρ,

where (ρ, Vρ) ranges over the (equivalence classes of) simple modules of Q�[Wj , �j ], and Aj,ρ is
an irreducible G-equivariant perverse sheaf.

We set

J̃G := {(j, ρ) : j ∈ JG , ρ ∈ Irr(Q�[Wj , �j ])}. (3.4)

The generalized Springer correspondence for G is the bijection

ν : IG → J̃G (3.5)

defined in [AMS18, Theorem 5.5].

Definition 3.2. Let νc = νGc : IG → JG denote the composition of ν with the projection from
J̃G to JG .
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Suppose (U, E) ∈ IG , and suppose the G-class U splits into G◦-classes U◦
1 , . . . , U

◦
� , for some

� � 1. If we regard E as a G◦-equivariant local system, then it restricts as E|U◦
i

=
⊕ki

t=1 E◦i,t,
1 � i � �, where ν◦(U◦

i , E◦i,t) = (j◦, ρ◦i,t), with j◦ = ν◦c (U◦
1 , E◦1,1) and ρ|W ◦

j
=
⊕

i,t ρ
◦
i,t.

Example 3.3. Let G = O2n(C), so G◦ = SO2n(C) and G/G◦ ∼= Z/2Z. The unipotent classes in G
are parametrized by partitions λ = (λ1, . . . , λm) of 2n such that each even part appears with
even multiplicity. If Uλ is the corresponding unipotent class, then Uλ is a single G◦-class unless
the partition λ is ‘very even’ [SS70, CM93], i.e. all parts λi are even, in which case Uλ splits into
two G◦-classes, U+

λ and U−
λ .

Let j = j0 correspond to the trivial cuspidal local system on the torus of G◦. Then W ◦
j0

=
W ◦ ∼= W (Dn) and Wj = W ∼= W (Bn), hence W/W ◦ ∼= G/G◦ = Z/2Z. (Here W (Dn) denotes a
Weyl group of type Dn and similarly for W (Bn).) If λ is not a very even partition and u ∈ Uλ,
then Au/AG◦(u) = Z/2Z; if (j0, ρ◦) = ν◦(U◦

λ , φ
◦), then there are two nonisomorphic ways φ, φ′ in

which one can extend φ◦ to Au, and two nonisomorphic ways ρ, ρ′ to extend ρ◦ to W , which can
be chosen such that ρ corresponds to φ and ρ′ corresponds to φ′ under the disconnected Springer
correspondence.

If, on the other hand, λ is a very even partition, u = u+ is a representative of U+
λ , and

u− a representative of U−
λ , then Au = AG◦(u+) = AG◦(u−) = {1}. In this case, ν◦(U±,1) = ρ±

(W (Dn)-representations), where ρ is parametrized by a bipartition of n of the form λ′ × λ′
(necessarily n is even). Then ν(U,1) = ρ (W (Bn)-representation), where ρ|W (Dn) = ρ+ ⊕ ρ−.

4. The Langlands parametrization

We use the notation of § 2. In addition, we write IF for the inertia subgroup of WF , and we set
W ′
F := WF × SL2(C). We have natural projections from p1 : W ′

F � WF and p2 : LG � WF .

4.1 Langlands parameters
A Langlands parameter (or L-parameter) for G is a continuous morphism ϕ : W ′

F → LG such that
ϕ(w) is semisimple for each w ∈WF (that is, r(ϕ(w)) is semisimple for every finite-dimensional
representation r of LG), the restriction of ϕ to SL2(C) is a morphism of complex algebraic groups,
and the following diagram commutes.

W ′
F

ϕ
��

p1 ����
��

��
��

LG

p2����
��

��
��

WF

Write Φ(G) for the set of G∨-conjugacy classes of Langlands parameters for G.
Let ZG∨(ϕ) denote the centralizer in G∨ of ϕ(W ′

F ). We have

ZG∨(ϕ) ∩ ZG∨ = ZWF
G∨ , (4.1)

and, hence,
ZG∨(ϕ)/ZWF

G∨ � ZG∨(ϕ)ZG∨/ZG∨ .

The group ZG∨(ϕ)ZG∨/ZG∨ can be considered as a subgroup of G∨
ad and we define Z1

G∨
sc
(ϕ) to be

its inverse image under the canonical projection p : G∨
sc → G∨

ad. The group Z1
G∨

sc
(ϕ) coincides with

the group introduced by Arthur in [Art06, (3.2)] (denoted there by S̃ϕ). As observed in [Art06],
it is an extension of ZG∨(ϕ)/ZWF

G∨ by ZG∨
sc
. Let A1

ϕ denote the component group of Z1
G∨

sc
(ϕ).
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Remark 4.1. When Z◦
G is F -split, the group A1

ϕ also coincides with the group considered by
Kaletha in [Kal18, § 4.6] in the parametrization of the L-packet of ϕ.

An enhancement of ϕ is an irreducible representation φ of A1
ϕ. We denote by Â1

ϕ the set
of irreducible characters of A1

ϕ. The pairs (ϕ, φ) are called enhanced L-parameters. Let φ ∈ Â1
ϕ.

Then φ determines a character ζφ of ZG∨
sc
. An enhanced L-parameter (φ, ϕ) is said to be G-

relevant if ζφ = ζ, where ζ is as defined in § 2.2. The set Φe(G) of G∨-conjugacy classes of
G-relevant enhanced L-parameters is expected to parametrize the admissible dual of G.

The group H1(WF ,ZG∨) acts on Φ(G) by

(zϕ)(w, x) := z′(w)ϕ(w, x), ϕ ∈ Φ(G), w ∈WF , x ∈ SL2(C), (4.2)

where z′ : WF → ZG∨ represents z ∈ H1(WF ,ZG∨). This extends to an action of H1(WF ,ZG∨)
on Φe(G) that does nothing to the enhancements.

A character of G is called weakly unramified if it is trivial on the kernel of the Kottwitz
homomorphism. Let Xwur(G) denote the group of weakly unramified characters of G. There is
a natural isomorphism

Xwur(G) � (ZIFG∨)Frob ⊂ H1(WF ,ZG∨) (4.3)

(see [Hai14, § 3.3.1]). Its identity component is the group Xun(G) of unramified characters of G.
Via (4.2) and (4.3), the group Xwur(G) acts naturally on Φe(G).

Let ϕ : WF × SL2(C)→ LG be an L-parameter. We consider the (possibly disconnected)
complex reductive group

Gϕ := Z1
G∨

sc

(
ϕ|WF

)
, (4.4)

defined analogously to Z1
G∨

sc
(ϕ). Denote by G◦ϕ its identity component.

We define elements uϕ, sϕ ∈ G∨ by

(uϕ, 1) = ϕ(1, ( 1 1
0 1 )) and (sϕ,Frob) = ϕ(Frob, IdSL2(C)). (4.5)

Then uϕ ∈ G◦ϕ.
We recall that by the Jacobson–Morozov Theorem any unipotent element u of G◦ϕ determines

(up to conjugation by ZG(u)) a homomorphism of algebraic groups SL2(C)→ G◦ϕ taking the
value u at ( 1 1

0 1 ). Hence, any enhanced L-parameter (ϕ, φ) is completely determined, up to G∨-
conjugacy, by ϕ|WF

, uϕ and φ. More precisely, the map

(ϕ, φ) �→ (ϕ|WF
, uϕ, φ) (4.6)

provides a bijection between Φe(G) and the set of G∨-conjugacy classes of triples (ϕ|WF
, uϕ, φ).

We define an action of G∨
sc on G∨ by setting

h · g := h′gh′−1 for h ∈ G∨
sc and g ∈ G∨, where p(h) = h′ZG∨ .

It induces an action of G∨
sc on LG and we denote by ZG∨

sc
(ϕ) the stabilizer in G∨

sc of ϕ(W ′
F ) for

this action.
On the other hand, the inclusion Z1

G∨
sc
(ϕ) ↪→ Z1

G∨
sc
(ϕ|WF

) ∩ ZG∨
sc
(uϕ) induces a group iso-

morphism

A1
ϕ

∼−−→ π0(Z1
G∨

sc
(ϕ|WF

) ∩ ZG∨
sc
(uϕ)). (4.7)

As observed in [AMS18, (92)], another way to formulate (4.7) is

A1
ϕ � AGϕ(uϕ) := ZGϕ(uϕ)/ZGϕ(uϕ)◦. (4.8)
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The L-parameter ϕ is called:

– discrete if there is no properWF -stable Levi subgroup L∨ ⊂ G∨ such that ϕ(W ′
F ) ⊂ L∨ �WF ;

– bounded if sϕ belongs to a bounded subgroup of G∨.

We say that (ϕ, φ) ∈ Φe(G) is cuspidal if ϕ is discrete and (uϕ, φ) is a cuspidal pair for Gϕ
(as defined in § 3). The set of G-relevant cuspidal (respectively, discrete, bounded) enhanced
L-parameters is expected to correspond to the set of supercuspidal (respectively, essentially
square-integrable, tempered) irreducible smooth G-representations [AMS18, § 6].

4.2 Inertial classes
For L a Levi subgroup of G and g ∈ G∨, the group gL∨g−1 is not necessarily WF -stable, so
the group G∨ need not act on pairs of the form (LL, (ϕc, φc)) with (ϕc, φc) a cuspidal enhanced
L-parameter for L. In order to deal with this, as in [AMS18, Definition 7.1], we will have to
consider all the pairs (ZLG(T ), (ϕc, φc)) of the following form.

– T is a torus of G∨ such that the projection ZLG(T )→WF is surjective;
– ϕc : W ′

F → ZLG(T ) satisfies the requirements in the definition of an
L-parameter;

– let L = G∨ ∩ ZLG(T ), and let Lsc be the simply connected cover of the derived group of L.
Then φc is an irreducible representation of π0(Z1

Lsc
(ϕ)) such that (uϕc , φ) is a cuspidal pair

for Z1
Lsc

(ϕc|WF
)) and φc is G-relevant as defined in [AMS18, Definition 7.2] (that is ζφ = ζ on

Lsc ∩ ZWF
G∨

sc
and φ = 1 on Lsc ∩ Z◦

Lc
, where Lc denotes the preimage of L under G∨

sc → G∨).

Fix such a pair (ZLG(T ), (ϕc, φc)). The group

Xun(ZLG(T )) :=
(
Z(G∨�IF )∩ZLG

(T )

)◦
Frob

(4.9)

plays the role of unramified characters for ZLG(T ). It acts on the enhanced L-parameters (ϕc, φc)
(see [AMS18, (110) and (111)]) and we denote by Xun(ZLG(T )) · (ϕc, φc) the orbit of (ϕc, φc).

We denote by s∨ the G∨-conjugacy class of (ZLG(T ), Xun(ZLG(T )) · (ϕc, φc)). We write

s∨ = s∨G = [ZLG(T ), (ϕc, φc)]G∨ ,

and call s∨ an inertial class for Φe(G). We denote by B∨(G) the set of all such s∨.
Note that there exists aWF -stable Levi subgroup L∨ of G∨ such that ZLG(T ) is G∨-conjugate

to L∨ �WF and L = G∨ ∩ ZLG(T ) is G∨-conjugate to L∨. Conversely, every G∨-conjugate of
this L∨ �WF is of the form ZLG(T ) for a torus T as above (see [AMS18, Lemma 6.2]).

We write

s∨L = (ZLG(T ), Xun(ZLG(T )) · (ϕc, φc)). (4.10)

We will consider the groups

Ws∨ = NG∨(s∨L)/L∨ and Jϕc := ZG∨(ϕc(IF )). (4.11)

The group Jϕc is a complex (possibly disconnected) reductive group. Define R(J◦
ϕc
, T ) as the set

of α ∈ X∗(T ) \ {0} that appear in the adjoint action of T on the Lie algebra of J◦
ϕc

. It is a root
system (see [AMS17, Proposition 3.9]).

We set W ◦
s∨ := NJ◦

ϕc
(T )/ZJ◦

ϕc
(T ), where W ◦

s∨ is the Weyl group of R(J◦
ϕc
, T ). Let R+(J◦

ϕc
, T )

be the positive system defined by a parabolic subgroup P ◦
ϕc
⊂ J◦

ϕc
with Levi factor (L∨

ϕc
)◦. Two

such parabolic subgroups P ◦
ϕc

are J◦
ϕc

-conjugate, so the choice is inessential.
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Since W ◦
s∨ acts simply transitively on the collection of positive systems for R(J◦

ϕc
, T ), we

obtain a semi-direct factorization

Ws∨ = W ◦
s∨ � Rs∨ ,

where Rs∨ = {w ∈Ws∨ | w ·R+(J◦
ϕc
, T ) = R+(J◦

ϕc
, T )}.

Definition 4.2. Let νc : Φe(G)→ B∨(G) be the map defined by

νc(ϕ, φ) = [ZLG(Z◦
Mϕ

), ϕ|WF
, uc, φc]G∨ ,

where (ϕ|WF
, u, φ)G∨ is the image of (ϕ, φ)G∨ via the bijection (4.6), (uc, φc) corresponds to

(Uc, Ec) ∈ IMϕ
c and (Mϕ, Uc, Ec) := ν

Gϕ
c (U, E) is the image under the map νGϕ

c from Definition 3.2
of the pair (U, E) ∈ IGϕ associated with (u, φ).

We have the following decomposition (see [AMS18, (115)]):

Φe(G) =
⊔

s∨∈B∨(G)

Φe(G)s∨ , where Φe(G)s∨ := ν−1
c (s∨). (4.12)

Let Irr(G) be the set of isomorphism classes of irreducible smooth G-representations. For L
a Levi subgroup of G, we denote by Irrcusp(L) the set of isomorphism classes of supercuspidal
irreducible smooth L-representations.

Let σ ∈ Irrcusp(L). We call (L, σ) a supercuspidal pair, and we consider such pairs up to
inertial equivalence. This is the equivalence relation generated by:

– unramified twists, (L, σ) ∼ (L, σ ⊗ χ) for χ ∈ Xun(L);
– G-conjugation, (L, σ) ∼ (gLg−1, g · σ) for g ∈ G.

We denote the set of all inertial equivalence classes for G by B(G) and a typical inertial
equivalence class by s := [L, σ]G.

In [Ber84], Bernstein attached to every s ∈ B(G) a block R(G)s in the category R(G) of
smooth G-representations as follows. Denote by IGP the normalized parabolic induction functor,
where P is a parabolic subgroup of G with Levi subgroup L. If π ∈ Irr(G) is a constituent of
IGP (τ) for some σ ∈ Irr(L) such that [L, σ]G = s, then s is called the inertial supercuspidal support
of π. We set

Irr(G)s := {π ∈ Irr(G) : π has inertial supercuspidal support s},
R(G)s := {π ∈ R(G) : every irreducible constituent of π belongs to Irr(G)s}.

4.3 Unipotent representations
An irreducible smooth representation (π, V ) of G is called unipotent if there exists a parahoric
subgroup K of G such that the subspace V K+

of the vectors in V that are fixed by the pro-
unipotent radicalK+ ofK contains an irreducible unipotent representation of the finite reductive
groupK := K/K+. We denote by Irrun(G) the set of isomorphism classes of irreducible unipotent
G-representations.

For the rest of the section we will assume that the quasi-split inner form G∗ of G is F -split.

Definition 4.3. An L-parameter ϕ : WF × SL2(C)→ LG is called unipotent if ϕ(w, 1) = (1, w)
for any element w of the inertia subgroup IF of WF .

Denote by Φun(LG) the set of G∨-conjugacy classes of unipotent L-parameters ϕ and
by Φe,un(G) the set of unipotent enhanced G-relevant parameters, i.e. the subset of the
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(ϕ, φ) ∈ Φe(G) such that ϕ is unipotent. We then set

Φe,un(LG) = G∨\{(ϕ, φ) | ϕ unipotent, φ ∈ Â1
ϕ}.

Given ϕ ∈ Φun(LG), since G∗ is F -split, every φ ∈ Â1
ϕ is G′-relevant for some G′ ∈ InnT(G). We

thus have
Φe,un(LG) =

⊔
G′∈InnT(G)

Φe,un(G′).

Given ϕ ∈ Φun(LG), let Aϕ be the component group of ZG∨(ϕ). We then set

Φp
e,un(

LG) = G∨\{(ϕ, φ) | ϕ unipotent, φ ∈ Âϕ}.
The set Φe,un(G) is known to parametrize Irrun(G): such a parametrization was defined by

Lusztig in [Lus95, Lus02] in the case when G is simple adjoint, and extended by Solleveld in
[Sol23a, Sol23b] to the case when G is arbitrary. In the case when G = GLn(F ) or SLn(F ), it
also follows from [HS12, ABPS16]. This parametrization induces a bijection:

LLC : Φe,un(LG)←→
⊔

G′∈InnT(G)

Irrun(G′). (4.13)

This correspondence sends cuspidal (respectively, discrete, bounded) parameters to supercuspidal
(respectively, essentially square-integrable, tempered) irreducible unipotent representations.

Let x ∈ G∨ with Jordan decomposition x = su. There is an unipotent L-parameter ϕ (unique
up to G∨-conjugation) such that u = uϕ and s = sϕ. We set

Gs = Z1
G∨

sc
(ϕ|WF

). (4.14)

Note that ϕ|WF
depends only on s, which explains the notation. By (4.8),

A1
ϕ
∼= AGs(u).

We set

Φe,un(LG, s) = G∨\{(ϕ′, φ) ∈ Φe,un(LG) | ϕ′(Frob, 1) = (s′,Frob), s′ ∈ G∨ · s}.
Then

Φe,un(LG, s) = ZG∨(ϕ|WF
)-orbits in {(u′, φ) | u′ ∈ G◦s unipotent, φ ∈ ÂGs(u′)}

= Gs-orbits in {(u′, φ) | u′ ∈ G◦s unipotent, φ ∈ ÂGs(u′)}. (4.15)

The second equality follows from the fact that conjugation of unipotent elements is insensitive
to isogenies. This allows us to rephrase the unipotent LLC as follows. Let C(G), C(G)ss, C(G)un

denote the set of conjugacy classes, respectively semisimple, unipotent conjugacy classes in a
complex group G. Let Run(G′) be the C-span of Irrun(G′). Then (4.13) can be written as the
bijection

LLCun :
⊔

s∈C(G∨)ss

⊔
u∈C(Gs)un

ÂGs(u)←→
⊔

G′∈InnT(G)

Irrun(G′),

which induces a linear isomorphism

LLCun : R(Φe,un(LG)) :=
⊕

s∈C(G∨)ss

⊕
u∈C(Gs)un

R(AGs(u)) −→
⊕

G′∈InnT(G)

Run(G′). (4.16)

If we instead consider pure inner twists, then we need to replace the group Gs by the group

Gps = ZG∨(ϕ|WF
), (4.17)
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and the correspondence becomes

LLCpun : R(Φp
e,un(

LG)) :=
⊕

s∈C(G∨)ss

⊕
u∈C(Gp

s )un

R(AGp
s
(u)) −→

⊕
G′∈InnTp(G)

Run(G′). (4.18)

Given φ ∈ R(AGp
s
(u)), write π(s, u, φ) for the image of φ under LLCpun.

Remark 4.4. Note that the existing LLC for unipotent representations is not entirely canonical
(see the discussion in [Sol23a, Introduction]) but for the rest of the paper, we fix a map LLCpun

as above satisfying the usual properties (described, for example, in [Sol23a, Theorem 1]).

Example 4.5. For G = SLn(F ), recall that there is a one-to-one correspondence between
InnT(SLn(F )) and Z/nZ, where the inner twists are SLm(Dd,r/m), m = gcd(r, n), r ∈ Z/nZ.

The dual Langlands group is G∨ = PGLn(C). The correspondence (4.13) takes the form:⊔
r∈Z/nZ

Irrun(SLm(Dd,r/m))←→ PGLn(C)\{(x, φ) |x ∈ PGLn(C), φ ∈ Â1
x}, (4.19)

in particular,

Irrun(SLn(F ))←→ PGLn(C)\{(x, φ) |x ∈ PGLn(C), φ ∈ Âx}.

In this case, G∨
sc = SLn(C) and ZG∨

sc
= Cn. The irreducible central characters are therefore

ẐSLn(C) = {ζr | r ∈ Z/nZ}. A Langlands parameter (x, φ) parametrizes an irreducible unipotent
representation of SLm(Dd,r/m) if and only if ζφ = ζr. In particular, the unipotent representations
of SLn(F ) correspond to central characters ζ0 = 1.

Moreover, for x ∈ PGLn(C), A1
x is the group of components of Z1

SLn(C)(x) = {g ∈ SLn(C) |
gxg−1 = x}.

Remark 4.6. Note the Langlands parameters we call unipotent here are also known as unramified
Langlands parameters (cf. [Vog93, Sol23a]).

5. Lusztig’s nonabelian Fourier transform for finite groups

We recall the definition of the nonabelian Fourier transform [Luz84a]. For the background
material, we follow [Luz84a, GM20, DM90].

5.1 Fourier transforms
For a finite group Γ, defineM(Γ) to be the set

{(x, σ) | x ∈ Γ, σ ∈ ẐΓ(x)}, (5.1)

modulo the equivalence relation given by conjugation by Γ: g · (x, σ) = (gxg−1, σg), where
σg(y) = σ(g−1yg) for all g ∈ Γ, y ∈ ZΓ(gxg−1). Define also

Y(Γ) = {(y, z) ∈ Γ× Γ | yz = zy}. (5.2)

Write Γ \ Y(Γ) for the set of Γ-orbits on Y(Γ). Let ShΓ(Γ) be the category of Γ-equivariant
coherent sheaves of Γ (Γ acting on itself by conjugation). The irreducible objects in ShΓ(Γ)
are parametrized by M(Γ): for every pair (x, σ) ∈M(Γ), let V((x, σ)) = Γ×ZΓ(x) σ be the cor-
responding irreducible Γ-equivariant sheaf. This means that there is a natural isomorphism
C[M(Γ)] ∼= K(ShΓ(Γ))C, where K( )C is the complexification of the K-group. Moreover, there is

27

https://doi.org/10.1112/S0010437X24007401 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007401


A.-M. Aubert, D. Ciubotaru and B. Romano

an isomorphism

κ : C[M(Γ)] ∼= K(ShΓ(Γ))C → C[Γ \ Y(Γ)], V �→ ((y, z) �→ tr(z,V|y)).

Lusztig [Luz84a] defined a pairing onM(Γ):

{(x, σ), (y, τ)} =
1

|ZΓ(x)||ZΓ(y)|
∑
g∈Γ

xgyg−1=gyg−1x

σ(gyg−1)τ(g−1x−1g), (5.3)

which extends to a Hermitian pairing on C[M(Γ)]. He also defined a linear map, the Fourier
transform for Γ,

FTΓ : C[M(Γ)]→ C[M(Γ)], FTΓ(f)(x, σ) =
∑

(y,τ)∈M(Γ)

{(x, σ), (y, τ)}f(y, τ). (5.4)

See Lemma 5.1 for the interpretation of FTΓ in terms of Y(Γ).
Now consider the following generalization. Suppose Γ̃ = Γ � 〈α〉, where α has order c. Set

Γ′ = Γα ⊂ Γ̃. As in [Luz84a, § 4.16], define two sets M =M(Γ � Γ̃) and M =M(Γ � Γ̃) as
follows:

M = {(x, σ) | x ∈ Γ such that Z
Γ̃
(x) ∩ Γ′ �= ∅, σ ∈ Ẑ

Γ̃
(x) with σ|ZΓ(x) irreducible},

M = {(x, σ̄) | x ∈ Γ′, σ̄ ∈ ẐΓ(x)},
(5.5)

in each case modulo the equivalence relation given by conjugation by Γ̃.
In addition, the cyclic group 〈α〉 acts onM by twists in the second entry of the pair (x, σ).

Denote by ∼c the corresponding equivalence relation.
The set M is a subset of M(Γ̃). Given (x, σ̄) ∈M, we have that (x, σ) ∈M(Γ̃) for any

extension σ of σ̄ to Z
Γ̃
(x). Thus, the pairing { , } on M(Γ̃) induces a pairing

{ , } :M×M→ C, {(x, σ̄), (y, τ)} := c{(x, σ), (y, τ)}, (5.6)

for any fixed extension σ of σ̄ to Z
Γ̃
(x).

Let P = P(Γ � Γ̃) and P = P(Γ � Γ̃) be the spaces of functions on M(Γ̃) with support in
M and M, respectively. The operator [Luz84a, (4.16.1)] (see also [GM20, § 4.2.14])

FT
Γ�Γ̃

: P → P, FT
Γ�Γ̃

f(x, σ̄) =
∑

(y,τ)∈M/∼c

{(x, σ̄), (y, τ)}f(y, τ) (5.7)

is an isomorphism with inverse FT−1

Γ�Γ̃
f(y, τ) =

∑
(x,σ̄)∈M{(x, σ̄), (y, τ)}f(x, σ̄).

5.2 Families of Weyl group representations
Let W be a finite Weyl group with the set of simple generators S. The partition of Ŵ into families
is defined in [Luz84a, § 4.2] as follows. Let sgn denote the sign character of W . If W = {1}, there
is only one family consisting of the trivial representation. Otherwise, assume that the families
have been defined for all proper parabolic subgroups of W . Then μ, μ′ ∈ Ŵ belong to the same
family of W if there exists a sequence μ = μ0, μ1, . . . , μm = μ′, μi ∈ Ŵ , such that for each i there
exists a parabolic subgroup Wi � W and μ′i, μ

′′
i ∈ Ŵi in the same family of Wi such that either

〈μ′i, μi−1〉Wi �= 0, aμ′i = aμi−1 , 〈μ′′i , μi〉Wi �= 0, aμ′′i = aμi

or

〈μ′i, μi−1 ⊗ sgn〉Wi �= 0, aμ′i = aμi−1⊗sgn, 〈μ′′i , μi ⊗ sgn〉Wi �= 0, aμ′′i = aμi⊗sgn.
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Here aμ is the a-invariant of μ defined in [Luz84a, § 4.1]. It follows from the definition that if
F ⊂ Ŵ is a family, then so is F ⊗ sgn and the families for W1 ×W2 are F1 � F2, where Fi is a
family for Wi, i = 1, 2.

Suppose in addition that we have a Coxeter group automorphism σ : W →W , i.e. σ ∈
Aut(W ) such that σ(S) = S. Such an automorphism is called ordinary if, on each irreducible
component of W , it is not the nontrivial graph automorphism of type B2, G2 or F4. The auto-
morphism σ acts on Ŵ and it permutes the families F . An important observation [Luz84a, § 4.17]
is that if σ is ordinary and F is σ-stable, then every element of F is σ-stable.

5.3 Families of unipotent representations
Let G be a connected reductive algebraic group over Fq with a Frobenius map Fr: G→ G
such that there exists a maximal torus T0 with the property Fr(t) = tq, for all t ∈ T0. Let
W = NG(T0)/T0 be the Weyl group. Recall that an irreducible representation ρ ∈ Irr GFr is
called unipotent if 〈ρ,RG

T (1)〉GFr �= 0 for some Fr-stable maximal torus T of G. Here RG
T is

Deligne–Lusztig induction [DL76, § 7.8]. Let IrrunGFr denote the set of irreducible unipotent
GFr-representations. By the results of Lusztig, the classification of IrrunGFr is reduced to the case
when G is adjoint simple (see, for example, the exposition in [GM20, Remark 4.2.1]). More pre-
cisely, if π : G→ Gad is the surjective homomorphism with central kernel (Gad is the semisimple
adjoint group isogeneous to G/ZG), there exists a Frobenius map Frad such that Frad ◦ π = π ◦ Fr
such that the resulting group homomorphism π : GFr → GFrad

ad induces a bijection

IrrunGFr ↔ IrrunGFrad
ad .

Furthermore, write Gad = G1 × · · · ×Gr for the decomposition into factors such that each Gi is
semisimple adjoint, Frad-stable, and a direct product of simple algebraic groups that are cyclically
permuted by Frad. Let Hi be one of the simple factors in Gi: if hi is the number of copies of Hi,
then Frhi

ad preserves Hi. Denote by Fri the restriction to Hi. Then

IrrunGFrad
ad
∼=

r∏
i=1

IrrunHFri
i .

The Frobenius map Fr induces a Coxeter group automorphism σ of W . Define a graph with
vertices IrrunGFr as follows: ρ1, ρ2 ∈ IrrunGFr are joined by an edge if and only if there is σ-
stable μ ∈ Ŵ such that 〈ρi, Rμ̃〉GFr �= 0 for i = 1, 2 where Rμ̃ is the almost character associated
to a fixed extension μ̃ of μ to W̃ = W � 〈σ〉 as defined in [Luz84a, (3.7.1)]. Each connected
component of this graph is called a family in IrrunGFr. One can define an equivalence relation on
the set Ŵ σ of σ-stable irreducible W -representations: μ and μ′ are equivalent if Rμ̃ and Rμ̃′ have
unipotent constituents in the same family. By [Luz84a] (see also [GM20, Proposition 4.2.3]), the
equivalence classes are the same as the σ-stable families in Ŵ , when σ is ordinary.

To each family U ⊂ IrrunGFr corresponding to the σ-stable family F ⊂ Ŵ σ, Lusztig [Luz84a,
§ 4] attached finite groups ΓU � Γ̃U such that Γ̃U = ΓU 〈σ〉, a bijection

U ←→M(ΓU � Γ̃U ), ρ �→ x̄ρ, (5.8)

scalars Δ(x̄ρ) ∈ {±1} (see [Luz84a, § 6.7]), and an injection

F −→M(ΓU � Γ̃U ), μ �→ xμ, (5.9)

such that, when σ is ordinary, [Luz84a, Theorem 4.23] states that

〈ρ,Rμ̃〉GFr = Δ(x̄ρ){x̄ρ, xμ}. (5.10)
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Define the unipotent almost characters of GFr to be the set of orthonormal class functions

Rx =
∑
ρ∈U

Δ(x̄ρ){x̄ρ, x}ρ, x ∈M(ΓU � Γ̃U ). (5.11)

Hence, the unipotent nonabelian Fourier transform of GFr

FTGFr :=
⊕

U⊂IrrunGFr

FT
ΓU�Γ̃U

(5.12)

gives the change of bases matrix, up to the signs Δ(x̄ρ), between irreducible unipotent characters
and almost characters.

Assume G is Fr-split, so that σ is trivial and a family U is parametrized by M(ΓU ). Let
x ∈ Γ = ΓU , and define the virtual combinations of unipotent characters

ΠU (x, y) =
∑

σ∈ẐΓ(x)

σ(y−1)ρ(x,σ), where y ∈ ZΓ(x), (5.13)

where ρ(x,σ) is the representation in U parametrized by (x, σ) ∈M(ΓU ). If Γ is abelian (which
is often the case), we may also define

ΠU (σ, τ) =
∑
y∈Γ

τ(y)ρ(y,σ), if σ, τ ∈ Γ̂. (5.14)

Lemma 5.1 (Cf. [DM90]). With the notation of (5.13)–(5.14) and Γ = ΓU ,

FTΓ(ΠU (x, y)) = ΠU (y, x), FTΓ(ΠU (σ, τ)) = ΠU (τ, σ),

the latter when Γ is abelian.

Proof. We verify the first formula. The second is analogous (or it follows by change of bases).
Denote by Cy the conjugacy class of y in ZΓ(x). Then,

FTΓU (ΠU (x, y))

=
∑
σ

σ(y−1)
∑
(z,τ)

{(x, σ), (z, τ)}ρ(z,τ)

=
∑
σ

σ(y−1)
∑
(z,τ)

1
|ZΓ(x)||ZΓ(z)|

∑
g∈Γ, gzg−1∈ZΓ(x)

σ(gzg−1)τ(g−1x−1g)ρ(z,τ)

=
∑
(z,τ)

1
|ZΓ(z)|

( ∑
g∈Γ, gzg−1∈ZΓ(x)

1
|ZΓ(x)|

∑
σ

σ(y−1)σ(gzg−1)
)
τ(g−1x−1g)ρ(z,τ)

=
∑

g,z∈Γ, gzg−1∈Cy

1
|Cy|

1
|ZΓ(z)|

∑
τ∈ẐΓ(z)

τ(g−1x−1g)ρ(z,τ) (by character orthogonality)

=
1
|Cy|

∑
y′∈Cy

∑
τ∈ ̂ZΓ(g−1y′g)

τ(g−1x−1g)ρ(g−1y′g,τ) (setting y′ = gzg−1)

=
1
|Cy|

∑
y′∈Cy

ΠU (g−1y′g, g−1xg) = ΠU (y, x),

where we used column orthogonality of characters and that (y, x) is Γ-conjugate to
(g−1y′g, g−1xg) when y′ ∈ Cy. �
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6. Disconnected groups over finite fields

Suppose that G is a disconnected reductive group over Fp with Frobenius map Fr: G→ G and
identity component G◦ such that A = G/G◦ is abelian. (In our applications, G/G◦ will almost
always be a cyclic group.) By definition, the irreducible unipotent GFr-representations IrrunGFr

are the constituents of all induced representations IndGFr

G◦Frρ, where ρ ∈ IrrunG◦Fr. See [GM20,
Proposition 4.8.19] for the compatibility with the definition in terms of the appropriate version
of RG

T (1). The parametrization of IrrunGFr follows from that of IrrunG◦Fr via Mackey induction
using the explicit results for simple groups, e.g. [GM20, Theorems 4.5.11 and 4.5.12].

We are interested in studying the irreducible unipotent representations for groups GFr that
are related via the structure theory of p-adic groups.

Let G be a reductive algebraic group over Fp with identity component G◦ and such that
G/G◦ = A is a finite abelian group. Let Fr0 be a Frobenius map on G and assume that GFr0

is split. Given a ∈ A, conjugation by a defines an outer automorphism of G◦, which induces
an isomorphism, call it σa, of the based root datum of G◦. For every a, define the Frobenius
automorphism Fra = Fr0 ◦ σa. By analogy with § 2, we write

InnTpG = {GFra | a ∈ A}
and call this the set of pure inner twists of GFr0 . Just as in the p-adic case, this set is in one-to-one
correspondence with the first Galois cohomology group

InnTpG↔ H1(Fq,G) ∼= H1(Fq,G/G◦) = H1(Fq, A) ∼= A,

using the fact that H1(Fq,G◦) = 0 by Lang’s Theorem (see, for example, [Ser02, III.§ 2,
Corollary 3]), and the assumption that Fr0 acts trivially on A.

By (5.8), every unipotent family U ⊂ Irrun(G◦Fr0) has an associated finite group ΓU = Γ̃U
(since G◦Fr0 is split). The group A acts on the set of families U . For every orbit OA = A · U
with representative U , let ZA(U) be the corresponding isotropy group. Then ZA(U) permutes the
elements of U , hence the corresponding parametersM(ΓU ). If ΓU is abelian, which turns out to
be the case in all of the examples of interest to us when A �= {1}, this automatically defines an
action of ZA(U) on ΓU , hence a group

Γ̃AU = ΓU � ZA(U). (6.1)

See [DM90, § 5] and [Lus86, § 17] for more details.

Proposition 6.1 (Cf. [DM90, Proposition 5.2]). As above, assume G is Fr0-split. The
parametrization (5.8) induces a bijection⊔

a∈A
Irrun(GFa)←→

⊔
U⊂A\Irrun(G◦F0 )

M(Γ̃AU ),

where U in the right-hand side ranges over a set of representatives of the A-orbits of families in
Irrun(G◦F0).

Proof. This can be viewed as a particular case of [DM90, Proposition 5.2]. There the right-hand
side of the bijection involves the groups M(Γ̃AU ⊂ Γ̃AU � 〈Fr0〉), but since we are assuming G is
Fr0-split,M(Γ̃AU ⊂ Γ̃AU � 〈Fr0〉) ∼=M(Γ̃AU ). �
Remark 6.2. The bijection in Proposition 6.1 is not unique. To account for this (and in order
to be able to carry out computations later on), we will work out explicit parametrizations in
Examples 6.3–6.8. These cases are relevant for the branching computations for the unipotent
representations of reductive p-adic groups in the inner class of the split group.
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Let Run(GFa) be the C-span of Irrun(GFa). The bijection of Proposition 6.1 induces a linear
isomorphism ⊕

a∈A
Run(GFra)→

⊕
U⊂A\IrrunG◦Fr0

C[M(Γ̃AU )]. (6.2)

The right-hand side of (6.2) has the involution given by (5.4). Define

FTG :
⊕
a∈A

Run(GFra)→
⊕
a∈A

Run(GFra), (6.3)

to be the corresponding involution on the left-hand side.
In the examples below, when A is clear from the context, we may write Γ̃U in place of Γ̃AU

for simplicity of notation.

Example 6.3. Let H be a connected almost simple Fq-split group and G = (H×H) � Z/2Z,
where the nontrivial element δ of A = Z/2Z acts by flipping the two copies of H. There are two
pure inner twists:

InnTpG = {H(Fq)2 � Z/2Z,H(Fq2) � Z/2Z},

the second for the Frobenius map Fr1(h1, h2) = (Fr0(h2),Fr0(h1)), h1, h2 ∈ H. A family of
G◦(Fq) = H(Fq)2 is U1 � U2, where U1, U2 are unipotent families of H. The A-orbits are either
{U1 � U2,U2 � U1} for U1 �= U2 or {U � U}. Assume that all ΓU are abelian. Set

Γ̃Z/2Z
U1�U2

= ΓU1 × ΓU2 , U1 �= U2, Γ̃Z/2Z
U�U = Γ2

U � Z/2Z,

with the flip action of δ. There are �(�+ 3)/2 conjugacy classes in Γ̃U�U , � = |ΓU |, and they are
represented by:

– (x, x′) ∼ (x′, x) if x �= x′ ∈ ΓU , Z
Γ̃U�U

((x, x′)) = Γ2
U ;

– (x, x), x ∈ ΓU , Z
Γ̃U�U

((x, x)) = Γ2
U � Z/2Z;

– (x, 1)δ, x ∈ ΓU , Z
Γ̃U�U

((x, 1)δ) = 〈ΓΔ
U , (x, 1)δ〉, where ΓΔ

U is the diagonal copy of ΓU .

When U1 �= U2, if ρ1 ∈ U1, ρ2 ∈ U2, then ρ1 × ρ2 := IndG(Fq)
G◦(Fq)(ρ1 � ρ2) is parametrized by

(x̄ρ1 , x̄ρ2) ∈M(Γ̃U1�U2
).

In the second case, let ρ, ρ′ ∈ U . If ρ �= ρ′, then ρ× ρ′ ∼= ρ′ × ρ is an irreducible representation
of G(Fq). If x̄ρ = (x, σ), x̄ρ′ = (x′, σ′) are the corresponding parameters of ρ, ρ′ inM(Γu), then
the parameter for ρ× ρ′ in M(Γ̃U�U ) is ((x, x′), σ � σ′), if x �= x′, or ((x, x), σ × σ′), where

σ × σ′ = IndΓ2
U�Z/2Z

ΓU (σ � σ′), if σ �= σ′.
If ρ = ρ′, then we can extend ρ� ρ in two different ways to G(Fq), denoted by (ρ× ρ)±

relative to the character of Z/2Z. The corresponding parameters in M(Γ̃U�U ) are ((x, x), (σ ×
σ)±), with the obvious notation.

For the second pure inner twist, the irreducible unipotent representations of H(Fq2) are given
by the same families U as for H(Fq) and δ fixes each unipotent representation ρ of H(Fq2). Let ρ
be an irreducible H(Fq2)-representation in U parametrized by x̄ρ = (x, σ), x ∈ ΓU , σ ∈ Γ̂U . Then
it can be extended in two different ways ρ± to H(Fq2) � Z/2Z. The centralizer Z

Γ̃U�U
((x, 1)δ) =

〈ΓΔ
U , (x, 1)δ〉 is isomorphic to the direct product Cx := 〈(y, y) | y �= x ∈ ΓU 〉 × 〈(x, 1)δ〉, since(

(x, 1)δ
)2 = (x, x). Regard σ as a representation of the subgroup ΓΔ

U . There are two ways σ±

to extend it to Cx, coming from the short exact sequence 1→ 〈(x, x)〉 → 〈(x, 1)δ〉 → Z/2Z→ 1.
We attach ((x, 1)δ, σ±) ∈M(Γ̃U�U ) to ρ±. To fix a choice of ±, we fix a choice of primitive �th
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root of unity ζ� for each �. Then, if σ((x, x)) = ζjk, for some j, where k is the order of x, then
σ+((x, 1)δ) = ζj2k. For our applications, H will be a classical group and therefore, ΓU a 2-group,
hence x will have order k � 2.

Example 6.4. Let G◦ = GLmk , G◦Fr0 = GLk(Fq)m and A = Z/mZ acting by cyclic permutations
on the factors of G◦. Then

InnTpG = {G◦Frr � Z/mZ = GLk(Fqm/d)d � Z/mZ | r ∈ Z/mZ, d = gcd(r,m)}.

Each unipotent family of GLk(Fqm/d)d is a singleton {ρ1 � · · ·� ρd} where ρi ∈ Ŝk, 1 � i � d.
Hence, we can ignore the difference between unipotent families and irreducible representations
of symmetric groups. The irreducible representations of Sdk � Z/mZ are constructed by Mackey
theory.

Start with a unipotent representation ρ = ρ1 � · · ·� ρm of GLk(Fq)m � Z/mZ with stabilizer
Z/cZ, c|m. This means that ρi = ρi+m/c for all i (viewed mod m) and that Z/(m/c)Z has no
fixed points under the cyclic action on ρ1 � · · ·� ρm/c. The corresponding unipotent family Ũ
that we construct for InnTpG has

Γ̃Z/mZ
U = Z/cZ.

The irreducible representations ρ̃ of GFr0 whose restriction to G◦Fr0 contain ρ are in one-to-one
correspondence to the characters of Z/cZ, hence they are parametrized in M(Γ̃U ) by the pairs
(0, σ), σ ∈ Ẑ/cZ.

For every r ∈ Z/mZ such that m/c divides d = gcd(r,m), consider the representation of
G◦Frr given by ρr = ρ1 � · · ·� ρd. The stabilizer of this representation in Z/mZ is also Z/cZ.
The irreducible representations ρ̃r of GFrr whose restriction to G◦Frr contain ρr are again in one-
to-one correspondence to the characters of Z/cZ, and we parametrize them in M(Γ̃U ) by the
pairs (rc/m, σ), σ ∈ Ẑ/cZ. This completes the parametrization via M(Γ̃Z/mZ

U ) of the unipotent
representations for InnTpG corresponding to the family U = {ρ} in G◦Fr0 .

Example 6.5. Let G = O2n,G◦ = SO2n, n � 2, A = Z/2Z = 〈δ〉. There are two pure inner twists
InnTpG = {O+

2n(Fq),O
−
2n(Fq)}. In this case, we use the parametrizations of [Luz84a, §§ 4.6, 4.18].

Recall that a symbol for type Dn is an array Λ =
(
λ1 λ2 ... λb
μ1 μ2 ... μb′

)
, b+ b′ = 2m, 0 � λ1 < · · · <

λb′ , 0 � μ1 < · · · < μb′ , which is considered the same as the array where the rows are flipped.
A symbol where b = b′ = m and λ1 � μ1 � λ2 � μ2 � . . . ,

∑
λ2
i + λμ2

i = n+m2 −m is called
special.

Let Z be a special symbol. In the case when λi = μi for all 1 � i � m, one attaches to
Z two unipotent G◦Fr0-families, U ′ = {ρ} and U ′′ = {ρ′}, each consisting of a single unipotent
representation and with ΓU ′ = ΓU ′′ = {1}. In this case, the action of δ flips the two families.
Hence they give rise to a single family {ρ̃} for GF0 , ρ̃|G◦Fr0 = ρ⊕ ρ′, and Γ̃U ′ = {1}.

Assume now that the two rows of the symbol Z are not identical, i.e. Z is nondegenerate in
the sense of [Luz84a]. Then Z defines one unipotent family for G◦Fr0 and one for G◦Fr1 . Each
element of these families is stable under δ so it can be lifted to two different GFr0 , respectively
GFr1 , representations.

The unipotent representations in the G◦Fr0-family UZ corresponding to Z are indexed by the
set MZ of symbols Λ such that b− b′ ≡ 0 mod 4, b+ b′ = 2m. The unipotent representations
in the G◦Fr1-family U−

Z corresponding to Z are indexed by the set M−
Z of symbols Λ such that

b− b′ ≡ 2 mod 4, b+ b′ = 2m. Let Z1 be the set of elements that appear as entries of Z only
once. Let 2d = |Z1|. Define:
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– VZ1 as the set of subsets X ⊆ Z1 of even cardinality, with the structure of an F2-vector space
with the sum given by the symmetric difference;

– V ′
Z1

as the set of subsets X ⊆ Z1 with the structure of an F2-vector space with the sum given
by the symmetric difference, modulo the line spanned by Z1 itself;

– (V ′
Z1

)+ as the subspace of V ′
Z1

where the elements are the subsets X of even cardinality;
– (V ′

Z1
)− as the subspace of V ′

Z1
where the elements are the subsets X of odd cardinality.

Note that (V ′
Z1

)+ is also the image of the projection of VZ1 to V ′
Z1

. The dimensions of V ′
Z1

and
VZ1 over F2 are 2d− 1, while the dimension of (V ′

Z1
) is 2d− 2. There is a nonsingular pairing

( , ) : V ′
Z1
× VZ1 → F2, (X1, X2) �→ |X1 ∩X2| mod 2. (6.4)

This pairing restricts to a nonsingular symplectic F2-form of (V ′
Z1

)+. If VZ1 has the basis
e1, e2, . . . , e2d−1 as in [Luz84a], then (V ′

Z1
)+ is spanned by the images ē1, ē2, . . . , ē2d−1 modulo

the relation ē1 + ē3 + · · ·+ ē2d−1 = 0. Let

Ī ′ = subspace of (V ′
Z1

)+ spanned by ē1, ē3, . . . , ē2d−1,

Ī ′′ = subspace of (V ′
Z1

)+ spanned by ē2, ē4, . . . , ē2d−2;

they are maximal isotropic subspaces of (V ′
Z1

)+ and (V ′
Z1

)+ = Ī ′ ⊕ Ī ′′. Then

ΓUZ
= Ī ′′ ∼= (Z/2Z)d−1.

As shown in [Luz84a, § 4.6], there is a natural bijection

MZ ↔M(ΓUZ
) ∼= (V ′

Z1
)+ = Ī ′ ⊕ Ī ′′

(where Ī ′ is identified with the group of characters of ΓUZ
). Denote

Γ̃UZ
= {v ∈ V ′

Z1
| (v, e2i) = 0, 1 � i � d− 1} ∼= (Z/2Z)d. (6.5)

Clearly, ΓUZ
� Γ̃UZ

. As shown in [Luz84a, § 4.18], there is a natural bijection

M−
Z ↔M(ΓUZ

� Γ̃UZ
) ∼= (V ′

Z1
)− ∼= (Γ̃UZ

\ ΓUZ
)× Ī ′.

Let ŨZ be the set (family) of irreducible representations in IrrunGFr0 � IrrunGFr1 whose
restrictions to G◦Fr0 (respectively, G◦Fr1) are in UZ (respectively, U−

Z ). Since each unipotent
representation in UZ and U−

Z extends in two different ways to the corresponding disconnected
group, the parametrization above implies easily that there is natural bijection

ŨZ ←→M(Γ̃UZ
). (6.6)

Explicitly, let {f̄1, f̄2, . . . , f̄d} be the spanning set of V ′
Z1

subject to
∑2d

i=1 f̄i = 0, such that ēi =
f̄i + f̄i+1, 1 � i � 2d− 1. Then an F2-basis of Γ̃UZ

is given by {f̄1, ē2, ē4, . . . , ē2d}. An irreducible
character of ΓUZ

= 〈ē2, ē4, . . . , ē2d〉 can be extended in two different ways to Γ̃UZ
by setting the

character value on f̄1 to 1 or −1. The value 1 corresponds to the representations of the identity
components of GFr0 , GFr1 extended by letting δ act trivially, while the −1 value corresponds to
those where δ acts by −1.

Example 6.6. Let G◦ be of type Ak−1, k � 3 or E6, and A = Z/2Z = 〈δ〉 acting by the nontrivial
automorphism of the Dynkin diagram. The nonsplit pure inner twist has G◦Fr1 of type 2Ak−1 or
2E6, respectively. By [Luz84a, § 4.19], every unipotent family U of G◦ is fixed pointwise by A.
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Hence,

Γ̃Z/2Z
U = ΓU × Z/2Z, for all U .

Each irreducible representation ρ of the split form G◦Fr0 can be extended to GFr0 in two different
ways ρ± corresponding to the two characters of Z/2Z. If the parameter for ρ is x̄ρ = (x, σ) ∈
M(ΓU ), then the parameters for ρ± are ((x, 1), σ±) with the obvious notation.

Similarly, an irreducible representation ρ′ of the nonsplit pure inner twist G◦Fr1 can be
extended to GFr1 in two different ways ρ′±. If the parameter for ρ′ is x̄ρ = (x′, σ′) ∈M(ΓU ),
then the parameters for ρ′± are ((x′, δ), σ′±).

Example 6.7. Let H be of type Dk, k � 2 and G◦ = H×H. Let A = 〈δ1〉 × 〈δ2〉 ∼= Z/2Z× Z/2Z,
where δ1 acts by the nontrivial outer automorphism of the Dynkin diagram of type Dk, and
δ2 flips the H-factors. This case is therefore a combination of Examples 6.5 and 6.3 and the
parametrization of families for the pure inner twists of G follows from these examples, i.e. the
same parametrizations as in Example 6.3 but constructed from the orthogonal families ŨZ from
Example 6.5.

Now for the same H and G◦, suppose A = 〈δ〉 = Z/4Z. If s′1, s
′′
1 are the two commuting

extremal reflections of the first H = Dk and s′2, s
′′
2 are the similar reflections for the second

H = Dk, then δ acts by the cyclic permutation:

δ : s′1 �→ s′2 �→ s′′1 �→ s′′2 �→ s′1.

On all the other simple reflections of the two components of type Dk, δ acts by the obvious
diagram flip (of order 2). To describe the pure inner twists, let Fr denote the Frobenius map of
H whose fixed points is the nonsplit group of type 2Dk. Then

Fr1 : H×H→ H×H, Fr1(h1, h2) = (Fr(h2), h1)

is a Frobenius automorphism and Frr = Frr1, r ∈ Z/4Z (see, e.g., [GM20, Example 1.4.23]). The
identity components of the pure inner twists are the finite reductive groups of types:

G◦Fr0 : Dk ×Dk, G◦Fr1 : 2Dk, G◦Fr2 : 2Dk × 2Dk, G◦Fr3 : 2Dk.

If ρ1, ρ2 are two unipotent representations of Dk, the action of δ is

δ(ρ1, ρ2) = (ρ′2, ρ1), where ρ′2 =

{
ρ2, if the symbol of ρ2 is nondegenerate,
ρ−2 , otherwise,

where ρ−2 is unipotent representation parametrized by the other degenerate symbol with the
same rows. See Example 6.5.

We start with a family U1 × U2 of G◦Fr0 = Dk ×Dk. If U2 consists of a degenerate symbol,
then the stabilizer in A is always 1, regardless of what U1 is. (Similarly if U1 is degenerate.) In
this case,

Γ̃Z/4Z
U1×U2

= ΓU1 .

(Recall that ΓU2 = 1 necessarily.) Since the stabilizer in Z/4Z of each representation ρ1 � ρ2,
ρ1 ∈ U1, ρ2 ∈ U2 is also trivial in this case, it follows that there is a one-to-one correspondence
between the representations IndGFr0

G◦Fr0
(ρ1 � ρ2) and ρ1 ∈ U1, hence a parametrization byM(ΓU1)

as expected.
For the rest of the example, assume that all families correspond to nondegenerate symbols.

Let Z1, Z2 be two nondegenerate symbols of type Dk. Let U1,U2 be the corresponding families
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for Dk and U−
1 , U−

2 the families for 2Dk. Suppose first that Z1 �= Z2. Then the stabilizer in A is
Z/2Z = 〈δ2〉, hence the group for the pure inner twists is

Γ̃Z/4Z
U1�U2

= ΓU1 × ΓU2 × Z/2Z.

If ρ1 ∈ U1 and ρ2 ∈ U2, the stabilizer in A of ρ1 � ρ2 is also Z/2Z = 〈δ2〉. By Mackey theory, we
get two irreducible representations of GFr0 by inducing ρ1 � ρ2 twisted by the trivial or the sign
character of Z/2Z. If x̄ρi = (xi, σi) ∈M(ΓUi), i = 1, 2, then the two induced representations are
parametrized by ((x1, x2, 1), σ1 � σ2 � τ) ∈M(ΓU1 × ΓU2 × Z/2Z), where τ is the trivial or the
sign character of Z/2Z.

If ρ′1 ∈ U−
1 and ρ′2 ∈ U−

2 , the analysis is analogous. The difference is that x̄ρ′i = (x′i, σ
′
i) ∈

M(ΓUi � Γ̃Ui), i = 1, 2, where x′i ∈ Γ̃Ui \ ΓUi , σi ∈ Γ̂Ui . Write xi = yiα, i = 1, 2, yi ∈ ΓUi , where
α is the nontrivial automorphism of the Dk diagram. Then the two unipotent representations of
GFr2 whose restriction to G◦Fr2 contain ρ′1 � ρ′2 are parametrized by ((y1, y2, δ

2), σ1 � σ2 � τ) ∈
M(ΓU1 × ΓU2 × Z/2Z), where τ is the trivial or the sign character of Z/2Z.

Finally, if Z1 = Z2 = Z with the families U of Dk and U− of 2Dk, then the stabilizer of U � U
is A = Z/4Z. In this case, set

Γ̃Z/4Z
U�U = (ΓU × ΓU ) � Z/4Z. (6.7)

All four pure inner twists GFrr contribute in this case. Each conjugacy class in Γ̃Z/4Z
U�U is repre-

sented by an element (x, y, r) with x, y ∈ ΓU and r ∈ Z/4Z. It will correspond to a unipotent
representation of GFrr , for the same r.

If r = 0, then the conjugacy classes are given by (x, x′, 0) ∼ (x′, x, 0) and its stabilizer in
Γ̃Z/4Z
U�U is Γ2

U × 〈δ2〉 if x �= x′, or all of Γ̃Z/4Z
U�U if x = x′. If ρ, ρ′ ∈ U with parameters x̄ρ = (x, σ),

x̄ρ′ = (x′, σ′), it is clear that there is a perfect matching between the induced representation
coming from the Mackey construction and the parameters ((x, x′, 0̄), σ̃) ∈M(Γ̃Z/4Z

U�U ), where σ̃ ∈
̂Z

Γ̃
Z/4Z
U�U

((x, x′, 0̄)).

If r = 2, the conjugacy classes are given by (x, x′, δ2) ∼ (x′, x, δ2) and its stabilizer in Γ̃Z/4Z
U�U

is Γ2
U × 〈δ2〉 if x �= x′ or all Γ̃Z/4Z

U�U if x = x′. If ρ, ρ′ ∈ U− with parameters x̄−ρ = (xα, σ), x̄−ρ′ =
(x′α, σ′), again there is a perfect matching between the induced representations coming from the
Mackey construction and the parameters ((x, x′, δ2), σ̃) ∈M(Γ̃Z/4Z

U�U ), where σ̃ ∈ ̂Z
Γ̃

Z/4Z
U�U

((x, x′, 2̄)).

If r = 1 or 3, the conjugacy classes are given by (x, 1, δr), cf. Example 6.3. The stabilizer in
this case is 〈ΓΔ

U , δ
2, (x, 1, δ)〉. Let ρ be a representation in the unipotent family U− with parameter

x̄ρ = (xα, σ), σ ∈ Γ̂U . It can be extended in four different ways to 2Dk � Z/4Z corresponding to
the characters of Z/4Z. Since x has order 2, the cyclic group

〈(x, 1, δ)〉 = 〈(1, 1, 1), (x, 1, δ), (x, x, δ2), (1, x, δ3)〉 ∼= Z/4Z.

Note that there is a short exact sequence (that does not split)

1 −→ ΓΔ
U −→ Z

Γ̃
Z/4Z
U�U

((x, 1, δr)) −→ Z/4Z −→ 1,

where the quotient Z/4Z is generated by the image of (x, 1, δ). This means that σ ∈ Γ̂U , viewed
as a representation of ΓΔ

U can be lifted in four different ways to Z
Γ̃

Z/4Z
U�U

((x, 1, δr)): the first can lift

σ in two different ways to σ±, representations of ΓΔ
U × 〈δ2〉 corresponding to the trivial and the

sign character of 〈δ2〉. Then, fixing a square roots ζ± of σ±(x, x, δ2), one constructs lifts σ̃i of
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σ, 0 � i � 3, by setting

σ̃0((x, 1, δ)) = ζ+, σ̃1((x, 1, δ)) = −ζ+, σ̃2((x, 1, δ)) = ζ−, σ̃3((x, 1, δ)) = −ζ−.

Note that {±ζ±} is the set of fourth roots of 1, and this gives the desired parametrization.

Example 6.8. Let G◦ be of type D4 and A = Z/3Z = 〈δ〉 acting on the Dynkin diagram by cycli-
cally permuting the extremal nodes. The Weyl group W (D4) has 13 irreducible representations
which we denote by bipartitions of 4, α× β up to swapping α and β, except where α = β, there
are two nonisomorphic representations α× α±. There is one cuspidal unipotent representation
ρc, and in total 14 unipotent representations of G◦Fr0 .

All families are singletons with associated finite group ΓU = {1}, except the family

{(12)× (1), (22)× ∅, (11)× (2), ρc}

for which the finite group is ΓU = Z/2Z. This family and the following four singleton families:

{(4)× ∅}, {(1111)× ∅}, {(3)× (1)}, {(111)× (1)}

are A-stable and, in fact, each element in the four-element family is A-stable. The remaining six
unipotent (singleton) families form two A-orbits:

{(13)× ∅, (2)× (2)+, (2)× (2)−} and {(112)× ∅, (11)× (11)+, (11)× (11)−}.

According to our recipe, the groups Γ̃Z/3Z
U are:

– Z/3Z corresponding to each of the four A-stable singleton families U ;
– Z/2Z× Z/3Z for the unique family with four elements;
– {1} for each one of the two nontrivial A-orbits.

Hence, the right-hand side of Proposition 6.1 isM(Z/3Z)4 �M(Z/2Z× Z/3Z) �M({1})2 which
has 32 × 4 + 62 + 12 × 2 = 74 elements.

The irreducible unipotent representations of the disconnected group D4 � Z/3Z are
parametrized, via Mackey theory, by the elements (x, σ) ∈M(Γ̃Z/3Z

U ), where x ∈ ΓU and U ranges
over a set of representatives of the A-orbits of families of D4. There are 26 such irreducible
representations.

The other two A-forms corresponding to δ and δ−1 are both isomorphic to the finite group
of type 3D4. There are eight irreducible unipotent representations of 3D4 each coming from
one of γ-stable irreducible unipotent representations of D4. By induction, there are 8× 3 = 24
irreducible unipotent representations of 3D4 � Z/3Z. The irreducible representations of the 3D4

corresponding to δ are parametrized by (xδ, σ) ∈M(Γ̃Z/3Z
U ), where x ∈ ΓU and U ranges over

the set of A-stable families. Similarly for δ−1.

7. Maximal compact subgroups

We return to the setting of § 2, so G is a connected reductive group over F and G = G(F ). In
this section, we assume in addition that G is simple and F -split with maximal F -split torus
S. Let ΠG be a set of simple roots for G with respect to S, and extend ΠG to a set of simple
affine roots Πa

G = ΠG ∪ {α0}. Let I ⊂ G(oF ) be the corresponding Iwahori subgroup of G, with
S(oF ) = S(F ) ∩ I. Let W̃G = NG(S(F ))/S(oF ) be the Iwahori–Weyl group. We have

G =
⊔

w∈W̃G

IẇI,
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where ẇ denotes a choice of a lift in NG(S(F )) of w ∈ W̃G. The finite Weyl group is WG =
NG(S(F ))/S(F ). Let W a

G be the affine Weyl group generated by the simple reflections {si | i ∈
Πa
G}. Then

W̃G = W a
G � ΩG,

where ΩG is a finite abelian group, the stabilizer in W̃G of I.
Let max(G) denote the set of conjugacy classes of maximal compact open subgroups in G.

To parametrize max(G), we define Smax(G) to be the set of ΩG-orbits of pairs (A,O), where A
is a subgroup of ΩG and O is an A-orbit in Πa

G satisfying

StabΩG
(O) = A.

By [IM65, BT72], max(G) is parametrized by Smax(G). Explicitly, given (A,O) ∈ Smax(G), we
construct an element KO ∈ max(G) as follows: let W̃O be the finite subgroup of W̃G generated
by A and {si, i ∈ Πa

G \ O}. Set

KO =
⊔

w∈W̃O

IẇI.

The map (A,O) �→ KO defines a bijection between Smax(G) and max(G). (Note that a pair
(A,O) ∈ Smax(G) is completely determined by O, so the notation KO is unambiguous.) In this
notation, the maximal hyperspecial subgroup G(oF ) is K{α0}, where α0, as defined above, is the
unique simple affine root in Πa

G \ΠG.
Given (A,O) ∈ Smax(G), let W̃ ◦

O be the normal subgroup of W̃O generated by {si, i ∈ Πa
G \

O}. Then K◦
O :=

⊔
w∈W̃ ◦

O
IẇI is a parahoric subgroup of G, and we denote by K+

O its pro-
unipotent radical. There is a short exact sequence

1 −→ K◦
O −→ KO −→ A −→ 1.

Set K◦
O = K◦

O/K
+
O and KO = KO/K

+
O . Then KO = MO(kF ), K◦

O = M◦
O(kF ), for a reductive

kF -split group MO with identity component M◦
O and MO/M◦

O
∼= A. Let InnTpKO ↔ A be the

collection of pure inner twists of MO.
Now we consider pure inner twists of G. By § 2, InnTpG ∼= H1(F,G). If Gsc is the simply

connected cover of G and identifying ΩG with the kernel of the surjection Gsc → G, then by
[Kne65, Satz 2], H1(F,G) ∼= H2(F,ΩG) ∼= ΩG, with the last equivalence because G is F -split.
Given x ∈ ΩG, let Gx ∈ InnTpG be the corresponding pure inner twist. If we denote the set
of conjugacy classes of maximal compact open subgroups of Gx by max(Gx), then there is a
one-to-one correspondence

{(A,O) ∈ Smax(G) | x ∈ A} ←→ max(Gx), (7.1)

which we write as (A,O) �→ Kx,O. More precisely, we can realize Kx,O in the following way. We
realize Gx as the subgroup of G(Fun) fixed under the Gal(Fun/F )-action corresponding to x.
Then since x ∈ A, the parahoric of G(Fun) corresponding to (A,O) as above is Gal(Fun/F )-
stable. Let K◦

x,O ⊂ Gx be the Galois-fixed subgroup. By [BT72, 3.3.4 Proposition] (applied using
[BT84, 5.2.12 Proposition]), the normalizer Kx,O := NGx(K◦

x,O) is a maximal compact subgroup
of Gx.
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Note that Kx,O ∈ InnTpKO is the pure inner twist given by x ∈ A ∼= H1(kF ,MO)↔
InnTpKO (see § 6). For fixed (A,O) ∈ Smax(G), we have

InnTpKO = {Kx,O | x ∈ A}. (7.2)

Given G′ ∈ InnTp(G), for every maximal compact open subgroup K ′ ∈ max(G′), define Run(K
′)

to be the C-span of IrrunK
′, and let

C(G)cpt,un =
⊕

G′∈InnTpG

⊕
K′∈max(G′)

Run(K
′). (7.3)

By the discussion above, we have

C(G)cpt,un =
⊕
x∈Ω

⊕
(A,O)∈Smax(G)

with x∈A

Run(Kx,O) (7.4)

=
⊕

(A,O)∈Smax(G)

⊕
x∈A

Run(Kx,O). (7.5)

Note that for each (A,O) ∈ Smax(G), by (7.2),
⊕

x∈ARun(Kx,O) has the involution FTKO given
by (6.3). Putting together these involutions for all choices of (A,O) gives the following definition.

Definition 7.1. Let FTcpt,un =
⊕

(A,O)∈Smax(G) FTKO be the involution on C(G)cpt,un defined
by using (6.3) and (7.2).

Note that FTcpt,un always preserves the space Run(G(oF )), since G(oF ) corresponds to the
pair (A, {α0}) with A trivial. In the case when G is simply connected, we have ΩG = 1 and
KO = K◦

O for all O, so FTcpt,un preserves the space Run(KO) for all KO ∈ max(G). But, in
general, it does not preserve Run(Kx,O) for every maximal compact open subgroup Kx,O, which
can be seen even in the case when G = PGL2 (see Example 14.3).

Example 7.2. We list the type of groups KO in the case when G is adjoint. Since we are only
interested in unipotent representations, only the Lie type of K◦

O is important.

(i) If G is also simply connected, which is the case for types G2, F4 and E8, the set max(G) is
in one-to-one correspondence with the maximal subsets of Πa (equivalently, O is a single
vertex in Πa

G).
(ii) If G = PGLn, ΩG = Z/nZ acting by cyclically permuting Πa

G, then for every divisor m of
n, we have an orbit Om in Πa

G with stabilizer A = Z/mZ and

KOm = P (GLmn/m) � Z/mZ,

where the semidirect product is given by the permutation action. This case corresponds
to Example 6.4.

(iii) If G = SO2n+1, ΩG = Z/2Z, then KO is either SO2n+1 (A = 1) or SO2m+1 ×O2(n−m) (A =
Z/2Z), for 0 � m < n. This case corresponds to Example 6.5.

(iv) If G = PSp2n, Ω = Z/2Z, then KO is of type:
– Ck × C� (A = 1) for 0 � k < �, k + � = n;
– (Ck × Ck) � Z/2Z (A = Z/2Z), if n = 2k; or
– (Ci × Ci ×An−1−2i) � Z/2 (A = Z/2Z), for 0 � i < n/2.
Here Z/2Z acts by flipping the two type C factors and by the nontrivial diagram
automorphism on the type A factor. These cases are covered by Examples 6.3 and 6.6.
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(v) If G = PSO4m, m � 2, ΩG = 〈δ1〉 × 〈δ2〉 ∼= Z/2Z× Z/2Z, then δ1 acts by flipping Πa hor-
izontally and δ2 by the vertical flip. For each subgroup A � ΩG, we give the possible
K

◦
O.

(a) If A = Ω, K◦
O is of type Dk ×Dk ×A2m−2k−1, 2 � k < m, Dm ×Dm or A2m−3, where

A acts on D� ×D� as in Example 6.7, while on A2m−2k−1 δ1 acts trivially and δ2 by
the nontrivial diagram automorphism.

(b) If A = 〈δ1〉, K
◦
O is of type Dk ×D2m−k, 2 � k < m or D2m−1, where δ1 acts by the

nontrivial automorphism of type D�. These cases are covered by Example 6.5.
(c) If A = 〈δ2〉 or A = 〈δ1δ2〉, K

◦
O is of type A2m−1 with the diagram automorphism action

as in Example 6.6.
(d) If A = 1, then K◦

O is the hyperspecial subgroup of type D2m−1.
(vi) If G = PSO4m+2, m � 2, then ΩG = 〈δ〉 ∼= Z/4Z, and we have the following.

(a) If A = ΩG, K◦
O is of type Dk ×Dk ×A2m−2k, 2 � k � m or A2m−2, where δ acts

on D� ×D� as in Example 6.7, while on A2m−2k, δ acts by the nontrivial diagram
automorphism.

(b) If A = 〈δ2〉, K◦
O is of type D2m or Dk ×D2m−k+1, 2 � k � m, where δ2 acts on each

factor by the nontrivial automorphism of type D�, as in Example 6.5.
(c) If A = 1, then K◦

O is the hyperspecial subgroup of type D2m.
(vii) Let G be of type E6 with ΩG = 〈δ〉 ∼= Z/3Z.

(a) If A = 1, then K◦
O is either of type E6 or A5 ×A1.

(b) If A = ΩG, then K
◦
O is of type: A3

2 with δ acting by permutation, as in Example 6.4;
A3

1 ×A1, where δ permutes the first three factors and it fixes the last one; or D4, where
δ acts as in Example 6.8.

(viii) Let G be of type E7 with ΩG = 〈δ〉 ∼= Z/2Z.
(a) If A = 1, then K◦

O is of type E7, D6 ×A1 or A5 ×A2.
(b) If A = ΩG, then K

◦
O is of type: E6 with δ acting by the nontrivial diagram automor-

phism as in Example 6.6; D4 ×A2
1 with δ acting by an order-2 diagram automorphism

of D4 (Example 6.5) and by flipping the two A1; A2
2 ×A2, flipping the first A2 and

acting trivially on the third A2; A2
3 ×A1, with the flip on A2

3 and trivial action on A1;
or A7 with the nontrivial diagram automorphism (see Examples 6.3 and 6.6).

8. Elliptic pairs

8.1 Finite groups
Suppose H is a finite group. Given a finite-dimensional H-representation (δ, Vδ) over C and
functions f, f ′ : H → C, define

(f, f ′)δell =
1
|H|

∑
h∈H

detVδ
(1− δ(h))f(h−1)f ′(h). (8.1)

For ρ, ρ′ ∈ R(H), set
(ρ, ρ′)δell = (χρ, χρ′)δell,

where χρ, χρ′ denote the corresponding characters. The basic facts about ( , )δH can be found in
[Ree01, § 2]. An element h ∈ H is called (δ-)elliptic if V δ(h)

δ = 0. The set Hell of elliptic elements
of H is obviously closed under conjugation by H. Let H\Hell denote the set of elliptic conjugacy
classes. Fix (δ, Vδ), and let R(H) be the quotient of R(H) by the radical of the form ( , )δell. As
in [Ree01, § 2], there is a natural identification of R(H) with the space of class functions of H
supported on Hell.
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For every h ∈ H, let 1h denote the characteristic function of the conjugacy class of h. Clearly,
{1h | h ∈ H\Hell} is an orthogonal basis of R(H) with respect to the elliptic pairing ( , )δell.

Suppose that, in addition, we are given an automorphism θ : H → H . Let 〈θ〉 denote
the cyclic group generated by θ and H ′ = H � 〈θ〉. Given a finite-dimensional complex
H ′-representation (δ, Vδ) and functions f, f ′ : H ′ → C, define

(f, f ′)δθ−ell =
1
|H|

∑
h∈H

detVδ
(1− δ(θh))f((θh)−1)f ′(θh). (8.2)

For ρ, ρ′ ∈ R(H ′), set

(ρ, ρ′)δθ−ell = (χρ, χρ′)δθ−ell,

where χρ, χρ′ denote the corresponding characters. Note that if the representation δ is
understood, we may write ( , )Hell for ( , )δell, and similarly for ( , )Hθ−ell.

8.2 Complex reductive groups
Let G be a possibly disconnected complex reductive group with identity component G◦. If x ∈ G
is given, fix a Borel subgroup Bx of ZG(x)◦ and a maximal torus Tx in Bx. Let tx be the Lie
algebra of Tx. As in [Wal07, § 2] (see also [Ree01, § 3.2]), we define a complex representation
(δx, tx) of AG(x) as follows. Every z ∈ ZG(x) acts on ZG(x)◦ by the adjoint action, denote by αz
the resulting automorphism of ZG(x)◦. There exists y ∈ ZG(x)◦ such that αz ◦Ad(y) preserves Bx
and Tx. This means that αz ◦Ad(y) defines an automorphism of the cocharacter lattice X∗(Tx)
in ZG(x)◦, and therefore a linear isomorphism of tx denoted δx(z). If z̄ ∈ AG(x), let z ∈ ZG(x) be
a representative and set δx(z̄) := δx(z). This construction gives a representation of AG(x). We
consider the elliptic theory of the finite group AG(x) with respect to the representation δx.

An element g ∈ G is called elliptic if the centralizer ZG(g) contains no nontrivial torus.

8.3 Definitions
Suppose Γ is a (possibly disconnected) complex reductive group with identity component Γ◦.
Extending the definition in § 5.1, we define the sets (cf. [Ciu20, Definition 1.1])

Y(Γ) = {(s, h) ∈ Γ× Γ | s, h semisimple, sh = hs},
Y(Γ)ell = {(s, h) ∈ Γ× Γ | s, h semisimple, sh = hs, ZΓ(s, h) is finite}.

(8.3)

Here ZΓ(s, h) = ZΓ(s) ∩ ZΓ(h) and the finiteness condition is equivalent to saying that no non-
trivial torus in Γ centralizes both s and h. We refer to elements of Y(Γ)ell as elliptic pairs. Note
that the condition in Y(Γ)ell is equivalent to saying that h is elliptic in ZΓ(s) or equivalently s
is elliptic in ZΓ(h).

The sets Y(Γ),Y(Γ)ell have Γ-actions via conjugation: g · (s, h) = (gsg−1, ghg−1). They also
have a natural Γ-equivariant involution given by the flip

(s, h) �→ (h, s).

Let Γ\Y(Γ), Γ\Y(Γ)ell be the sets of Γ-orbits, and given (s, h) ∈ Y(Γ), write [(s, h)] for the
corresponding orbit in Γ\Y(Γ). Then we get an involution

flip : Γ\Y(Γ)→ Γ\Y(Γ), flip([(s, h)]) = [(h, s)],

which preserves Γ\Y(Γ)ell.

Lemma 8.1. The set Γ\Y(Γ)ell is finite.
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Proof. Suppose (s, h) ∈ Y(Γ)ell. The cyclic group 〈s〉 is in ZΓ(s, h), hence s has finite order.
Moreover, s must be isolated in Γ in the sense that ZΓ(s) does not contain a nontrivial central
torus. The classification of isolated semisimple automorphisms of Γ is well-known [Ste68, DM18],
in particular, there are finitely many automorphisms up to inner conjugation. �

In the next lemma, we relate elliptic pairs in ZΓ(s) to elements of AΓ(s) that are elliptic with
respect to the action described in § 8.2.

Lemma 8.2. Fix s ∈ Γ semisimple. The projection map ZΓ(s)→ AΓ(s), h �→ h̄, induces a
bijection between ZΓ(s)-orbits of elliptic pairs (s, h) and the elliptic conjugacy classes in AΓ(s).

Proof. We need a result from the theory of semisimple automorphisms of reductive groups,
e.g. [Som98, Proposition 9]: if x, y are semisimple elements in a reductive group G such that
their images in the group of components G/G◦ are in the same conjugacy class, and S is a
maximal torus in ZG(x), then there exist g ∈ G and s ∈ S such that gyg−1 = xs.

We apply this to G = ZΓ(s) (a reductive group). Suppose h, h′ are semisimple elements such
that (s, h) and (s, h′) are elliptic pairs. The elliptic condition implies that the maximal torus in
ZG(h) is trivial, hence s = 1 in the relation above, and h and h′ are G-conjugate. This implies
that if h = h′, then [(s, h)] = [(s, h′)].

It remains to show that (s, h) is an elliptic pair if and only if h̄ is elliptic in AΓ(s). This is
just a matter of checking the definitions in the case G = ZΓ(s). Given the semisimple element
h ∈ G, choose a maximal torus Ts in G that is normalized by h. Then h is not elliptic if and only
if there exists a nontrivial torus S ⊂ Ts that centralizes h, equivalently if and only if δs(h̄) fixes
a nonzero element of ts, i.e. if h is not elliptic in AΓ(s). �

For every (s, h) ∈ Y(Γ), define

Π(s, h) =
∑

φ∈ÂΓ(s)

φ(h)φ ∈ R(AΓ(s)), (8.4)

and let Π(s, h) denote the image in R(AΓ(s)). Here φ(h) is interpreted as φ(h̄) where h̄ is the
image of h in AΓ(s). Let C[Y(Γ)ell]Γ denote the Γ-invariant functions on Y(Γ)ell; this space can
be identified with C[Γ\Y(Γ)ell]. Let 1[(s,h)] denote the characteristic function of the Γ-orbit of
(s, h).

Proposition 8.3. The correspondence 1[(s,h)] �→ Π(s, h) induces an isomorphism

C[Y(Γ)ell]Γ ∼=
⊕

s∈C(Γ)ss

R(AΓ(s)).

Proof. In light of Lemma 8.2, the only thing left is to remark that the elements Π(s, h) form a
basis of R(AΓ(s)) as h ranges over a set of representatives of ZΓ(s)-conjugacy classes such that
(s, h) is an elliptic pair. It is elementary that in R(AΓ(s)),

Π(s, h) = |ZAΓ(s)(h)| 1h−1 ,

and the claim follows. �
We say that ΓM ⊂ Γ is a Levi subgroup if there exists a torus S ⊂ Γ◦ such that ΓM = ZΓ(S).

If a pair (s, h) is in Y(ΓM ), denote by ΠΓM (s, h) the combination defined analogously to (8.4).

Lemma 8.4. Suppose s ∈ ΓM is semisimple.

(i) The inclusion ZΓM
(s)→ ZΓ(s) induces an inclusion AΓM

(s)→ AΓ(s).
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(ii) For every (s, h) ∈ Y(ΓM ), IndAΓ(s)
AΓM

(s)Π
ΓM (s, h) = Π(s, h).

Proof. (i) This is a well-known argument. We need to show that ZΓM
(s) ∩ ZΓ(s)◦ is connected

and, hence, in ZΓM
(s)◦. But ZΓM

(s) ∩ ZΓ(s)◦ = ΓM ∩ ZΓ(s)◦ = ZΓ(S) ∩ ZΓ(s)◦ = ZZΓ(s)◦(S),
which is connected since the centralizer of any torus in a connected reductive group is connected.

(ii) This is elementary using that φ(h) =
∑

ψ∈ÂΓM
(s)
〈φ, ψ〉AΓM

(s)ψ(h) for every φ ∈ ÂΓ(s),

by restriction of characters. �

Lemma 8.5. Let (s, h) ∈ Y(Γ) be given and suppose S is a maximal torus in ZΓ(s, h)◦. Set
ΓM = ZΓ(S). Then ZΓM

(s, h)◦ = Z◦
ΓM

, i.e. (s, h) is an elliptic pair in ΓM/Z◦
ΓM

.

Proof. Let S1 be a torus in ZΓM
(s, h)◦. Then S1 ⊂ ZΓ(s, h)◦ and since it commutes with S which

is maximal in ZΓ(s, h)◦, it follows that S1 ⊂ S ⊂ Z◦
ΓM

. �

Remark 8.6. Our main application will be to consider Γ = Γu, the reductive part of the centralizer
of a unipotent element u in the Langlands dual group G∨, while ΓM will be the centralizer of u
in a Levi subgroup M∨.

8.4 Elliptic pairs in Γ◦

In applications, we will often encounter the situation where the group Γ is connected. For this
reason, it is useful to have a precise description of the elliptic pairs in Γ◦. Suppose s ∈ Γ◦ a
semisimple element. Let T be a maximal torus of Γ containing s and let Φ be the system of
roots of T in Γ◦ and W (Γ◦) the Weyl group of T in Γ◦. If α ∈ Φ, let Xα be the corresponding
one-parameter unipotent subgroup in Γ◦. For each w ∈W (Γ◦), we fix a representative ẇ of w in
NΓ◦(T ). Recall [Car93, Theorem 3.5.3]

ZΓ◦(s)◦ = 〈T,Xα | α(s) = 1, α ∈ Φ〉,
ZΓ◦(s) = 〈T,Xα, ẇ | α(s) = 1, α ∈ Φ, wsw−1 = s, w ∈W (Γ◦)〉.

(8.5)

We say that w ∈W (Γ◦) is elliptic if Tw is finite, equivalently if tw = 0, where t is the Lie
algebra of T .

Proposition 8.7. With the notation as above,

Γ◦\Y(Γ◦)ell ↔W (Γ◦)\{(s, w) | s ∈ T is regular, w ∈W (Γ◦) is elliptic, s ∈ Tw}.

Proof. Since we are considering Γ◦-orbits of pairs (s, h) ∈ Y(Γ◦)ell, we may assume that s ∈ T (in
a fixed W (Γ◦)-orbit in T ) and h is in a semisimple conjugacy class of ZΓ◦(s). If h ∈ ZΓ◦(s)◦, since
ZΓ◦(s)◦ is reductive [Car93, Theorem 3.5.4], h is contained in a maximal torus of ZΓ◦(s)◦, hence
(s, h) is not an elliptic pair. This means that h must be in ZΓ◦(s) \ ZΓ◦(s)◦. By (8.5), we can
assume that h = ẇ for some w ∈W (Γ◦) such that s ∈ Tw. It is clear that ZΓ◦(s, ẇ) ⊇ Tw, which
means that w is necessarily elliptic if (s, ẇ) is an elliptic pair. Suppose s is not regular. Then there
exists α ∈ Φ such that α(s) = 1. Let Ow = {α,w(α), w2(α), . . . , wn−1(α)}, where n is the order
of w. Then in the Lie algebra of Γ, there exists an appropriate sum of root vectors e =

∑
β∈Ow

eβ
that is invariant under Ad(ẇ) and, therefore, ZΓ◦(s, ẇ) contains the one-parameter subgroup for
e and it is infinite.

Conversely, suppose (s, ẇ) is such that s is regular and w is elliptic. By (8.5), ZΓ◦(s) =
W (Γ◦)sT , where W (Γ◦)s = {w1 ∈W (Γ◦) | w1sw

−1
1 = s}. Then ZΓ◦(s, ẇ) is finite if and only if

Ad(ẇ) has no nonzero fixed points on the Lie algebra zΓ◦(s). But zΓ◦(s) = t, so this is equivalent
to w being elliptic. �

43

https://doi.org/10.1112/S0010437X24007401 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007401


A.-M. Aubert, D. Ciubotaru and B. Romano

Remark 8.8. If Γ is connected and simply connected, then Y(Γ)ell = ∅. This is because in that
case, for every regular semisimple s ∈ T , ZΓ(s) = ZΓ(s)◦ = T , a maximal torus.

9. The dual nonabelian Fourier transform

Let G be a connected semisimple algebraic F -group and G = G(F ). Let Run(G) denote the
category of smooth unipotent representations of G. If V, V ′ ∈ Irrun(G), let

EPG(V, V ′) =
∑
i�0

(−1)i dim Exti(V, V ′), (9.1)

where Exti(V, V ′) are calculated in the category R(G) of all smooth G-representations [SS97]
or, equivalently since Run(G) is a direct summand of R(G), in the category Run(G). We remark
that this is a finite sum by Bernstein’s result on the finiteness of the cohomological dimension
of G. Extend, as we may, EPG( , ) as a Hermitian pairing on Run(G) (as defined in § 4.3). Let
Run(G) denote the quotient of Run(G) by the radical of EPG.

Let Rtemp
un (G) be the subspace spanned by the irreducible unipotent tempered representations

and let Rtemp
un (G) be the image of Rtemp

un (G) in Run(G). As is well-known [SS97, Ree02], as a
consequence of the (parabolic induction) Langlands classification:

R
temp
un (G) = Run(G). (9.2)

Let Bun(G) denote the unipotent Bernstein center so thatRun(G) =
⊕

s∈Bun(G)R(G)s, where
R(G)s is the C-span of irreducible objects in the subcategory R(G)s (defined in § 4.2). Since
there are no nontrivial extensions between objects in different Bernstein components, we have
an EP-orthogonal decomposition:

Run(G) =
⊕

s∈Bun(G)

R(G)s.

With the same notation for a pure inner twist G′ of G, we get⊕
G′∈InnTp(G)

Run(G′) =
⊕

G′∈InnTp(G)

⊕
s∈Bun(G′)

R(G′)s. (9.3)

Recall the unipotent Langlands correspondence in the form (4.18). Given a semisimple ele-
ment s ∈ G∨ and a unipotent element u ∈ Gps , apply the definitions of § 8.2 to u ∈ Gps to obtain a
representation δsu of AGp

s
(u) on the Cartan subalgebra tsu in the Lie algebra of ZGp

s
(u). Let ( , )δ

s
u

ell

be the elliptic inner product on R(AGp
s
(u)) and let R(AGp

s
(u)) be the elliptic quotient by the

radical of the form. One expects the following correspondence to hold.

Conjecture 9.1. The unipotent Langlands correspondence (4.18) induces an isometric
isomorphism

LLCpun :
⊕

s∈C(G∨)ss

⊕
u∈C(Gp

s )un

R(AGp
s
(u)) −→

⊕
G′∈InnTp(G)

Run(G′), (9.4)

where the spaces on the left are endowed with the elliptic inner products ( , )δ
s
u

ell, while the spaces
on the right have the Euler–Poincaré pairings EPG′ .

Here C(G∨)ss and C(Gs)un refer to conjugacy classes of semisimple and unipotent elements,
as defined in § 4.3.

Remark 9.2. In [Ree02], Reeder proves that this elliptic correspondence holds in the case of irre-
ducible representations with Iwahori-fixed vectors of a split adjoint group. In § 11, Theorem 11.1,
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we prove Conjecture 9.1 in the form (9.4) for a semisimple adjoint F -split group G. In § 11.4,
we explain how this result could be extended to arbitrary isogenies and, in particular, in
Corollary 11.13 we prove it in the Iwahori-fixed case for an arbitrary F -split group G. As
a concrete example, in Proposition 13.6, we also illustrate the result with a direct proof for
G = SLn.

Remark 9.3. Given s ∈ G∨ as above and u ∈ Gs, it also makes sense to define a representation of
AGs(u) similarly to δsu. It would be natural to expect that the LLC for inner twists as described
in (4.16) also induces an isometric isometry

LLCun :
⊕

s∈C(G∨)ss

⊕
u∈C(Gs)un

R(AGs(u)) −→
⊕

G′∈InnT(G)

Run(G′), (9.5)

though we will not consider a conjecture of this form in this paper.

Remark 9.4. One can formulate Conjecture 9.1 without restricting to the unipotent case. In
general, the expected Langlands correspondence should induce an isometric isomorphism

LLCp :
⊕
ϕ

R(Aϕ) −→
⊕

G′∈InnTp(G)

R(G′), (9.6)

where ϕ ranges over the G∨-conjugacy classes of L-parameters ϕ : W ′
F → LG (equivalently, tem-

pered L-parameters), and Aϕ = π0(ZG∨(ϕ)) (cf. § 4.3). The elliptic theory of the finite group Aϕ
is taken with respect to the action on a Cartan subalgebra of ZG∨(ϕ) as before. This formula-
tion is, of course, related to Arthur’s ideas on elliptic representations: in [Art93, Corollary 6.3],
Arthur proved the equality of Kazhdan’s elliptic pairing between irreducible tempered represen-
tations with the elliptic pairing of the corresponding irreducible characters of the Knapp–Stein
R-groups. Later, Opdam and Solleveld [OS13, Theorems 6.5 and 7.3] extended this work to
all admissible representations using the homological Euler–Poincaré pairing. Moreover, Arthur
[Art89, § 7] expected an identification between the R-groups and the geometric A-groups and, in
fact, Reeder [Ree02, § 8], as part of his proof of the elliptic correspondence, proved this matching
in the Iwahori case.

9.1 The elliptic Fourier transform: the split case
Suppose G is the split F -form. In order to apply the ideas in § 8.3, we rephrase the left-hand
side of (9.4). Since Frob acts trivially on G∨, in this situation we have Gps = ZG∨(s) and, hence,⊕

s∈C(G∨)ss

⊕
u∈C(Gp

s )un

R(AGp
s
(u)) =

⊕
s∈C(G∨)ss

⊕
u∈C(ZG∨ (s))un

R(AG∨(su)),

which can be written as⊕
u∈C(G∨)un

⊕
s∈C(Γu)ss

R(AΓu(s)) =
⊕

u∈C(G∨)un

C[Y(Γu)ell]Γu ,

via Proposition 8.3, where Γu is the reductive part of ZG∨(u), as before. For simplicity, we define

Rpun,ell(G) =
⊕

G′∈InnTp(G)

Run(G′), (9.7)

endowed with the Euler–Poincaré pairing EP =
⊕

G′ EPG′ . Hence, the elliptic unipotent LLC
for pure inner twists of a split group can be viewed as the isomorphism

LLCpun :
⊕

u∈C(G∨)un

C[Y(Γu)ell]Γu −→ Rpun,ell(G). (9.8)
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For every class of elliptic pairs [(s, h)] ∈ Γu\Y(Γu)ell, define the virtual combination (cf. [Wal18,
Ciu20]):

Π(u, s, h) =
∑

φ∈ÂΓu (s)

φ(h)π(s, u, φ). (9.9)

Regard Π(u, s, h) (or rather its image) as an element in Rpun,ell(G). As before φ(h) = φ(h̄), where
h̄ is the image of h in AΓu(s).

Lemma 9.5. With notation as above and setting Ax = AG∨(x), we have:

(i) EP(Π(u, s, h),Π(u′, s′, h′)) = 0 if x = su and x′ = s′u′ are not G∨-conjugate;
(ii)

EP(Π(u, s, h),Π(u, s, h′)) = (|ZAx(h̄)|1h̄−1 , |ZAx(h̄′)|1
h̄′−1)Ax

ell

=

{
|ZAx(h̄)|dettx(1− h̄−1), if h, h′ are conjugate,

0, otherwise.

Hence, the combinations {Π(u, s, h)} define an orthogonal basis of Rpun,ell(G).

Proof. This is a straightforward consequence of Theorem 11.1 (and an elementary calculation
for the last equality in part (ii)). �

Definition 9.6 (Cf. [Ciu20, Wal18]). The (dual) elliptic nonabelian Fourier transform is the
involutive linear map FT∨

ell : R
p
un,ell(G)→ Rpun,ell(G), defined by

FT∨
ell(Π(u, s, h)) = Π(u, h, s), (s, h) ∈ Γu\Y(Γu)ell, u ∈ G∨ unipotent.

Note that FT∨
ell is the just the image under LLCpun of the canonical involution of

⊕
s,uR(Asu)

[u, s, h] �→ [u, h, s], where [u, s, h] :=
∑
ψ∈Âsu

ψ(h)ψ.

For every G′ ∈ InnTp(G), and K ′
O ∈ max(G′) consider the restriction map

resK′
O : IrrunG

′ → Run(KO), V �→ V K′+
O . (9.10)

We define a linear map rescpt,un :
⊕

G′∈InnTp(G)Run(G′)→ C(G)cpt,un by setting

rescpt,un(V ) =
∑

K′
O∈max(G′)

resK′
O(V )

for all G′ ∈ InnTp(G) and V ∈ Irrun(G′). With notation as in § 7, for each (A,O) ∈ Smax(G),
we let projO be the projection map C(G)cpt,un →

⊕
x∈ARun(Kx,O) with respect to the

decomposition (7.5), and let resO = projO ◦ rescpt,un. We have

rescpt,un =
⊕

(A,O)∈Smax(G)

resO . (9.11)

We can now formulate the conjecture for elliptic representations.
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Conjecture 9.7. Let G be a simple F -split group. Consider the following diagram.

Rpun,ell(G)
FT∨

ell ��

rescpt,un

��

Rpun,ell(G)

rescpt,un

��
C(G)cpt,un

FTcpt,un

�� C(G)cpt,un

For every unipotent element u ∈ G∨, elliptic pair (s, h) ∈ Y(Γu)ell and maximal compact open
subgroup KO of G, there exists a root of unity ζ = ζ(u, s, h,O) such that

resO(Π(u, h, s)) = ζ · (FTcpt,un ◦ resO)(Π(u, s, h)).

Remark 9.8. If KO is the maximal hyperspecial compact subgroup of G, so that in particular
resO = resKO , we expect that the only roots of unity ζ that appear are the well-known Δ(x̄ρ) ∈
{±1} (see [Luz84a, § 6.7]) for certain families of unipotent representations of the finite groups
of types E7 and E8. But for other maximal compact subgroups, Proposition 13.9 shows that in
SLn for example, new roots of unity can appear.

We remark that extra roots of unity already appear in relation with the nonabelian Fourier
transform for finite reductive groups, although we do not know if this is a related issue. In that
setting there are three bases of the Grothendieck group of unipotent characters:

(1) the irreducible characters;
(2) the ‘almost characters’ which, by definition, are the image of the basis of irreducible

characters under Lusztig’s nonabelian Fourier transform; and
(3) the traces of the Frobenius on unipotent character sheaves.

Lusztig’s conjecture states that each element of the basis (2) equals an element of the basis (3)
times a root of unity. Determining these roots of unity is a difficult question, see Shoji [Sho95]
for classical groups, also Hetz’s recent thesis [He23] for progress on the exceptional groups.

Remark 9.9. Note that the definition of the linear combinations Π(u, s, h) and, thus, the
definition of FT∨

ell, depends on the (in general, non-canonical) map LLCpun. It is an interest-
ing question to understand how Conjecture 9.7 depends on LLCpun and, more specifically, what
choices one must make in constructing LLCpun for the conjecture to be true. In the cases of the
conjecture proved below, these subtleties do not arise.

9.2 Regular unipotent elements
In § 13, we will verify this conjecture completely when G = SLn and PGLn, but here we illustrate
it in the case when u is a regular unipotent element.

Proposition 9.10. Let ur ∈ G∨ be a regular unipotent element. Then

rescpt,un(Π(ur, h, s)) = FTcpt,un ◦ rescpt,un(Π(ur, s, h))

for all (s, h) ∈ Y(Γur). In particular, Conjecture 9.7 holds with trivial roots of unity.

Proof. In this case Γur = ZG∨ and every pair (s, h) in Y(ZG∨) is elliptic. Write the natural
identification

ΩG
∼−→ ẐG∨

as x �→ φx. Then for (s, h) ∈ Y(Γur), we have Π(ur, s, h) =
∑

x∈Ω φx(h)π(s, ur, φx). Note that
π(1, ur, φx) is the Steinberg representation StGx of Gx, so π(s, ur, φx) � StGx ⊗ χs, where χs is
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the weakly unramified character corresponding to s under (4.3). This follows from the fact that
LLCun is equivariant for the action of weakly unramified characters, cf. [Sol23a, Theorem 1(b)].

For the rest of the proof, we fix (A,O) ∈ Smax(G). Then given s ∈ ZG∨ , the character χs is
trivial on the parahoric K◦

x,O so defines a character, call it σs, of Kx,O/K◦
x,O = Kx,O/K

◦
x,O. We

have

resO π(s, ur, φx) =

{
0, if x /∈ A,
StK◦

x,O
� σs, if x ∈ A,

where StK◦
x,O

is the Steinberg character of the finite group K◦
O,x. Note that for every x ∈ A,

φx(h) = σh(x) for all h ∈ ZG∨ .

Thus,

resO Π(ur, s, h) =
∑
x∈A

σh(x)StK◦
x,O

� σs. (9.12)

With notation as in § 5, let UO,St = {StK◦
O} be the Steinberg family in Irrun(KO), and let

ŨO,St ⊂
⋃
x∈A Irrun(Kx,O) be the family parametrized by Γ̃AUO,St

= A under the bijection of
Proposition 6.1. Then by (9.12), resO Π(ur, s, h) corresponds to ΠŨO,St

(σs, σh) defined as in (5.13).
The claim then follows from Lemma 5.1. �

10. A definition of the elliptic Fourier transform à la Lusztig

We present an alternative definition of the elliptic nonabelian Fourier transform (cf.
Definition 9.6) along the lines of Lusztig’s pairing defined in [Lus14, § 1]. Retain the notation
from § 8. In particular, Γ is a complex reductive group, not necessarily connected, and Y(Γ)ell is
the set of elliptic semisimple pairs in Γ. Let Σ be the set of semisimple elements of Γ. Extending
the definition in § 5.1, we let

M(Γ) = {(x, σ) | x ∈ Σ, σ ∈ ÂΓ(x)},

modulo the equivalence relation given by conjugation by Γ.
For any two semisimple elements x, y ∈ Γ, define the set

Ax,y = {z ∈ Γ | zxz−1 ∈ ZΓ(y)} (10.1)

with an action of ZΓ(x)◦ × ZΓ(y)◦ by (γ, γ′) · z = γ′zγ−1. Let 0Ax,y denote the set of orbits. By
[Lus14, Lemma 1.2], this is a finite set. It is clear that Ay,x = A−1

x,y.
Consider the subset

Aell
x,y = {z ∈ Γ | (zxz−1, y) ∈ Y(Γ)ell}, (10.2)

and let 0Aell
x,y be the corresponding finite set of ZΓ(x)◦ × ZΓ(y)◦-orbits. Following [Lus14, § 1.3],

we suppose κ : Σ× Σ→ R is a nonnegative function satisfying

κ(x′, y′) = κ(y′, x′), κ(γx′γ−1, γ′y′(γ′)−1) = κ(x′, y′), κ(ζx′, ζ ′y′) = κ(x′, y′),

for all x′, y′ ∈ Σ, γ, γ′ ∈ Γ, ζ, ζ ′ ∈ ZΓ. The following definition is an elliptic analogue of [Lus14,
§ 1.3 (a)].
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Definition 10.1. For (x, σ), (y, τ) ∈M(Γ), set

{(x, σ), (y, τ)}ell = κ(x, y)
∑

z∈0Aell
x,y

τ(zx−1z−1)σ(z−1yz).

It is immediate that {(x, σ), (y, τ)}ell = {(y, τ), (x, σ)}ell for all (x, σ), (y, τ) ∈M(Γ). Moreover,
if x ∈ Σ is such that x does not belong to any elliptic pair, then it is clear that (x, σ) is in the
radical of { , }ell for all σ.

Let V = C[M(Γ)] denote the C-span of M(Γ), and given (x, σ) ∈M(Γ), write [(x, σ)] for
its image in V. Then {, }ell extends to a Hermitian pairing on V. Similarly to (5.13), for every
pair of commuting elements x, y ∈ Σ, denote

Π(x, y) =
∑

σ∈ÂΓ(x)

σ(y−1)[(x, σ)] ∈ V. (10.3)

Let ȳ denote the image of y in AΓ(x). Let CZ(x)(y) denote the conjugacy class of y in ZΓ(x),
and CA(x)(ȳ) the conjugacy class of ȳ in AΓ(x). Since x and y commute, we have that Ax,y
contains the set ZΓ(y)ZΓ(x), and the action of ZΓ(x)◦ × ZΓ(y)◦ on Ax,y restricts to an action on
ZΓ(y)ZΓ(x). Let 0Bx,y denote a set of orbit representatives for this restricted action.

Lemma 10.2. For every (t, τ) ∈M(Γ),

{Π(x, y), (t, τ)}ell =

{
κ(x, y)||ZA(x)(ȳ)|

∑
z∈0Bx,y

τ(zx−1z−1), if t = y and (x, y) ∈ Y(Γ)ell,

0, otherwise.

Proof. This is similar to the calculation for the nonabelian Fourier transform in the case of finite
reductive groups. We compute

{Π(x, y), (t, τ)}ell =
∑

σ∈ÂΓ(x)

σ(y−1){(x, σ), (t, τ)}ell

= κ(x, t)
∑

z∈0Aell
x,t

τ(zx−1z−1)
( ∑
σ∈ÂΓ(x)

σ(y−1)σ(z−1tz)
)
.

Fix z ∈ 0Aell
x,t. By the orthogonality relations for characters,

∑
σ∈ÂΓ(x)

σ(y−1)σ(z−1tz) = 0 unless

the image of z−1tz in AΓ(x) is conjugate to ȳ, in which case it equals |ZA(x)(ȳ)|. In addition,
(x, z−1tz) ∈ Y(Γ)ell, which implies by Lemma 8.2 that the image of z−1tz in AΓ(x) is in an elliptic
class, so ȳ is elliptic in AΓ(x), and so again by Lemma 8.2, (x, y) ∈ Y(Γ)ell. Moreover, by the same
result, the image of z−1tz in AΓ(x) is conjugate to ȳ if and only if z−1tz is conjugate to y in ZΓ(x).
In particular, this means that t is conjugate to y in Γ. This proves that {Π(x, y), (t, τ)}ell = 0
unless t = y and (x, y) ∈ Y(Γ)ell. (Since M(Γ) consists of Γ-orbits, we may identify t = y.)

To complete the proof, assume (x, y) ∈ Y(Γ)ell. We have

{Π(x, y), (y, τ)}ell = κ(x, y)|ZA(x)(ȳ)|
∑

z∈0Aell
x,y

z−1yz∈CZ(x)(y)

τ(zx−1z−1).

We analyze the index of summation. Note that z−1yz ∈ CZ(x)(y) is equivalent to z ∈ ZΓ(y)ZΓ(x).
Since (x, y) is an elliptic pair, it is also automatic that (zxz−1, y) is for any z ∈ ZΓ(y)ZΓ(x), hence
z ranges over representatives of ZΓ(x)◦ × ZΓ(y)◦-orbits in ZΓ(y)ZΓ(x). �
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Proposition 10.3. For (x, y) ∈ Y(Γ)ell:

(a)
∑

τ∈ÂΓ(y)

{Π(x, y), (y, τ)}ell[(y, τ)] = κ(x, y)|ZA(x)(ȳ)||0Bx,y| ·Π(y, x) in V;

(b)
∑

h∈AΓ(y)

{Π(x, y),Π(y, h)}ellΠ(y, h) = κ(x, y)|AΓ(y)||ZA(x)(ȳ)||0Bx,y| ·Π(y, x).

Proof. (a) Denote by τ z
−1 ∈ ÂΓ(y) the twist of τ by z−1, so τ z

−1
(a) = τ(zaz−1). Applying the

previous lemma, we get
1

|κ(x, y)||ZA(x)(ȳ)|
∑

τ∈ÂΓ(y)

{Π(x, y), (y, τ)}ell[(y, τ)]

=
∑

z∈0Bx,y

∑
τ∈ÂΓ(y)

τ z
−1

(x−1)[(y, τ)] =
∑

z∈0Bx,y

∑
τ∈ÂΓ(y)

τ z
−1

(x−1)[(z−1yz, τ z
−1

)]

=
∑

z∈0Bx,y

∑
τ ′∈ ̂AΓ(z−1yz)

τ ′(x−1)[(z−1yz, τ ′)] =
∑

z∈0Bx,y

Π(z−1yz, x) = |0Bx,y| Π(y, x),

since z−1yz is conjugate to y in ZΓ(x).
(b) This is immediate from part (a) using

∑
h∈AΓ(y) τ(h

−1)τ ′(h) = |AΓ(y)|δτ,τ ′ , τ, τ ′ ∈ ÂΓ(y).
�

Consider the set

BV = {|CA(y)(h̄)|1/2Π(y, h) | (y, h) ∈ Γ\Y(Γ)ell}. (10.4)

By Lemma 10.2, BV spans V̄ell := V/ ker{ , }ell, where ker{ , }ell denotes the radical of the
pairing. Define

F ′
ell : V→ V, F ′

ell(v) =
∑
b∈BV

{v, b}b. (10.5)

Clearly, F ′
ell descends to a linear map on V̄ell.

Corollary 10.4. For every (x, y) ∈ Y(Γ)ell,

F ′
ell(Π(x, y)) = κ(x, y)|AΓ(y)||ZA(x)(ȳ)||0Bx,y| ·Π(y, x).

Proof. From Lemma 10.2, we have F ′
ell(Π(x, y)) =

∑
h |CA(y)(h̄)|{Π(x, y),Π(y, h)}ell[Π(y, h)],

where the sum is over a set of representatives h of the conjugacy classes of elliptic semisimple
elements in ZΓ(y), equivalently, elliptic conjugacy classes in AΓ(y). Thus, we may rewrite

F ′
ell(Π(x, y)) =

∑
h∈AΓ(y)ell

{Π(x, y),Π(y, h)}ellΠ(y, h) =
∑

h∈AΓ(y)

{Π(x, y),Π(y, h)}ellΠ(y, h),

using Lemma 10.2 again. Then the claim follows from Proposition 10.3. �
In other words, F ′

ell acts, up to a scalar multiple, by the flip on each Π(x, y). If we set

κ(x, y) =
|CA(x)(ȳ)|1/2|CA(y)(x̄)|1/2

|AΓ(x)||AΓ(y)||0Bx,y|
, (10.6)

then
F ′

ell
2 = Id. (10.7)
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Remark 10.5. When we specialize to Γ = Γu for a unipotent element u ∈ Γ, we see from
Lemma 9.5 that BV is in fact an orthogonal basis of V̄ell with respect to the Euler–Poincaré
pairing.

11. Elliptic unipotent representations

The main result of this section is as follows.

Theorem 11.1. Suppose G is a semisimple split F -group of adjoint type. Then Conjecture 9.1
holds for all pure inner twists of G.

Remark 11.2. In § 11.4, we explain how Theorem 11.1 can be extended to other isogenies. See,
in particular, Corollary 11.13.

The strategy of the proof is as follows. As explained in § 4, the set of unipotent enhanced
Langlands parameters Φe,un(G′), where G′ is an inner twist of G, decomposes into a disjoint
union Φe,un(G′) =

⊔
s∨∈B∨

un(G′) Φe(G′)s∨ . Consequently, there is a decomposition

R(Φe,un(G′)) =
⊕

s∨∈B∨
un(G′)

R(Φe(G′)s∨),

where R(Φe,un(G′)) and Φe(G′)s∨ are defined analogously to R(Φe,un(LG)) (see (4.16)). In [Lus95]
(for adjoint simple groups) and later in [AMS17] (for arbitrary groups), an affine Hecke algebra
with possibly unequal parameters H(s∨) is constructed such that there is a bijection

Irr H(s∨)←→ Φe(G′)s∨ , (11.1)

which induces a linear isomorphism

R(H(s∨)) ∼= R(Φe(G′)s∨).

We need to study the elliptic space R(H(s∨)). The important fact for the elliptic theory is
that H(s∨) is a deformation of an extended affine Weyl group W̃s∨ = Ws∨ �X∗(Ts∨), where
Ts∨ = Φe(L′)s∨

L′ for L′ a Levi subgroup of G′ that corresponds to s∨. This allows us to use
the results of [OS09] to further reduce to R(H(s∨)) ∼= R(W̃s∨). Moreover, the latter space is
equivalent to a direct sum of elliptic spaces for certain finite groups

R(W̃s∨) ∼=
⊕

s∈Ws∨\Ts∨

R(ZWs∨ (s)).

We then use results of [Wal07] and the generalized Springer correspondence to relate the spaces
R(ZWs∨ )(s) to the relevant spaces of Langlands parameters (for the various unipotent elements)
in Φe,un(G′)s∨ .

Finally, by [Lus95, Sol23a] for each s∨ ∈ B∨
un(G

′), there exists s ∈ Bun(G′) that is sent to s∨

by the LLC, and then the Hecke algebra H(s) for s is isomorphic to H(s∨). The fact that the
elliptic space for the representations in the block R(G′)s is naturally isomorphic to R(H(s)) is
immediate by the exactness of the equivalence of categories between R(G′)s and H(s)-modules.

11.1 Euler–Poincaré pairings for affine Hecke algebras
We begin by recalling several known facts about elliptic theory for affine Weyl groups and affine
Hecke algebras. The main reference is [OS09] (see also [CO15]). The notation in this section is
self contained and independent of the previous sections. For applications, the root datum in this
section will be specialized to the root datum of the Langlands dual group G∨, as well as to the
root data for the affine Hecke algebras H(s∨) that occur on the dual side of the LLC.
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Let R = (X,R,X∨, R∨,Π) be a based root datum. Here X,X∨ are lattices in perfect duality
〈 , 〉 : X ×X∨ → Z, R ⊂ X \ {0} and R∨ ⊂ X∨ \ {0} are the finite sets of roots and coroots,
respectively, and Π ⊂ R is a basis of simple roots. Let W be the finite Weyl group with set
of generators S = {sα : α ∈ Π}. Set W̃ = W �X, the (dual) extended affine Weyl group, and
W a = W �Q, the (dual) affine Weyl group, where Q is the root lattice of R. Then W a is normal
in W̃ and Ω := W̃/W a ∼= X/Q is an abelian group. We assume that R is semisimple, which
means that Ω is a finite group.

The set Ra = R∨ × Z ⊂ X∨ × Z is the set of affine roots. (Note that W̃ is the extended affine
Weyl group of a split p-adic group G with root datum dual to R, and Ra is the set of affine roots
for G.) A basis of simple affine roots is given by Πa = (Π∨ × {0}) ∪ {(γ∨, 1) : γ∨ ∈ R∨ minimal}.
For every affine root a = (α∨, n), let sa : X → X denote the reflection sa(x) = x− ((x, α∨) + n)α.
The affine Weyl group W a has a set of generators Sa = {sa | a ∈ Πa}. Given J ⊂ Sa, let WJ be
the subgroup of W a generated by {sa | a ∈ J}. Let l : W̃ → Z be the length function.

Set E = X ⊗Z C, so the discussion regarding the elliptic theory ofW and E from the previous
sections applies. We denote a typical element of W̃ by wtx, where w ∈W and x ∈ X. The
extended affine Weyl group W̃ acts on E via (wtx) · v = w · v + x, v ∈ E.

An element wtx ∈ W̃ is called elliptic if w ∈W is elliptic (with respect to the action on E).
For basic facts about elliptic theory for W̃ , see [OS09, §§ 3.1, 3.2]. There are finitely many elliptic
conjugacy classes in W̃ (and in W a). The following fact is well-known (see for example [CO15,
Lemma 5.4]).

Lemma 11.3. Suppose C is an elliptic conjugacy class in W a. Then there exists one and only
one maximal J � Sa such that C ∩WJ �= ∅, and in this case C ∩WJ forms a single elliptic
WJ -conjugacy class.

Let R(W̃ ) be the Grothendieck group of W̃ -mod (the category of finite-dimensional modules).
Define the Euler–Poincaré pairing of W̃ by

〈V1, V2〉W̃EP =
∑
i�0

(−1)i dim Exti
W̃

(V1, V2), V1, V2 finite-dimensional W̃ -modules. (11.2)

Set R(W̃ ) = R(W̃ )/rad〈 , 〉W̃EP. By [OS09, Theorem 3.3], the Euler–Poincaré pairing for W̃ can
also be expressed as an elliptic integral. More precisely, define the conjugation-invariant ellip-
tic measure μell on W̃ by setting μell = 0 on nonelliptic conjugacy classes, and for an elliptic
conjugacy class C such that v ∈ E is an isolated fixed point for some element of C, set

μell(C) =
|Z
W̃

(v) ∩ C|
|Z
W̃

(v)| ;

here Z
W̃

(v) is the isotropy group of v in W̃ . Then

〈V1, V2〉W̃EP = (χV1 , χV2)
W̃
ell :=

∫
W̃
χV1χV2 dμell, V1, V2 ∈ W̃ -mod, (11.3)

where χV1 , χV2 are the characters of V1 and V2.
Set T = HomZ(X,C×). Then W acts on T . For every s ∈ T, set Ws = {w ∈W : w · s = s}.

One considers the elliptic theory of the finite group Ws acting on the cotangent space t∗s of T at
s. By Clifford theory, the induction map

Inds : Ws-mod→ W̃ -mod, Inds(V1) := IndW̃Ws�X(V1 ⊗ s)
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maps irreducible modules to irreducible modules. By [OS09, Theorem 3.2], the map⊕
s∈W\T

Inds :
⊕

s∈W\T
R(Ws)C → R(W̃ )C (11.4)

is an isomorphism of metric spaces, in particular,

〈IndsV1, IndsV2〉W̃EP = (V1, V2)Ws
ell , V1, V2 ∈Ws-mod. (11.5)

A space R(Ws)C in the left-hand side of (11.4) is nonzero if and only if s is an isolated element
of T , more precisely s ∈ Tiso, where

Tiso = {s ∈ T∨ : w · s = s for some elliptic w ∈W}.
Example 11.4. Let R be the root datum of PGLn(C). We may take T to be the maximal diag-
onal torus of PGLn(C), with X = X∗(T ) the group of characters and X∨ = X∗(T ) the group of
cocharacters. In this case, Q = X and

W̃ = W a = 〈si, 0 � i � n− 1 | (sisj)m(i,j) = 1, 0 � i, j � n− 1〉,
where m(i, i) = 1, m(i, j) = 2 if 1 < |i− j| < n− 1, and m(i, j) = 3 if |i− j| = 1 or |i− j| =
n− 1, when n � 3. This is the extended affine Weyl group associated to the p-adic group SLn.
If n = 2, then W̃ = W a = 〈s0, s1 | s20 = s21 = 1〉.

With this notation, the finite Weyl group is W = 〈s1, . . . , sn−1〉 ⊂W a. For every 0 � i �
n− 1, let Wi = 〈s0, s1, . . . , si−1, si+1, . . . , sn−1〉 ⊂W a. These are the maximal (finite) parabolic
subgroups of W a. In particular, W0 = W and Wi

∼= Sn for all i. The space E = t∗ ∼= Cn−1 and
each Wi acts on E by the reflection representation. Therefore, there exists a unique elliptic
Wi-conjugacy class represented by the Coxeter element wi = s0s1 · · · si−1si+1 · · · sn−1. Thus, by
Lemma 11.3, there are exactly n elliptic conjugacy classes inW a each determined by the condition
that it meets Wi in the conjugacy class of wi, 0 � i � n− 1. In particular, dimR(W̃ )C = n in
this case.

On the other hand, by (11.4), we need to consider W -orbits in Tiso. Since there is only one
elliptic conjugacy class in W , every W -orbit in Tiso is represented by an element of

T s1s2···sn−1 = {Δn(z) | z ∈ μn}, Δn(z) = diag(1, z, z2, . . . , zn−1) ∈ T, μn = {z | zn = 1},
as noted previously. Two elements Δn(z) and Δn(z′) of T s1s2···sn−1 are W -conjugate if and only
if z and z′ have the same order. Fix a primitive nth root ζ of 1. This means that (11.4) becomes,
in this case, ⊕

d|n
R(WΔn(ζn/d))C

∼= R(W̃ )C.

If z= ζm, where n= dm, then Δn(z) isW -conjugate to diag(1, . . . , 1︸ ︷︷ ︸
m

, z, . . . , z︸ ︷︷ ︸
m

, . . . , zd−1, . . . , zd−1︸ ︷︷ ︸
m

).

Hence, one calculates

WΔn(z)
∼= Sdm � Cd and t∗Δn(z) =

{
(a1, . . . , an)

∣∣∣∣ n∑
i=1

ai = 0
}
. (11.6)

The action is the natural permutation action. There are ϕ(d) elliptic conjugacy classes, repre-
sented by (wm, 1, . . . , 1) · xd, where wm is a fixed m-cycle (Coxeter element) of Sm and xd is one
of the ϕ(d) generators of Cd (see Lemma 13.5). Again

∑
d|n ϕ(d) = n.

Let �q = {q(s) | s ∈ Sa} be a set of invertible, commuting indeterminates such that q(s) =
q(s′) whenever s, s′ are W a-conjugate. Let Λ = C[q(s),q(s)−1 | s ∈ Sa].
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The generic affine Hecke algebra H(R, �q) associated to the root datum R and the set
of indeterminates �q is the unique associative, unital Λ-algebra with basis {Tw : w ∈ W̃} and
relations:

(i) TwTw′ = Tww′ , for all w,w′ ∈W such that l(ww′) = l(w) + l(w′);
(ii) (Ts − q(s)2)(Ts + 1) = 0 for all s ∈ Sa.

Fix a real number q > 1. Given a W a-invariant function m : Sa → R, we may define a homo-
morphism λm : Λ→ C, q(s) = qm(s). Let Cλm be the one-dimensional complex module on which
Λ acts by λm. Consider the specialized affine Hecke C-algebra

H(R, q,m) = H(R, �q)⊗Λ Cλm . (11.7)

Example 11.5. Let R be the root datum of PGLn(C). If n = 2, the generic affine Hecke algebra
has two indeterminates q(s0) and q(s1) and it is generated by T0 = Ts0 , T1 = Ts1 subject only
to the quadratic relations

(Ti − q(si)2)(Ti + 1) = 0, i = 0, 1.

If n � 3, all the simple reflections are W a-conjugate. There is only one indeterminate q such that
the affine Hecke algebra is generated by {Ti = Tsi , 0 � i � n− 1} subject to the relations:

(i) TiTj = TjTi, 1 < |i− j| < n− 1;
(ii) TiTi+1Ti = Ti+1TiTi+1, 0 � i � n− 1; T0Tn−1T0 = Tn−1T0Tn−1;
(iii) (Ti − q2)(Ti + 1) = 0.

LetH = H(R, q,m) for simplicity of notation. If V1, V2 are two finite-dimensionalH-modules,
define the Euler–Poincaré pairing [OS09, § 3.4]:

EPH(V1, V2) =
∑
i�0

(−1)i dim ExtiH(V1, V2). (11.8)

This is a finite sum since H has finite cohomological dimension [OS09, Proposition 2.4]. The pair-
ing EPH is symmetric and positive semidefinite. It extends to a Hermitian positive-semidefinite
pairing on the complexified Grothendieck group R(H)C of finite-dimensional H-modules. We
wish to compare the Euler–Poincaré pairings for H(R, q,m) and H(R, qε,m), where ε ∈ [0, 1].
Suppose we have a family of maps

σε : H(R, q,m)-mod→ H(R, qε,m)-mod, σε(π, V ) = (πε, V ), (11.9)

such that:

(a) for every w ∈ W̃ and every (π, V ), the assignment ε �→ π(ε)(Tw) is a continuous map [0, 1]→
End(V ).

Then [OS09, Theorem 3.5] shows that

EPH(R,q,m)(V1, V2) = EPH(R,qε,m)(σε(V1), σε(V2)), for all ε ∈ [0, 1].

In particular, note that H(R, q0,m) = C[W̃ ], meaning that

EPH(R,q,m)(V1, V2) = 〈σ0(V1), σ0(V2)〉W̃EP. (11.10)

Using [OS09, Theorem 1.7] or alternatively, for the affine Hecke algebras that occur for unipotent
representations of p-adic groups, via the geometric constructions of [KL87, Lus95, Lus02], we
know that scaling maps σε as above exist and in addition, they also behave well with respect to
harmonic analysis:
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(b) for every ε ∈ [0, 1], V is unitary (respectively, tempered) if and only if σε(V ) is unitary
(respectively, tempered);

(c) for every ε ∈ (0, 1], V is discrete series if and only if σε(V ) is discrete series.

Denoting by R(H)C the quotient of R(H)C by the radical of EPH, it follows [OS09,
Proposition 3.9] that the scaling map σ0 induces an injective isometric map

σ0 : R(H)C → R(W̃ )C
∼=
⊕

s∈T/W
R(Ws)C. (11.11)

In fact, this map is also an isomorphism, for example via [CH17, Theorem 8.1].

11.2 Elliptic inner products for Weyl groups (after Waldspurger [Wal07])
Let G = G◦ be a complex connected reductive group and θ : G → G a quasi-semisimple automor-
phism of G of finite order.

As in § 3, we let I be the set of pairs (U, E) where U is a unipotent conjugacy class in G
and E is an irreducible G-equivariant local system on U . The automorphism θ acts on I via
(U, E) �→ (θ(U), (θ−1)∗(E)). Let Iθ denote the fixed points of this action and suppose (U, E) ∈ Iθ.
If we fix u ∈ U , there exists x ∈ G such that Ad(x) ◦ θ(u) = u, hence Ad(x) ◦ θ preserves ZG(u)
and, hence, it defines an automorphism of Au, denoted θu. As explained in [Wal07, p. 612],
if φ ∈ Âu corresponds to the local system E , the fact that (θ−1)∗(E) ∼= E is equivalent to the
condition that φ extends to a representation φ̃ of Au � 〈θu〉.

Fix a Borel subgroup Bu of ZG(u)◦ and a maximal torus Tu in Bu. Let tu be the complex
Lie algebra of Tu. Define a complex representation (δu, tu) of Au � 〈θu〉, extending the previous
definition for the action of Au. Similarly to § 8.2, since ZG(u) acts on ZG(u)◦ by conjugation and θu
acts on ZG(u)◦ as above, every element z ∈ ZG(u) � 〈θu〉 acts on ZG(u)◦ via an automorphism αz.
There exists y ∈ ZG(u)◦ such that αz ◦Ad(y) preserves Bu and Tu. This means that αz ◦Ad(y)
defines an automorphism of the cocharacter lattice X∗(Tu) that also preserves the sublattice
X∗(Z◦

G), and therefore a linear isomorphism δu(z) of tu. If z̄ ∈ Au � 〈θu〉, set δu(z̄) := δu(z),
where z is a lift of z̄ in ZG(u) � 〈θu〉. This defines a representation of Au � 〈θu〉.

Suppose (U, E) and (U ′, E ′) are two elements of Iθ represented by (u, φ) and (u′, φ′),
respectively. Define

(φ̃, φ̃′)θ−ell =

{
(φ̃, φ̃′)δuθ−ell, if U = U ′,

0, if U �= U ′.
(11.12)

This is the θ-elliptic pairing on
⊕

U R(Au � 〈θu〉).
The relation between this elliptic pairing and the generalized Springer correspondence

[Lus84b] is explained in [Wal07, § 3]. The automorphism θ acts naturally on all of the objects
involved in the definition of the Springer correspondence. As discussed in [Wal07, § 3], this leads
to an action of Wj � 〈θ〉 on zM, the Lie algebra of ZM (notation as in § 3), and to a θ-generalized
Springer correspondence ν : Iθ → J̃θ. For every (j, ρ) ∈ J̃θ, let ρ̃ denote the extension of ρ to a
representation of Wj � 〈θ〉 as in [Wal07, § 3].

Let i = (U, E), i′ = (U ′, E ′) be two elements of Iθ, and ν(i) = (j, ρ), ν(i′) = (j′, ρ′). For every
m ∈ Z, the constructible sheaf H2m+aU′ (Aj′,ρ′)|U decomposes as a direct sum of G-equivariant
local systems on U . As in [Wal07], setting

Hm
i,i′ = Hom(E ,H2m+aU′ (Aj′,ρ′)|U ),

the automorphism θ defines a linear map θmi,i′ : Hm
i,i′ → Hm

i,i′ . In particular,

Hm
i,i = 0 if m �= 0 and dimH◦

i,i = 1.
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We may arrange the construction so that θ◦i,i is the identity map. Moreover, it is clear that
Hm
i,i′ �= 0 for some m only if U ⊂ U ′. (Recall that the restriction of Aj′,ρ′ to the set of unipotent

elements of G is supported on U ′.)
Define the virtual representation of Wj � 〈θ〉

ρ̃ =
∑
ρ′∈Ŵ θ

j

Pj,ρ,ρ′ ρ̃′, where Pj,ρ,ρ′ =
∑
m∈Z

tr(θmi,i′). (11.13)

In this virtual combination, Pj,ρ,ρ = 1, and Pj,ρ,ρ′ �= 0 implies that U ⊂ U ′ if (U, E) = ν−1(j, ρ)
and (U ′, E ′) = ν−1(j, ρ′).

Example 11.6. When θ is the trivial automorphism of G and j = j0 (the case of the classical
Springer correspondence), ρ̃ can be identified with the reducible W -representation on the φ-
isotypic component (φ ∈ Âu corresponding to E) of the total cohomology of the Springer fiber
of u.

Consider the θ-elliptic pairing ( , )Wj

θ−ell on
⊕

j∈Jθ R(Wj � 〈θ〉), defined on each summand via
the action of Wj � 〈θ〉 on zM and extended orthogonally to the direct sum.

Theorem 11.7 ([Wal07, Théorème p. 616]). Let i = (U, E), i′ = (U ′, E ′) be two elements of Iθ,
and ν(i) = (j, ρ), ν(i′) = (j′, ρ′). Let (u, φ), (u′, φ′), φ ∈ Âu and φ′ ∈ Âu′ be representatives for
i, i′, respectively. Then

(φ̃, φ̃′)θ−ell = (ρ̃, ρ̃′)Wj

θ−ell.

The equality in the theorem does not depend on the choices involved in the construction.

11.3 The proof of Theorem 11.1: the case of adjoint groups
In this subsection, suppose that G is a simple F -split group of adjoint type. This means that G∨

is simply connected, hence, for every s ∈ T∨, ZG∨(s) is connected. We may apply Theorem 11.7
to

G = ZG∨(s) and θ the trivial automorphism.

Let Is = IZG∨ (s), Js = JZG∨(s), and J̃s = J̃ZG∨(s), so that the generalized Springer correspondence
for ZG∨(s) is the map

νs : Is → J̃s, (U, E) �→ (j, ρ),

and
ρ̃ =

∑
ρ′∈Ŵj

Pj,ρ,ρ′ρ
′, where Pj,ρ,ρ′ =

∑
m∈Z

dim Hom(E ,H2m+aU′ (Aj′,ρ′)|U ).

For convenience, let us also define

ν̃s : Is → J̃s, (U, E) �→ (j, ρ̃). (11.14)

Recall that for every semisimple element s ∈ G∨, Gps = ZG∨(s).

Proposition 11.8. Suppose G is simple F -split group of adjoint type. The maps ν̃s from (11.14)
induce an isometric isomorphism⊕

s∈C(G∨)ss

⊕
u∈C(Gp

s )un

R(AGp
s
(u)) ∼=

⊕
s∈C(G∨)ss

⊕
j∈Js

R(Wj), (φ, φ′)δ
s
u

ell = (ν̃s(φ), ν̃s(φ′))
Wj

ell .

Proof. This is immediate from Theorem 11.7 applied to each Gps . �
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11.4 Extending Theorem 11.1
In order to extend the results to the case when G is simple F -split but not adjoint, we first need
some results about Mackey induction. We follow a construction from [CH16, § 4.2]. Suppose H ′

is a finite group, H a normal subgroup of H ′, and H ′/H = R is abelian. The groups H ′,R act
on Ĥ. For every H-character χ, and γ ∈ R, denote by γχ the H-character γχ(h) = χ(γ−1hγ) (it
does not depend on the choice of coset representative γ).

If σ ∈ Ĥ, let Rσ and H ′
σ denote the corresponding isotropy groups of σ. For each γ ∈ Rσ,

fix an isomorphism φγ : γσ → σ and define the twisted trace as trγ(σ)(h) = tr(σ(h) ◦ φγ), h ∈ H.
The choices of φγ (each unique up to scalar) define a factor set, or a 2-cocyle, βσ : Rσ ×Rσ → C×.

Remark 11.9. We assume that the action of R can be normalized so that βσ is trivial. This is
the case, for example, when R is cyclic.

If τ is a (virtual) Rσ-representation, we may form the Mackey induced (virtual) H ′-
representation

σ � τ = IndH
′

H′
σ
(σ ⊗ τ).

If τ is an irreducible Rσ-representation, then σ � τ is an irreducible H ′-representation. In fact,
Ĥ ′ = {σ � τ | σ ∈ R\Ĥ, τ ∈ R̂σ}.

Given γ ∈ R, if γ ∈ Rσ, define τσ,γ to be the virtual Rσ-representation whose character is
the delta function on γ. Then {σ � τσ,γ | σ ∈ R\Ĥ, γ ∈ R} is a basis of R(H ′). As in [CH16,
Lemma 4.2.2],

χσ�τσ,γ (h) =

{
0, if h /∈ Hγ,∑

γ′∈R/Rσ

γ′(trγ(σ))(hγ−1), if h ∈ Hγ.
(11.15)

Note that
H ′/H ′

σ
∼= R/Rσ

indexes the R-orbit (equivalently, the H ′-orbit) of σ ∈ Ĥ. Suppose H ′ is endowed with a
representation δ and we define the corresponding elliptic pairing ( , )H

′
ell = ( , )δell.

From now on, assume that H ′ = H � R, so that each γ ∈ R acts on H by automorphisms
of H. (If H is abelian, which is often the case for component groups, this assumption is not
necessary.) Then we may define the twisted elliptic pairing ( , )Hγ−ell (for each γ ∈ R).

The existence of the intertwiner φγ (γ ∈ Rσ) is equivalent to the existence of an extension of
σ to a representation of H � 〈γ〉, by setting σ(hγ) = σ(h) ◦ φγ , so trγ(σ)(h) = trσ(hγ), h ∈ H.
This is implicit in the following lemma.

Lemma 11.10. For every γ1, γ2 ∈ R and every σ1, σ2 ∈ Ĥ, the H ′-elliptic pairing is given by

(σ1 � τσ1,γ1 , σ2 � τσ2,γ2)
H′
ell =

⎧⎨⎩
1
|R|
∑

γ′∈R/Rσ1 ,γ
′′∈R/Rσ2

(γ
′
σ1,

γ′′σ2)Hγ1−ell, if γ1 = γ2,

0, if γ1 �= γ2.

Proof. The orthogonality of the two characters when γ1 �= γ2 follows at once since the first is
supported on γ1H and the second on γ2H. The first formula follows from (11.15) by the definition
of the elliptic pairing. �

Lemma 11.10 allows us to extend the proof of Theorem 11.7 to the case when G′ is
disconnected as long as the following holds.

(�) The cocycles �j that occur in the disconnected Springer correspondence (3.5) can be
trivialized.
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With the notation from § 3, set

Au(j) = ZRjG◦(u)/ZG(u)◦.

This is a normal subgroup of Au containing AG◦(u).
In our case G is not an arbitrary disconnected reductive group, but rather G = ZG∨(s), for

some semisimple element s ∈ T∨. Let W∨ be the Weyl group of T∨ in G∨. If we fix B(s) a Borel
subgroup of G◦ with T∨ ⊂ B(s), and denote by Φ+(G◦) the positive roots of T∨ in G◦, then
A = G/G◦ can be identified with

A = {w ∈W∨ | w(Φ+(G◦)) = Φ+(G◦)}, (11.16)

see, for example, [Bon05, § 1]. With this identification, A acts on T∨ and Φ+(G◦), hence by
automorphisms of the root datum of G◦. We will use this ‘global’ action on G◦ in the proof of
the next result in order to construct the extensions to the appropriate semidirect products and
apply Waldspurger’s result to θ-elliptic pairings.

Proposition 11.11. Retain the notation from § 3 and suppose that (�) holds. Let ν : IG → J̃G

be the generalized Springer correspondence (3.5). Let i = (U, E), i′ = (U ′, E ′) be two elements
of IG , and ν(i) = (j, ρ), ν(i′) = (j, ρ′). Let (u, φ), (u′, φ′), φ ∈ Âu, φ′ ∈ Âu′ be representatives for
i, i′, respectively. Then:

(i) if U �= U ′, (φ, φ′)Au
ell = 0 = (ρ,ρ′)Wj

ell ;

(ii) if U = U ′, (φ, φ′)Au(j)
ell = (ρ,ρ′)Wj

ell .

Proof. Suppose j = j′, otherwise the claim is true by definition. Let ρ◦1, ρ
◦
2 ∈ Ŵ ◦

j and suppose
that they have unipotent supports U◦

1 , U
◦
2 , respectively, in the connected generalized Springer

correspondence such that G · U◦
1 �= G · U◦

2 . Let ρ◦
i , i = 1, 2 be the corresponding reducible Springer

representations, as in § 11.2. We assume that they all have appropriate twisted extensions as in
§ 11.2 and drop˜from the notation. Using Lemma 11.10 applied to H = W ◦

j , H ′ = Wj , R = Rj ,
for every γ ∈ (Rj)ρ◦1 ∩ (Rj)ρ◦2 ,

(ρ◦
1 � τρ◦1,γ ,ρ

◦
2 � τρ◦1,γ)

Wj

ell =
1
|Rj |

∑
γ′,γ′′

(γ
′
ρ◦

1,
γ′′ρ◦

2)
W ◦

j

γ−ell = 0,

by Theorem 11.7. We used implicitly here that the stabilizers in Rj of ρ◦i and ρ◦
i are the same.

In conjunction with the second claim in Lemma 11.10, this implies that (ρ◦
1 � τ1,ρ

◦
2 � τ2)

Wj

ell =

0 for all τi ∈ (̂Rj)ρ◦i , i = 1, 2. Hence, (ρ1,ρ2)
Wj

ell = 0 whenever ρ1, ρ2 have distinct unipotent
(disconnected) Springer support, which proves the first part of the claim.

Now assume that u = u′ and φ, φ′ ∈ Âu. Suppose ρ◦i occurs in the restriction of ρi to W ◦
j

and that φ◦i ∈ ÂG◦(u) (which necessarily occurs in the restriction of φi) corresponds to ρ◦i in the
connected generalized Springer correspondence. We observe that there is a natural injection

Rj = Wj/W
◦
j � NG(j)/NG◦(M◦) ↪→ G/G◦ = A. (11.17)

Hence, every γ ∈ Rj can be regarded as an automorphism of G◦ via (11.16) and, in particular,
Theorem 11.7 can be applied with γ in place of θ. We wish to compare (ρ◦

1 � τρ◦1,γ1 ,ρ
◦
2 � τρ◦2,γ2)

Wj

ell

and (φ◦1 � τφ◦1,γ1 , φ
◦
2 � τφ◦2,γ2)

Au
ell . By [AMS18, Lemma 4.4],

(Rj)ρ◦i
∼= (Wj)ρ◦i /Wj

∼= (Au)φ◦i /AG◦(u), i = 1, 2,

which implies that there is an identification between γi, i = 1, 2 for the ρ◦i and for the φ◦i in the
setting of Lemma 11.10. Hence, if γ1 �= γ2, both elliptic products are zero.
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Suppose γ1 = γ2 = γ ∈ (Rj)ρ◦1 ∩ (Rj)ρ◦2 = ((Au)φ◦1 ∩ (Au)φ◦2)/AG◦(u). To simplify the formu-
las, set ni = |(Rj)ρ◦i | = |(Au)φ◦i /AG◦(u)|, i = 1, 2. Then, first by Lemma 11.10 and second by
Theorem 11.7,

n1n2|Rj |(ρ◦
1 � τρ◦1,γ ,ρ

◦
2 � τρ◦2,γ)

Wj

ell =
∑

γ′,γ′′∈Rj

(γ
′
ρ◦

1,
γ′′ρ◦

2)
W ◦

j

γ−ell

=
∑

u0∈RjG◦·u/G◦

∑
γ′,γ′′∈Rj

G◦·(γ′
u0)=G◦·(γ′′

u0)=G◦·u0

(γ
′
φ◦1,

γ′′φ◦2)
AG◦ (u0)
γ−ell .

The first sum is over the representatives of the G◦-orbits that are conjugate to G◦ · u via Rj .
Since the corresponding summand for two different G◦-orbits u0, u

′
0 ∈ G · u are equal (as they are

related by an outer automorphism of G◦), it follows that

n1n2
|Rj |
Nu

(ρ◦
1 � τρ◦1,γ ,ρ

◦
2 � τρ◦2,γ)

Wj

ell =
∑

γ′,γ′′∈Rj

G◦·(γ′
u)=G◦·(γ′′

u)=G◦·u

(γ
′
φ◦1,

γ′′φ◦2)
AG◦ (u)
γ−ell , (11.18)

whereNu is the number of G◦-conjugacy classes in RjG◦ · u. It is easy to see (using orbit-stabilizer
counting) that |Rj |/Nu = |ZRjG◦(u)/ZG◦(u)|. Moreover, an element γ ∈ Rj has the property that
G◦ · (γu) = G◦ · u if and only if γ ∈ ZG(u) mod G◦. Hence, (11.18) becomes

n1n2|ZRjG◦(u)/ZG◦(u)|(ρ◦
1 � τρ◦1,γ ,ρ

◦
2 � τρ◦2,γ)

Wj

ell =
∑

γ′,γ′′∈ZRjG◦ (u)/ZG◦ (u)

(γ
′
φ◦1,

γ′′φ◦2)
AG◦ (u)
γ−ell .

(11.19)
On the other hand, applying Lemma 11.10 to Au(j), we get

n1n2|Au(j)/AG◦(u)|(φ◦1 � τφ◦1,γ , φ
◦
2 � τφ◦2,γ)

Au(j)
ell =

∑
r′,r′′∈Au(j)/AG◦(u)

(r
′
φ◦1,

r′′φ◦2)
AG◦ (u)
γ−ell . (11.20)

Note that
Au(j)/AG◦(u) ∼= ZRjG◦(u)/ZG◦(u) ↪→ G/G◦.

The claim follows by comparing (11.19) and (11.20). �
Remark 11.12. (i) In our case, G = ZG∨(s) for a semisimple element s, and hence all of the groups
W ◦
j that occur in our setting are finite Weyl groups. This means that (�) holds by [ABPS17a,

Proposition 4.3].
(ii) If ZRjG◦(u)/ZG◦(u) = ZG(u)/ZG◦(u), it follows from Proposition 11.11(ii) that, in fact,

(φ, φ′)Au
ell = (ρ,ρ′)Wj

ell . For example, when j = j0 is the cuspidal datum associated to the triv-
ial local system on the maximal torus of G◦, the Rj0 = G/G◦, hence this condition holds
automatically.

Corollary 11.13. Let G is a semisimple split F -group. Then Conjecture 9.1 holds for all
Iwahori-spherical representations of the pure inner twists of G, in the sense of (9.4).

Proof. By Proposition 11.11 and Remark 11.12(ii), the claim follows just as for adjoint groups.
�

12. Sp4(F )

As a useful example, we present the case G = Sp4(F ). First, there are six unipotent representa-
tions of the finite group Sp4(Fq): five in bijection with irreducible representations of the finite
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Weyl group of type C2 and one cuspidal representation θ. Using Lusztig’s notation for the irre-
ducible representations of the Weyl group of type B/C, there are three families F of unipotent
representations with associated finite groups Γ as follows:

– Γ = {1}, F = {2× ∅};
– Γ = {1}, F = {0× 11};
– Γ = Z/2Z, F = {1× 1, 11× ∅, ∅ × 2, θ} with associated parameters, in order, M(Γ) =
{(1,1), (−1,1), (1, ε), (−1, ε)}.

For the Z/2Z-family, the stable combinations are

σ(1, 1) = 1× 1 + ∅ × 2, σ(−1, 1) = 11× ∅+ θ,

σ(1,−1) = 1× 1− ∅ × 2, σ(−1,−1) = 11× ∅ − θ,
(12.1)

and Lusztig’s Fourier transform acts by the flip σ(x, y) �→ σ(y, x). For the singleton families, the
Fourier transform is the identity.

Next, we consider the p-adic group Sp4(F ): the unipotent representations are parameterized
by data in the dual group G∨ = SO5(C). In particular, the list of unipotent classes u and their
attached groups Γu is as follows.

u Γu

(5) 1
(311) S(O1 × O2) ∼= O2

(221) Sp2

(15) SO5

The interesting case is u = (311). Write

Γu = 〈z, δ | z ∈ C×, δ2 = 1, δzδ−1 = z−1〉.
Then ZΓu(±δ) = AΓu(±δ) = {±1,±δ} ∼= C2 × C2 and AΓu(±1) = {1, δ} ∼= C2. There are six
conjugacy classes of elliptic pairs:

[(±1, δ)], [(δ,±1)], [(δ,±δ)], (12.2)

and the flip acts as

flip([(±1, δ)]) = [(δ,±1)], flip([(δ,±δ)]) = [(δ,±δ)]. (12.3)

There are three conjugacy classes of isolated semisimple elements in T∨ = {(a, b) | a, b ∈ C×}
in SO5(C). In this notation, the Weyl group W (B2) acts on T by flips and inverses. The
representatives of the three classes are:

– s0 = (1, 1), ZG∨(s0) = SO5;
– s1 = (−1, 1), ZG∨(s1) = S(O2 × O3);
– s2 = (−1,−1), ZG∨(s2) = S(O1 × O4) ∼= O4.

All three s0, s1, s2 occur in Γu = O2 and in the notation above for O2 = 〈z, δ〉, they are

s0 ↔ 1 ∈ O2, s1 ↔ −1 ∈ O2, s2 ↔ δ ∈ O2.

Consequently, there are eight elliptic tempered representations of the form π(si, u, φ), i = 0, 1, 2,
u = (311): six are Iwahori-spherical and two are supercuspidal. Out of these, four are discrete
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Table 1. Elliptic Sp4(F )-representations attached to u = (311) ∈ SO5.

π(u, s, φ) K0 → Sp4(Fq) K1 → Sp2(Fq)2 K2 → Sp4(Fq)

(s0,1) 1× 1 + ∅ × 11 1 � ε+ ε� 1 + ε� ε 1× 1 + ∅ × 11
(s0, ε) ∅ × 2 ε� ε ∅ × 2
(s1,1) ∅ × 2 + ∅ × 11 1 � ε+ ε� ε 1× 1
(s1, ε) 1× 1 ε� 1 + ε� ε ∅ × 2 + ∅ × 11

(s2,1 � 1) ∅ × 11 1 � ε 11× ∅
(s2, ε� 1) θK0 0 0
(s2,1 � ε) 0 0 θK2

(s2, ε� ε) 11× ∅ ε� 1 ∅ × 11

Table 2. Elliptic Sp4(F ) stable combinations attached to u = (311) ∈ SO5.

(s, h) K0 K1 K2

(1, δ) (1× 1− ∅ × 2) + ∅ × 11 1 � ε+ ε� 1 (1× 1− ∅ × 2) + ∅ × 11
(δ, 1) (11× ∅+ θK0) + ∅ × 11 1 � ε+ ε� 1 (11× ∅+ θK2) + ∅ × 11

(−1, δ) (−1× 1 + ∅ × 2) + ∅ × 11 1 � ε− ε� 1 (1× 1− ∅ × 2)− ∅ × 11
(δ,−1) (−11× ∅ − θK0) + ∅ × 11 1 � ε− ε� 1 (11× ∅+ θK2)− ∅ × 11
(δ, δ) (−11× ∅+ θK0) + ∅ × 11 1 � ε− ε� 1 (11× ∅ − θK2)− ∅ × 11

(δ,−δ) (11× ∅ − θK0) + ∅ × 11 1 � ε+ ε� 1 (11× ∅ − θK2) + ∅ × 11

series representations, all those for s2 = δ. The parahoric restrictions are given in Table 1. We
computed them using the same method as in [Ree00, (6.2)], but since in our case G∨ is not
simply connected, we also need to involve the Mackey induction for graded affine Hecke algebras
attached to disconnected groups.

The corresponding stable combinations are

Π(u, 1, δ) = π(u, s0,1)− π(u, s0, ε),

Π(u,−1, δ) = π(u, s1,1)− π(u, s1, ε),

Π(u, δ, 1) = π(u, s2,1 � 1) + π(u, s2,1 � ε) + π(u, s2, ε� 1) + π(u, s2, ε� ε),

Π(u, δ,−1) = π(u, s2,1 � 1) + π(u, s2,1 � ε)− π(u, s2, ε� 1)− π(u, s2, ε� ε),

Π(u, δ, δ) = π(u, s2,1 � 1)− π(u, s2,1 � ε) + π(u, s2, ε� 1)− π(u, s2, ε� ε),

Π(u, δ,−δ) = π(u, s2,1 � 1)− π(u, s2,1 � ε)− π(u, s2, ε� 1) + π(u, s2, ε� ε).

The corresponding parahoric restrictions are in Table 2. Here the column labelled Ki contains
resKi(Π(u, s, h)).

One can easily verify by inspection using Table 2 that the conjecture holds in this case.

13. SLn(F )

13.1 Elliptic pairs for G∨ = PGLn(C)
Consider the case G∨ = PGLn(C). Let Z denote the centre of GLn(C). In the Weyl group
of type An−1 (W = Sn), denote by ẇn the permutation matrix corresponding to the
n-cycle (1, 2, 3, . . . , n). For every nth root z of 1, let

Δn(z) = diag(1, z, z2, . . . , zn−1)Z ∈ PGLn(C).

Fix ζn a primitive nth root of 1 and set sn = Δn(ζn). Note that ẇn and sn commute in PGLn(C).
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Lemma 13.1. Suppose Γ = PGLn(C). Then

Y(Γ)ell =
⊔

k∈(Z/nZ)×
Γ · (sn, ẇkn).

In particular, there are ϕ(n) Γ-orbits in Y(Γ)ell. The flip (s, h)→ (h, s) induces the following
map on Γ-orbits in Y(Γ)ell:

flip : ([(sn, ẇkn)])→ [(sn, ẇ−k
n )], k ∈ (Z/nZ)×.

Proof. Let T be the diagonal torus in Γ. By Proposition 8.7, the only possible elliptic pairs
are conjugate to (s, ẇ) where w is elliptic and s is regular such that s ∈ Tw. If the group is
semisimple of type An−1, then the only elliptic elements of the Weyl group are the n-cycles. We
may assume that ẇ = ẇn. It is easy to see that

T ẇn = {Δn(z) | zn = 1}.
Since s ∈ T ẇn needs to be regular, it follows that the corresponding z must be a primitive root
of 1.

Now fix s = sn. Every other Δ(ζ ′) with ζ ′ a primitive nth root is conjugate in Γ to sn. The
centralizer is ZΓ(s) = 〈T, ẇkn | k ∈ Z/nZ〉 ∼= T � Z/nZ. This means that ẇin is conjugate to ẇjn
in ZΓ(s) if and only if i = j. On the other hand, ẇkn is elliptic if and only if k ∈ (Z/nZ)×, hence
the claim follows.

For the claim about the Fourier transform, let x ∈ GLn(C) be such that x−1ẇnx = sn, where
x is the matrix corresponding to a basis of eigenvectors of ẇn. Then a calculation shows that

x−1snx = ẇ−1
n in PGLn(C).

From this,

flip([(sn, ẇkn)]) = [(wkn, sn)] = [(xsknx
−1, sn)] = [(skn, x

−1snx)] = [(skn, ẇ
−1
n )].

Finally, let p be a permutation matrix such that p−1sknp = sn (this exists since k is coprime to n).
This has the effect p−1ẇnp = ẇkn, hence [(skn, ẇ

−1
n )] = [(sn, ẇ−k

n )]. �
Now let u be a unipotent element in PGLn(C). Via the Jordan canonical form, u is parame-

terized by a partition λ of n, where we write λ = (1, . . . , 1︸ ︷︷ ︸
r1

, 2, . . . , 2︸ ︷︷ ︸
r2

, . . . , �, . . . , �︸ ︷︷ ︸
r�

). As is well-known

(see, for example, [CM93, Theorem 6.1.3])

Γu =
( �∏
i=1

GLri(C)iΔ

)/
Z, (13.1)

where H i
Δ means H embedded diagonally into the product of i copies of H. In particular, Γu

is connected. Let Tr denote the diagonal torus in GLr, Zr the center of GLr, T̄r = Tr/Zr and
Wr
∼= Sr the Weyl group. A maximal torus in Γu is Tu =

∏�
i=1(Tri)

i
Δ/Z and the Weyl group is

Wu =
∏�
i=1(Wri)

i
Δ.

Let w =
∏�
i=1(wi)

i
Δ ∈Wu, wi ∈Wri be given. We need Twu to be finite. The morphism

π : Tu �
�∏
i=1

(T̄ri)
i
Δ, (ti)i mod Z �→ (ti mod Zi)

is surjective and Wu-equivariant. Since (1̄, . . . , 1̄, (T̄wi
ri )iΔ, 1̄, . . . , 1̄) ⊂ Twu for each i, it follows that

wi is elliptic for PGLri , hence, each wi is an ri-cycle.
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Proposition 13.2. For u ∈ PGLn(C), Y(Γu)ell �= ∅ if and only if the partition λ corresponding
to u is rectangular, i.e. λ = (i, . . . , i︸ ︷︷ ︸

ri

) for some i. In this case,

Γu = GLri(C)iΔ/Z ∼= PGLri(C),

so Y(Γu)ell is as in Lemma 13.1.

Proof. Let w ∈Wu be elliptic as above. We pass to the Lie algebra tu = s(
⊕

(tri)
i
Δ); here s

denotes the traceless matrices. Since twi
ri = C · Idri , we see that

twu =
{

(a1Idr1 , a2Idr2 , a2Idr2 , . . . , aiIdri , . . . , aiIdri︸ ︷︷ ︸
i

, . . . )
∣∣∣∣ �∑
i=1

iai = 0
}
.

The element w is elliptic if and only if twu = 0. From the condition
∑�

i=1 iai = 0, we that this can
only happen if there exists a unique i such that ri �= 0. �
Corollary 13.3. The number of orbits of elliptic pairs for PGLn(C) is∑

u unipotent class

|Γu\Y(Γu)ell| = n.

Proof. From Proposition 13.2, the only unipotent classes that contribute are the rectangular
ones, which are in one-to-one correspondence with divisors d of n. For the unipotent class u =
(n/d, . . . , n/d︸ ︷︷ ︸

d

), Lemma 13.1 states that there are ϕ(d) orbits of elliptic pairs. Hence, the total

number is
∑

d|n ϕ(d) = n. �

13.2 Elliptic unipotent representations of SLn(F )
It is instructive to make explicit the elliptic correspondence (Conjecture 9.1) for G = SLn(F ). Let
K0 = SLn(oF ) and let I ⊂ K0 be an Iwahori subgroup. Let H(G, I) = {f ∈ C∞

c (G) | f(i1gi2) =
f(g), for all i1, i2 ∈ I} be the Iwahori–Hecke algebra (under convolution with respect to a fixed
Haar measure). The algebra H(G, I) is naturally isomorphic to the affine Hecke algebra H =
H(R,√q, 1), where q is the order of the residue field of F and R is the root datum for PGLn(C).

Every irreducible unipotent G-representation has nonzero fixed vectors under I, in other
words, Run(G) = RI(G), where RI(G) is the category of smooth representations generated by
their I-fixed vectors. The functor

mI : Run(G) = RI(G)→ H(G, I)-mod, V �→ V I ,

is an equivalence of categories. The Langlands parameterization in this case can be read off the
Kazhdan–Lusztig classification of irreducible modules for H(G, I) extended to this setting in
[Ree02]:

IrrunSLn(F )↔ Irr H(G, I)↔ PGLn(C)\{(x, φ) | x ∈ PGLn(C), φ ∈ Âx}. (13.2)

The exact functor mI induces an isomorphism

ExtiG(V, V ′) = ExtiH(G,I)(V
I , V ′I), for all i,

and therefore EPG(V, V ′) = EPH(G,I)(V I , V ′I) for all V, V ′ ∈ Irr RI(G). Since EPG and EPH(G,I)

are additive, they extend to pairings on the Grothendieck groups of finite-length representations.
Let RI(G)C be the C-span of Irr RI(G) and RI(G)C the quotient by the radical of EPG. Define
R(H(G, I))C similarly. Thus, we have the following.
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Lemma 13.4. The equivalence of categories mI gives an isomorphism mI : RI(G)C →
R(H(G, I))C which is isometric with respect to EPG and EPH(G,I).

The elliptic theory of affine Hecke algebras is well understood [OS09], and we reviewed the
basic facts in § 11.1. In particular, via (11.10) and (11.4)), we get that

RI(G)C
∼= R(W̃ )C

∼=
⊕

s∈W\T∨
iso

R(Ws)C, (13.3)

where W̃ = W a, W , T∨, Ws are as in Example 11.4. If n = dm, we consider sd×m :=
diag(1, . . . , 1︸ ︷︷ ︸

m

, ζd, . . . , ζd︸ ︷︷ ︸
m

, . . . , ζd−1
d , . . . , ζd−1

d︸ ︷︷ ︸
m

), where ζd is a primitive dth root of 1. This is

Sn-conjugate to Δn(ζd). In that case,

ZG∨(sd×m) = P(GLm(C)d) � Z/dZ,

which has component group AG∨(sd×m) = Z/dZ. The Lie algebra of the maximal (diagonal)
torus in ZG∨(sd×m) is

t∨d×m =
{
x = (x1, . . . , xn)

∣∣∣∣ ∑
i

xi = 0
}
,

on which Wsd×m
acts in the standard way: break (x1, . . . , xn) into m-tuples

y
i
= (x(i−1)m+1, x(i−1)m+2, . . . , xim), 1 � i � d.

Then the ith Sm acts by the natural permutation action on y
i
, whereas Z/dZ permutes cyclically

(y
1
, . . . , y

d
). We consider the elliptic theory of Wsd×m

on t∨d×m with respect to this action.

Lemma 13.5. There are ϕ(d) elliptic conjugacy classes of Wsd×m
acting on t∨d×m with represen-

tatives gξ = (wm, 1, 1, . . . , 1)ξ, where ξ ranges over the elements of order d in Z/dZ, and wm is
a fixed m-cycle in Sm.

Proof. We first show that each such element is elliptic. Without loss of generality, suppose
that ξ acts as the standard cycle (1, 2, . . . , d) and wm = (1, 2, . . . ,m). Then gξ · x = x implies
x1 = x(d−1)m+1 = x(d−2)m+1 = · · · = xm+1 which then is equal to xm (because of the effect of
wm), then with xdm = x(d−1)m = · · · = x2m, which then is equal to xm−1, etc. It follows that all
coordinates xi are the same and since the sum of the coordinates is 0, we get that there are no
nonzero fixed points.

Second, no two gξ are conjugate. This is clear because if ξ, ξ′ are distinct in Z/dZ, then xξ
and x′ξ′ are in different conjugacy classes for all x, x′ in Sdm.

It remains to show that these are all the elliptic conjugacy classes. Let xξ be an element with
x = (σ1, . . . , σd) ∈ Sdm and ξ ∈ Z/dZ. If ξ does not have order d, then there exists points x =
(y

1
, . . . , y

d
) ∈ t∨d×m (here, as above, each y

i
is anm-tuple) fixed under the action of ξ such that not

all yi are equal. This means, in particular, that there exists j such that y
j

= (x(j−1)m+1, . . . , xjm)

is arbitrary and
∑jm

l=(j−1)m+1 xl �= 0. But then every σj ∈ Sm has a nonzero fixed point y
j
, for

example taking all of the entries of y
j

to be equal, and therefore xξ is not elliptic.
This means that necessarily ξ has order d. We claim that the conjugacy classes of xξ are in

one-to-one correspondence with conjugacy classes of Sm via the correspondence

w ∈ Sm �→ (w, 1, . . . , 1)ξ ∈ Sdm � Z/dZ.

Without loss of generality, suppose ξ acts by shifting the indices i→ i+ 1 mod d. We show that
every element xξ, x = (σ1, . . . , σd), is conjugate to an element of the form (w, 1, . . . , 1)ξ. This is
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equivalent to the existence of permutations z1, . . . , zd ∈ Sm such that

σ1 = z1wz
−1
2 , σ2 = z2z

−1
3 , . . . , σd−1 = zd−1z

−1
d , σd = zdz

−1
1 .

This can be solved easily, by taking z1 = 1, then zd = σd, zd−1 = σd−1σd, . . . , z2 = σ2σ3 . . . σd
and w = σ1σ2 . . . σd.

A similar calculation shows that (w, 1, . . . , 1)ξ and (w′, 1, . . . , 1)ξ are conjugate if and only if
w,w′ are conjugate in Sm. (If w′ = zwz−1, then (w′, 1, . . . , 1)ξ and (w, 1, . . . , 1)ξ are conjugate
via (z, z, . . . , z).)

Finally, if an element (w, 1, . . . , 1)ξ, ξ of order d, is elliptic, then w is elliptic in Sm, otherwise
if y is a fixed point of w, (y, . . . , y) is a fixed point of (w, 1, . . . , 1)ξ. This concludes the proof. �

On the other hand, we have unipotent classes u in P(GLm(C)d) and we need to look at the
elliptic theory of AG∨(sd×mu) on the Lie algebra of the maximal torus in ZP(GLm(C)d)�Z/dZ(u).
Let u = ud×m be the unipotent element given by the principal Jordan normal form on each of
the GLm-blocks. Then the reductive part of the centralizer is

ZG∨(sd×mud×m)red = P(ZGLm(C)d) � Z/dZ,

hence AG∨(sd×mud×m) = Z/dZ and this acts on the Cartan subalgebra

t∨(sd×mud×m) =
{

(z1Idm, . . . , zdIdm)
∣∣∣∣ ∑

i

zi = 0
}
.

In particular, R(Asd×mud×m
)C has dimension ϕ(d) and can be identified with the class functions

on the elements of order d in Z/dZ. Thus, in the case of SLn(F ), the elliptic correspondence for
unipotent representations takes the following very concrete form.

Proposition 13.6. Let G = SLn(F ). The local Langlands correspondence for unipotent
representations induces an isometric isomorphism

LLCpun :
⊕
d|n

R(Axd×m
) −→ Run(SLn(F )), φ �→ π(xd×m, φ),

where xd×m = sd×mud×m ∈ PGLn(C) is as above and Axd×m
= Z/dZ.

The connection with the elliptic pairs for G∨ = PGLn(C) from Proposition 13.2 is⊕
u∈C(PGLn(C))un

C[Y(Γu)ell]Γu =
⊕
d|n

C[Y(Γud×m
)ell]

Γud×m ∼=
⊕
d|n

R(Axd×m
).

Remark 13.7. Note that by taking dimensions in Proposition 13.6, we recover the well-known
formula

∑
d|n ϕ(d) = n, where, as above, ϕ denotes the Euler phi function.

13.3 The elliptic Fourier transform for SLn(F )
The results so far imply that we have an equivalence

Run(SLn(F ))C
∼= R(H)C

∼= R(W̃ )C
∼=

⊕
u∈C(PGLn(C))un

Γu\Y(Γu)ell.

The spaces involved are all n-dimensional and we describe the basis of Run(G)C given by the
virtual characters Π(u, s, h).

First, consider the two extremes. At one extreme, we have the regular unipotent class ureg.
Then Γureg = {1} and π(ureg, 1, 1) = St. At the other, end, u = 1, Γ1 = PGLn(C), and there are
ϕ(n) orbits of elliptic pairs (sn, ẇkn), k ∈ (Z/nZ)×, as in Lemma 13.1. The component group is
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Asn = 〈ẇn〉 ∼= Z/nZ. Let π(1, sn) denote the tempered unramified principal series of G with
Satake parameter sn ∈W\T∨. Since Wsn = Asn = Z/nZ, the theory of (analytic) R-groups
provides a well-known decomposition

π(1, sn) =
⊕
φ∈Âsn

π(1, sn, φ),

where each π(1, sn, φ) is an irreducible tempered G-representation. Identifying Ẑ/nZ with Z/nZ
(via a choice ζn of primitive nth root of unity), we get

Π(1, sn, ẇkn) =
∑

�∈Z/nZ

ζ�kn π(1, sn, φ�), k ∈ (Z/nZ)×, (13.4)

where φ�(ζn) = ζ�n. Moreover, as an H-module, π(1, sn, φ�)I is the (unique) irreducible tempered
H-module with central character W · sn such that

σ0(π(1, sn, φ�)I) = IndSn�X
Z/nZ�X(φ� ⊗ sn).

Now, more generally, by Proposition 13.2, Y(Γu)ell �= ∅ if and only if u = ud×m is labelled by
a rectangular partition (m, . . . ,m︸ ︷︷ ︸

d

) of n. In this case Γu = PGLd(C). Recall sd×m and xd×m =

sd×mud×m. Consider the parabolically induced tempered G-representation

π(ud×m, sd×m) = IndSLn(F )
Pd×m

((Stm ⊗ C1) � (Stm ⊗ Cζd) � · · ·� (Stm ⊗ Cζd−1
d

)),

where Pd×m is the block-upper-triangular parabolic subgroup with Levi subgroup Md×m =
S(GLm(F )d), Stm is the Steinberg representation of GLm(F ), and Cz is the unramified character
of GLm(F ) corresponding to the semisimple element zIdm in the dual complex group GLm(C).
The R-group in this case is Z/dZ which coincides with Axd×m

. We have a decomposition into
irreducible tempered G-representations:

π(ud×m, sd×m) =
⊕

φ∈Âxd×m

π(ud×m, sd×m, φ).

Taking I-fixed vectors and the deformation σ0, we have

σ0((πd×m, sd×m, φ�)I) = IndSn�X
Wsd×m�X

(sgnd×mφ� ⊗ sd×m),

where recall that Wsd×m
= Sdm � Z/dZ and sgnd×m is the sign character of Sdm.

Define

Π(ud×m, sd×m, ẇkd×m) =
∑

�∈Z/dZ

ζ�kd π(ud×m, sd×m, φ�), k ∈ (Z/dZ)×. (13.5)

The elliptic Fourier transform in this case is

FT∨
ell(Π(ud×m, sd×m, ẇkd×m)) = Π(ud×m, sd×m, ẇ−k

d×m), k ∈ (Z/dZ)×. (13.6)

The maximal compact open subgroups of SLn(F ) are maximal parahoric subgroups Ki, one
for each vertex i of the affine Dynkin diagram. With this notation, K0 = SLn(oF ). Moreover,
InnTpKi = {Ki}. All Ki are isomorphic to K0 (conjugate in GLn(F )), hence for all i, the non-
abelian Fourier transform of Ki is the identity. Let Wi

∼= Sn denote the finite parahoric subgroup
of W a corresponding to Ki, so that W0 = W . The isomorphism Wi

∼= W is given by the map
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sj �→ s(j−i) mod n. By Mackey induction/restriction

IndSn�X
Wsd×m�X

(sgnd×mφ� ⊗ sd×m)|Wi
∼= IndWi

(Wsd×m
)i
(sgnd×mφ� ⊗ sd×m), (13.7)

where (Wsd×m
)i = (Wsd×m

�X) ∩Wi. Let γ = ε1 − εn be the highest root of type An−1, in the
standard coordinates, so that s0 = sγtγ , denoting by tγ ∈ X ⊂W a the corresponding translation.
Then one can see that Wsd×m

∼= (Wsd×m
)i is given by sending

sj �→
{
sj , if j �= i

sitεi−εi+1 , if j = i,
1 � j < n.

Lemma 13.8. For every 0 � i < n,

IndWi

(Wsd×m
)i
(sgnd×mφ� ⊗ sd×m) ∼= IndSn

Wsd×m
(sgnd×mφ�+�i/m).

Proof. In light of the observation before the statement of the lemma, we only need to trace how
the inducing character changes on the generator corresponding to i. Denote by (Sdm)i the image
of Sdm inside (Wsd×m

)i, and similarly for (Z/dZ)i. If si is a generator of (Sdm)i, then the value of
the character sd×m on tεi−εi+1 is 1. On the other hand, if si is not a generator of (Sdm)i, then
there is also no change. This means that the inducing character on the (Sdm)i is still sgnd×m.

The generator ξ of Z/dZ is, in cycle notation, a product of the disjoint cycles (l,m+
l, 2m+ l, . . . , (d− 1)m+ l), where l ranges from 0 to m− 1 (when l = 0, we mean the cycle
(m, 2m, . . . , dm)). Then the simple reflection i contributes to the cycle l for i = jm+ l, j =

i/m�. In (Z/dZ)i, we then get a θεi−εi+1 , which we need to move to the end of the product of
cycles, and we get that the image (ξ)i in (Z/dZ)i is (ξ)i = ξtεi−ε(d−1)m+l

. The character sd×m acts

on tεi−ε(d−1)m+l
by ζjd, which means that φ�sd×m acts on (ξ)i by ζ�+jd , which proves the claim. �

Proposition 13.9. Conjecture 9.7 holds for G = SLn(F ). More precisely, for each 0 � i < n,

resKi ◦FT∨
ell(Π(ud×m, sd×m, ẇkd×m)) = ζ

2k�i/m
d FTcpt,un ◦ resKi(Π(ud×m, sd×m, ẇkd×m)).

Proof. To verify Conjecture 9.7, given (13.6), it is sufficient to compare the restrictions to Wi of
σ0(resKi(Π(ud×m, sd×m, ẇkd×m)I)) and σ0(resKi(Π(ud×m, sd×m, ẇ−k

d×m)I) as virtualWi-characters.
For this, we apply (13.7) and Lemma 13.8 with j = 
i/m� and get

σ0(resKi(Π(ud×m, sd×m, ẇkd×m)I)) ∼=
∑
�∈Z/d

ζk�d IndSn
Wsd×m

(sgnd×mφ�+j)

= ζ−kjd

∑
�

ζk�d IndSn
Wsd×m

(sgnd×mφ�).

On the other hand,

σ0(resKi(Π(ud×m, sd×m, ẇ−k
d×m)I)) ∼=

∑
�∈Z/d

ζ−k�d IndSn
Wsd×m

(sgnd×mφ�+j)

=
∑
�∈Z/d

ζk�d IndSn
Wsd×m

(sgnd×mφ−�+j)

=
∑
�∈Z/d

ζk�d IndSn
Wsd×m

(sgnd×mφ�−j)

= ζkjd

∑
�

ζk�d IndSn
Wsd×m

(sgnd×mφ�).
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Here we have used that

IndSn
Wsd×m

(sgnd×mφ�′) ∼= IndSn
Wsd×m

(sgnd×mφ−�′),

because φ−�′ is the Z/dZ-representation contragredient to φ�′ . This implies that the two sides are
contragredient to each other, but all irreducible Sn-representations are self-contragredient. �

14. PGLn(F )

Now suppose G = PGLn. The dual group G∨ is SLn(C). Each unipotent element u ∈ G∨

corresponds to a partition λu of n, and if λu = λ = (1, . . . , 1︸ ︷︷ ︸
r1

, 2, . . . , 2︸ ︷︷ ︸
r2

, . . . , �, . . . , �︸ ︷︷ ︸
r�

), then

Γu �
{

(x1, . . . , x�) ∈
�∏
i=1

GLri(C)
∣∣∣∣ �∏
i=1

det(xi)i = 1
}
. (14.1)

Lemma 14.1. The group Γu contains elliptic pairs if and only if u is regular unipotent. In this
case Y(Γu) = Y(Γu)ell = {(s, h) | s, h ∈ ZSLn(C)}.
Proof. The proof is very similar to that of Proposition 13.2. Note that if u is not rectangular,
then Γu has infinite center: for example, with notation as in (14.1), given t ∈ C×, the element
(tIdr1 , tIdr2 , . . . , tIdr�−1

, tr�−n/�Idr�) ∈ ZΓu . Thus, if Γu contains an elliptic pair, then λu is of the
form (k, k, . . . , k) for some k dividing n, and Γu � {x ∈ GLn/k(C) | det(x)k = 1}. Explicitly, we
can think of Γu as a split extension

1→ SLn/k(C)→ Γu → μk → 1,

where the first inclusion is the natural one, and the map to μk is given by the determinant.
Now, given semisimple elements s, h ∈ Γu such that sh = hs, there exists g ∈ SLn/k(C) such that
gsg−1, ghg−1 are both diagonal in GLn/k(C). Thus, a maximal torus of SLn/k(C) centralizes both
s and h, and if (s, h) is an elliptic pair, we must have k = n. �

We can now easily prove Conjecture 9.7 in this case.

Theorem 14.2. Conjecture 9.7 holds when G = PGLn. More precisely, when G = PGLn, we
have

rescpt,un ◦FT∨
ell = FTcpt,un ◦ rescpt,un .

Proof. Using Lemma 14.1, the proof of the theorem reduces to Proposition 9.10. �
To illustrate the theorem, we explicitly describe the case when G = PGL2. Note that even this

low-rank example shows that certain choices were necessary in our setup: to relate FT∨
ell to a finite

Fourier transform for the non-split inner twist of G, first, we must consider maximal compact
subgroups instead of just parahorics (otherwise the restrictions of Π(u, 1, 1) and Π(u,−1, 1)
would be the same, though FT∨

ell fixes the first but not the second); second, FTcpt,un must mix
subspaces corresponding to distinct inner twists to give a well-defined linear map.

Example 14.3. Now let G = PGL2. Then G has a unique non-split inner twist G′, which we can
describe explicitly as follows: let

D =
{(

a �b

b a

) ∣∣∣∣ a, b ∈ F(2)

}
,

where F(2) is the degree-two unramified extension of F . Then D is a four-dimensional division
algebra over F , and we can take G′ := D×/F×.
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Let χ0 be the unramified character of F× given by � �→ −1. Then the nontrivial weakly
unramified character of G (respectively, G′) is given by χ := χ0 ◦ det (respectively, χ′ := χ0 ◦
det). Let StG denote the Steinberg representation of G (and similarly for StG′ , which is the trivial
representation of G′), and let u ∈ SL2(C) be regular unipotent. Then the virtual representations
corresponding to our four elliptic pairs are

Π(u, 1, 1) = StG + StG′ ,

Π(u, 1,−1) = StG − StG′ ,

Π(u,−1, 1) = (StG ⊗ χ) + (StG′ ⊗ χ′),

Π(u,−1,−1) = (StG ⊗ χ)− (StG′ ⊗ χ′).

The involution FT∨
ell switches Π(u, 1,−1) and Π(u,−1, 1), and fixes the other two sums.

Let I be the Iwahori subgroup of G given by

I =
{(

a �b
c d

) ∣∣∣∣ a, d ∈ o×F , b, c ∈ oF

}
.

With notation as in § 7, we have ΩG � Z/2Z. The set Smax(G) contains two elements (A,O):
one corresponding to A = ΩG and one corresponding to A trivial. Thus, the group G has two
conjugacy classes of maximal compact open subgroups: the maximal parahoric subgroup K0 :=
PGL2(oF ) (which corresponds to A trivial) and K1 := NG(I) (which corresponds to A = ΩG).
Note that K1 contains I with index 2: it is generated by I and σ :=

(
0 �
1 0

)
. The reductive

quotients are given by K0 � PGL2(Fq) and K1 � F×
q � Z/2Z. Note that χ is trivial on K0 and

on I, but χ(σ) = −1, so χ induces the sign character on the component group of K1.
In the notation of § 7, we have G′ = Gx, where x is the nontrivial element of ΩG. Thus, G′ has

a unique conjugacy class of maximal compact subgroups, corresponding to the element (A,O)
of Smax(G) with A = ΩG. Explicitly, G′ itself is compact. The only parahoric subgroup of G′ is
I ′ := o×D/o

×
F , where oD is the ring of integers of D, and this parahoric is normal in G′. The group

G′ is generated by I ′ and σ (defined as above), which again has order 2 in G′. The reductive
quotient G′ � (F×

q2
/F×

q ) � Z/2Z. Note that as above χ′ is trivial on I ′ but takes the value −1 on
σ, so χ′ factors through the sign character of the component group of G′.

The space C(G)cpt,un is given by

C(G)cpt,un = Run(K0)⊕Run(K1)⊕Run(G′),

and the map rescpt,un is defined on the virtual representations above by

Π(u, 1, 1) �→ StK0 + StI + StI′ ,

Π(u, 1,−1) �→ StK0 + StI − StI′ ,

Π(u,−1, 1) �→ StK0 + (StI ⊗ sgn) + (StI′ ⊗ sgn),

Π(u,−1,−1) �→ StK0 + (StI ⊗ sgn)− (StI′ ⊗ sgn),

where, as in the proof of Proposition 9.10, StK denotes the Steinberg representation of K, and
sgn denotes the sign representation of the relevant component group.

If (A,O) ∈ Smax(G) with A trivial, then resO(Π(u, s, h)) = StK0 for all elliptic pairs (s, h).
In this case, FTcpt,un restricts to the identity map on Run(K0).

Now suppose (A,O) ∈ Smax(G) with A = ΩG. Then resO is given by projection onto
Run(K1)⊕Run(G′). In the notation of § 6, and with U the (one-element) family consisting
of the Steinberg representation of K1, we have Γ̃AU = A, so M(Γ̃AU ) consists of four elements:
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(1, triv), (1, sign), (x, triv), (x, sgn) (where, as above, x is the nontrivial element of ΩG). These
correspond to the following elements of Run(K1)⊕Run(G′):

(1, triv)←→ StI ,

(1, sgn)←→ StI ⊗ sgn,

(x, triv)←→ StI′ ,

(x, sgn)←→ StI′ ⊗ sgn.

With notation as in (5.13), we have

resO(Π(u, 1, 1)) = ΠŨ (triv, triv),

resO(Π(u, 1,−1)) = ΠŨ (triv, sgn),

resO(Π(u,−1, 1)) = ΠŨ (sgn, triv),

resO(Π(u,−1,−1)) = ΠŨ (sgn, sgn),

where Ũ is the family indexed by ΓAU . Thus the proof of Proposition 9.10, and Conjecture 9.7,
may be easily verified.

Acknowledgements

We thank M. Solleveld for his careful reading and many useful comments, particularly regarding
§ 11, and G. Lusztig and M. Reeder for their helpful suggestions. We also thank the referees for
the thorough checking of the paper, for the corrections and suggestions for improvement. D.C.
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13–71.

Art93 J. Arthur, On elliptic tempered characters, Acta Math. 171 (1993), 73–130.
Art06 J. Arthur, A note on L-packets, Pure Appl. Math. Q. 2 (2006), 199–217.
Art13 J. Arthur, The endoscopic classification of representations: orthogonal and symplectic groups,

Colloquium Publications, vol. 61 (American Mathematical Society, 2013).

70

https://doi.org/10.1112/S0010437X24007401 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007401


A tempered Fourier transform

ABPS16 A.-M. Aubert, P. Baum, R. Plymen and M. Solleveld, The local Langlands correspondence
for inner forms of SLn, Res. Math. Sci. 3 (2016), 32.

ABPS17a A.-M. Aubert, P. Baum, R. Plymen and M. Solleveld, The principal series of p-adic groups
with disconnected centre, Proc. London Math. Soc. (3) 114 (2017), 798–854.

ABPS17b A.-M. Aubert, P. Baum, R. Plymen and M. Solleveld, Conjectures about p-adic groups and
their non commutative geometry, in “Around Langlands correspondences”, Contemporary
Mathematics, vol. 691 (American Mathematical Society, Providence, RI, 2017), 5–21.

AMS17 A.-M. Aubert, A. Moussaoui and M. Solleveld, Affine Hecke algebras for Langlands parame-
ters, Preprint (2017), arXiv:1701.03593.

AMS18 A.-M. Aubert, A. Moussaoui and M. Solleveld, Generalizations of the Springer correspondence
and cuspidal Langlands parameters, Manuscripta Math. 157 (2018), 121–192.

Ber84 J. Bernstein, Le “centre” de Bernstein, in Travaux en Cours, Representations of reductive
groups over a local field, ed P. Deligne (Hermann, Paris, 1984), 1–32.

Bon05 C. Bonnafé, Quasi-isolated elements in reductive groups, Comm. Algebra 33 (2005),
2315–2337.
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