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A Note on 4-Rank Densities

Robert Osburn

Abstract. For certain real quadratic number fields, we prove density results concerning 4-ranks of tame

kernels. We also discuss a relationship between 4-ranks of tame kernels and 4-class ranks of narrow

ideal class groups. Additionally, we give a product formula for a local Hilbert symbol.

1 Introduction

Let F be a real quadratic number field and OF its ring of integers. In [4], the authors

gave an algorithm for computing the 4-rank of the tame kernel K2(OF). The idea of
the algorithm is to consider matrices with Hilbert symbols as entries and compute
matrix ranks over F2. Recently, the author used these matrices to obtain “density

results” concerning the 4-rank of tame kernels, see [6], [7].

In this note, we consider the 4-rank of K2(O) for the real quadratic number fields
Q(

√
p1 p2 p3) for primes p1 ≡ p2 ≡ p3 ≡ 1 mod 8. We will see that

4- rank K2(OQ(
√

p1 p2 p3)) = 0, 1, 2, or 3.

For squarefree, odd integers d, consider the set

X = {d : d = p1 p2 p3, pi ≡ 1 mod 8}

for distinct primes pi .

Using GP/PARI [1], we computed the following: For 50881 ≤ d < 2 × 107,
there are 7257 d’s in X. Among them, there are 2121 d’s (29.23%) yielding 4-rank 0,

3977 d’s (54.80%) yielding 4-rank 1, 1086 d’s (14.96%) yielding 4-rank 2, and 73 d’s
(1.01%) yielding 4-rank 3. In fact, we prove

Theorem 1.1 For the fields Q(
√

p1 p2 p3), 4-rank 0, 1, 2, and 3 appear with natural

density 1
4
, 17

32
, 13

64
, and 1

64
respectively in X.

In the appendix we point out a beautiful result which may not be well known. It is
a product formula from [11] for a certain local Hilbert symbol. This product formula
both simplifies numerical computations and is a generalization of Propositions 4.6

and 4.4 in [2] and [7], respectively.
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2 Matrices

Hurrelbrink and Kolster [4] generalize Qin’s approach in [8], [9] and obtain 4-rank
results by computing F2-ranks of certain matrices of local Hilbert symbols. Specifi-
cally, let F = Q(

√
d), d > 1 and squarefree. Let p1, p2, . . . , pt denote the odd primes

dividing d. Recall 2 is a norm from F if and only if all pi ’s are ≡ ±1 mod 8. If so,

then d is a norm from Q(
√

2), thus

d = u2 − 2w2

for u, w ∈ Z. Now consider the matrix:

MF/Q =



















(−d, p1)2 (−d, p1)p1
. . . (−d, p1)pt

(−d, p2)2 (−d, p2)p1
. . . (−d, p2)pt

...
...

...
(−d, pt−1)2 (−d, pt−1)p1

. . . (−d, pt−1)pt

(−d, v)2 (−d, v)p1
. . . (−d, v)pt

(d,−1)2 (d,−1)p1
. . . (d,−1)pt



















.

If 2 is not a norm from F, set v = 2. Otherwise, set v = u + w. Replacing the 1’s
by 0’s and the −1’s by 1’s, we calculate the matrix rank over F2. From [4],

Lemma 2.1 Let F = Q(
√

d), d > 0 and squarefree. Then

4- rank K2(OF) = t − rk(MF/Q ) + a ′ − a

where

a =

{

0 if 2 is a norm from F

1 otherwise

and

a ′
=











0 if both −1 and 2 are norms from F

1 if exactly one of −1 or 2 is a norm from F

2 if none of −1 or 2 are norms from F.

Recall that our case is Q(
√

p1 p2 p3) for primes p1 ≡ p2 ≡ p3 ≡ 1 mod 8. In this
case a = a ′ and we may delete the last row of MF/Q without changing its rank (see
discussions preceding Proposition 5. 13 and Lemma 5.14 in [4]). Also note that v is

an p1-adic unit and hence

(−p1 p2 p3, v)p1
= (p1, v)p1

=

( v

p1

)

.

Similarly, (−p1 p2 p3, v)p2
= ( v

p2
) and (−p1 p2 p3, v)p3

= ( v
p3

). From Lemma 2.1 we

have

4- rank K2(OF) = 3 − rk(MF/Q )
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and the matrix MF/Q is of the form









1 ( p2

p1
)( p3

p1
) ( p1

p2
) ( p1

p3
)

1 ( p2

p1
) ( p1

p2
)( p3

p2
) ( p2

p3
)

(−d, u + w)2 ( v
p1

) ( v
p2

) ( v
p3

)









.

Let us now prove Theorem 1.1.

Proof The idea in [6] and [7] is to first consider an appropriate normal extension

N of Q and then relate the splitting of the primes pi in N to their representation by
certain quadratic forms. The next step is classifying 4-rank values in terms of values
of the symbols (−d, v)2, ( v

pi
). The values of these symbols are then characterized in

terms of pi satisfying the alluded to quadratic forms. We then associate Artin sym-

bols to the primes pi and apply the Chebotarev density theorem. In what follows,
we classify the 4-rank values in terms of the symbols (−d, v)2, ( v

pi
) and in parenthe-

sis give the relevant densities in X obtained by using the above machinery. Let us
consider the following four cases (see Table III in [9]).

Case 1 Suppose (
p2

p1
) = (

p3

p1
) = (

p3

p2
) = 1. Then we immediately have that

• 4- rank K2(OQ(
√

p1 p2 p3)) = 3 ⇔ rank(MF/Q ) = 0 ⇔ (−d, v)2 = 1 and ( v
p1

) =

( v
p2

) = ( v
p3

) = 1( 1
64

)
• 4- rank K2(OQ(

√
p1 p2 p3)) = 2 ⇔ rank(MF/Q ) = 1 ⇔ (−d, v)2 = −1 or (−d, v)2

= 1 and ( v
p1

) = ( v
p2

) = −1 and ( v
p3

) = 1 or (−d, v)2 = 1 and ( v
p1

) = ( v
p3

) = −1

and ( v
p2

) = 1 or (−d, v)2 = 1 and ( v
p2

) = ( v
p3

) = −1 and ( v
p1

) = 1( 7
64

).

Case 2 Suppose (
p3

p2
) = (

p3

p1
) = 1, (

p2

p1
) = −1. Thus

• 4- rank K2(OQ(
√

p1 p2 p3)) = 2 ⇔ rank(MF/Q ) = 1 ⇔ (−d, v)2 = 1 and ( v
p1

) =

( v
p2

) = 1 or (−d, v)2 = 1 and ( v
p1

) = ( v
p2

) = −1( 3
32

)
• 4- rank K2(OQ(

√
p1 p2 p3)) = 1 ⇔ rank(MF/Q ) = 2 ⇔ (−d, v)2 = −1 or (−d, v)2

= 1 and ( v
p1

) = ( v
p3

) = −1 and ( v
p2

)

= 1 or (−d, v)2 = 1 and ( v
p2

) = ( v
p3

) = −1

and ( v
p1

) = 1( 9
32

).

Case 3 Suppose ( p2

p1
) = ( p3

p1
) = −1, ( p3

p2
) = 1. Thus

• 4- rank K2(OQ(
√

p1 p2 p3)) = 1 ⇔ rank(MF/Q ) = 2 ⇔ (−d, v)2 = 1( 3
16

).
• 4- rank K2(OQ(

√
p1 p2 p3)) = 0 ⇔ rank(MF/Q ) = 3 ⇔ (−d, v)2 = −1( 3

16
).

Case 4 Suppose (
p2

p1
) = (

p3

p1
) = (

p3

p2
) = −1. Then

• 4- rank K2(OQ(
√

p1 p2 p3)) = 1 ⇔ rank(MF/Q ) = 2 ⇔ (−d, v)2 = 1( 1
16

)
• 4- rank K2(OQ(

√
p1 p2 p3)) = 0 ⇔ rank(MF/Q ) = 3 ⇔ (−d, v)2 = −1( 1

16
).

Thus 4-rank 0, 1, 2, and 3 occur with natural density 1
16

+ 3
16

=
1
4
, 1

16
+ 3

16
+ 9

32
=

17
32

,
3

32
+ 7

64
=

13
64

, and 1
64

.
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Remark 2.2 The matrices in [4] are related to Rédei matrices which were used in
the 1930’s to study the structure of narrow ideal class groups. Namely, for Q(

√
d),

we considered the case that all odd primes divisors of d are ≡ 1 mod 8. Thus 2 is a
norm from F = Q(

√
d) and we have the representation

d = u2 − 2w2.

Let d ′
=

∏t
i=1 pi . The matrix MF/Q has the form:















1
1
...

R̂F/Q

1
(−d, v)2 (−d, v)p1

. . . (−d, v)pt















.

The (t − 1) by t matrix R̂F/Q can be extended, without changing its rank, to a t by
t matrix RF/Q by adding the last row

(−d, pt )p1
, (−d, pt )p2

, . . . , (−d, pt )pt
.

RF/Q is known as the Rédei matrix of the field F ′ := Q(
√

d ′) (see [5] or [10]). Its
rank determines the 4-rank of the narrow ideal class group C+

F ′ of the field F ′ by

4- rank C+
F ′ = t − 1- rank(RF/Q ).

Combining this information with Lemma 2.1, we have that if (−d, u + w)2 = −1,
then 4-rank K2(OF) = 4-rank C+

F ′ . Using Rédei matrices, Gerth in [3] derived an ef-

fective algorithm for computing densities of 4-class ranks of narrow ideal class groups
of quadratic number fields. It would be interesting to see if density results concerning
4-class ranks of narrow ideal class groups (coupled with the product formula in the
appendix) can be used to obtain asymptotic formulas for 4-rank densities of tame

kernels.

3 Appendix: A Product Formula

Most of the local Hilbert symbols in the matrix MF/Q are calculated directly. Difficul-

ties arise when d is a norm from Q(
√

2). In this case, we need to calculate the Hilbert
symbols (−d, u + w)2 and (−d, u + w)pk

. The local symbol at 2 is calculated using
Lemmas 5.3 and 5.4 in [4]. In this appendix we provide a product formula which

allows one to calculate (−d, u + w)pk
using 2 factors of d at a time.

Let d be a squarefree integer and assume that all odd prime divisors of d are ≡
±1 mod 8. Then d is a norm from F = Q(

√
2) and we have the representation

d = u2 − 2w2

with u > 0. Let l be any odd prime dividing d. Note that l does not divide u + w and
so
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Remark 3.1 (−d, u + w)l = (l, u + w)l = ( u+w
l

).

Recall that any odd prime divisor l of d is ≡ ±1 mod 8. We fix x and y according
to the representation:

(−1)
l−1

2 l = N
Q(

√
2)/Q

(x + y
√

2) = x2 − 2y2

with x ≡ 1 mod 4, x, y > 0. Observe that mod 8, x is odd. Also we can arrange for
x ≡ 1 mod 4 by multiplying x + y

√
2 by (1 +

√
2)2.

For l ≡ 1 mod 8, we have l = x2 − 2y2 and so ( l
y
) = 1. Thus ( y

l
) = 1. For

l ≡ 7 mod 8,

1 =

( −l

y

)

=

( −1

y

)( l

y

)

= (−1)
y−1

2 (−1)
y−1

2

( y

l

)

=

( y

l

)

.

Now let r be an integer not divisible by l which can be represented as a norm from
Q(

√
2). Denote by πr = s + t

√
2 an element such that N

Q(
√

2)/Q
(πr) = r with s,

t > 0. Now let ur and wr be such that

ur + wr

√
2 = (1 +

√
2)(x + y

√
2)(s + t

√
2).

By the choice of x, y, s, t , we have ur > 0. Note that

N
Q(

√
2)/Q

(ur + wr

√
2) = −(−1)

l−1

2 lr.

Now fix l = 〈x − y
√

2〉 a prime ideal above l in Q(
√

2). As l splits in Q(
√

2),
Z[
√

2]/l ∼
= Z/lZ. This allows us to work mod l as opposed to mod l. From the

above, ur + wr = 2xs + 3tx + 3sy + 4yt . Modulo l, we have

ur + wr ≡ 2sy
√

2 + 3t y
√

2 + 3sy + 4yt

≡ y(3 + 2
√

2)(s + t
√

2).

As ( y
l
) = 1, ( ur+wr

l
) = ( y

l
)( πr

l
) = ( πr

l
) where

( πr

l

)

=

{

1 if x2 ≡ πr mod l is solvable,

−1 otherwise.

In the case r =

∏t−1

i pi where pi ≡ ±1 mod 8, we obtain for each pi an ele-

ment πi ∈ Q(
√

2) of norm (−1)
pi−1

2 pi . Let c be the number of primes dividing r

which are congruent to 7 modulo 8. Then we have (up to squares of units) πr =

(1 +
√

2)c
∏t−1

i πi . This yields

( ur + wr

l

)

=

(

(1 +
√

2)c

l

) t−1
∏

i

( πi

l

)

,
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and so
( ur + wr

l

)

=

( u−1 + w−1

l

) c
t−1
∏

i

( upi
+ wpi

l

)

.

As −1 and 2 are also norms from Q(
√

2), we can include r’s having factors −1 or
±2. Thus for r = (−1)n(2)m

∏t−1

i pi with m, n = 0, or 1, and each pi ≡ ±1 mod 8

and l 6= pi for any i, we have

Remark 3.2

( ur + wr

l

)

=

( u−1 + w−1

l

) n+c( u2 + w2

l

)m
t−1
∏

i

( upi
+ wpi

l

)

.

Setting r =
d
l
, we have −(−1)

l−1
2 d = N

Q(
√

2)/Q
(ur + wr

√
2). So for any prime

l ≡ 7 mod 8, we have N
Q(

√
2)/Q

(ur + wr

√
2) = d = N

Q(
√

2)/Q
(u + w

√
2). Then,

up to squares, ( ur+wr

l
) = ( u+w

l
). For prime divisors l ≡ 1 mod 8, we have −d =

N
Q(

√
2)/Q

(ur + wr

√
2) and so we include (

u−1+w−1

l
). To summarize,

Remark 3.3

(−d, u + w)l =

{

( ur+wr

l
) if l ≡ 7 mod 8

(
u−1+w−1

l
)( ur +wr

l
) if l ≡ 1 mod 8.

We may now reduce to the following d = rl: d = −l, d = 2l, and d = pl, i.e.

calculate the symbols (
u−1+w−1

l
), ( u2+w2

l
), and (

up+wp

l
). The first two symbols can be

calculated using the following two elementary lemmas.

Lemma 3.4 (
u−1+w−1

l
) = 1 ⇔ (−1)

l−1
2 l = a2 − 32b2 for some a, b ∈ Z with

a ≡ 1 mod 4.

Lemma 3.5 ( u2+w2

l
) = 1 ⇔ l ≡ ±1 mod 16.

A little care is necessary in computing (
up +wp

l
). If

(

(−1)
p−1

2 p
l

)

= 1, then the sym-
bol ( π

l
) is well defined (see discussion preceding Proposition 3.5 in [2]) and can be

computed using

Lemma 3.6 For K = Q
(

√

(−1)
p−1

2 2p
)

with p ≡ ±1 mod 8 and h+(K) the narrow

class number of K, we have

( π

l

)

= 1 ⇔ l
h+(K)

4 = n2 − 2pm2 for some n, m ∈ Z with m 6≡ 0 mod l.

For K = Q(
√−2p) with p ≡ 7 mod 8, ( π

l
) = −1 ⇔ l

h+(K)
4 = 2n2 + pm2 for some

n, m ∈ Z with m 6≡ 0 mod l.

For K = Q(
√

2p) with p ≡ 1 mod 8, ( π
l
) = −1 ⇔ l

h+(K)
4 = pn2 − 2m2 for some

n, m ∈ Z with m 6≡ 0 mod l.
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In fact,

Lemma 3.7 If
(

(−1)
p−1

2 p
l

)

= 1, then

( up + wp

l

)

=

{

( π
l
) for p ≡ 1 mod 8

(
u−1+w−1

l
)( π

l
) for p ≡ 7 mod 8.

The case where
(

(−1)
p−1

2 p
l

)

= −1 can be done by finding up and wp from the

presentation

N
Q(

√
2)/Q

(up + wp

√
2) = −(−1)

p−1

2 pl.

Combining Remarks 3.1, 3.2, and 3.3, we have

Theorem 3.8 For d = (−1)n(2)m
∏t

i=1 pi , with each pi ≡ ±1 mod 8, we have

(−d, u + w)pk
=

( u−1 + w−1

pk

) n+(−1)
pk +1

2 ( u2 + w2

pk

)m ∏

i 6=k

( upi
+ wpi

pk

)

.

Example 3.9 Consider the cases d = ±pl,±2pl with p ≡ 7 mod 8, l ≡ 1 mod
8, and ( l

p
) = 1 (see Proposition 4.6 in [2]). Note that ( π

l
) is well defined and so

Lemma 3.7 is applicable.
For d = pl, we have n = 0, m = 0 and so

(−d, u + w)l =

( u−1 + w−1

l

)−1( u2 + w2

l

) 0( u−1 + w−1

l

)( π

l

)

=

( π

l

)

.

For d = 2pl, we have n = 0, m = 1. Thus

(−d, u + w)l =

( u−1 + w−1

l

)−1( u2 + w2

l

) 1( u−1 + w−1

l

)( π

l

)

=

( 2 +
√

2

l

)( π

l

)

.

For d = −pl, we have n = 1, m = 0. This yields

(−d, u + w)l =

( u−1 + w−1

l

) 0( u2 + w2

l

) 0( u−1 + w−1

l

)( π

l

)

=

( 1 +
√

2

l

)( π

l

)

.

Finally, for d = −2pl, we have n = 1, m = 1. So

(−d, u + w)l =

( u−1 + w−1

l

) 0( u2 + w2

l

) 1( u−1 + w−1

l

)( π

l

)

=

( 2 +
√

2

l

)( 1 +
√

2

l

)( π

l

)

.
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Example 3.10 Consider the cases d = ±pl with p ≡ l ≡ 1 mod 8, and ( l
p

) = 1

(see Proposition 4.4 in [7]). Again ( π
l
) is well defined and so Lemma 3.7 is applicable.

For d = pl, we have n = 0, m = 0, and so

(−d, u + w)l =

( u−1 + w−1

l

)−1( u2 + w2

l

) 0( up + wp

l

)

=

( 1 +
√

2

l

)( π

l

)

.

For d = −pl, we have n = 1, m = 0. Thus

(−d, u + w)l =

( u−1 + w−1

l

) 0( u2 + w2

l

) 0( up + wp

l

)

=

( π

l

)

.
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