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Abstract

Let G be a finite group. A subgroup A of G is said to be S-permutable in G if A permutes with every Sylow
subgroup P of G, that is, AP = PA. Let AsG be the subgroup of A generated by all S-permutable subgroups
of G contained in A and AsG be the intersection of all S-permutable subgroups of G containing A. We prove
that if G is a soluble group, then S-permutability is a transitive relation in G if and only if the nilpotent
residual GN of G avoids the pair (AsG, AsG), that is, GN ∩ AsG = GN ∩ AsG for every subnormal subgroup
A of G.
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1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group.
Let K ≤ H and A be subgroups of G. Then we say that A avoids the pair (H, K) if

A ∩ H = A ∩ K.
A subgroup H of G is said to be Sylow permutable or S-permutable [2, 3] in G if H

permutes with every Sylow subgroup P of G, that is, HP = PH.
The S-permutable subgroups possess a series of interesting properties and they are

closely related to subnormal subgroups. For instance, if H is an S-permutable subgroup
of G, then H is subnormal in G (Kegel [10]), the normaliser NG(H) of H is also
S-permutable in G (Schmid [12]) and the quotient H/HG is nilpotent (Deskins [6]).

Note also that the S-permutable subgroups of G form a sublattice of the lattice
of all subnormal subgroups of G (Kegel [10]) and this important result allows us to
associate with each subgroup A of G two S-permutable subgroups of G: the S-core AsG
of A in G [13], that is, the subgroup of A generated by all S-permutable subgroups of G
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contained in A and the S-permutable closure AsG of A in G [8], that is, the intersection
of all S-permutable subgroups of G containing A.

The subgroups AsG and AsG have found numerous applications in the study of the
structure of nonsimple groups (see, in particular, [8, 11, 13, 14]), and in this paper, we
consider the use of such subgroups in the theory of PST-groups.

Recall that G is a PST-group [2, 3] if S-permutability is a transitive relation in G,
that is, if K is an S-permutable subgroup of H and H is an S-permutable subgroup
of G, then K is S-permutable in G. The description of soluble PST-groups was first
obtained by Agrawal [1].

THEOREM 1.1 (Agrawal [1]). Let D = GN be the nilpotent residual of a soluble group
G, that is, the intersection of all normal subgroups N of G with nilpotent G/N. Then
G is a PST-group if and only if D is an abelian Hall subgroup of G of odd order and
every element of G induces a power automorphism in D.

There are many other interesting characterisations of soluble PST-groups (see, for
example, [3, Ch. 2]). In particular, a soluble group G is a PST-group if and only if
every chief factor of G between AG and AG is central in G for every subgroup A of G
such that AG/AG is nilpotent [5], and a soluble group G is a PST-group if and only if
for every maximal subgroup V of every Sylow subgroup of G, there is a PST-subgroup
T of G such that G = VT [7].

In this paper, we prove the following result.

THEOREM 1.2. Let D = GN be the nilpotent residual of a soluble group G. Then G is
a PST-group if and only if D avoids the pair (AsG, AsG) for every subnormal subgroup
A of G.

2. Preliminaries

LEMMA 2.1. If D avoids the pair (AsG, AsG) and for a minimal normal sub-
group R of G we have either R ≤ D or R ≤ A, then DR/R avoids the pair
((AR/R)s(G/R), (AR/R)s(G/R)).

PROOF. First assume that R ≤ D. Then

(DR/R) ∩ (AR/R)s(G/R) = (D/R) ∩ (AsGR/R) = (D ∩ AsGR)/R

= R(D ∩ AsG)/R ≤ R(D ∩ AsG)/R.

However,

R(D ∩ AsG)/R ≤ (D ∩ (AR)sG)/R = (D/R) ∩ (AR)sG/R = (DR/R) ∩ (AR/R)s(G/R).

Therefore, (DR/R) ∩ (AR/R)s(G/R) ≤ (DR/R) ∩ (AR/R)s(G/R) and hence

(DR/R) ∩ (AR/R)s(G/R) = (DR/R) ∩ (AR/R)s(G/R),

so DR/R avoids the pair ((AR/R)s(G/R), (AR/R)s(G/R)).

https://doi.org/10.1017/S0004972724000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972724000157


[3] Soluble PST-groups 3

Now assume that R ≤ A. Then

(DR/R) ∩ (AR/R)s(G/R) = (DR/R) ∩ (AsG/R) = (DR ∩ AsG)/R = R(D ∩ AsG)/R
≤ R(D ∩ AsG)/R
≤ (DR/R) ∩ (AsG/R) = (DR/R) ∩ (A/R)s(G/R).

Hence, DR/R avoids ((AR/R)s(G/R), (AR/R)s(G/R)). �

The following lemma is a corollary of [8, Lemmas 2.4 and 2.5].

LEMMA 2.2. If A ≤ E ≤ G, then AsG ≤ AsE ≤ A ≤ AsE ≤ AsG.

The following useful fact is obtained from [4, Proposition 2.2.8].

LEMMA 2.3. Let N and E be subgroups of G, where N is normal in G. Then:

(1) (G/N)N = GNN/N;
(2) EN ≤ GN; and
(3) if G = NE, then ENN = GNN.

LEMMA 2.4. If the nilpotent residual D = GN of G avoids the pair (AsG, AsG) and
A ≤ E ≤ G, then EN avoids the pair (AsE, AsE).

PROOF. We have AsG ≤ AsE ≤ A ≤ AsE ≤ AG by Lemma 2.2, and so from AsG ∩ D =
AsG ∩ D and Lemma 2.3(2), it follows that EN ∩ AsG ≤ EN ∩ AsG, where EN ∩ AsE ≤
EN ∩ AsG and EN ∩ AsG ≤ ENσ ∩ AsE.

Consequently, EN ∩ AsE ≤ EN ∩ AsE ≤ EN ∩ AsE and EN ∩ AsE = EN ∩ AsE. Hence,
EN avoids the pair (AsEG, AsE). The lemma is proved. �

A group G is called π-closed if G has a normal Hall π-subgroup.

LEMMA 2.5. Let K ≤ H be normal subgroups of G, where H/K is π-closed. If either
K ≤ Φ(G) or K ≤ Z∞(H), then H is π-closed.

PROOF. Let V/K be the normal Hall π-subgroup of H/K. Let D be a Hall π′-subgroup
of K. Then D is a normal Hall π′-subgroup of V since K is nilpotent, so V has a Hall
π-subgroup, E say, by the Schur–Zassenhaus theorem. It is clear that V is π′-soluble,
so any two Hall π-subgroups of V are conjugated in V by the Hall–Chunikhin theorem
on π-soluble groups.

Assume that K ≤ Φ(G). By a generalised Frattini argument, G = VNG(E) =
DENG(E) = DNG(E) = NG(E) since D ≤ K ≤ Φ(G). Thus, E is normal in H, that
is, H is π-closed since E is a Hall π-subgroup of H.

Finally, assume that K ≤ Z∞(H) and then D ≤ Z∞(V), so V = D � E = D × E.
Hence, E is characteristic in V and so normal in H. Thus, H is π-closed. The lemma is
proved. �

LEMMA 2.6. Let D = GN be the nilpotent residual of G and p a prime such that
(p − 1, |G|) = 1. If D is nilpotent and every subgroup of D is normal in G, then
(p, |D|) = 1. Hence, the smallest prime in π(G) belongs to π(|G : D|). In particular,
|D| is odd and so D is abelian.
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PROOF. Assume that p divides |D|. Then D has a maximal subgroup M such that
|D : M| = p and M is normal in G. It follows that CG(D/M) = G, that is, D/M ≤
Z(G/M) since (p − 1, |G|) = 1. However, G/D is nilpotent. Therefore, G/M is nilpotent
by Lemma 2.5 and hence D ≤ M < D, which is a contradiction. Therefore, the smallest
prime in π(G) belongs to π(|G : D|). In particular, |D| is odd and so D is abelian since
D is a Dedekind group by hypothesis. The lemma is proved. �

DEFINITION 2.7. A subgroup D of G is a special subgroup of G if D is a normal Hall
subgroup of G and every element of G induces a power automorphism in D.

LEMMA 2.8. If D is a special subgroup of G and N � G, then DN/N is a special
subgroup of G/N.

PROOF. It is clear that DN/N is a normal Hall subgroup of G/N and if A/N ≤ DN/N,
then A = N(A ∩ D), where A ∩ D is normal in G, so A/N is normal in G/N, that
is, every element of G/N induces a power automorphism in DN/N. The lemma is
proved. �

LEMMA 2.9 [3, Theorem 1.2.17]. If A is a nilpotent S-permutable subgroup of G and
V is a Sylow subgroup of A, then V is S-permutable in G.

LEMMA 2.10. If the nilpotent residual D = GN of G is a special subgroup of G and A
is an S-permutable subgroup of G, then D avoids the pair (AsG, AsG).

PROOF. Since AG ≤ AsG ≤ A ≤ AsG ≤ AG by Lemma 2.2, it is enough to show that D
avoids the pair (AG, AG). Assume this is false and let G be a counterexample of minimal
order.

First we prove that A ∩ D = 1. Indeed, assume that N := A ∩ D � 1. Then N ≤ AG
and D/N = (G/N)N is a special subgroup of G/N by Lemma 2.8, and A/N is an
S-permutable subgroup of G/N by [3, Lemma 1.2.7]. Therefore, (G/N)N avoids the
pair ((A/N)G/N , (A/N)G/N) by the choice of G, that is,

(G/N)N ∩ (A/N)G/N = (G/N)N ∩ (A/N)G/N .

However, (A/N)G/N = AG/N and (A/N)G/N = AG/N, so

(G/N)N ∩ (A/N)G/N = (D/N) ∩ (AG/N) = (D ∩ AG)/N

and

(G/N)N ∩ (A/N)G/N = (D/N) ∩ (AG/N) = (D ∩ AG)/N.

Consequently, D ∩ AG = D ∩ AG. Hence, D avoids the pair (AG, AG), which is a
contradiction.

Therefore, A ∩ D = 1, so AD/D � A = P1 × · · · × Pt, where Pi is the Sylow
pi-subgroup of A for all i. Then Pi is S-permutable in G by Lemma 2.9 and so
D ≤ NG(Pi) for all i by [3, Lemma 1.2.16]. Therefore, D ≤ NG(A).

Let π = π(D). Then G is π-soluble since every subgroup of D is normal in G by
hypothesis. Moreover, D has a complement M in G since D is a Hall π-subgroup of G
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and for some x ∈ G, we have A ≤ Mx by the Chunikhin–Hall theorem [9, VI, Hauptsatz
1.7]. Finally, D ≤ NG(A) and hence AG = ADMx

= AMx ≤ MG ≤ M, so AG ∩ D = 1.
Therefore, D avoids (AG, AG) = (AG, 1), contrary to the choice of G. The lemma is
proved. �

3. Proof of Theorem 1.2

First suppose that D avoids the pair (AsG, AsG) for every subnormal subgroup A of
G. We show that, in this case, G is a PST-group. Assume this is false and let G be a
counterexample of minimal order. Then D � 1 since G/D is nilpotent and so G/D is a
PST-group.

Claim 1. If R is a minimal normal subgroup of G, then G/R is a PST-group.
In view of the choice of G, it is enough to show that the hypothesis holds for G/R.

First note that DR/R = (G/R)N by Lemma 2.3 and if A/R is a subnormal subgroup
of G/R, then A is subnormal in G, so D avoids the pair (AsG, AsG) by hypothesis.
Therefore, DR/R avoids the pair ((A/R)s(G/R), (A/R)s(G/R)) by Lemma 2.1. This proves
Claim 1.

Claim 2. If E is a proper subnormal subgroup of G, then E is a PST-group.
Every subnormal subgroup A of E is subnormal in G, so D avoids the pair (AsG, AsG)

by hypothesis. However, then EN avoids the pair (AsE, AsE) by Lemma 2.4. Hence, the
hypothesis holds for E, so Claim 2 holds by the choice of G.

Claim 3. D is nilpotent and every subgroup of D is S-permutable in G. Hence, every
chief factor of G below D is cyclic.

First we show that if L ≤ D, where L is a minimal normal subgroup of G, then L is
cyclic. Since G is soluble, L ≤ Gp for some Sylow subgroup Gp of G and then some
maximal subgroup V of L is normal in Gp and V is subnormal in G. Assume that V is
not S-permutable in G. Then V � 1 and VsG = L, so VsG ∩ D = L = VsG ∩ D < V < L,
which is a contradiction. Hence, V is S-permutable in G, so G = GpOp(G) ≤ NG(V)
by [3, Lemma 1.2.16]. Therefore, V = 1, so |L| = p.

Now we show that D is nilpotent. Assume that this is false and let R be a minimal
normal subgroup of G. Then G/R is a PST-group by Claim 1.

Note also that (G/R)N = RD/R � D/(D ∩ R) by Lemma 2.3, where (G/R)N is
abelian by Theorem 1.1, so R ≤ D and if N is a minimal normal subgroup of G,
then N = R since otherwise D � D/1 = D/(N ∩ R) is abelian. Moreover, |R| = p for
some prime p and R � Φ(G) by Lemma 2.5, so for some maximal subgroup M of G,
we have G = R �M and CG(R) ∩M is a normal subgroup of G, so CG(R) ∩M = 1.
Therefore, CG(R) = R(CG(R) ∩M) = R and then G/R = G/CG(R) is cyclic. Hence,
R = D is nilpotent. This contradiction shows that D is nilpotent. So, for every subgroup
A of D,

AsG = D ∩ AsG = D ∩ AsG = AsG.

Therefore, every subgroup of D is S-permutable in G.
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By Theorem 1.1 and Claim 1, every chief factor of G between R and D is cyclic, so
every chief factor of G below D is cyclic by the Jordan–Hölder theorem for the chief
series. Hence, Claim 3 holds.

Claim 4. D is a Hall subgroup of G.
Suppose that this is false and let P be a Sylow p-subgroup of D such that

1 < P < Gp, where Gp ∈ Sylp(G).

(a) D = P is a minimal normal subgroup of G and |D| = p. Hence, D ≤ Z(Gp) and Gp

is normal in G.
Let R be a minimal normal subgroup of G contained in D. Then R is a q-group

for some prime q and D/R = (G/R)N is a Hall subgroup of G/R by Claim 1 and
Theorem 1.1.

Suppose that PR/R � 1. Then PR/R ∈ Sylp(G/R). If q � p, then P ∈ Sylp(G).
This contradicts the fact that P < Gp. Hence, q = p, so R ≤ P and therefore, P/R ∈
Sylp(G/R) and again P ∈ Sylp(G). This contradiction shows that PR/R = 1, which
implies that R = P is the unique minimal normal subgroup of G contained in D. Since
D is nilpotent, a p′-complement E of D is characteristic in D and so it is normal
in G. Hence, E = 1, which implies that R = D = P. Claim 3 implies that |D| = p, so
D ≤ Z(Gp). Finally, since G/D is nilpotent and D ≤ Gp, Gp is normal in G.

(b) D � Φ(G). Hence, G = D �M for some maximal subgroup M of G and
CG(D) = D × (CG(D) ∩M).

This follows from part (a) since G is not nilpotent.

(c) If G has a minimal normal subgroup L � D, then Gp = D × L. Hence, Op′(G) = 1.
Indeed, DL/L � D is a Hall subgroup of G/L by Theorem 1.1 and Claim 1. Hence,

GpL/L = DL/L, so Gp = D × (L ∩ Gp) = D × L since Gp is normal in G by part (a).
Thus, Op′(G) = 1.

(d) Gp ∩M � 1 is normal in G.
Observe that V :=Gp ∩M is normal in M by part (a). Also from Gp=Gp∩D �M =

D(Gp ∩M), where D ≤ Z(Gp) by part (a), it follows that V is normal Gp. Therefore, V
is normal in G and V � 1 since D < Gp.

(e) If L ≤ Gp ∩M, where L is a minimal normal subgroup of G, then L = Gp ∩M and
so Gp = D × L is abelian.

This follows from parts (c) and (d).

(f) Every normal subgroup Z of G contained in Gp with 1 � Z � Gp is G-isomorphic to
either L or D. In particular, Z is a minimal normal subgroup of G and either Z ∈ {D, L}
or D �G Z �G L, and so CG(D) = CG(Z) = CG(L).

Assume that D � Z � L. If Z ∩ L � 1, then L ≤ Z and so Z = L(Z ∩ D) = L since
1 � Z � Gp = LD, which is a contradiction. Hence, Z ∩ L = 1 and Z ∩ D = 1. There-
fore, Gp = D × Z = D × L and so the G-isomorphisms L�LD/D=Gp/D=DZ/D�Z
and D � DL/L = Gp/D = LZ/L � Z yield D �G Z �G L. In particular, Z is a minimal
normal subgroup of G and CG(D) = CG(Z) = CG(L).
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(g) If N = 〈ab〉, where D = 〈a〉 and b is an element of order p in L, then |N | = p and
N ∩ D = N ∩ L = 1.

Since Gp = D × L is abelian by part (e) and |D| = p by part (a), |ab| = |N | = p.
Hence, N ∩ D = N ∩ L = 1 since a � L and b � D.

(h) N is a minimal normal subgroup of G.
First we show that N is normal in G. In view of [3, Lemma 1.2.16] and part (e),

it is enough to show that N = NsG is S-permutable in G. Assume that N < NsG. Then
|NsG| > p. Since Gp = DL by part (f) and |D| = p by part (a),

|Gp : L| = p = |NsGL/L| = |NsG/(NsG ∩ L)|,

so NsG ∩ L � 1. However, NsG ∩ L is S-permutable in G by [3, Theorem 1.2.19] and
so NsG ∩ L is normal in G by [3, Lemma 1.2.16] and part (e). Hence, L ≤ NsG by the
minimality of L. Then NsG = NsG ∩ Gp = L(NsG ∩ D). However, N is subnormal in
G and so NsG ∩ D = NsG ∩ D = 1. Hence, NsG = L and then N ∩ L � 1, in contrast to
part (g). Hence, N = NsG and so N is normal in G. Therefore, N is a minimal normal
subgroup of G since |N | = p. This proves part (h).

(i) The final contradiction to prove Claim 4.
In view of parts (f), (g) and (h), CG(D) = CG(N) = CG(L). However, CG(L) = G

by part (e) since G/D � M is nilpotent and L ≤ M. Therefore, D ≤ Z(G) and so G is
nilpotent. This contradiction proves Claim 4.

Claim 5. Every subgroup A of D is normal in G. Hence, every element of G induces a
power automorphism in D.

Since D is nilpotent by Claim 3, it is enough to consider the case when A is a
p-group for some prime p. Moreover, A is S-permutable in G by Claim 3 and the
Sylow p-subgroup Dp of D is a Sylow p-subgroup of G by Claim 4. Therefore,
G = DpOp(G) = DOp(G) ≤ NG(A) by [3, Lemma 1.2.16]. This proves Claim 5.

Claim 6. D is an abelian group of odd order.
This follows from Lemma 2.6 and Claim 5.

Claim 7. The final contradiction.
From Claims 3–6, it follows that G is a PST-group by Theorem 1.1, in contrast to

the choice of G. Hence, there is no minimal counterexample and G is a PST-group.
Finally, given that G is a PST-group, we show that D avoids the pair (AsG, AsG) for

every subnormal subgroup A of G. There is a series A = A0 � A1 � · · · � An = G, so A
is S-permutable in G since G is a PST-group. However, D = GN is a special subgroup
of G by Theorem 1.1 and so D avoids the pair (AsG, AsG) by Lemma 2.10.

The theorem is proved.
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