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Abstract
We call a packing of hyperspheres in n dimensions an Apollonian sphere packing if the spheres intersect tangentially
or not at all; they fill the n-dimensional Euclidean space; and every sphere in the packing is a member of a cluster
of n + 2 mutually tangent spheres (and a few more properties described herein). In this paper, we describe an
Apollonian packing in eight dimensions that naturally arises from the study of generic nodal Enriques surfaces.
The E7, E8 and Reye lattices play roles. We use the packing to generate an Apollonian packing in nine dimensions,
and a cross section in seven dimensions that is weakly Apollonian. Maxwell described all three packings but seemed
unaware that they are Apollonian. The packings in seven and eight dimensions are different than those found in an
earlier paper. In passing, we give a sufficient condition for a Coxeter graph to generate mutually tangent spheres
and use this to identify an Apollonian sphere packing in three dimensions that is not the Soddy sphere packing.

1. Introduction

That there is a connection between the Apollonian packing and rational curves on algebraic surfaces has
only recently been explored (see [2, 10]). The connection so far has seemed a bit distant. In this paper,
we show a rather spectacular connection. Let X be an Enriques surface that contains a smooth rational
curve (a nodal curve), but is otherwise generic. Let � be its Picard group, modulo torsion. Then � is
isomorphic to the Enriques lattice E10, which is an even unimodular lattice of signature (1, 9). Since
�⊗R is a Lorentz space R

1,9, it has a 9-dimensional copy of hyperbolic space H
9 naturally imbedded

in it. Any nodal curve on X has self intersection −2, so represents a plane in H
9, which in the Poincaré

upper-half hyperspace model is represented by an 8-dimensional hemi-sphere. The boundary ∂H9 of H9,
not including the point at infinity, is isomorphic to R

8, and its intersection with a hyperbolic plane in
H

9 is a 7-dimensional hypersphere. In this way, the set of nodal curves on X gives us a configuration of
hyperspheres in R

8. In this paper, we show that this configuration is an Apollonian packing, by which we
mean the hyperspheres intersect tangentially or not at all, they fill R8, the packing is crystallographic,
and it satisfies the fundamental property that makes it Apollonian, which is that every sphere in the
configuration is a member of a cluster of ten hyperspheres that are mutually tangent. (See Section 2.4
for precise definitions.)

Though the connection to Enriques surfaces is fascinating, this paper is really a study of sphere
packings. The underlying algebraic geometry is explained in [1, 11]. Our starting point is the following
Coxeter graph (also known as a Dynkin diagram):

(1.1)
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Some may recognize that it generates the Reye Lattice. The graph also appears in Maxwell’s paper
[16, Table II, N = 10], in which it is described as generating a sphere packing, meaning the spheres
intersect tangentially or not at all. It is one of many examples of what are sometimes called Boyd-
Maxwell packings (see also [7]). Up until recently (see [4, 5]), it was believed that no Boyd-Maxwell
packing in dimension n ≥ 4 is Apollonian (see the Mathematical Review for [6], [15, p. 356], and [10,
p. 33]). In [5], we describe a different Apollonian packing (though not a Boyd-Maxwell packing) in
eight dimensions. The packing in this paper is more efficient, in the sense that its residual set is a subset
of the residual set of the packing in [5]. This also shows that there can be different Apollonian packings
in the same dimension.

In Section 2.4, we give a precise definition of higher dimensional Apollonian packings. This is the
author’s attempt to define what was likely meant or understood by Boyd, Maxwell, and their contem-
poraries. Note that it is different from the definition given in [4] (see Remark 2), and that our definition
may still evolve as we better understand the subject.

A cross section of a sphere packing gives a sphere packing in a lower dimension. By taking a co-
dimension one cross section perpendicular to nine of the ten mutually tangent spheres of our new packing
in eight dimensions, we get a weakly Apollonian packing in seven dimensions, meaning there is a cluster
of nine mutually tangent spheres, but not all spheres are a member of such a cluster. It too is described
by Maxwell [16, Table II, N = 9, last line, first graph]. The resulting packing is different from and more
efficient than the example in [5], which is Apollonian.

For Euclidean lattices, eight dimensions are special as it admits the even unimodular lattice E8. The
uniradial sphere packing (i.e., all spheres have the same radius) with spheres of radius 1/

√
2 and centered

at vertices of the lattice gives the densest uniradial sphere packing in eight dimensions [23]. With an
appropriate choice of point at infinity, the Apollonian packing of this paper includes this uniradial sphere
packing.

In [4], we generated Apollonian packings in dimension n from uniradial sphere packings in dimen-
sion n − 1. Using a similar procedure and the E8 lattice, we generate an Apollonian packing in nine
dimensions. This too appears in Maxwell’s paper [16, Table II, N = 11, second graph].

This paper was directly inspired by a paper by Daniel Allcock [1], who reproved a result (see
Theorem 2.1 below) that appears in [9]. Dolgachev attributes the original proof to Looijenga, based
on an incomplete proof by Coble [8] from 1919.

The descriptions of the Apollonian packings of this paper do not require any background in algebraic
geometry. We will therefore keep the algebraic geometry to a minimum, restricting it as much as possible
to Subsection 2.5 and to remarks.

With respect to the organization of this paper, Section 2 on background includes a definition of higher
dimensional analogs of the Apollonian circle packings, and the main result concerning Enriques surfaces
from which the packing is derived; Section 3 is devoted to producing the Apollonian packing in eight
dimensions; in Section 5, we look at a cross section; and in Section 6, we build an example in nine-
dimensions. In Section 4, we describe a sufficient condition for a packing to have the (weak) Apollonian
property and use it to find examples in Maxwell’s list of packings, including a sphere packing in three
dimensions that has the Apollonian property but is not the Soddy sphere packing.

2. Background
2.1. The pseudosphere in Lorentz space

Hyperspheres in R
n can be represented by (n + 2)-dimensional vectors. Boyd calls such coordinates

polyspherical coordinates and attributes them to Clifford and Darboux from the late 19th century [6].
The more modern interpretation is that they represent planes inHn+1 imbedded in an (n + 2)-dimensional
Lorentz space, which in turn represent hyperspheres on the boundary ∂Hn+1. We refer the reader to [20]
for more details.

Let us set N = n + 2.
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Given a symmetric matrix J with signature (1, N − 1), we define the Lorentz space, R1,N−1 to be the
set of N-tuples over R equipped with the negative Lorentz product

u · v = uTJv.

The surface x · x = 1 is a hyperboloid of two sheets. Let us distinguish a vector D with D · D> 0 and
select the sheet H by

H: x · x = 1, x · D> 0.

We define a distance on H by

cosh(|AB|) = A · B.

Then H equipped with this metric is a model of H
N−1, sometimes known as the vector model.

Equivalently, one can define

V+ = {x ∈R
1,N−1 : x · x> 0, x · D> 0}

and H= V+/R+, together with the metric defined by

cosh(|AB|) = A · B

|A||B| ,

where |x| = √
x · x for x ∈ V . For x · x< 0, we define |x| = i

√−x · x.
Hyperplanes in H are the intersection of H with hyperplanes n · x = 0 in R

1,N−1. Such a plane inter-
sects H if and only if n · n< 0. Let Hn represent both the plane n · x = 0 in R

1,N−1 and its intersection
with H. The direction of n distinguishes a half space

H+
n = {x : n · x> 0},

in either R1,N−1 or H.
The angle θ between two intersecting planes Hn and Hm in H is given by

|n||m| cos θ = n · m, (2.1)

where θ is the angle in H+
n ∩ H+

m. If |n · m| = | |n||m| |, then the planes are parallel (i.e. tangent at infin-
ity). If |n · m|> | |n||m| |, then the planes are ultraparallel, and the quantityψ in |n||m| coshψ = |n · m|
is the shortest hyperbolic distance between the two planes.

The group of isometries of H is given by

O+(R) = {T ∈ MN×N : Tu · Tv = u · v for all u, v ∈R
1,N−1, and TH=H.}.

Reflection in the plane Hn is given by

Rn(x) = x − 2 projn(x) = x − 2
n · x
n · n

n.

The group of isometries is generated by the reflections.
Let ∂H represent the boundary of H, which is an (N − 2)-sphere. It is represented by L+/R+ where

Given an E ∈L+, let ∂HE = ∂H \ ER+. Then ∂HE equipped with the metric | · |E defined by

|AB|2
E = 2A · B

(A · E)(B · E)

is the (N − 2)-dimensional Euclidean space that is the boundary of the Poincaré upper half hyperspace
model of H with E the point at infinity. In ∂HE, the plane Hn is represented by an (N − 3)-sphere, which
we denote with Hn,E (or just Hn if E is understood, or sometimes just n).

The curvature (the inverse of the radius, together with a sign) of Hn,E is given by the formula
n · E

||n||
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Figure 1. The strip version of the Apollonian packing. The dotted curves αi represent symmetries of
the packing. The fundamental domain F4 for the group O+

�4
is the region above the shaded square and

above the plane Hα3 (represented by the dotted circle).

using the metric | · |E [4]. Here, ||n|| = −i|n| = √−n · n. By choosing a suitable orientation for n, we
get the appropriate sign for the curvature.

2.2. Coxeter graphs

Coxeter graphs can represent lattices in R
n or R1,n−1, or groups of isometries of Sn−1 or Hn−1. Each node

in a Coxeter graph represents a plane, which can be represented by its normal vector. Two nodes are not
connected if their corresponding planes are perpendicular. A regular edge between two nodes indicates
that those planes intersect at an angle of π/3, so their normal vectors are at an angle of 2π/3 (some
ambiguity here). If the angle between two planes is π/4, then we indicate that with an edge subscripted
(or superscripted) with a 4, or sometimes a double edge. In general, an edge with a superscript of m (or
of multiplicity m − 2) means the order of the composition of reflections in the two planes represented
by the two nodes is m. A thick line, like the one in (1.1), means the two planes are parallel, and this is
sometimes indicated with a superscript of ∞. A dotted edge means the two planes are ultraparallel.

The Coxeter graph represents the lattice v1Z⊕ · · · ⊕ vnZ, where the vi are the nodes of the graph.
Note that not all graphs give lattices, as the vectors may be linearly dependent. When the nodes are lin-
early independent (and sometimes when they are not), we get the bilinear form defined by the incidence
matrix [vi · vj]. We can normalize the vectors vi (say) so that vi · vi = −1. Then the angles noted by the
edges define vi · vj, where we take the angle between the normal vectors of the planes to be obtuse (so
vi · vj ≥ 0).

The Coxeter graph can also represent a group, the Weyl group 〈Rv1 , ..., Rvn〉. When representing a
group, it is often necessary for the vectors to be linearly dependent.

We will explain the notion of weights in the next subsection, which will give us an example to
investigate.

2.3. The Apollonian circle packing

The Apollonian circle packing is a well- known object, and we assume the reader is already familiar with
it. The goal of this section is to think of it in a way that more naturally generalizes to higher dimensions.

Let us consider the strip version of the Apollonian circle packing shown in Figure 1, and think of
the picture as lying on the boundary ∂H3 of hyperbolic space. Then each circle (and the two lines)
represents a plane in H

3, which in turn are represented by their normal vectors. Let us represent four
of the hyperbolic planes with the vectors ei for i = 1, ..., 4, as shown in Figure 1. We orient ei so that
H+

ei
contains Hej for i �= j, and assign them norms of −2, meaning ei · ei = −2. Then, by the tangency

conditions, ei · ej = 2 for i �= j (see equation (2.1)). We define J4 = [ei · ej], which has signature (1, 3).
(It is easy to see that 4 and −4 are eigenvalues, the latter with a 3-dimensional eigenspace.) Thus, J4

defines a Lorentz product in R
1,3.
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Note that ei · (ei + ej) = 0, so ei + ej is the point of tangency between the circles represented by ei and
ej. Thus, our point at infinity is E = e1 + e2, and the circle represented by ei is Hei ,E.

There are obvious symmetries of the Apollonian packing, as shown in Figure 1. In the plane, the
symmetries are reflection in the lines α1, α2, and α4 and inversion in the circle α3. The Apollonian
packing is the orbit of e1 under the action of the group generated by these symmetries.

Thought of as actions in H
3, the symmetries are reflection in the planes Hαi , so the packing is the

�4-orbit of He1 , where

�4 = 〈Rα1 , Rα2 , Rα3 , Rα4〉.
It is fairly easy to solve for αi in the basis e = {e1, ..., e4}. For example, we note that α1 · ei = 0 for i �= 4,
since it is perpendicular to those planes. Solving, we get α1 = (1, 1, 1, −1), up to scalars. The others are
α2 = (0, 0, −1, 1), α3 = (0, −1, 1, 0), and α4 = (− 1, 1, 0, 0).

We let �4 = e1Z⊕ ... ⊕ e4Z, which we call the Apollonian lattice. Let

O+
�4

= {T ∈O+(R) : T�4 =�4}.
It is straight forward to verify that Rei and Rαi ∈O+

�4
. Let G4 = 〈�4, Re1〉. A fundamental domain F4 for

this group is the region bounded by the four planes Hαi , the pane He1 , and with cusp E at the point at
infinity:

F4 = H+
α1

∩ · · · ∩ H+
α4

∩ H+
e1

.

Since F4 has finite volume, we know G4 has finite index in O+
�4

, and it is not hard to verify that the two
are equal.

Let us also use this example to learn a little about Coxeter graphs. The Coxeter graph for the planes
that bound F4 is the following:

(2.2)

We note, from our earlier calculations, that αi · αi = −8. From the Coxeter graph, we therefore get
α1 · α2 = 8, α2 · α3 = 4, α3 · α4 = 4, and all other products αi · αj for i< j are zero. This gives us the
matrix

Jα = [αi · αj] =

⎡
⎢⎢⎣

−8 8 0 0
8 −8 4 0
0 4 −8 4
0 0 4 −8

⎤
⎥⎥⎦ .

Our Lorentz product, in this basis, is x · y = xtJαy. Let �α = α1Z⊕ · · · ⊕ α4Z, so �α ⊂�4. Since
det(Jα) = 4 det(J4), the index is two.

The fundamental domain F4 has five vertices: The point E at infinity, and the four vertices on Hα3 ,
the hemisphere above the dotted circle (see Figure 1). Let wi be the intersection of the three αj with j �= i,
so wi is a vertex of F4 for i = 1 and 2, and w3 is the point at infinity. The wi’s satisfy wi · αj = 0 for i �= j,
so in the basis α = {α1, ..., α4}, are the rows of J−1

α
, up to scalars. To express these points in the basis

e, we multiply on the left by the change of basis matrix Q = [α1|α2|α3|α4] whose columns are αi; the
columns of the resulting matrix are the wi’s. The wi’s are called weights. The incidence matrix for the
wis is [wi · wj] = J−1

α
Jα(J−1

α
)t = (J−1

α
)t = J−1

α
. The first and second diagonal elements of J−1

α
are positive,

indicating that w1 and w2 lie in H. The third diagonal element is 0, indicating w3 lies on ∂H, so is a cusp
(it is the point E at infinity). The last diagonal element is negative, so w4 represents a plane in H. That
plane is perpendicular to Hα1 , Hα2 , and Hα3 , so is the plane He1 .

The other two vertices of F4 can be found in a similar way by replacing α4 with e1. This is plain to see
from the picture (see Figure 1). Combinatorially, the intersection of any three of the five faces should
give us a potential vertex, but since Hα4 and He1 are parallel, any combination that includes those two
will give at most their point of tangency.
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Remark 1. The symmetry of the Coxeter graph about the node α3 suggests that there is a symmetry
that sends e1 to α1, etc. That symmetry is reflection in the diagonal of slope one of the shaded square in
Figure 1. However, since the norms of e1 and α1 are different, it is not a symmetry of the lattice�4. There
is a different lattice that we could have considered, namely the one generated by the Coxeter graph (2.2)
but with α2

i = −2. There are some advantages to looking at that graph. Reflection in the diagonal is a
symmetry of that lattice.

2.4. Sphere packings

A sphere packing in R
n is a configuration of oriented (n − 1)-spheres that intersect tangentially or not

at all. By oriented, we mean each sphere includes either the inside (a ball) or the outside. The trivial
sphere packing is a sphere and its complement. We will not consider trivial sphere packings.

Maxwell calls P ⊂R
1,N−1 a packing if for all n, n′ ∈P , there exists a positive constant k such that

n · n = −k and n · n′ ≥ k [16]. Given a point E for the point at infinity, the packing P defines a sphere
packing

PE =
⋃
n∈P

H−
n,E ⊂ ∂HE

∼=R
n.

We call PE a perspective of P .
For example, the Apollonian packing in R

1,3 is P4 = �4(e1) (the �4-orbit of e1) and the strip packing
of Figure 1 is P4,e1+e2 . An Apollonian packing derived from a different initial cluster of four mutually
tangent circles is a different perspective of P4.

We think of P as defining a cone

KP =
⋂
n∈P

H+
n ,

in R
1,N−1, or a polyhedron

KP ∩H,

in H
N−1. The residual set of a sphere packing is the complement of the sphere packing in ∂HE

∼=R
n

and is the intersection of KP with ∂HE. A sphere packing is maximal or dense if there is no space in
the residual set where one can place another sphere of positive radius. It is complete if the residual set
is of measure zero. A packing that is maximal (respectively complete) in one perspective is maximal
(complete) in any perspective.

We call a packing of lattice type if PZ forms a lattice in R
1,N−1 [16]. We call a packing of general

lattice type if there exists a lattice �⊂R
1,N−1 so that a scalar multiple of n is in � for all n ∈P , and P

spans R1,N−1.
A subgroup � ≤O+

�
is called geometrically finite if it has a convex fundamental domain with a finite

number of faces. A packing is called crystallographic if there exists a geometrically finite group � ≤O+
�

and a finite set S ⊂� so that

P = {γ (n)/|γ (n)| : γ ∈ �, n ∈ S}.
As the normality condition is not necessary, we will write P = �(S), the �-orbit of S. The residual set
for the packing is the limit set of �.

Crystallographic packings are not always of lattice type, as was noted by Maxwell.
A crystallographic packing that is maximal is known to be complete. Furthermore, the Hausdorff

dimension of the residual set is strictly less than N − 2 [22].
The packings that are known as Boyd-Maxwell packings are crystallographic packings with the

restriction that � be a reflective group (i.e. is generated by a finite number of reflections). Kontorovich
and Nakamura include this requirement in their definition of a crystallographic packing [13].

We say a packing has the weak Apollonian property if it contains a cluster of N = n + 2 mutually
tangent spheres. We say it has the Apollonian property if every sphere is a member of a cluster of N
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mutually tangent spheres. We call a packing Apollonian if it is crystallographic, maximal, and has the
Apollonian property.

Missing in this definition is a notion of efficiency. It is conjectured that the residual set for the
Apollonian circle packing in two dimensions has minimal Hausdorff dimension among all nontrivial
circle packings [18], so an alternative definition would be that a packing is Apollonian if it is optimally
efficient in that dimension. In R

7, there exists a weakly Apollonian packing that is more efficient than
a known Apollonian packing (see Section 3.3), suggesting that there is still much to learn about the
subject.

Remark 2. In [4], we give a different definition for an Apollonian packing. We begin with a set {e1, ..., eN}
with ei · ei = −1 and ei · ej = 1 for i �= j (so a cluster of N mutually tangent spheres), and define the lattice

�N = e1Z⊕ · · · ⊕ eNZ.

We pick D ∈�N with D · D> 0 and such that D · n �= 0 for any n ∈�N with n · n = −1. (Such a D exists.)
We define

E−1 = {n ∈�N : n · n = −1, n · D> 0}.
We define the cone

KN =
⋂

n∈E−1

H+
n ,

and the set

E∗
−1 = {n ∈ E−1 : Hn is a face of KN}.

The set E∗
−1 is what is called an Apollonian packing in that paper. It gives the Apollonian circle packing

when N = 4, the Soddy sphere packing when N = 5, and yields Apollonian packings (as defined in this
paper) in dimensions n = 4 through 8 [4, 5].

It is not clear that E∗
−1 is a packing for all N , as it is a priori possible that spheres in the set properly

intersect. There is a very nice modularity argument to show that this cannot happen. We first note that
if n, n′ ∈ E∗

−1, then n · n′ ∈Z, so if the spheres intersect but not tangentially, then n · n′ = 0 (so they
intersect perpendicularly). Consider the difference m = n − n′. If n · n′ = 0, then m · m = −2. Let m =
(m1, ..., mN) so

m · m = −
N∑

k=1

m2
k + 2

∑
i≤j

mimj.

We consider this modulo four, which means we need only worry about the parity of each mk. Suppose
there are K odd mk. Then

m · m ≡ −K + 2

(
K(K − 1)

2

)
≡ K(K − 2) (mod 4).

Thus, m · m �= 2 (mod 4), so there are no spheres that intersect perpendicularly.

Remark 3. For a K3 surface X, let �= Pic (X) and let E∗
−2 be the set of irreducible −2 curves on X.

Then KE∗−2
is the ample cone for X. This was the motivation for the definitions given in [4].

Using a result of Morrison [19], there exist K3 surfaces with intersection matrix [Jij] with Jij = 2 − 4δij

and N ≤ 10. The set E∗
−2 gives the same packing as described in Remark 2. By [14], the ample cone has

no circular part for N ≥ 4, so these packings are maximal.
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2.5. Enriques surfaces

For a nice introduction to Enriques surfaces, see [11]. Let X be an Enriques surface and let � be its
Picard group modulo torsion. Then � is independent of the choice of X and is sometimes called the
Enriques lattice E10. It is an even unimodular lattice of signature (1, 9) and can be decomposed as the
orthogonal product of the E8 lattice (with negative definite inner product) and the plane U equipped

with the Lorentz product
[

0 1
1 0

]
: �= E8 ⊕ U.

A nice representation of E10 is given by the Coxeter graph T237 whose nodes have norm −2:

The subscript in T237 means the graph is a tree with three branches of length 2, 3, and 7, as above. The
lattice is �= α0Z⊕ · · · ⊕ α9Z. Since αi · αi = −2, we know αi · αj = 1 if αiαj is an edge of the graph,
and 0 otherwise. Let J = [αi · αj], so for x, y ∈� written in this basis, x · y = xtJy. Since J has integer
entries and −2’s along the diagonal, the lattice is even, meaning x · x is even for all x ∈�. One can
verify det (J) = −1, so the lattice is unimodular.

The reflections

Rαi (x) = x − 2 projαi
(x) = x − 2

x · αi

αi · αi

αi = x + (x · αi)αi,

have integer entries, so are inO+
�
. The inverse of J (which appears in [11, p.11]) has non-negative entries

along the diagonal, so the polytope bounded by the faces Hαi has finite volume. Thus, the Weyl group

W237 = 〈Rα0 , ..., Rα9〉,
has finite index in O+

�
.

A generic Enriques surface has no nodal curves, meaning it has no smooth rational curves. The
moduli space of Enriques surfaces is ten dimensional. If X contains a nodal curve ν, then we call it
a nodal Enriques surface. By the adjunction formula, ν · ν = −2. Here we have abused notation by
letting ν represent both the curve on X and its representation in �. Since distinct irreducible curves on
X have non-negative intersection, an element of� represents at most one nodal curve on X. The moduli
space of nodal Enriques surfaces is nine dimensional. The following is a rewording of a portion of [1,
Theorem 1.2]:

Theorem 2.1 (Coble, Looijenga, Cossec, Dolgachev, Allcock). Suppose X is a generic nodal Enriques
surface with nodal curve ν. Let� be its Picard group modulo torsion. Then there exist β0, ..., β9 ∈� so
that βi · βi = −2 and β0, ..., β9, ν are the nodes of the Coxeter graph (1.1). Let

�β = 〈Rβ0 , ..., Rβ9〉 ∼= W246.

Then the image in � of all nodal curves on X is the �β-orbit of ν.

As this version does not look much like Allcock’s result, let us show how it follows. By (5) (of
[1, Theorem 1.2]), Aut (X) acts transitively on the nodal curves on X. The image of Aut (X) in O+

�
is a

subgroup of �β = W246 by (2), and by (3), contains a group identified as W246(2) (see [1] for the definition
of this group). By (4), W246(2) acts transitively on the faces of the ample cone (the interior of nef (X)), so
the image of the nodal curves on X includes all of them. By (1), nef (X) is the union of the �β-translates
of the fundamental domain of the Coxeter group generated by the Coxeter graph (1.1) on page 2. The
faces of the ample cone are therefore the �β image of ν, as all other faces of the fundamental domain
correspond to reflections in W246. Hence, the nodal curves on X generate exactly the faces of the ample
cone and is the �β-orbit of ν.
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3. The Apollonian packing in eight dimensions

Theorem 3.1. The packing Pβ = �β(ν) is Apollonian.

Proof. From Maxwell [16, Table II, N = 10], we know that this is a Boyd-Maxwell packing, so all we
must verify is that it is maximal and that it contains a cluster of ten mutually tangent spheres. (Because
� acts transitively on Pβ , the weak Apollonian property implies the Apollonian property.)

We define Jβ = [βi · βj], which has −2 along the diagonal, 1 if βiβj is an edge in Coxeter graph (1.1),
and 0 otherwise. Taking the inverse,

J−1
β

= 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 3 6 9 12 10 8 6 4 2
3 0 2 4 6 5 4 3 2 1
6 2 4 8 12 10 8 6 4 2
9 4 8 12 18 15 12 9 6 3
12 6 12 18 24 20 16 12 8 4
10 5 10 15 20 15 12 9 6 3
8 4 8 12 16 12 8 6 4 2
6 3 6 9 12 9 6 3 2 1
4 2 4 6 8 6 4 2 0 0
2 1 2 3 4 3 2 1 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

we find that the weights all have non-negative norm except w9, which gives us ν = 2w9 =
[2, 1, 2, 3, 4, 3, 2, 1, 0, −1]. (Recall that the weights are the rows of J−1

β
, and that the diagonal elements

are their norms wi · wi.) Since w9 · βi = δi9, we get ν · β9 = 2 and ν · βi = 0 for i �= 9, as expected. This
is our first sphere, which we label s0 = ν = 2w9. We get s1 by reflecting s0 across Hβ9 : s1 = Rβ9 (s0). We
define si through i = 9 recursively by reflecting in subsequent planes: si+1 = Rβ9−i (si). It is straight for-
ward to verify that si · sj = 2 if i �= j, and of course, si · si = ν · ν = −2, so the set {s0, ..., s9} is a cluster
of ten mutually tangent spheres.

To show it is maximal, we can appeal to arguments like those in [4] and [5]. Let us instead appeal to
Maxwell’s Theorem 3.3 [16]. By this result, it is enough to show that all weights wi are in the convex
closure of �(w9). Following Maxwell’s example, we note

wi−1 = wi + Rβi · · · Rβ9 w9 = wi + s10−i/2 = (s0 + ... + s10−i)/2,

for 5 ≤ i ≤ 9, so these are all in the convex hull of �(w9). This leaves us with four more to check, of
which w1 is different, as it is a cusp and no spheres go through it.

We will use the map R2w1−β9 , which we verify is in � using a method of descent. Our method of
descent is as follows: Given a vector n, we descend to Rβj (n) if n · βj < 0, and repeat if necessary. For
n · n> 0 (a point in H), it is clear that at each step we are getting closer to the fundamental domain,
and that descent stops when we reach it. What this method does for n · n< 0 is less obvious, but is
never-the-less useful.

With n = 2w1 − β9, we eventually descend to β8, so there exists γ ∈ � so that n = γβ8. Thus, Rn =
Rγβ8 = γRβ8γ

−1 ∈ �. The composition R2w1−β9 ◦ Rβ9 is a parabolic translation with fixed point w1 on
∂H, so repeated applications converge to the line λw1. More precisely, a messy but straightforward
calculation shows

lim
k→∞

1

2k2
(R2w1−β9 ◦ Rβ9 )k(w9) = w1.

Thus w1 is in the convex closure of �(w9).
Finally, we note that

w2 = (Rβ0 (s6) + Rβ2 (s8))/2

w0 = w1 + s9/2

w3 = Rβ2 (w2) + Rβ1 (w1).

Thus, Pβ is an Apollonian sphere packing.
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3.1. The strip version and the E7 lattice

To better understand this packing, we describe it in a couple of ways. Let us begin with a strip version,
which is an analog of Figure 1. We can think of Figure 1 as an infinite set of circles of constant diameter
that are each centered at lattice points of a one-dimensional lattice, then sandwiched between two lines,
and filled in using the symmetries of the lattice together with inversion in α3 and reflection in α4. We
can describe Pβ in a similar way:

Theorem 3.2. Consider the E7 lattice imbedded in a 7-dimensional subspace V of R8. Centered at each
lattice point, place a hypersphere of radius 1/

√
2, and bound these hyperspheres by two hyperplanes

parallel to V and a distance 1/
√

2 away from V, so that all the spheres are tangent to the two hyper-
planes. Let one of the spheres be tangent to the two hyperplanes at A and B, and let σ be inversion in
the hypersphere centered at A that goes through B. Consider the image of these spheres in the group
generated by the symmetries of the E7 lattice, the inversion σ , and reflection across the hyperplane V.
The resulting configuration of hyperspheres is a perspective of Pβ .

The E7 lattice has the Coxeter diagram T234:

It is common to assign each node the norm 2 so that the resulting bilinear form has integer entries, is
even, and has determinant 2. Thus, the generating vectors have length

√
2, which is why the spheres

above have radius
√

2/2. Adding a node to the appropriate branch gives us the group W244, which acts
transitively on the E7 lattice [24, Table 2]. Alternatively, the E7 lattice can be thought of as the W244

orbit of the point O, where O is the vertex of the canonical fundamental domain for W244 that lies at the
intersection of the planes represented by the T234 subgraph. This is the representation we shall use.

Proof. Referring to J−1
β

, we note that w8 has norm zero, so is a point on ∂H. Let us consider the
perspective Pβ,w8 , which lies in ∂Hw8

∼=R
8. Note that the spheres s0 and s1 are tangent at w8, so are

parallel Euclidean hyperplanes in ∂Hw8 . These are our analogs of e1 and e2, respectively, in Figure 1.
Since s1 = Rβ9(s0), the reflection Rβ9 is the analog of the symmetry represented by α4, and we take V to
be Hβ9 ∩ ∂Hw8 . Since s2 = Rβ8 (s1), the reflection Rβ8 is σ , the analog of inversion in α3. The sphere s2

is the analog of e3, and the points A and B are the points of tangency s0 + s2 and s1 + s2, respectively.
The rest of the generators are the analogs of α1 and α2. They form the group �7 = 〈Rβ0 , ..., Rβ7〉 ∼= W244.
It remains to understand what the orbit �7(s2) looks like.

Note that the generators of �7 fix w8, so are Euclidean reflections in ∂Hw8
∼=R

8. The planes through
which they reflect are all perpendicular to V = Hβ9 ∩ ∂Hw8

∼=R
7, so act as a group of reflections on V .

Let O in V be the point of intersection of Hβi for i ≤ 6. Since the planes Hβi are perpendicular to s2 for
i ≤ 6 (since βi · s2 = 0 for i ≤ 6), the point O must be the center of the sphere s2. Thus, the �7-orbit of s2 is
a set of congruent spheres that are centered on the lattice points of an E7 lattice. Finally, since s3 = Rβ7 (s2),
and s3 is tangent to s2, the spheres must be of maximal radius so that they intersect tangentially or not at
all. That is, scaling so that the generating vectors of the E7 lattice have length

√
2, the spheres all have

radius
√

2/2.

3.2. The E8 structure

The E8 lattice has the Coxeter diagram T235, and the group W236 acts transitively on it [24, Table 2]. The
lattice can also be thought of as the W236 orbit of the point O, where O is the vertex of the canonical
fundamental domain for W236 that lies at the intersection of the planes represented by the T235 subgraph.
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Let us distinguish another vertex of the fundamental domain, the point P that lies at the intersection of
the planes represented by the T226 subgraph.

Theorem 3.3. Consider an arrangement of hyperspheres all of radius 1/
√

2 and centered at the lattice
points of the E8 lattice inR8. (This is the densest uniradial sphere packing inR8.) Let σ be inversion in the
sphere centered at P (described above) and with radius 1/

√
2. Consider the image of this arrangement

of spheres in the group generated by σ and the symmetries of the E8 lattice. The resulting configuration
is a perspective of Pβ .

Proof. Referring to J−1
β

, we see that w1 is also on ∂H, as w1 · w1 = 0. Let us consider the perspective
Pβ,w1 . The planes Hβi for i �= 1 all go through w1 (by the definition of w1), so the corresponding reflections
Rβi are Euclidean symmetries of R8 ∼= ∂Hw1 . Let us first consider the group �8 = 〈Rβ0 , Rβ2 , ..., Rβ9〉 ∼=
W236.

We let O be the point on ∂Hw1 where the planes Hβ0 , Hβ2 , . . ., Hβ8 intersect, so �8(O) is an E8 lattice
in ∂Hw1 . Since these planes intersect s0 = ν perpendicularly, we know O is the center of s0. The �8-
orbit of s0 is therefore a set of spheres of constant radius centered on the vertices of an E8 lattice. Since
Rβ9(s0) = s1 is tangent to s0, these spheres are of maximal radius such that any pair intersect tangentially
or not at all. They give the densest uniradial sphere packing of R8 [23].

It remains to understand the action of Rβ1 . The plane Hβ1 represents a sphere in ∂Hw1 . Since β1 · w1 =
1 = s0 · w1 and β1 · β1 = −2 = s0 · s0, the spheres have the same radii. Finally, β1 · βi = 0 for i = 0, 3, ..., 9,
so is centered at the point of intersection on V of the planes Hβ0 , Hβ3 , . . ., Hβ9 , which corresponds to
the vertex P of the fundamental domain for W236. Thus, the described configuration is congruent to the
perspective Pβ,w1 .

3.3. Comparison with the packing in [4]

Let

�β = β0Z⊕ · · · ⊕ β9Z,

�10 = s0Z⊕ · · · ⊕ s9Z.

and let J10 = [si · sj]. Then det(J10) = −222 while det(Jβ) = −4. It would appear that the packingP10 = E∗
−2

generated by�10 (see Remark 2) is very different thanPβ . However, we can modify the underlying lattice
for Pβ in the following way. Consider the sublattice

�′
β = 2β0Z⊕ · · · ⊕ 2β8Z⊕ νZ.

and its incidence matrix J′
β . Then �10 ⊂�′

β ⊂�β and det(J′
β) = −220. Thus, �10 is a sublattice of �′

β

of index two. Though we have changed the underlying lattice for Pβ , we have not changed its geometry.
Furthermore, in this basis, Pβ = E∗

−2. Thus, KP10 ⊃KPβ
, so the residual set for the packing Pβ is a subset

of the residual set for P10. Thus, Pβ is a more efficient packing than P10.

Remark 4. There exists a K3 surface X with Pic (X) =�′
β , so we can think of Pβ as the ample cone for

some K3 surface.

4. The Apollonian property and Maxwell’s paper

In this section, we identify the relevant property of the Coxeter graph (1.1) that implies the existence of
a maximal cluster of mutually tangent spheres and use this to identify the Apollonian sphere packings
in Maxwell’s paper [16].
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Figure 2. The eleven other graphs in [7] that satisfy the conditions of Theorem 4.1 for k = N − 1.

Theorem 4.1. Let P = �(S) be a crystallographic sphere packing. Suppose there exists an element ν of
P and a reflective subgroup of � that generates a Coxeter graph of the form Tk with ν attached to one
of the ends by a bold edge. Then P includes a cluster of k + 1 mutually tangent spheres.

The notation Tk represents a tree with one branch of length k, which is consistent with our notation
used earlier. When used to represent a Coxeter graph or lattice, it is sometimes denoted Ak, which is
Vinberg’s notation (see [24, Table I]).

Proof. Let us label the graph Tk and ν as follows:

and set αi · αi = ν · ν = −2. Let s1 = ν and si+1 = Rαi (si) for i = 1, ..., k. Then si · si = −2 for all i. To
show the set {s1, ..., sk+1} is a cluster of k + 1 mutually tangent spheres, we need to show si · sj = 2 for
i �= j. We prove this using induction on the following statements: (a) si = si−1 + 2αi−1; (b) αi · si = 2; (c)
αj · si = 0 for j> i; and (d) si · sj = 2 for i< j. We leave the details to the reader.

While this result may not be surprising, and may even be obvious, it nevertheless seems to have
escaped any serious notice. With this result in mind, we look at Maxwell’s Table II [16] and Chen and
Labbé’s Appendix [7] in search of candidates for Apollonian packings. We find twelve candidates: The
one in the introduction and the eleven listed in Figure 2. The hollow node indicates that removing it
yields the desired subgraph. The + is Maxwell’s notation to indicate that the weight at that point is real,
so represents a plane. We have modified his notation a bit, using +∞ to indicate that the weight is a plane
that is parallel to its associated node, while + indicates that the plane is ultraparallel to its associated
node.

Maxwell notes that the first four graphs for N = 5 yield the same sphere packing [16, Table I], which
is the Soddy sphere packing [21]. The two graphs in N = 6 also give the same packing. The packings
for N = 6, 7, and 8 are the subject of [4], and their Coxeter graphs are given in [5]. The graphs for N = 9
and N = 11 are the subjects of the next two sections.

The last graph for N = 5 is a pleasant surprise, as it shows that there are different ways of filling in
the voids of an initial configuration of five mutually tangent spheres in R

3, yet still get a sphere packing
where every sphere is a member of a cluster of five mutually tangent spheres. The packing is Apollonian,
but not lattice like. Unlike the Soddy packing, there is no perspective where all the spheres have integer
curvature.

Let us label the Coxeter graph as follows:

(4.1)

https://doi.org/10.1017/S0017089522000210 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089522000210


Glasgow Mathematical Journal 217

Figure 3. The horizontal cross section of the strip version of the non-Soddy Apollonian sphere packing
with Coxeter graph (4.1). The dotted lines represent the symmetries. Note that the dotted circle represents
inversion in a sphere that intersects this plane at an angle of π/3. This picture and the one in Figure 4
were generated using McMullen’s Kleinian groups program [17].

Figure 4. The cross section on the plane Hα4 of the strip version of the non-Soddy Apollonian sphere
packing. As a circle packing, this cross section is weakly Apollonian.

so

Jα =

⎡
⎢⎢⎢⎢⎣

−2 1 0 0 0
1 −2 1 0 1
0 1 −2 1 0
0 0 1 −2

√
3

0 1 0
√

3 −2

⎤
⎥⎥⎥⎥⎦ .

We let s1 = w1, s2 = Rα1(s1), . . ., s5 = Rα4(s4). We note w2 = s1 + s2 and let it be the point at infinity, giving
us a strip version of the packing. The cross section on the plane α1 is shown in Figure 3, and the cross
section on the plane α4 is shown in Figure 4.

Remark 5. If we invert the strip packing in the sphere w3 and scale to get a sphere of curvature −1,
then the planes s1 and s2 become spheres with curvature 2 tangent at the center of the sphere w3. The
six spheres surrounding w3 become a hexlet of spheres with curvature 3, just like those in the sphere
packing described by Soddy [21]. How the space between these spheres is filled in, though, is different
from how Soddy does it. The spheres s3 and s4, in this perspective, have curvature 7 + 4

√
3.
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5. A cross section in R
7

Given a sphere packing in dimension n, a codimension one cross section is a sphere packing in dimension
n − 1. If the sphere packing contains a cluster of n + 2 mutually tangent spheres (i.e. has the Apollonian
property), then by choosing a cross section perpendicular to n + 1 of these spheres, we get a sphere
packing in one lower dimension that has (at least) the weak Apollonian property.

Theorem 5.1. A cross section perpendicular to nine spheres in a cluster of ten mutually tangent spheres
in Pβ yields the sphere packing in R

7 with Coxeter graph labeled N = 9 in Figure 2. This packing is of
general lattice type.

Proof. Let H be the plane perpendicular to si for i = 0, . . ., 8. Then H has normal vector

h = [− 1, 3, 2, 1, 0, 0, 0, 0, 0, 0].

Note that h · βi = 0 for i = 2,. . .,9. Knowing the expected Coxeter graph, we solve for β ′
1 so that we get:

Thus we want β ′
1 · βi = 0 for i �= 0, 2, or 7; β ′

1 · h = 0; β ′
1 · β2 = β ′

1 · β7 = 1; and β ′
1 · β ′

1 = −2. We get
β ′

1 = [2, 1, 1, 2, 3, 2, 1, 0, 0, 0]. Using descent, we show R
β
′
1
∈ �. The set {β ′

1, β2, ..., β9} forms a basis of
the subspace H. Let J7 be the incidence matrix for this basis of H, and let wi

′ be the weights. Since
s0 · h = 0, we get s0 = 2w′

9 (so w9 = w′
9). Let �7 = 〈R

β
′
1
, Rβ2 , ..., Rβ9〉. Then the spheres in �7(s0) all inter-

sect H perpendicularly. Most spheres in Pβ miss H and some are tangent to H, but there are some that
intersect H at an angle that is not right. In particular, let s10 = Rβ0(s6) and s11 = Rβ0(s9). Then, s10 · h = 4
and s11 · h = −4, while h · h = −14, so these two spheres intersect H but not perpendicularly nor tan-
gentially. The difference in signs (the ±4) indicates that the centers of the spheres are on opposite sides
of H. The intersection of s10 with H is found by projecting the vector s10 onto H to get

n = s10 − s10 · h

h · h
h.

We note that n · h = 0, n · β ′
1 = 0, and n · βi = 0 for i �= 0, 1, or 4, so n is a scalar multiple of w′

3. Similarly,
the projection of s11 onto H is a scalar multiple of w′

4. Thus, the intersection of Pβ with H contains the
packing

P7 = �7({s0, w′
3, w′

4}).
To show that they are equal, we show that P7 is maximal, so there is no room for the intersection to
include anything more than P7. We use Maxwell’s technique again (see the proof of Theorem 3.1). That
is, we show that the nonreal weights wi

′ are in the convex closure of the �7-orbit of the real weights w′
9,

w3, and w′
4. We note that

w′
8 = w8 = (s0 + s1)/2

w′
7 = w7 = (s0 + s1 + s2)/2

w′
1 = (s0 + s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8)/14.

By symmetry, we get w′
6 by going the other way around the loop in the Coxeter graph. That is,

w′
6 = (s0 + s1 + s2 + s3 + s′

4 + s′
5 + s′

6 + s′
7 + s′

8)/14,

where s′
4 = R

β
′
1
(s3), s′

5 = Rβ2(s
′
4), . . ., s′

8 = Rβ5(s
′
7). Finally, to get w′

2, we first note that

w′
2 = (w9 − Rw

′
2
(w′

9))/14.
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The map Rn is a reflection for n · n< 0. The map −Rn for n · n> 0 is a Cartan involution, which is the
−1 map on H through the point n ∈H. There is no reason to expect −Rw

′
2
(w9) to be in �7(w9) (similar

quantities are not), but we prove it is by using our method of descent. By symmetry, w′
5 is also in the

convex closure of �7(w9).
The spheres in �7(s0) in the perspective with w8 the point at infinity (or any other lattice point for the

point at infinity) all have curvature an integer multiple of
√

2, while those in �7(w′
3) and �7(w′

4) all have
curvature an integer multiple of

√
42/3. Thus, the packing is not of lattice type, though it is of general

lattice type, since all spheres have integer coordinates in the basis {β ′
1, β2, ..., β9}.

Remark 6. Every sphere in �7(s0) is a member of a cluster of 9 mutually tangent spheres. The same
cannot be said of the spheres in the orbits of w′

3 and w′
4.

Remark 7. A similar cross section of the Apollonian packings in [4] and [5] intersect all spheres per-
pendicularly, so give the related Apollonian packing in one dimension lower. A similar cross section of
the example in Section 4 gives the packing in Figure 4, which is a weakly Apollonian packing.

Remark 8. The spheres s10 and s11 are tangent at the point P1 = s10 + s11, which lies in the subspace H
and is on ∂H. Let P2 = Rβ3(P1).

For two points A and B on ∂H, define the Bertini involution to be

φA,B(x) = 2
(A · x)B + (B · x)A

A · B
−x.

This is the map that is −1 on ∂HA through the point B.
The Bertini involutions φP1,w8 and φP1,P2 both preserve the lattice β ′

1Z⊕ β2Z⊕ · · · ⊕ β9Z. Note that
φP1,P2 (w′

4) = −w′
4, so φP1,P2 sends everything on one side of the plane Hw

′
4

to the other side. The map
φP1,w8 sends w′

3 to w′
4. Let

�′
7 = 〈�7, φP1,P2 , φP1,w8〉.

Since �7(s0) does not intersect Hw
′
3

or Hw
′
4
, �′

7(s0) is a sphere packing. Because P7 is maximal, �′
7(s0)

is also maximal. It is lattice like and Apollonian. Since �7 ≤ �′
7, the limit set of �7 is a subset of the

limit set of �′
7. Since these are the residual sets of the respective packings, the packing P7, which is only

weakly Apollonian, is more efficient than the Apollonian packing �′
7(s0).

The packing �′
7(s0) is the packing described in [5]. The cone K

�
′
7(s0) is the ample cone for a class of

K3 surfaces. The packing P7, though, cannot be the ample cone of any K3 surface.

6. A sphere packing in R
9

The sphere packing generated by the Coxeter graph with N = 11 in Figure 2 can be described as follows:
Let H be an 8-dimensional subspace ofR9 (with normal vector h) and let us place spheres of radius 1/

√
2

at each vertex of a copy of the E8 lattice imbedded in H. Let us place two hyperplanes parallel to H a
distance of 1/

√
2 on either side, so that they are tangent to all the spheres. Let us distinguish the sphere

s0 centered at the origin of the E8 lattice and let its points of tangencies with the hyperplanes be A and B.
Let σ be inversion in the sphere centered at A and through B. The packing is the image of these spheres
under the group generated by σ , the symmetries of the E8 lattice, and reflection Rh in H.

To see this, recall that the spheres centered on the vertices of the E8 lattice are generated by the image
of s0 under the action of the Weyl group W236, which is 〈Rβ0 , Rβ2 , ..., Rβ9〉 for the T236 subgraph of Graph
(1.1). In this context, these reflections act on R

9. The hyperplane Hβi (the plane in R
9 perpendicular to

βi ∈ H ⊂R
9) is perpendicular to s0 for i �= 9, and hence also perpendicular to σ . (We ignore i = 1 in this

discussion.) Note that Hβ9 is tangent to s0. Let s1 = Rβ9(s0), giving us the cross section shown in Figure 5.
We note that σ and β9 are at an angle of 2π/3. We note that h is perpendicular to βi for all i, and h and
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Figure 5. A cross section perpendicular to H, s0, and s1.

σ intersect at an angle of 2π/3. Finally, let ν represent the plane tangent to s0 at A. Then ν is parallel to
h, perpendicular to σ , and perpendicular to βi for all i. This gives us the Coxeter graph

as desired, where ν is the weight at the node h. Maxwell verifies that this packing is maximal (see the
discussion after Theorem 3.3 in [16]).

Remark 9. Maxwell also presents the packing with Coxeter graph

which generates the same packing. Maxwell identifies an invariant of packings of lattice type and notes
that these two packings have the same invariant, but presumably could not show equivalence.
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