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Abstract
A dual-band angular-stable transmissive linear to circular polarization converter based on
metasurface is proposed and demonstrated in this work.The converter consists of three layers.
The top and bottom layers are formed by an array of double split-ring layers.The unit cell of the
central layer contains a square loop nesting a slant dipole.The split-rings create two resonances,
enabling dual-band operation. The slant dipole and square loop are useful for improving the
quality of circular polarization conversion. It is shown that the proposed polarization con-
verter converts the incident linearly polarizedwave into circularly polarizedwavewith opposite
polarizationmodes over the frequency ranges of 8.77–10.58 and 17.59–19.88GHz.The angular
stability is up to 60∘ for 3 dB axial ratio. Moreover, the thickness of unit cell has a wavelength
below 0.06 at the lower band. Comparedwith other designs in the literature, the structure bears
merits of wideband response, high angular stability, and low-profile property within dual-band
operational region. To validate the design, a sample prototype was designed, fabricated, and
measured. The measured results are in good agreement with the simulated ones.

Introduction

Polarization is one of themost important properties of electromagnetic (EM)waves [1, 2], which
has seen many applications in areas such as communications and remote sensing [3, 4]. It is
usually a need to effectively manipulate the polarization states of EM waves [5, 6]. Traditional
methods include birefringence wave plates [7, 8] and liquid crystals [9, 10]. However, devices
based on these methods have bulky configurations, making them difficult to integrate into the
miniaturized system. In recent years, metasurfaces are intensively investigated as polarization
converter, due to their planar nature and easy fabrication and integration [11–16].

Two types ofmetasurface-based polarization converter can be categorized, i.e. reflection type
[17–21] and transmission type [22–33]. The reflection type bears merits of broadband opera-
tion. However, the reflection type usually blocks the emergence beam when working in normal
incidence. Therefore, offset feeding is usually used. Polarization converters operating in trans-
mission mode provide one with normal incidence and are preferential in beam steering case.
They have attracted considerable attention and investigation in the literature. For the transmis-
sion type, the multilayer structures were generally applied to obtain broadband performance.
In Ref. [22], a multilayer linear to circular polarization converter was proposed by inserting
slot-line structures, providing with the bandwidth less than 45%. Another design [23] based
on metal strips was used to achieve wideband response. However, these designs were less pre-
ferred in view of fabrication because of their size and complexity. Except for the aforementioned
single-band linear to circular polarization converters, dual-band linear to circular polariza-
tion converters have been increasingly concerned for dual-band and compact communication
systems [25–33]. Particularly, the polarization converters with orthogonal handedness and
broadband response are much desired in dual-channel communication. However, compared
with single-band linear to circular polarization converters, the dual-band linear to circular
polarization converters generally suffer from narrow operation bands and low angular stabili-
ties. In addition, the mutual effects of dual-band components make it more difficult to design
[27, 29].

For example, the transmissive linear to circular polarization converter was used to realize
dual-band operation with anti-polarization [25, 26]. However, the bandwidth was very narrow
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Figure 1. The working principle of linear to circular polarization converter in
transmission mode.

for both designs, being less than 7%. A dual-band polarization
converter based on Jerusalem cross “I”-type strip was studied
[27], where the bandwidth was improved to 29%. However, the
multilayer structure can be further simplified. Another design [28]
was developed using single substrate, while this design only oper-
ated at x-polarized normal incidence, and performed high inser-
tion loss due to the strong mutual interferences within dual-band
operations.

Further efforts were made to increase the bandwidth and the
angular stability. The dual-band polarization converter operating
at K/Ka bands was introduced in Ref. [29], which can provide 20∘

angular stability. Similarly, a four-layer structure [30] was reported
with 30∘ angular stability. Another two designs based on dual-layer
substrates were presented in Refs [31, 32]. The angular stability
reached up to 55∘. However, these structures are subject to the nar-
rowdual-band operation. InRef. [33], a very broadbanddesignwas
developed using frequency selective surfaces, providing 32% band-
width for the first band, but the angular stability was less than 25∘. It
is seen that there is still much space to achieve a high-performance
transmission type circular polarization converter with broadband,
angular stability.

In this work, a dual-band angular-stable transmissive linear
to circular polarization converter based on anisotropic metasur-
face is presented, as shown in Fig. 1. The structure can transform
the x-polarized incident wave into right-hand circular polarization
(RHCP) at lower band and left-hand circular polarization (LHCP)
at higher band. It will be shown that the axial ratio (AR) of out-
put wave remains below 3 dB in the ranges of 8.77–10.58 and
17.59–19.88 GHz, corresponding to the relatively bandwidth up to
18.71% and 12.22%, respectively. Moreover, this result is also valid
for y-polarized incidence but with orthogonal polarization modes
at each band. To validate the feasibility of this design, a prototype is
fabricated and measured. The measured results demonstrate good
agreement with the simulated ones. Compared with other polar-
ization converters, this structure exhibits the unique advantages of
low-profile, easy fabrication, high angular stability, and broadband
response. In particular, the angular stability is up to 60∘ for 3 dBAR.
Potential applications can be envisaged in a dual-band wide-angle
communication system.

Principle of polarization conversion

For an incident electric field
⇀
Ei, it can always be decomposed

into its horizontal (
⇀
Ei
x) and vertical (

⇀
Ei
y) components. Due to the

anisotropic character of metasurface structure, when a linearly
polarized incident wave is propagating along the +z direction
through the polarization converter, the

⇀
Ei
x and

⇀
Ei
y components

will experience the different phase shifts. In most cases, the trans-
mitted wave is seen as composed of its cross-polarization and
co-polarization components. Therefore, the relationship between
the incident wave and transmitted wave could be described by
Jones matrix T and be written as follows [28]:

[
⇀
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x

⇀
Et
y
] = [ txx txy

tyx tyy
] [

⇀
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x
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y
] = T [
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⇀
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] (1)

wherein txx = |txx| ej𝜑xx and tyy = ∣tyy∣ ej𝜑yy represent the
co-polarization transmission, tyx = ∣tyx∣ ej𝜑yx and txy = ∣txy∣ ej𝜑xy

represent the cross-polarization transmission for the incidence
along x- and y-direction, respectively. In addition, the modulus
sign indicates the amplitude, and 𝜑 is the phase.

Suppose an x-polarized wave is incident on the polarization
converter, the amplitude and phase of the transmitted wave meets
the following condition [27]:

|txx| = ∣tyx∣ , Δ𝜑xy = 𝜑xx − 𝜑yx = 2k𝜋 + 𝜋
2 (2)

where k is an integer. The circularly polarized wave can be formed.
Since the transmitted wave is not an ideal circular polarization
wave in most cases, the AR is introduced to assess the polarization
conversion properties, which can be expressed as follows [25]:

⎧{{
⎨{{⎩

AR = (
|txi|

2 + ∣tyi∣
2 +

√
a

|txi|
2 + ∣tyi∣

2 −
√
a

)
1/ 2

a = |txi|
4 + ∣tyi∣

4 + 2|txi|
2∣tyi∣

2 cos (2Δ𝜑xy)

, (i = x, y) (3)

In general, the transmitted wave can be regarded as a circular
polarization when its AR is lower than 3 dB. Further, to evalu-
ate the handedness of the transmitted wave, ellipticity (e) could be
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calculated using the following equation [3]:

e = sin
2 |txx| ⋅ ∣tyx∣ sinΔ𝜑xy

|txx|
2 + ∣tyx∣

2 (4)

where ellipticity (e) value ranges from +1 to −1. The transmitted
wave is an RHCP when e = + 1 and LHCP when e = − 1. In same
way, the condition for y-polarized incidence can be also deduced.

Simulation and analysis

Todesign a dual-band linear to circular polarization converter with
high angular stability, the schematic illustration of the unit cell
of the proposed polarization converter is shown in Fig. 2. It con-
sists of three metallic layers and two dielectric layers, where the
three metallic pattern layers are separated by the dielectric sub-
strate with height h= 1 mm, 𝜀r = 2.65 and tan 𝛿 = 0.001. As shown
in Fig. 2(a), the metallic patterns of unit cell of the first and third
layers are exactly same, and consist of two split rings, making them
create dual-band operation. While the middle layer is composed
of a square loop nesting a slant dipole in Fig. 2(b), which is useful
for improving the performance of circular polarization conver-
sion. Parametric sweeping is used to arrive at a satisfactory design.
The sweeping goals were set to be |txx| = ∣tyx∣ near the frequen-
cies of 9.5 and 18.5 GHz with a ±1 dB error. After parametric
sweeping, the geometrical parameters of the unit cell are given as
follows: p= 8.3 mm, g1 = 1.88 mm, g2 = 2.23 mm, d1 = 0.42 mm,

Figure 2. Schematic illustration of the unit cell for (a) the first/third layer, and (b)
the second layer.

Figure 3. Reflection and transmission coefficient for x-polarized normal incidence.

d2 = 0.38 mm, l0 = 6.8 mm, l1 = 5.69 mm, l2 = 3.82 mm,
l3 = 3.17 mm, and w= 0.95 mm.

The structure is modeled and simulated in Ansoft HSS using
periodical boundary condition in the x-y plane and open boundary
in the z-direction. The simulated results of reflection and trans-
mission under x-polarized normal incidence are shown in Fig. 3,
where rij = ∣rij∣ ej𝜑ij (tij = ∣tij∣ ej𝜑ij) denotes i-polarized reflec-
tion (transmission) coefficients from j-polarized incidence. It can
be clearly seen from Fig. 3 that the amplitudes of txx and tyx are
approximately equal in the frequency ranges of 8.77–10.58 GHz
and 17.59–19.88 GHz. Examining the reflection coefficients, it is
interesting to find that the amplitudes of rxx and ryx are below−9 dB
in the two frequency regions. Such a result indicates that most
of the incident energy penetrates through the structure with high
transmission efficiency.

In addition, the phase of the two orthogonal transmission com-
ponents is also shown in Fig. 4. It is seen that the phase difference
of txx and tyx is about −270∘ in the region of 8.77–10.58 GHz and
+270∘ or −90∘ in the range of 17.59–19.88 GHz. Undoubtedly, the
amplitude and phase criterion of circular polarization conversion

Figure 4. The phase of transmission coefficient txx and tyx.

Figure 5. Simulation results of AR and transmission coefficient under normal
incidence.
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are satisfied, indicating that circular polarization can be generated
over the two frequency bands.

The total AR and transmission response from transmitted wave
are plotted in Fig. 5. It can be observed that the AR remains below
3dB in the ranges of 8.77–10.58 and 17.59–19.88GHz, correspond-
ing to the relative bandwidth of 18.71% and 12.2%, respectively.
Besides, the minimumAR can be as low as 0.70 dB, indicating that
a nearly perfect circularly polarized wave has been realized over
two operational bands. Meanwhile, the insertion loss at two bands
is less than 1.37 and 2.9 dB, and the lowest insertion loss appears in
10.59 and 18.12GHzwith value of 0.33 and 0.22 dB.Apparently, the
structure can exhibit lower insertion loss at lower band. This may

be attributed to the reduction of reflection coefficient and not by
a particular higher depolarization effect of the unit cell, as shown
in Fig. 3.

To clarify the role of each subsection of the unit cell, the evo-
lution of the unit cell is presented in Fig. 6(a–c), which illustrate
the calculated AR and ellipticity. It can be seen intuitively from
Fig. 6(b) that the split-rings can transform the x-polarized incident
wave into a circularly polarized wave, and create two resonances,
enabling dual-band operation, where the inner and outer split-
rings of unit cell have an important impact on lower and higher
frequency resonances, respectively. Examining the ellipticity in
Fig. 6(c), it is interesting to find that the value of ellipticity is nearly

Figure 6. Simulation results of the proposed converter for (a) different configuration of the unit cell, (b) axial ratio, and (c) ellipticity.

Table 1. Performance comparison from different parts of the unit cell

Features evolution AR (dB)
Operating
band (GHz)

Operating bandwidth
(GHz)

Relative
bandwidth (%) Ellipticity

Orthogonal
polarization modes

Case 1 ≤3 20.11−20.71 0.6 2.94 −1 No

Case 2 ≤3 10.35−10.73/
20.11−22.91

0.38/0.8 3.61/3.9 +1/−1 Yes

Case 3 ≤3 10.73−11.05 0.32 2.94 +1 No

Case 4 ≤3 10.77−11.08/
17.31−20.22

0.31/2.91 2.84/15.51 +1/−1 Yes

Case 5 ≤3 8.81−10.63 1.82 18.72 +1 No

Case 6 ≤3 8.77−10.58/
17.58−19.88

1.81/2.29 18.71/12.22 +1/−1 Yes
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Figure 7. The linear to circular transmission responses and PERs of the proposed
converter.

equal to+1 at lower band, while –1 at higher band. Such a property
implies that the polarization converters based on split-ring res-
onators can realize the dual-band operation, and generate RHCP

and LHCP waves in two frequency bands. However, the quality of
AR is not sufficiently good.

Based on this, the slant dipole and square loop are used to
improve the quality of circular polarization conversion. It can be
seen from Fig. 6(b) that by adding the slant dipole in the mid-
dle layer, the quality of AR is considerably improved at higher
band, especially higher than 17.77 GHz. Similarly, by adding the
square-loop in themiddle layer, the lower frequency resonance can
be excited so that the curve of 3 dB AR shifts toward lower fre-
quency, especially lower than 10.62 GHz. It should be noted that
the polarization conversion performance of each case from unit
cell is different due to the coupling of each subsection and its dif-
ferent dimensions. Table 1 presents the performance comparison
of different parts of the unit cell. It can be concluded that simul-
taneous manipulation of slant dipole and square loop of unit cell
can considerably improve the quality of 3 dBAR bandwidth, which
achieve wideband linear to circular polarization conversion with
orthogonal rotational modes over two operational bands.

To further investigate the circular polarization conversion per-
formance of the proposed converter, the transmission coefficients
of RHCP and LHCP waves are shown in Fig. 7. It is seen that the
magnitude of RHCP and LHCP waves are greater than −0.13 dB
in the frequency ranges of 8.77–10.58 and 17.59–19.88 GHz.

Figure 8. Simulated results at different incident angles. (a) Transmission coefficient and (c) axial ratio at lower band, (b) transmission coefficient and (d) axial ratio at
higher band.
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Figure 9. The fabricated sample and its unit cells photograph: (a) the first/third layer, and (b) the second layer under an industrial microscope.

Figure 10. The illustration of the measurement setup.

Meanwhile, the polarization extinction ratios (PERs) are defined
as the difference between the RHCP and LHCP waves [29]. It is
found from Fig. 7 that the PERs are high in the whole operation
band. They remain over 27.94 dB at 10.14 GHz and 45.49 dB at
18.15GHz.TheminimumPERnearly equals to 15.23 dBwithin the
working bandwidth. Such a property indicates that an x-polarized
incident wave can be efficiently converted into circularly polarized
wave, and with high conversion efficiency. Due to the symmet-
rical properties of metasurface structure, this result is also valid
for y-polarized incidence but with opposite polarization modes at
each band.

It is also very important to assess the impact of incident angle on
the polarization conversion bandwidth. Figure 8 shows the trans-
mission coefficient and AR of the transmitted wave for different
incident angles (0∘, 15∘, 30∘, 45∘, 50∘, 55∘, and 60∘). It can be seen
from Fig. 8(a) that the insertion loss of 3 dB AR bandwidth at the
lower band is less than 1.7 dB when incident angle θ is below 45∘

while it increases to 3.5 dB when the incident angle θ up to 60∘.
Meanwhile, at the higher band, the insertion loss remains below
1.2 dB within 3 dB AR bandwidth when incident angle θ = 30∘,
but it increases to 4 dB when incident angle θ up to 60∘, as shown

in Fig. 8(b). Besides, the angular dependence of AR in the oper-
ation band is also presented in Fig. 8(c) and (d), respectively.
Apparently, the calculated AR of the proposed converter at the
lower band is below 3 dB over the ranges of 0–60∘. At higher
band, although the AR curvemoves slightly to the lower frequency,
the AR still remains below 3 dB with incident angle up to 60∘.
This result verifies that the dual-band linear to circular polariza-
tion converter can operate at high performance with 60∘ angular
stability.

It is noted that the miniaturization of the unit cell can pro-
vide good angular stability. For this reason, the structure utilizes
square-ring as resonator to decrease side length, which saves much
space for unit cell. In this design, the cell periodicity is 0.27𝜆0, and
the thickness is 0.06𝜆0, where 𝜆0 corresponds to the wavelength
of center frequency at the lower frequency band. It is evident that
these dimensions from the unit cell are smaller than the operating
wavelength 𝜆0. Thus, the unit cell shows a good miniaturization,
resulting in 60∘ angular stability.

Experimental results

To further validate the feasibility of this design, a prototype has
been fabricated using conventional printed circuit board technol-
ogy, as shown in Fig. 9. It consists of 31 × 31 unit cells with an area
of 257.3 × 257.3 mm2, and is examined under an industrial micro-
scope. It was found from Fig. 9 that the fabrication accuracy was
better than 10 μm, which can provide with the good stability of
bandwidth and angular incidence.

The measurement setup was illustrated in Fig. 10. The sample
was surrounded by radar absorbing materials to reduce the influ-
ence of noises. Two horn antennas located at two sides of the test
sample were connected to the vector network analyzer (Ceyear
AV3672D) with the coaxial cables. One horn was used as the trans-
mitting antenna, and the other as the receiving antenna. To obtain
better accuracy, the sample was placed in the far-field region of the
two horn antennas. For txx measurement, two horn antennas were
placed along same orientation while the receiver horn antenna for
tyx measurements was rotated by 90∘. Moreover, the transmission
coefficients without the sample were measured to obtain the back-
ground. For oblique incidence measurements, the sample can be
rotated along its vertical center line. In this way, both txx and tyx
can be derived, so that the AR can be effectively calculated.
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Figure 11. The comparison of simulated and measured results at different incident angles. (a) Axial ratio at lower band, (b) axial ratio at higher band.

Table 2. Performance comparison of the proposed converter with reported literature

Ref.
Center frequency

(GHz) Insertion loss (dB)
3 dB AR

bandwidth (%) Thickness Unit cell size
Metallic
layers

Angular
stability (∘)

[22] 10.64 <1 44.48 0.51𝜆0 0.24𝜆0 × 0.24𝜆0 >3 20

[23] 8.18 <3.2 74.01 0.16𝜆0 0.41𝜆0 × 0.41𝜆0 >3 20

[24] 10.74 <3 78.85 0.09𝜆0 0.2𝜆0 × 0.2λ0 2 45

[25] 19.6, 29.6 <1 7.14, 3.38 0.52𝜆0 0.63𝜆0 × 0.63𝜆0 3 –

[26] 19.95, 29.75 <1.5 2.51, 1.68 0.56𝜆0 0.47𝜆0 × 0.47𝜆0 >3 –

[27] 20.6, 29.2 <0.5, <0.4 11.65, 8.9 0.98𝜆0 0.49𝜆0 × 0.49𝜆0 >3 –

[28] 8.95, 15.81 <3.1, <3.1 36.56, 19.6 0.09𝜆0 0.30𝜆0 × 0.30𝜆0 2 –

[29] 18.5, 29 <2, <0.8 29, 12 0.10𝜆0 0.25𝜆0 × 0.25𝜆0 2 20

[30] 19.95, 29.75 <0.35, <0.79 2.51, 1.68 0.59𝜆0 0.17𝜆0 × 0.3𝜆0 >3 30

[31] 19.95, 29.75 <0.3, <0.8 2.51, 1.68 0.07𝜆0 0.35𝜆0 × 0.35𝜆0 3 45

[32] 9.35, 12.83 <0.5, <0.3 6.42, 4.29 0.06𝜆0 0.28𝜆0 × 0.28𝜆0 3 55∘

[33] 7.6, 13 <3, <3 31.58, 13.85 0.24𝜆0 0.22𝜆0 × 0.23𝜆0 >3 25

This work 9.68, 18.74 <1.37, <2.9 18.71, 12.2 0.06𝜆0 0.27𝜆0 × 0.27𝜆0 3 60

It has to be mentioned that, a group of tick marks are fabricated
to a rotary structure. The rotary structure with tick marks enables
one to measure the angular stability conveniently. On aligning
the transmitter and receiver with these tick marks, the alignment
accuracy is sufficiently high, smaller than 1∘.

The measured results for different incident angles are plotted
in comparison with the simulated ones in Fig. 11. It can be seen
that the measured results are in a good agreement with simu-
lated ones. At x-polarized normal incidence, the converter oper-
ates with AR below 3 dB in the frequency ranges of 8.81–10.55
and 17.59–19.87 GHz, corresponding to the relative bandwidth of
18.03% and 12.17%, respectively. Moreover, for various incident
angles 0–60∘, the 3 dB AR bandwidth remains stable in the lower
band while a slight fluctuation in the higher band. This is reason-
able since all of the dimensions in the lower band are smaller than
that in the higher band. However, it can be also observed that there
are some slight differences between measurement and simulation

in the operation band, which is very likely due to fabrication toler-
ances and measurement errors, such as misalignment of the horn
antennas and noises in the background.

Besides, a performance comparison between the proposed con-
verter and reported literature is presented in Table 2. It can be
seen that the multilayer structures for the transmission type are
frequently used to achieve wideband response [22, 23]. But there
are also some designs that the bandwidth is not sufficiently wide
[25–33], and performs low angular stability for oblique incidence
[29, 33]. Moreover, these structures are obtained by split-ring res-
onators [31, 32], multilayer or superstrate layer [30, 33], resulting
in the complexity of fabrication. Both types of designs can pro-
vide good angular stability [31, 32], which is reasonable since the
structure is miniaturized. In the comparison, the proposed con-
verter exhibits advantages of low profile, easy fabrication, high
angular stability, and broadband response over two operational
bands.
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Conclusion

In this work, a dual-band angular-stable transmissive circular
polarization conversion metasurface is presented. The structure
is composed of two square split-ring layers and a square loop
layer nesting a slant dipole that can convert the linearly polarized
incidentwave into circularly polarizedwavewith orthogonal polar-
ization modes in the two separate frequency bands. The simulated
results show that the AR is lower than 3 dB over the frequency
ranges of 8.77–10.58 and 17.59–19.88 GHz, corresponding to the
relative bandwidth of 18.71% and 12.22%, respectively. Compared
to other polarization converters, the proposed converter demon-
strates the wideband response and 60∘ angular stability in the oper-
ation band. Moreover, a prototype is fabricated and measured. A
good agreement was observed betweenmeasurement with simula-
tion. Potential applications can be envisaged in dual-channel com-
munication and other antennas such as beam scanning antenna
systems.
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