
Combinatorics, Probability and Computing (2025), 34, pp. 1–51
doi:10.1017/S0963548324000166

ARTICLE

Partial recovery and weak consistency in the
non-uniform hypergraph stochastic block model
Ioana Dumitriu1, Hai-Xiao Wang1 and Yizhe Zhu2

1Department of Mathematics, University of California, San Diego, La Jolla, CA, USA and 2Department of Mathematics,
University of California, Irvine, CA, USA
Corresponding author:Hai-Xiao Wang; Email: h9wang@ucsd.edu

(Received 31 August 2022; revised 21 March 2024; accepted 25 March 2024; first published online 9 October 2024)

Abstract
We consider the community detection problem in sparse random hypergraphs under the non-uniform
hypergraph stochastic block model (HSBM), a general model of random networks with community struc-
ture and higher-order interactions. When the random hypergraph has bounded expected degrees, we
provide a spectral algorithm that outputs a partition with at least a γ fraction of the vertices classified cor-
rectly, where γ ∈ (0.5, 1) depends on the signal-to-noise ratio (SNR) of the model. When the SNR grows
slowly as the number of vertices goes to infinity, our algorithm achieves weak consistency, which improves
the previous results in Ghoshdastidar and Dukkipati ((2017) Ann. Stat. 45(1) 289–315.) fornon-uniform
HSBMs.
Our spectral algorithm consists of three major steps: (1) Hyperedge selection: select hyperedges of certain
sizes to provide the maximal signal-to-noise ratio for the induced sub-hypergraph; (2) Spectral partition:
construct a regularised adjacency matrix and obtain an approximate partition based on singular vectors;
(3) Correction and merging: incorporate the hyperedge information from adjacency tensors to upgrade
the error rate guarantee. The theoretical analysis of our algorithm relies on the concentration and regular-
isation of the adjacency matrix for sparse non-uniform random hypergraphs, which can be of independent
interest.
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1. Introduction
Clustering is one of the central problems in network analysis and machine learning [59, 60, 65].
Many clustering algorithms make use of graph models, which represent pairwise relationships
among data. A well-studied probabilistic model is the stochastic block model (SBM), which was
first introduced in [39] as a random graph model that generates community structure with given
ground truth for clusters so that one can study algorithm accuracy. The past decades have brought
many notable results in the analysis of different algorithms and fundamental limits for community
detection in SBMs in different settings [20, 37, 54, 70]. A major breakthrough was the proof of
phase transition behaviours of community detection algorithms in various connectivity regimes
[2, 5, 12, 52, 55, 57, 58]. See the survey [1] for more references.

Hypergraphs can represent more complex relationships among data [10, 11], including recom-
mendation systems [13, 49], computer vision [34, 73], and biological networks [53, 68], and they
have been shown empirically to have advantages over graphs [79]. Besides community detection
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problems, sparse hypergraphs and their spectral theory have also found applications in data
science [38, 40, 80], combinatorics [26, 29, 66], and statistical physics [14, 64].

With the motivation from a broad set of applications, many efforts have been made in recent
years to study community detection on random hypergraphs. The hypergraph stochastic block
model (HSBM), as a generalisation of graph SBM, was first introduced and studied in [31]. In
this model, we observe a random uniform hypergraph where each hyperedge appears indepen-
dently with some given probability depending on the community structure of the vertices in the
hyperedge.

Succinctly put, the HSBM recovery problem is to find the ground truth clusters either approxi-
mately or exactly, given a sample hypergraph and estimates of model parameters. We may ask the
following questions about the quality of the solutions (see [1] for further details in the graph case).

1. Exact recovery (strong consistency):With high probability, find all clusters exactly (up to
permutation).

2. Almost exact recovery (weak consistency): With high probability, find a partition of the
vertex set such that at most o(n) vertices are misclassified.

3. Partial recovery: Given a fixed γ ∈ (0.5, 1), with high probability, find a partition of the
vertex set such that at least a fraction γ of the vertices are clustered correctly.

4. Weak recovery (detection):With high probability, find a partition correlated with the true
partition.

For exact recovery of uniform HSBMs, it was shown that the phase transition occurs in the
regime of logarithmic expected degrees in [16, 17, 50]. The thresholds are given for binary [30,
43] and multiple [77] community cases, by generalising the techniques in [2–4]. After our work
appeared on arXiv, thresholds for exact recovery on non-uniform HSBMs were given by [25, 71].
Strong consistency on the degree-corrected non-uniform HSBM was studied in [24]. Spectral
methods were considered in [6, 16, 21, 30, 75, 77], while semidefinite programming methods were
analysed in [8, 43, 46]. Weak consistency for HSBMs was studied in [16, 17, 32, 33, 42].

For detection of the HSBM, the authors of [9] proposed a conjecture that the phase transi-
tion occurs in the regime of constant expected degrees. The positive part of the conjecture for the
binary and multi-block case was solved in [62] and [67], respectively. Their algorithms can out-
put a partition better than a random guess when above the Kesten-Stigum threshold, but can not
guarantee the correctness ratio. [35, 36] proved that detection is impossible and theKesten-Stigum
threshold is tight for m-uniform hypergraphs with binary communities when m= 3, 4, while KS
threshold is not tight whenm≥ 7, and some regimes remain unknown.

1.1. Non-uniform hypergraph stochastic blockmodel
The non-uniform HSBM was first studied in [32], which removed the uniform hypergraph
assumption in previous works, and it is a more realistic model to study higher-order interaction
on networks [51, 73]. It can be seen as a superposition of several uniform HSBMs with different
model parameters. We first define the uniform HSBM in our setting andextend it to non-uniform
hypergraphs.

Definition 1.1 (Uniform HSBM). Let V = {V1, . . .Vk} be a partition of the set [n] into k blocks
of size n

k (assuming n is divisible by k). Let m ∈N be some fixed integer. For any set of m distinct
vertices i1, . . . im, a hyperedge {i1, . . . im} is generated with probability am/

( n
m−1

)
if vertices i1, . . . im

are in the same block; otherwise with probability bm/
( n
m−1

)
. We denote this distribution on the set

of m-uniform hypergraphs as

Hm ∼HSBMm

(
n
k
,

am( n
m−1

) , bm( n
m−1

)) . (1)
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(a) (b) (c)

Figure 1. An example of non-uniform HSBM sampled frommodel 1.2.

Definition 1.2 (Non-uniform HSBM). Let H = (V , E) be a non-uniform random hypergraph,
which can be considered as a collection of m-uniform hypergraphs, i.e., H = ⋃M

m=2 Hm with each
Hm sampled from (1).

Examples of 2-uniform and 3-uniform HSBM, and an exampleof non-uniform HSBM with
M= {2, 3} and k= 3 is displayed in Fig. 1a, b, c respectively.

1.2. Main results
To illustrate our main results, we first introduce the concepts γ -correctness and sigal-to-noise ratio
to measure the accuracy of the obtained partitions.

Definition 1.3 (γ -correctness). Suppose we have k disjoint blocks V1, . . . ,Vk. A collection of
subsets V̂1, . . . , V̂k of V is γ -correct if |Vi ∩ V̂i| ≥ γ |Vi| for all i ∈ [k].

Definition 1.4. For model 1.2 under Assumption 1.5, we define the signal-to-noise ratio (SNR) as

SNRM(k) :=
[∑

m∈M (m− 1)
(
am−bm
km−1

)]2
∑

m∈M (m− 1)
(
am−bm
km−1 + bm

) . (2)

Let Mmax denote the maximum element in the set M. The following constant CM(k) is used to
characterise the accuracy of the clustering result,

CM(k) := [νMmax−1 − (1− ν)Mmax−1]2

23 · (Mmax − 1)2
·
(
1{k=2} + 1

22Mmax
· 1{k≥3}

)
(3)

Note that a non-uniform HSBM can be seen as a collection of noisy observations for the same
underlying community structure through several uniform HSBMs of different orders. A possi-
ble issue is that some uniform hypergraphs with small SNR might not be informative (if we
observe an m-uniform hypergraph with parameters am = bm, including hyperedge information
from it ultimately increases the noise). To improve our error rate guarantees, we start by adding
a pre-processing step (Algorithm 3) for hyperedge selection according to SNR and then apply the
algorithm on the sub-hypergraph with maximal SNR.

We state the following assumption that will be used in our analysis of Algorithms 1 (k= 2) and
2 (k≥ 3).
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Algorithm 1. Binary Partition

Require: The adjacency tensorsA(m), am, bm form ∈ {2, · · · ,M}.
Ensure: The estimated sets V̂1, V̂2.

1: Run Algorithm 3 Pre-processing to obtain subsetM which achieves maximal SNR.
2: Randomly colour all hyperedges red or blue with equal probability.
3: Run Algorithm 7 Spectral Partition on the red hypergraph and output V ′

1,V
′
2.

4: Run Algorithm 8 Correction on the blue hypergraph and output V̂1, V̂2.
return The estimated sets V̂1, V̂2.

Assumption 1.5. For each m ∈M, assume am, bm are constants independent of n, and am ≥ bm.
Let Mmax denote the maximum element in the set M. Given ν ∈ (1/k, 1), assume that there exists
a universal constant C and some ν-dependent constant Cν > 0, such that

d :=
∑
m∈M

(m− 1)am ≥ C , (4a)

∑
m∈M

(m− 1)(am − bm)≥ Cν
√
d · kMmax−1 ·

(
23 · 1{k=2} +

√
log

( k
1− ν

)
· 1{k≥3}

)
. (4b)

One does not have to take too large a C for (4a); for example, C = (21/Mmax − 1)−1/3 should
suffice, but even smaller C may work. Both of the two inequalities above constant prevent the
hypergraph from being too sparse, while (4b) also requires that the difference between in-block
and across-blocks densities is large enough. The choices of C, Cν and their relationship will be
discussed in Remark 5.15.

1.2.1. The 2-block case
We start with Algorithm 1, which outputs a γ -correct partition when the non-uniform HSBM H
is sampled from model 1.2 with only 2 communities. Inspired by the innovative graph algorithm
in [19], we generalise it to non-uniform hypergraphs while we provide a complete and detailed
analysis at the same time.

Theorem 1.6 (k= 2). Let ν ∈ (0.5, 1) and ρ = 2 exp (−CM(2) · SNRM(2)) with SNRM(k),
CM(k) defined in (2), (3), and let γ =max{ν, 1− 2ρ}. Then under Assumption 1.5, Algorithm 1
outputs a γ -correct partition for sufficiently large n with probability at least 1−O(n−2).

1.2.2. The k-block case
For the multi-community case (k≥ 3), another algorithm with more subroutines is developed in
Algorithm 2, which outputs a γ -correct partition with high probability. We state the result as
follows.

Theorem 1.7 (k≥ 3). Let ν ∈ (1/k, 1) and ρ = exp (−CM(k) · SNRM(k)) with SNRM(k), CM(k)
defined in (2), (3), and let γ =max{ν, 1− kρ}. Then under Assumption 1.5, Algorithm 2 outputs a
γ -correct partition for sufficiently large n with probability at least 1−O(n−2).

The time complexities of Algorithms 1 and 2 are O(n3), with the bulk of time spent in Stage 1
by the spectral method.
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Algorithm 2. General Partition

Require: The adjacency tensorsAm, k, am, bm form ∈M.
Ensure: The estimated sets V̂1, · · · , V̂k.
1: Run Algorithm 3 Pre-processing to obtain subsetM which achieves the maximal SNR.
2: Randomly colour all hyperedges red or blue with equal probability.
3: Randomly partition V into 2 disjoint subsets Y and Z by assigning +1 or −1 to each vertex
with equal probability.

4: Let B denote the adjacency matrix of the bipartite hypergraph between Y and Z consisting
only of the red hyperedges, with rows indexed by Z and columns indexed by Y .

5: Run Algorithm 4 Spectral Partition on the red hypergraph and output U ′
1, · · · ,U ′

k.
This step only uses the red hyperedges between vertices in Y and Z and outputs approximate
clusters for Ui := Vi ∩ Z, with i= 1, . . . , k

6: Run Algorithm 5 Correction on the red hypergraph and output Û1, · · · , Ûk.
7: Run Algorithm 6Merging on the blue hypergraph and output V̂1, · · · , V̂k.
This step only uses the blue hyperedges between vertices in Y and Z and assigns the vertices in Y
to an appropriate approximate cluster.
return The estimated sets V̂1, . . . , V̂k.

To the best of our knowledge, Theorems 1.6 and 1.7 are the first results for partial recovery
of non-uniform HSBMs. When the number of blocks is 2, Algorithm 1 guarantees a better error
rate for partial recovery as in Theorem 1.6. This happens because Algorithm 1 does not need the
merging routine in Algorithm 2: if one of the communities is obtained, then the other one is also
obtained via the complement.

Remark 1.8. Taking M= {2}, Theorem 1.7 can be reduced to [19, Lemma 9] for the graph case.
The failure probability O(n−2) can be decreased to O(n−p) for any p> 0, as long as one is willing
to pay the price by increasing the constants C, Cv in (4a), (4b).

Our Algorithms 1 and 2 can be summarised in 3 steps:

1. Hyperedge selection: select hyperedges of certain sizes to provide the maximal signal-to-
noise ratio (SNR) for the induced sub-hypergraph.

2. Spectral partition: construct a regularised adjacency matrix and obtain an approximate
partition based on singular vectors (first approximation).

3. Correction and merging: incorporate the hyperedge information from adjacency tensors
to upgrade the error rate guarantee (second, better approximation).

The algorithm requires the input of model parameters am, bm, which can be estimated by
counting cycles in hypergraphs as shown in [55, 74]. Estimation of the number of blocks can
be done by counting the outliers in the spectrum of the non-backtracking operator, e.g., as shown
(for different regimes and different parameters) in [9, 44, 63, 67].

1.2.3. Weak consistency
Throughout the proofs for Theorems 1.6 and 1.7, we make only one assumption on the growth
or finiteness of d and SNRM(k), and it happens in estimating the failure probability as noted
in Remark 1.10. Consequently, the corollary below follows, which covers the case when d and
SNRM(k) grow with n.
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Corollary 1.9 (Weak consistency). For fixed M and k, if SNRM(k) defined in (2) goes to infinity as
n→ ∞ and SNRM(k)= o( log n), then with probability 1−O(n−2), Algorithms 1 and 2 output a
partition with only o(n)misclassified vertices.

The paper [32] also proves weak consistency for non-uniform HSBMs, but in a much denser
regime than we do here (d =�( log2 (n)), instead of d =ω(1), as in Corollary 1.9). In fact, we now
know that strong consistency should be achievable in this denser regime, as [25] shows. When
restricting to the uniform HSBM case, Corollary 1.9 achieves weak consistency under the same
sparsity condition as in [7].

Remark 1.10. To be precise, Algorithms 1 and 2 work optimally in the SNRM = o( log n) regime.
When SNRM(k)=�( log n), it implies that ρ = n−�(1), and one may have e−nρ =�(1) in (31),
which may not decrease to 0 as n→ ∞. Therefore the theoretical guarantees of Algorithms 5
and 6 may not remain valid. This, however, should not matter: in the regime when SNRM(k)=
�( log n), strong (rather than weak) consistency is expected, as per [25]. Therefore, the regime of
interest for weak consistency is SNRM = o( log n).

1.3. Comparison with existing results
Although many algorithms and theoretical results have been developed for hypergraph commu-
nity detection, most of them are restricted to uniform hypergraphs, and few results are known for
non-uniform ones. We will discuss the most relevant results.

In [42], the authors studied the degree-corrected HSBM with general connection probability
parameters by using a tensor power iteration algorithm and Tucker decomposition. Their algo-
rithm achieves weak consistency for uniform hypergraphs when the average degree is ω( log2 n),
which is the regime complementary to the regime we studied here. They discussed a way to gen-
eralise the algorithm to non-uniform hypergraphs, but the theoretical analysis remains open.
The recent paper [78] analysed non-uniform hypergraph community detection by using hyper-
graph embedding and optimisation algorithms and obtained weak consistency when the expected
degrees are of ω( log n), again a complementary regime to ours. Results on spectral norm con-
centration of sparse random tensors were obtained in [23, 40, 47, 61, 80], but no provable tensor
algorithm in the bounded expected degree case is known. Testing for the community structure for
non-uniform hypergraphs was studied in [41, 74], which is a problem different from community
detection.

In our approach, we relied on knowing the tensors for each uniform hypergraph. However, in
computations, we only ran the spectral algorithm on the adjacency matrix of the entire hyper-
graph since the stability of tensor algorithms does not yet come with guarantees due to the lack
of concentration, and for non-uniform hypergraphs, M − 1 adjacency tensors would be needed.
This approach presented the challenge that, unlike for graphs, the adjacency matrix of a random
non-uniform hypergraph has dependent entries, and the concentration properties of such a ran-
dommatrix were previously unknown. We overcame this issue and proved concentration bounds
from scratch down to the bounded degree regime. Similar to [28, 45], we provided here a regu-
larisation analysis by removing rows in the adjacency matrix with large row sums (suggestive of
large degree vertices) and proving a concentration result for the regularised matrix down to the
bounded expected degree regime (see Theorem 3.3).

In terms of partial recovery for hypergraphs, our results are new, even in the uniform case.
In [7, Theorem 1], for uniform hypergraphs, the authors showed detection (not partial recovery)
is possible when the average degree is �(1); in addition, the error rate is not exponential in the
model parameters, but only polynomial. Here, we mention two more results for the graph case.
In the arbitrarily slowly growing degrees regime, it was shown in [27, 76] that the error rate in (2)
is optimal up to a constant in the exponent. In the bounded expected degrees regime, the authors
in [18, 56] provided algorithms that can asymptotically recover the optimal fraction of vertices,
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when the signal-to-noise ratio is large enough. It’s an open problem to extend their analysis to
obtain a minimax error rate for hypergraphs.

In [32], the authors considered weak consistency in a non-uniform HSBM model with a spec-
tral algorithm based on the hypergraph Laplacian matrix, and showed that weak consistency is
achievable if the expected degree is of �( log2 n) with high probability [31, Theorem 4.2]. Their
algorithm can’t be applied to sparse regimes straightforwardly since the normalised Laplacian is
not well-defined due to the existence of isolated vertices in the bounded degree case. In addition,
our weak consistency results obtained here are valid as long as the expected degree is ω(1) and
o( log n), which is the entire set of problems on which weak consistency is expected. By contrast,
in [32], weak consistency is shown only when the minimum expected degree is�( log2 (n)), which
is a regime complementary to ours and where exact recovery should (in principle) be possible: for
example, this is known to be an exact recovery regime in the uniform case [17, 43, 46, 77].

In subsequent works [25, 71] we proposed algorithms to achieve weak consistency. However,
their methods can not cover the regime when the expected degree is �(1) due to the lack of con-
centration. Additionally, [72] proposed Projected Tensor Power Method as the refinement stage to
achieve strong consistency, as long as the first stage partition is partially correct, as ours.

1.4. Organization of the paper
In Section 2, we include the definitions of adjacency matrices of hypergraphs. The concentration
results for the adjacency matrices are provided in Section 3. The algorithms for partial recovery
are presented in Section 4. The proof for the correctness of our algorithms for Theorem 1.7 and
Corollary 1.9 are given in Section 5. The proof of Theorem 1.6, as well as the proofs of many
auxiliary lemmas and useful lemmas in the literature, are provided in the supplemental materials.

2. Preliminaries

Definition 2.1 (Adjacency tensor). Given an m-uniform hypergraph Hm = ([n], Em), we can asso-
ciate to it an order-m adjacency tensorA(m). For any m-hyperedge e= {i1, . . . , im}, letA(m)

e denote
the corresponding entryA(m)

[i1,...,im], such that

A(m)
e := A(m)

[i1,...,im] = 1{e∈Em} . (5)

Definition 2.2 (Adjacency matrix). For the non-uniform hypergraph H sampled from model 1.2,
let A(m) be the order-m adjacency tensor corresponding to the underlying m-uniform hypergraph
for each m ∈M. The adjacency matrix A := [Aij]n×n of the non-uniform hypergraph H is defined
by

Aij = 1{i�=j} ·
∑
m∈M

∑
e∈Em{i,j}⊂e

A(m)
e . (6)

We compute the expectation ofA first. In eachm-uniform hypergraphHm, two distinct vertices
i, j ∈V with i �= j are picked arbitrarily since our model does not allow for loops. Assume for a
moment n

k ∈N, then the expected number ofm-hyperedge containing i and j can be computed as
follows.

• If i and j are from the same block, the m-hyperedge is sampled with probability am/
( n
m−1

)
when the other m− 2 vertices are from the same block as i, j, otherwise with probability
bm/

( n
m−1

)
. Then

αm := EAij =
( n

k − 2
m− 2

)
am( n
m−1

) +
[(

n− 2
m− 2

)
−

( n
k − 2
m− 2

)]
bm( n
m−1

) .
https://doi.org/10.1017/S0963548324000166 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000166


8 I. Dumitriu et al.

• If i and j are not from the same block, we sample the m-hyperedge with probability
bm/

( n
m−1

)
, and

βm := EAij =
(
n− 2
m− 2

)
bm( n
m−1

) .
By assumption am ≥ bm, then αm ≥ βm for each m ∈M. Summing over m, the expected

adjacencymatrix under the k-block non-uniform HSBM can be written as

EA=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

αJ n
k

βJ n
k

· · · βJ n
k

βJ n
k

αJ n
k

· · · βJ n
k

...
...

. . .
...

βJ n
k

βJ n
k

· · · αJ n
k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− αIn , (7)

where J n
k
∈R

n
k× n

k denotes the all-one matrix and

α :=
∑
m∈M

αm , β :=
∑
m∈M

βm . (8)

Lemma 2.3. The eigenvalues of EA are given below:

λ1(EA)= n
k
(α + (k− 1)β)− α ,

λi(EA)= n
k
(α − β)− α , 2≤ i≤ k ,

λi(EA)= − α , k+ 1≤ i≤ n .

Lemma 2.3 can be verified via direct computation. Lemma 2.4 is used for approximately equi-
partitions, meaning that eigenvalues of ẼA can be approximated by eigenvalues of EA when n is
sufficiently large.

Lemma 2.4. For any partition (V1, . . . ,Vk) of V where ni := |Vi|, consider the following matrix

ẼA=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αJn1 βJn1×n2 · · · βJn1×nk−1 βJn1×nk

βJn2×n1 αJn2 · · · βJn2×nk−1 βJn2×nk
...

...
. . .

...
...

βJnk−1×n1 βJnk−1×n2 · · · αJnk−1 βJnk−1×nk

βJnk×n1 βJnk×n2 · · · βJnk×nk−1 αJnk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− αIn .

Assume that ni = n
k +O(

√
n log n) for all i ∈ [k]. Then, for all 1≤ i≤ k,

|λi(ẼA)− λi(EA)|
|λi(EA)| =O

(
n− 1

4 log
1
2 (n)

)
.
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Note that both ( ẼA+ αIn) and (EA+ αIn) are rank kmatrices, then λi(ẼA)= λi(EA)= −α
for all (k+ 1)≤ i≤ n. At the same time, SNR in (2) is related to the following quantity

[λ2(EA)]2

λ1(EA)
= [(n− k)α − nβ]2

k[(n− k)α+ n(k− 1)β]
=

[∑
m∈M (m− 1)

(
am−bm
km−1

)]2
∑

m∈M (m− 1)
(
am−bm
km−1 + bm

) (1+ o(1)).

When M= {2} and k is fixed, SNR in (2) is equal to (a−b)2
k[a+(k−1)b] , which corresponds to the SNR

for the undirected graph in [19], see also [1, Section 6].

3. Spectral norm concentration
The correctness of Algorithms 2 and 1 relies on the concentration of the adjacency matrix of H.
The following two concentration results for general random hypergraphs are included, which are
independent of HSBMmodel. The proofs are deferred to Section A.

Theorem 3.1. Let H = ⋃M
m=2 Hm, where Hm = ([n], Em) is an Erdős-Rényi inhomogeneous hyper-

graph of order m for each m ∈ {2, · · · ,M}. Let T (m) denote the probability tensor such that T(m) =
EA(m) and T(m)

[i1,...,im] = d[i1,...,im]/
( n
m−1

)
, denoting dm =max d[i1,...,im]. Suppose for some constant

c> 0,

d :=
M∑

m=2
(m− 1) · dm ≥ c log n . (9)

Then for any K > 0, there exists a constant C = 512M(M − 1)(K + 6) [2+ (M − 1)(1+K)/c] such
that with probability at least 1− 2n−K − 2e−n, the adjacency matrix A of H satisfies

‖A−EA‖ ≤ C
√
d . (10)

The inequality (10) can be reduced to the result for graph case obtained in [28, 48] by taking
M= {2}. The result for a uniform hypergraph is obtained in [46]. Note that d is a fixed constant
in our community detection problem, thus the Assumption 3.1 does not hold and the inequality
(9) cannot be directly applied. However, we can still prove a concentration bound for a regularised
version of A, following the same strategy of the proof for Theorem 3.1.

Definition 3.2 (Regularized matrix). Given any n× n matrix A and an index set I, let AI be the
n× n matrix obtained from A by zeroing out the rows and columns not indexed by I. Namely,

(AI)ij = 1{i,j∈I} ·Aij . (11)

Since every hyperedge of sizem containing i is counted (m− 1) times in the i-th row sum ofA,
the i-th row sum of A is given by

row(i) :=
∑
j

Aij :=
∑
j

1{i�=j}
∑
m∈M

∑
e∈Em{i,j}⊂e

A(m)
e =

∑
m∈M

(m− 1)
∑

e∈Em: i∈e
A(m)

e .

Theorem 3.3 is the concentration result for the regularised AI, by zeroing out rows and
columns corresponding to vertices with high row sums.

Theorem 3.3. Following all the notations in Theorem 3.1, for any constant τ > 1, define

I= {i ∈ [n] : row(i)≤ τd}.
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Let AI be the regularised version of A, as in Definition 3.2. Then for any K > 0, there exists
a constant Cτ = 2((5M + 1)(M − 1)+ α0

√
τ ) with α0 = 16+ 32

τ
(1+ e2)+ 128M(M − 1)(K +

4)
(
1+ 1

e2

)
, such that ‖(A−EA)I‖ ≤ Cτ

√
d with probability at least 1− 2(e/2)−n − n−K.

4. Algorithms blocks
In this section, we are going to present the algorithmic blocks constructing our main
partition method (Algorithm 2): pre-processing (Algorithm 3), initial result by spectral
method (Algorithm 4), correction of blemishes via majority rule (Algorithm 5), and merging
(Algorithm 6).

Algorithm 3. Pre-processing

1: For each subset S⊂ {2, · · · ,M}, let HS = ⋃
m∈S Hm denote the restriction of the

non-uniform hypergraph H on S. Compute SNR of HS, denoted by

SNRS :=
[∑

m∈S (m− 1)
(
am−bm
km−1

)]2
∑

m∈S (m− 1)
(
am−bm
km−1 + bm

) .

2: Among all the S, find the subsetM such that
M := arg max

S⊂{2,··· ,M}
SNRS ,

withMmax denoting its maximal element.
returnM.

Algorithm 4. Spectral Partition

1: Randomly label vertices in Y with +1 and −1 sign with equal probability, and partition Y into
2 disjoint subsets Y1 and Y2.

2: Let B1 (resp. B2) denote the adjacency matrices with all vertices in Z ∪ Y1, with rows indexed
by Z and columns indexed by Y1 (resp. Y2). Pad B1, B2 with zeros to obtain the n× n
matrices A1 and A2.

3: Let d := ∑
m∈M (m− 1)am. Zero out all the rows and columns of A1 corresponding to

vertices whose row sum is bigger than 20Mmaxd, to obtain the matrix (A1)I1 .
4: Find the space U, spanned by the first k left singular vectors of (A1)I1 .
5: Randomly sample s= 2k log2 n vertices from Y2 without replacement. Denote the

corresponding columns in A2 by ai1 , . . . , ais . For each i ∈ {i1, · · · , is}, project ai − a onto U,
where the elements in vector a ∈R

n is defined by a(j)= 1j∈Z · (α + β)/2, with α, β defined in
(17).

6: For each projected vector PU(ai − a), identify the top n/(2k) coordinates in value as a set Ui.
Discard half of the s sets Ui, those with the lowest blue hyperedge density in them.

7: Sort the remaining sets according to blue hyperedge density and identify first k distinct
subsets U ′

1, · · · ,U ′
k such that |U ′

i ∩U ′
j |< � (1−ν)n

k � if i �= j.
return U ′

1, · · · ,U ′
k.
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Algorithm 5. Correction

1: For each u ∈ Z, add u to Ûi if the number of red hyperedges, which contains u with the
remaining vertices located in vertex set U ′

i , is at least μC in (29). Break ties arbitrarily.

return Û1, · · · , Ûk.

Algorithm 6.Merging

1: For all u ∈ Y , add u to V̂i if the number of blue hyperedges, which contains u with the
remaining vertices located in vertex set Ûi, is at least μM in (36). Label the conflicts arbitrarily.

return The estimated sets V̂1, · · · , V̂k.

4.1. Three or more blocks (k≥ 3)
The proof of Theorem 1.7 is structured as follows.

Lemma 4.1. Under the assumptions of Theorem 1.7, Algorithm 4 outputs a ν-correct partition
U ′
1, · · · ,U ′

k of Z = (Z ∩V1)∪ · · · ∪ (Z ∩Vk) with probability at least 1−O(n−2).

Lines 4 and 6 contribute most complexity in Algorithm 4, requiring O(n3) and O(n2 log2 (n))
each (technically, one should be able to get away with O(n2 log (1/ε)) in line 4, for some desired
accuracy ε to get the singular vectors). We will conservatively estimate the time complexity of
Algorithm 4 as O(n3).

Lemma 4.2. Under the assumptions of Theorem 1.7, for any ν-correct partition U ′
1, · · · ,U ′

k
of Z = (Z ∩V1)∪ · · · ∪ (Z ∩Vk) and the red hypergraph over Z, Algorithm 5 computes a γC-
correct partition Û1, · · · , Ûk with probability 1−O(e−nρ), while γC =max{ν, 1− kρ} with ρ :=
k exp

(−CM(k) · SNRM(k)
)
where M is obtained from Algorithm 3, and SNRM(k) and CM(k)

are defined in (2), (3).

Lemma 4.3. Given any ν-correct partition Û1, · · · , Ûk of Z = (Z ∩V1)∪ · · · ∪ (Z ∩Vk) and the
blue hypergraph between Y and Z, with probability 1−O(e−nρ), Algorithm 6 outputs a γ -correct
partition V̂1, · · · , V̂k of V1 ∪V2 ∪ · · · ∪Vk, while γ =max{ν, 1− kρ}.

The time complexities of Algorithms 5 and 6 are O(n), since each vertex is adjacent to only
constant many hyperedges.

4.2. The binary case (k= 2)
The spectral partition step is given in Algorithm 7, and the correction step is given in Algorithm 8.

Lemma 4.4. Under the conditions of Theorem 1.6, the Algorithm 7 outputs a ν-correct partition
V ′
1,V

′
2 of V =V1 ∪V2 with probability at least 1−O(n−2).

Lemma 4.5. Given any ν-correct partition V ′
1,V

′
2 of V =V1 ∪V2, with probability at least 1−

O(e−nρ), the Algorithm 8 computes a γ -correct partition V̂1, V̂2 with γ = {ν, 1− 2ρ} and ρ =
2 exp (−CM(2) · SNRM(2)), where SNRM(2) and CM(2) are defined in (2), (3).
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Algorithm 7. Spectral Partition

1: Zero out all the rows and the columns of A corresponding to vertices with row sums greater
than 20Mmaxd, to obtain the regularised matrix AI.

2: Find the subspace U, which is spanned by the eigenvectors corresponding to the largest two
eigenvalues of AI.

3: Compute PU1n, the projection of all-ones vector onto U.
4: Let v be the unit vector in U perpendicular to PU1n.
5: Sort the vertices according to their values in v. Let V ′

1 ⊂V be the corresponding top n/2
vertices, and V ′

2 ⊂V be the remaining n/2 vertices.
return V ′

1, V
′
2.

Algorithm 8. Correction

1: For any v ∈V ′
1, label v “bad” if the number of blue hyperedges, which contains v with the

remaining vertices in V ′
2 is at least μC, otherwise “good”.

2: Do the same for v ∈V ′
2.

3: If v ∈V ′
i is good, assign it to V̂i, otherwise V̂3−i.

return V̂1, V̂2.

5. Algorithm’s correctness
We are going to present the correctness of Algorithm 2 in this section. The correctness of
Algorithm 1 is deferred to Section C. We first introduce some definitions.

Vertex set splitting and adjacency matrix.
In Algorithm 2, we first randomly partition the vertex set V into two disjoint subsets Z and Y by
assigning +1 and −1 to each vertex independently with equal probability. Let B ∈R

|Z|×|Y| denote
the submatrix of A, while A was defined in (6), where rows and columns of B correspond to
vertices in Z and Y respectively. Let ni denote the number of vertices in Z ∩Vi, where Vi denotes
the true partition with |Vi| = n

k for all i ∈ [k], then ni can be written as a sum of independent
Bernoulli random variables, i.e.,

ni = |Z ∩Vi| =
∑
v∈Vi

1{v∈Z} , (12)

and |Y ∩Vi| = |Vi| − |Z ∩Vi| = n
k − ni for each i ∈ [k].

Definition 5.1. The splitting V = Z ∪ Y is perfect if |Z ∩Vi| = |Y ∩Vi| = n/(2k) for all i ∈ [k].
And the splitting Y = Y1 ∪ Y2 is perfect if |Y1 ∩Vi| = |Y2 ∩Vi| = n/(4k) for all i ∈ [k].

However, the splitting is imperfect in most cases since the size of Z and Y would not be
exactly the same under the independence assumption. The random matrix B is parameterised by
{A(m)}m∈M and {ni}ki=1. If we take expectation over {A(m)}m∈M given the block size information
{ni}ki=1, then it gives rise to the expectation of the imperfect splitting, denoted by B̃,
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B̃ :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

αJn1×( nk−n1) βJn1×( nk−n2) . . . βJn1×( nk−nk)

βJn2×( nk−n1) αJn2×( nk−n2) . . . βJn2×( nk−nk)

...
...

. . .
...

βJnk×( nk−n1) βJnk×( nk−n2) . . . αJnk×( nk−nk)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where α, β are defined in (8). In the perfect splitting case, the dimension of each block is n/(2k)×
n/(2k) since Eni = n/(2k) for all i ∈ [k], and the expectation matrix B can be written as

B :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

αJ n
2k

βJ n
2k

. . . βJ n
2k

βJ n
2k

αJ n
2k

. . . βJ n
2k

...
...

. . .
...

βJ n
2k

βJ n
2k

. . . αJ n
2k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In Algorithm 4, Y1 is a random subset of Y obtained by selecting each element with probability
1/2 independently, and Y2 = Y \ Y1. Let n′

i denote the number of vertices in Y1 ∩Vi, then n′
i can

be written as a sum of independent Bernoulli random variables,

n′
i = |Y1 ∩Vi| =

∑
v∈Vi

1{v∈Y1} , (13)

and |Y2 ∩Vi| = |Vi| − |Z ∩Vi| − |Y1 ∩Vi| = n/k− ni − n′
i for all i ∈ [k].

Induced sub-hypergraph.

Definition 5.2 (Induced Sub-hypergraph). Let H = (V , E) be a non-uniform random hypergraph
and S⊂V be any subset of the vertices of H. Then the induced sub-hypergraph H[S] is the hyper-
graph whose vertex set is S and whose hyperedge set E[S] consists of all of the edges in E that have all
endpoints located in S.

LetH[Y1 ∪ Z](resp.H[Y2 ∪ Z]) denote the induced sub-hypergraph on vertex set Y1 ∪ Z (resp.
Y2 ∪ Z), and B1 ∈R

|Z|×|Y1| (resp. B2 ∈R
|Z|×|Y2|) denote the adjacency matrices corresponding to

the sub-hypergraphs, where rows and columns of B1 (resp. B2) are corresponding to elements in
Z and Y1 (resp., Z and Y2). Therefore, B1 and B2 are parameterised by {A(m)}m∈M, {ni}ki=1 and
{n′

i}ki=1, and the entries in B1 are independent of the entries in B2, due to the independence of
hyperedges. If we take expectation over {A(m)}m∈M conditioning on {ni}ki=1 and {n′

i}ki=1, then it
gives rise to the expectation of the imperfect splitting, denoted by B̃1,

B̃1 :=

⎡⎢⎢⎢⎢⎣
α̃11Jn1×n′

1
. . . β̃1kJn1×n′

k

...
. . .

...

β̃k1Jnk×n′
1

. . . α̃kkJnk×n′
k

⎤⎥⎥⎥⎥⎦ , (14)

where

α̃ii :=
∑
m∈M

{(
ni + n′

i − 2
m− 2

)
am − bm( n

m−1
) +

(∑k
l=1 (nl + n′

l)− 2
m− 2

)
bm( n
m−1

)} , (15a)
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β̃ij :=
∑
m∈M

(∑k
l=1 (nl + n′

l)− 2
m− 2

)
bm( n
m−1

) , i �= j, i, j ∈ [k] . (15b)

The expectation of the perfect splitting, denoted by B1, can be written as

B1 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

αJ n
2k× n

4k
βJ n

2k× n
4k

. . . βJ n
2k× n

4k

βJ n
2k× n

4k
αJ n

2k× n
4k

. . . βJ n
2k× n

4k

...
...

. . .
...

βJ n
2k× n

4k
βJ n

2k× n
4k

. . . αJ n
2k× n

4k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (16)

where

α :=
∑
m∈M

{( 3n
4k − 2
m− 2

)
am − bm( n

m−1
) +

( 3n
4 − 2
m− 2

)
bm( n
m−1

)} , β :=
∑
m∈M

( 3n
4 − 2
m− 2

)
bm( n
m−1

) . (17)

The matrices B̃2, B2 can be defined similarly, since dimensions of |Y2 ∩Vi| are also determined
by ni and n′

i. Obviously, B2 = B1 since En′
i =E(n/k− ni − n′

i)= n/(4k) for all i ∈ [k].

Fixing Dimensions.
The dimensions of B̃1 and B̃2, as well as blocks they consist of, are not deterministic – since ni and
n′
i, defined in (12) and (13) respectively, are sums of independent random variables. As such, we

cannot directly compare them. In order to overcome this difficulty, we embed B1 and B2 into the
following n× nmatrices:

A1 :=
⎡⎣0|Z|×|Z| B1 0|Z|×|Y2|

0|Y|×|Z| 0|Y|×|Y1| 0|Y|×|Y2|

⎤⎦ , A2 :=
⎡⎣0|Z|×|Z| 0|Z|×|Y1| B2

0|Y|×|Z| 0|Y|×|Y1| 0|Y|×|Y2|

⎤⎦ . (18)

Note thatA1 andA2 have the same size. Also by definition, the entries inA1 are independent of the
entries in A2. If we take expectation over {A(m)}m∈M conditioning on {ni}ki=1 and {n′

i}ki=1, then
we obtain the expectation matrices of the imperfect splitting, denoted by Ã1(resp. Ã2), written as

Ã1 :=
⎡⎣0|Z|×|Z| B̃1 0|Z|×|Y2|

0|Y|×|Z| 0|Y|×|Y1| 0|Y|×|Y2|

⎤⎦ , Ã2 :=
⎡⎣0|Z|×|Z| 0|Z|×|Y1| B̃2

0|Y|×|Z| 0|Y|×|Y1| 0|Y|×|Y2|

⎤⎦ . (19)

The expectation matrix of the perfect splitting, denoted by A1(resp. A2), can be written as

A1 :=
⎡⎣0 n

2× n
2

B1 0 n
2× n

4

0 n
2× n

2
0 n

2× n
4

0 n
2× n

4

⎤⎦ , A2 :=
⎡⎣0 n

2× n
2

0 n
2× n

4
B2

0 n
2× n

2
0 n

2× n
4

0 n
2× n

4

⎤⎦ . (20)

Obviously, Ãi and B̃i(resp. Ai and Bi) have the same non-zero singular values for i= 1, 2. In the
remaining of this section, we will deal with Ãi and Ai instead of B̃i and Bi for i= 1, 2.
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5.1. Spectral partition: Proof of Lemma 4.1
5.1.1. Proof outline
Recall that A1 is defined as the adjacency matrix of the induced sub-hypergraph H[Y1 ∪ Z] in
equation (5.2). Consequently, the index set should contain information only from H[Y1 ∪ Z].
Define the index sets

I= {
i ∈ [n] : row(i)≤ 20Mmaxd

}
, I1 =

{
i ∈ [n] : row(i)

∣∣∣
Y1∪Z

≤ 20Mmaxd
}

,

where d = ∑
m∈M (m− 1)am, and row(i)

∣∣
Y1∪Z is the row sum of i on H[Y1 ∪ Z]. We say

row(i)
∣∣
Y1∪Z = 0 if i �∈ Y1 ∪ Z, and for vertex i ∈ Y1 ∪ Z,

row(i)
∣∣∣
Y1∪Z

:=
n∑
j=1

∑
m∈M

∑
e∈Em[Y1∪Z]{i,j}⊂e

A(m)
e =

∑
m∈M

(m− 1)
∑

e∈Em[Y1∪Z]{i,j}⊂e

A(m)
e .

As a result, the matrix (A1)I1 is obtained by restricting A1 on index set I1. The next 4 steps
guarantee that Algorithm 4 outputs a ν-correct partition.

(i) Find the singular subspace U spanned by the first k left singular vectors of (A1)I1 .
(ii) Randomly pick s= 2k log2 n vertices from Y2 and denote the corresponding columns in

A2 by ai1 , . . . , ais . Project each vector ai − a onto the singular subspace U, with a ∈R
n

defined by a(j)= 1j∈Z · (α + β)/2, where α, β were defined in (17).
(iii) For each projected vector PU(ai − a), identify the top n/(2k) coordinates in value and place

the corresponding vertices into a set U ′
i . Discard half of the obtained s subsets, those with

the lowest blue edge densities.
(iv) Sort the remaining sets according to blue hyperedge density and identify k distinct subsets

U ′
1, · · · ,U ′

k such that |U ′
i ∩U ′

j |< �(1− ν)n/k� if i �= j.

Based on the 4 steps above in Algorithm 4, the proof of Lemma 4.1 is structured in 4 parts.

(i) Let Ũ denote the subspace spanned by first k left singular vectors of Ã1 defined in (19).
Subsection 5.1.2 shows that the subspace angle between U and Ũ is smaller than any c ∈
(0, 1) as long as am, bm satisfy certain conditions depending on c.

(ii) The vector δ̃i, defined in (22), reflects the underlying true partition Z ∩Vk(i) for each i ∈ [s],
where k(i) denotes the membership of vertex i. Subsection 5.1.3 shows that δi, an approx-
imation of δ̃i defined in (23), can be recovered by the projected vector PU(ai − a), since
projection error ‖PU(ai − a)− δi‖2 < c‖δi‖2 for any c ∈ (0, 1) if am, bm satisfy the desired
property in part (i).

(iii) Subsection 5.1.4 indicates that the coincidence ratio between the remaining sets and the
true partition is at least ν, after discarding half of the sets with the lowest blue edge
densities.

(iv) Lemma 5.13 proves that we can find k distinct subsets U ′
i within k log2 n trials with high

probability.

5.1.2. Bounding the angle betweenU and Ũ
The angle between subspaces U and Ũ is defined as

sin∠(U, Ũ) := ‖PU − PŨ‖.

https://doi.org/10.1017/S0963548324000166 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000166


16 I. Dumitriu et al.

A natural idea is to apply Wedin’s sin� Theorem (Lemma D.7). Lemma 5.3 indicates that the
difference of σi(Ã1) and σi(A1) is relatively small, compared to σi(A1).

Lemma 5.3. Let σi(A1)(resp. σi(Ã1)) denote the singular values ofA1 (resp. Ã1) for all i ∈ [k], where
the matrices A1 and Ã1 are defined in (20) and (19) respectively. Then

σ1(A1)= n
[
α+ (k− 1)β

]
2
√
2k

= n
2
√
2k

∑
m∈M

[( 3n
4k − 2
m− 2

)
am − bm( n

m−1
) + k

( 3n
4 − 2
m− 2

)
bm( n
m−1

)] ,

σi(A1)= n(α− β)
2
√
2k

= n
2
√
2k

∑
m∈M

( 3n
4k − 2
m− 2

)
am − bm( n

m−1
) , 2≤ i≤ k ,

σi(A1)= 0 , k+ 1≤ i≤ n .

with α, β defined in (17). Moreover, with probability at least 1− 2k exp (−k log2 (n)),

|σi(A1)− σi(Ã1)|
σi(A1)

=O
(
n− 1

4 log
1
2 (n)

)
.

Therefore, with Lemma 5.3, we can write σi(Ã1)= σi(A1)(1+ o(1)). Define E1 := A1 − Ã1 and
its restriction on I1 as

(E1)I1 := (A1 − Ã1)I1 = (A1)I1 − (Ã1)I1 , (21)

as well as �1 := (Ã1)I1 − Ã1. Then (A1)I1 − Ã1 is decomposed as

(A1)I1 − Ã1 = [(A1)I1 − (Ã1)I1 ]+ [(Ã1)I1 − Ã1]= (E1)I1 + �1 .

Lemma 5.4. Let d = ∑
m∈M (m− 1)am, where M is obtained from Algorithm 3. There exists

a constant C1 ≥ (21/Mmax − 1)−1/3 such that if d ≥ C1, then with probability at least 1−
exp

(−d−2n/Mmax
)
, no more than d−3n vertices have row sums greater than 20Mmaxd.

Lemma 5.4 shows that the number of high-degree vertices is relatively small. Consequently,
Corollary 5.5 indicates ‖�1‖ ≤ √

d with high probability.

Corollary 5.5. Assume d ≥max{C1,
√
2}, where C1 is the constant in Lemma 5.4, then ‖�1‖ ≤ √

d
with probability at least 1− exp

(−d−2n/Mmax
)
.

Proof of Corollary 5.5. Note that n− |I| ≤ d−3n and I⊂ I1, then n− |I1| ≤ d−3n. From
Lemma 5.4, there are at most d−3n vertices with row sum greater than 20Mmaxd in the adja-
cency matrix A1, then the matrix �1 = (Ã1)I1 − Ã1 has at most 2d−3n2 non-zero entries. Every
entry of Ã1 in (19) is bounded by α, then,

‖�1‖ ≤ ‖�1‖F = ‖(Ã1)I1 − Ã1‖F
≤

√
2d−3n2 α =

√
2d−3n

∑
m∈M

[( n
k − 2
m− 2

)
am − bm( n

m−1
) +

(
n− 2
m− 2

)
bm( n
m−1

)]
≤

√
2d−3

∑
m∈M

(m− 1)am ≤
√
2d−1 ≤ √

d .
�

Moreover, taking τ = 20Mmax,K = 3 in Theorem 3.3, with probability at least 1− n−2

‖(E1)I1‖ ≤ C3
√
d , (22)
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where constant C3 depends on Mmax. Together with upper bounds for ‖(E1)I1‖ and ‖�1‖,
Lemma 5.6 shows that the angle between U and Ũ is relatively small with high probability.

Lemma 5.6. For any c ∈ (0, 1), there exists some constant C2 such that, if∑
m∈M

(m− 1)(am − bm)≥ C2kMmax−1√d ,

then sin∠(U, Ũ)≤ c with probability 1− n−2. Here ∠(U, Ũ) is the angle between U and Ũ.

Proof of Lemma 5.6. From (22) and Corollary 5.5, with probability at least 1− n−2,

‖(A1)I1 − Ã1‖ ≤ ‖(E1)I1‖ + ‖�1‖ ≤ (C3 + 1)
√
d.

Since σk+1(Ã1)= 0, using Lemma 5.3 to approximate σk(Ã1), we obtain

σk(Ã1)− σk+1(Ã1)= σk(Ã1)= (1+ o(1))σk(A1)≥ 1
2
σk(A1)

≥ n
4
√
2k

∑
m∈M

(
3n
4k − 2
m− 2

)
am − bm(

n
m−1

) ≥ 1
8k

∑
m∈M

(
3
4k

)m−2
(m− 1)(am − bm)

≥ 1
8k

(
1
2k

)Mmax−2 ∑
m∈M

(m− 1)(am − bm)≥ C2
√
d

2Mmax+1 .

Then for any c ∈ (0, 1), we can find C2 = [2Mmax+2(C3 + 1)/c] such that ‖(A1)I1 − Ã1‖ ≤ (1−
1/

√
2)σk(Ã1). By Wedin’s Theorem (Lemma D.7), the angle ∠(U, Ũ) is bounded by

sin∠(U, Ũ) := ‖PU − PŨ‖ ≤
√
2‖(A1)I1 − Ã1‖

σk(Ã1)
≤

√
2(C3 + 1)

√
d

C2
√
d/2Mmax+1

=
√
2
2

c< c .
�

5.1.3. Bound the projection error
Randomly pick s= 2k log2 n vertices from Y2. Let ai1 , . . . , ais , ãi1 ,. . . , ãis , ai1 , . . . , ais and
ei1 , . . . , eis be the corresponding columns of A2, Ã2, A2 and E2 := A2 − Ã2 respectively, where
A2, Ã2 and A2 were defined in (18), (19) and (20). Let k(i) denote the membership of vertex i.
Note that entries of vector ãi are α̃ii, β̃ij or 0, according to the membership of vertices in Z, where
α̃ii, β̃ij were defined in (15a), (15b). Then the corresponding vector δ̃i ∈R

n with the entries given
by

ãi(j)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α̃ii, if j ∈ Z ∩Vk(i)

β̃ij, if j ∈ Z \Vk(i)

0 , if j ∈ Y

, δ̃i(j)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(̃αii − β̃ij)/2> 0, if j ∈ Z ∩Vk(i)

(β̃ij − α̃ii)/2< 0, if j ∈ Z \Vk(i)

0, if j ∈ Y

, (23)

can be used to recover the vertex set Z ∩Vk(i) based on the sign of elements in δ̃i. However, it is
hard to handle with δ̃i due to the randomness of α̃ii, β̃ij originated from ni and n′

i. Note that ni
and n′

i concentrate around n/(2k) and n/(4k) respectively as shown in Lemma 5.3. Thus a good
approximation of δ̃i, which rules out randomness of ni and n′

i, was given by δi := ai − a, with
entries given by a(j) := 1j∈Z · (α + β)/2, where α and β were defined in (17), and
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ai(j)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α, if j ∈ Z ∩Vk(i)

β , if j ∈ Z \Vk(i)

0, if j ∈ Y

, δi(j)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(α − β)/2> 0, if j ∈ Z ∩Vk(i)

(β − α)/2< 0, if j ∈ Z \Vk(i)

0, if j ∈ Y

. (24)

By construction, δi identifies vertex set Z ∩Vk(i) in the case of perfect splitting for any i ∈
{i1, · · · , is} ∩ Y2 ∩Vk(i). However, the access to δi is limited in practice, thus the projection
PU(ai − a) is used instead as an approximation of δi. Lemma 5.7 proves that at least half of the
projected vectors have small projection errors.

Lemma 5.7. For any c ∈ (0, 1), there exist constants C1 and C2 such that if d> C1 and∑
m∈M

(m− 1)(am − bm)> C2kMmax
√
d,

then among all projected vectors PU(ai − a) for i ∈ {i1, · · · , is} ∩ Y2, with probability 1−O(n−k),
at least half of them satisfy

‖PU(ai − a)− δi‖2 < c ‖δi‖2. (25)

Proof Lemma 5.7. Note that δi = PUδi, where U is spanned by the first k left singular vectors of
A1 with rank(A1)= k, and A1, A2 preserve the same eigen-subspace. The approximation error
between PU(ai − a) and δi can be decomposed as

PU(ai − a)− δi = PU
[
(ai − ãi)+ (̃ai − ai)+ (ai − a)

] − PUδi

= PUei + PU(̃ai − ai)+ (PU − PU)δi .

Then by triangle inequality,

‖PU(ai − a)− δi‖2 ≤ ‖PUei‖2 + ‖PU(̃ai − ai)‖2 + ‖PU − PU‖ · ‖δi‖2 .
Note that ‖δi‖ =O(n− 1

2 ) and n′
i concentrates around n/(4k) for each i ∈ [k] with deviation at most√

n log (n), then by definitions of α and β in (17),

‖PU(̃ai − ai)‖2 ≤ ‖̃ai − ai‖2 =O
([
k
√
n log (n)(α− β)2

] 1
2
)

=O[n− 3
4 log

1
2 (n)]= o(‖δi‖2).

Meanwhile, by an argument similar to Lemma 5.6, it can be proved that sin∠(U,U)< c/2 for any
c ∈ (0, 1), if constants C1, C2 are chosen properly, hence ‖PU − PU‖ · ‖δi‖2 < c

2‖δi‖2. Lemma 5.8
shows that at least half of the indices from {i1, · · · , is} ∩ Y2 satisfy ‖PUei‖2 < c

2‖δi‖2, which
completes the proof. �
Lemma 5.8. Let d = ∑

m∈Mmax (m− 1)am. For any c ∈ (0, 1), with probability 1−O(n−k log n), at
least s

2 of the vectors ei1 , . . . , eis satisfy

‖PUei‖2 ≤ 2
√
kd(Mmax + 2)/n<

c
2
‖δi‖2 , i ∈ {i1, · · · , is} ⊂ Y2 .

Definition 5.9. The vector ai satisfying (25) is referred as good vector. The index of the good vector
is hence referred to as a good vertex.

To avoid introducing extra notations, let ai1 , . . . , ais1 denote good vectors with i1, · · · , is1
denoting good indices. Lemma 5.8 indicates that the number of good vectors is at least s1 ≥ s

2 =
k log2 n.
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5.1.4. Accuracy
We are going to prove the accuracy of the initial partition obtained from Algorithm 4. Lemmas
5.10, 5.11 and 5.13 are crucial in proving our results. We present the proof logic first and defer the
Lemma statements later.

For each projected vector PU(ai − a), let U ′
i denote the set of its largest

n
2k coordinates, where

i ∈ {i1, · · · , is} and s= 2k log2 n. Note that vector δij in (23) only identifies blocks Vk(ij) and V \
Vk(ij), which can be regarded as clustering two blocks with different sizes. By Lemma 5.7, good
vectors satisfy ‖PU(aij − a)− δij‖2 < c ‖δij‖2 for any c ∈ (0, 1). Then by Lemma 5.10 (after proper
normalisation), for a good index ij, the number of vertices in U ′

ij clustered correctly is at least
(1− 4

3kc
2)nk . By choosing c= √

3(1− ν)/(8k), the condition |U ′
ij ∩Vi|> (1+ ν)/2|U ′

ij | in part (ii)
of Lemma 5.11 is satisfied. In Lemma 5.6, we choose

C2 = 2Mmax+2(C3 + 1)/c= 2Mmax+2(C3 + 1)
√
8k/(3− 3ν) , (26)

where C3 defined in (22). Hence, with high probability, all good vectors have at least μT blue
hyperedges (we call this “high blue hyperedge density”). From Lemma 5.8, at least half of the
selected vectors are good. Then, in Algorithm 4, throwing out half of the obtained sets U ′

i (those
with the lowest blue hyperedge density) guarantees that the remaining sets are good.

Recall that, by choosing constant appropriately, we can make the subspace angle sin∠(U,U)<
c for any c ∈ (0, 1) (U is spanned by the first k left singular vectors of A1). Then for each vector
δi1 , · · · , δik with each ij selected from different vertex set Vj, there is a vector PU(aij − a) in U
arbitrarily close to δij , which was proved by Lemma 5.7. From (i) of Lemma 5.11, so obtained
U ′
ij must satisfy |U ′

ij ∩Vj| ≥ ν|U ′
ij | for each j ∈ [k]. The remaining thing is to select k different U ′

ij
with each of them concentrating around distinct Vj for each j ∈ [k]. This problem is equivalent to
finding k vertices in Y2, each from a different partition class, which can be done with k log2 (n)
samplings as shown in Lemma 5.13.

To summarise, this section is a more precise and quantitative version of the following
argument: with high probability,{

ij : ∃i s.t. |U ′
ij ∩Vi| ≥ 1+ ν

2
n
k

}
⊂

{
ij :U ′

ij has ≥μT blue hyperedges
}

⊂
{
ij : ∃i s.t. |U ′

ij ∩Vi| ≥ ν nk
}
.

Lemma 5.10 (Adapted from Lemma 23 in [19]). Suppose n, k are such that n
k ∈N. Let v, v̄ ∈R

n

be two unit vectors, and let v̄ be such that n
k of its entries are equal to 1√

n and the rest are equal to
− 1√

n . If sin∠(v̄, v)< c≤ 0.5, then v contains at least (1− 4
3kc

2)nk positive entries vi such that v̄i is
also positive.

Lemma 5.11. Suppose that we are given a set X ⊂ Z with size |X| = n/(2k). Define

μ1 := 1
2

∑
m∈M

m(m− 1)

{[( νn
2k
m

)
+

( (1−ν)n
2k
m

)]
am − bm( n

m−1
) +

( n
2k
m

)
bm( n
m−1

)} ,

μ2 := 1
2

∑
m∈M

m(m− 1)

{[( (1+ν)n
4k
m

)
+ (k− 1)

( (1−ν)n
4k(k−1)
m

)]
am − bm( n

m−1
) +

( n
2k
m

)
bm( n
m−1

)} ,

and μT := (μ1 +μ2)/2 ∈ [μ1,μ2]. There is a constant c> 0 depending on k, am, ν such that for
sufficiently large n,
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(i) If |X ∩Vi| ≤ ν|X| for each i ∈ [k], then with probability 1− e−cn, the number of blue
hyperedges in the hypergraph induced by X is at most μT.

(ii) Conversely, if |X ∩Vi| ≥ 1+ν
2 |X| for some i ∈ {1, . . . , k}, then with probability 1− e−cn, the

number of blue hyperedges in the hypergraph induced by X is at least μT.

Remark 5.12. Lemma 5.11 is reduced to [19, Lemma 31] whenM= {2}.
Lemma 5.13. Through random sampling without replacement in Step 6 of Algorithm 4, we can find
at least k indices i1, . . . , ik in Y2 among k log2 n samples such that with probability 1− n−�( log n),

|U ′
ij ∩U ′

il | ≤ (1− ν)
n
k
, for any j, l ∈ [k] with j �= l.

5.2. Local correction: Proof of Lemma 4.2
For notation convenience, let Ui := Z ∩Vi denote the intersection of Z and true partition Vi for
all i ∈ [k]. In Algorithm 2, we first colour the hyperedges with red and blue with equal probability.
By running Algorithm 4 on the red hypergraph, we obtain a ν-correct partitionU ′

1, . . . ,U
′
k, i.e.,

|Ui \U ′
i | ≤ (1− ν) · |U ′

i | = (1− ν) · n
2k

, ∀i ∈ [k] . (27)

In the rest of this subsection, we condition on the event that (27) holds true.
Consider a hyperedge e= {i1, · · · , im} in the underlying m-uniform hypergraph. If vertices

i1, · · · , im are from the same block, then e is a red hyperedge with probability am/2
( n
m−1

)
; if ver-

tices i1, · · · , im are not from the same block, then e is a red hyperedge with probability bm/2
( n
m−1

)
.

The presence of those two types of hyperedges can be denoted by

T(am)
e ∼ Bernoulli

⎛⎝ am
2
(

n
m−1

)
⎞⎠ , T(bm)

e ∼ Bernoulli

⎛⎝ bm
2
(

n
m−1

)
⎞⎠ ,

respectively. For any finite set S, let [S]l denote the family of l-subsets of S, i.e., [S]l = {Z|Z ⊆
S, |Z| = l}. Consider a vertex u ∈U1 := Z ∩V1. The weighted number of red hyperedges, which
contains u ∈U1 with the remaining vertices in U ′

j , can be written as

S′
1j(u) :=

∑
m∈M

(m− 1) ·

⎧⎪⎨⎪⎩
∑

e∈ E(am)
1,j

T(am)
e +

∑
e∈E(bm)

1,j

T(bm)
e

⎫⎪⎬⎪⎭ , u ∈U1 , (28)

where E(am)1,j := Em([U1]1, [U1 ∩U ′
j ]m−1) denotes the set of m-hyperedges with one vertex from

[U1]1 and the other m− 1 from [U1 ∩U ′
j ]m−1, while E(bm)1,j := Em

(
[U1]1, [U ′

j ]m−1 \ [U1 ∩
U ′
j ]m−1

)
denotes the set of m-hyperedges with one vertex in [U1]1 while the remaining m− 1

vertices in [U ′
j ]m−1 \ [U1 ∩U ′

j ]m−1(not allm vertices are from V1) with their cardinalities∣∣E(am)1,j
∣∣ =

(|U1 ∩U ′
j |

m− 1

)
, |E(bm)1,j | =

[( |U ′
j |

m− 1

)
−

(|U1 ∩U ′
j |

m− 1

)]
.

We multiply (m− 1) in (28) as weight since the rest m− 1 vertices are all located in U ′
j , which

can be regarded as u’s neighbours in U ′
j . According to the fact |U ′

j ∩Uj| ≥ (νn/2k) in (27) and
|U ′

j | = n/(2k) for j ∈ [k],
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∣∣E(am)1,1
∣∣ ≥

( νn
2k

m− 1

)
,

∣∣E(am)1,j
∣∣ ≤

( (1−ν)n
2k

m− 1

)
, j �= 1 .

To simplify the calculation, we take the lower and upper bound of
∣∣E(am)1,1

∣∣ and ∣∣E(am)1,j
∣∣ (j �= 1)

respectively. By taking expectation with respect to T(am)
e and T(bm)

e , then for any u ∈U1, we have

ES′
11(u)=

∑
m∈M

(m− 1) ·
[( νn

2k
m− 1

)
am − bm
2
( n
m−1

) +
( n

2k
m− 1

)
bm

2
( n
m−1

)] ,

ES′
1j(u)=

∑
m∈M

(m− 1) ·
[( (1−ν)n

2k
m− 1

)
am − bm
2
( n
m−1

) +
( n

2k
m− 1

)
bm

2
( n
m−1

)] , j �= 1 .

By assumptions in Theorem 1.7, ES′
11(u)−ES′

1j(u)=�(1). Define

μC := 1
2

∑
m∈M

(m− 1) ·
{[( νn

2k
m− 1

)
+

( (1−ν)n
2k

m− 1

)]
am − bm
2
( n
m−1

) + 2 ·
( n

2k
m− 1

)
bm

2
( n
m−1

)} . (29)

In Algorithm 5, vertex u is assigned to Ûi if it has the maximal number of neighbours in U ′
i . If

u ∈U1 is mislabelled, then one of the following events must happen:

• S′
11(u)≤μC, meaning that u was mislabelled by Algorithm 5.

• S′
1j(u)≥μC for some j �= 1, meaning that u survived Algorithm 5 without being corrected.

Lemma 5.14 shows that the probabilities of those two events can be bounded in terms of the
SNR.

Lemma 5.14. For sufficiently large n and any u ∈U1 = Z ∩V1, we have

ρ′
1 := P

(
S′
11(u)≤μC

) ≤ ρ , ρ′
j := P

(
S′
1j(u)≥μC

)
≤ ρ , (j �= 1), (30)

where ρ := exp(−CM · SNRM) with SNRM and CM defined in (2).

As a result, the probability that either of those events happened is bounded by ρ. The number
of mislabelled vertices in U1 after Algorithm 5 is at most

R1 =
|U1|∑
t=1

�t +
k∑

j=2

|U1∩U ′
j |∑

t=1
�t ,

where �t (resp.�t) are i.i.d indicator random variables with mean ρ′
1 (resp. ρ

′
j , j �= 1). Then

ER1 ≤ n
2k
ρ′
1 +

k∑
j=2

(1− ν)n
2k

ρ′
j ≤

n
2k

· kρ = nρ
2

.

Let t1 := nρ/2, where ν denotes the correctness after Algorithm 4, then by Chernoff bound
(Lemma D.1),

P (R1 ≥ nρ)= P (R1 − nρ/2≥ t1)≤ P (R1 −ER1 ≥ t1)≤ e−ct1 =O(e−nρ) . (31)

Then with probability 1−O(e−nρ), the fraction of mislabelled vertices in U1 is smaller than kρ,
i.e., the correctness of U1 is at least γC := max{ν , 1− kρ}. Therefore, Algorithm 5 outputs a γC-
correct partition Û1, · · · , Ûk with probability 1−O(e−nρ).
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5.3. Merging: Proof of Lemma 4.3
By running Algorithm 5 on the red hypergraph, we obtain a γC-correct partition Û1, · · · , Ûk
where γC := max{ν , 1− kρ} ≥ ν, i.e.,

|Uj ∩ Ûj| ≥ ν · |Ûj| = νn
2k

, ∀j ∈ [k] . (32)

In the rest of this subsection, we shall condition on this event and abbreviate Y ∩Vl by Wl :=
Y ∩Vl. The failure probability of Algorithm 6 is estimated by the presence of hyperedges between
vertex sets Y and Z.

Consider a hyperedge e= {i1, · · · , im} in the underlying m-uniform hypergraph. If vertices
i1, · · · , im are all from the same cluster Vl, then the probability that e is an existing blue edge
conditioning on the event that e is not a red edge is

ψm := P

[
e is a blue edge

∣∣∣e is not a red edge
]
=

am
2
(

n
m−1

)
1− am

2
(

n
m−1

) = am
2
(

n
m−1

) (1+ o(1)) , (33)

and the presence of e can be represented by an indicator random variable ζ (am)e ∼ Bernoulli (ψm).
Similarly, if vertices i1, · · · , im are not all from the same cluster Vl, the probability that e is an
existing blue edge conditioning on the event that e is not red

φm := P

[
e is a blue edge

∣∣∣e is not a red edge
]
=

bm
2
(

n
m−1

)
1− bm

2
(

n
m−1

) = bm
2
(

n
m−1

) (1+ o(1)) , (34)

and the presence of e can be represented by an indicator variable ξ (bm)e ∼ Bernoulli (φm).
For any vertex w ∈Wl := Y ∩Vl with fixed l ∈ [k], we want to compute the number of hyper-

edges containing w with all remaining vertices located in vertex set Ûj for some fixed j ∈ [k].
Following a similar argument given in Subsection 5.2, this number can be written as

Ŝlj(w) :=
∑
m∈M

(m− 1) ·

⎧⎪⎪⎨⎪⎪⎩
∑

e∈ Ê(am)
l,j

ζ (am)e +
∑

e∈Ê(bm)
l,j

ξ (bm)e

⎫⎪⎪⎬⎪⎪⎭ , w ∈Wl , (35)

where Ê(am)l,j := Em([Wl]1, [Ul ∩ Ûj]m−1) denotes the set of m-hyperedges with 1 vertex from

[Wl]1 and the otherm− 1 vertices from [Ul ∩ Ûj]m−1, while Ê(bm)l,j := Em([Wl]1, [Ûj]m−1 \ [Ul ∩
Ûj]m−1) denotes the set ofm-hyperedges with 1 vertex in [Wl]1 while the remainingm− 1 vertices
are in [Ûj]m−1 \ [Ul ∩ Ûj]m−1, with their cardinalities

|̂E(am)l,j | =
(|Ul ∩ Ûj|

m− 1

)
, |̂E(bm)l,j | =

[( |Ûj|
m− 1

)
−

(|Ul ∩ Ûj|
m− 1

)]
.

Similarly, we multiply (m− 1) in (35) as weight since the rest m− 1 vertices can be regarded as
u’s neighbours in Ûj. By accuracy of Algorithm 5 in (32), |Ûj ∩Uj| ≥ νn/(2k), then

|̂E(am)l,l | ≥
( νn

2k
m− 1

)
, |̂E(am)l,j | ≤

( (1−ν)n
2k

m− 1

)
, j �= l .
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Taking expectation with respect to ζ (am)e and ξ (bm)e , for any w ∈Wl, we have

ÊSll(w)=
∑
m∈M

(m− 1) ·
[( νn

2k
m− 1

)
(ψm − φm)+

( n
2k

m− 1

)
φm

]
,

ÊSlj(w)=
∑
m∈M

(m− 1) ·
[( (1−ν)n

2k
m− 1

)
(ψm − φm)+

( n
2k

m− 1

)
φm

]
, j �= l .

By assumptions in Theorem 1.7, ÊSll(w)− ÊSlj(w)=�(1). We define

μM := 1
2

∑
m∈M

(m− 1) ·
{[( νn

2k
m− 1

)
+

( (1−ν)n
2k

m− 1

)]
(ψm − φm)+ 2

( n
2k

m− 1

)
φm

}
. (36)

After Algorithm 6, if a vertex w ∈Wl is mislabelled, one of the following events must happen

• Ŝll(w)≤μM, which implies that u was mislabelled by Algorithm 6.
• Ŝlj(w)≥μM for some j �= l, which implies that u survived Algorithm 6 without being
corrected.

By an argument similar to Lemma 5.14, we can prove that for any w ∈Wl,

ρ̂l := P(̂Sll(w)≤μM)≤ ρ , ρ̂j := P(̂Slj(w)≥μM)≤ ρ , (j �= l),

where ρ := exp(−CM · SNRM). The misclassified probability for w ∈Wl is upper bounded by∑k
j=1 ρ̂j ≤ kρ. The number of mislabelled vertices in Wl is at most Rl =

∑|Wl|
t=1 �t , where �t are

i.i.d indicator random variables with mean kρ and ERl ≤ n/(2k) · kρ = nρ/2. Let tl := nρ/2, by
Chernoff bound (Lemma D.1),

P (Rl ≥ nρ)= P (Rl − nρ/2≥ tl)≤ P (Rl −ERl ≥ tl)≤ e−ctl =O(e−nρ) .

Hence with probability 1−O(e−nρ), the fraction of mislabelled vertices inWl is smaller than kρ,
i.e., the correctness inWl is at least γM := max{ν, 1− kρ}.

5.4. Proof of Theorem 1.7
Nowwe are ready to prove Theorem 1.7. The correctness of Algorithms 5 and 6 are denoted by γC
and γM respectively, then with probability at least 1−O(e−nρ), the correctness γ of Algorithm 2
is γ := min{γC, γM} =max{ν, 1− kρ}. We will have γ = 1− kρ if ν ≤ 1− kρ, equivalently,

SNRM(k)≥ 1
CM

log
( k
1− ν

)
, (37)

otherwise γ = ν. The inequality (37) holds since

SNRM(k)=
[∑

m∈M (m− 1)
(
am−bm
km−1

)]2
∑

m∈M (m− 1)
(
am−bm
km−1 + bm

)
≥ [

∑
m∈M (am − bm)]2

k2Mmax−2(Mmax − 1)d
≥ (Cν)2

Mmax − 1
log

( k
1− ν

)
≥ 1

CM
log

( k
1− ν

)
.
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where the first two inequalities hold since d := ∑
m∈M (m− 1)am and Condition (4b), while the

last inequality holds by taking Cν ≥max{√(Mmax − 1)/CM, C2} with C2 defined in (26).

Remark 5.15. The lower bound C in (4a) comes from the requirement in Lemma 5.4 that only
a few high-degree vertices be deleted. The constant Cν in (4b) comes from the requirement in
Lemma 5.6 that the subspace angle is small. When C is not so large (or the hypergraph is too
sparse), one could still achieve good accuracy γ if Cν is large enough (the difference between am
and bm is large enough).

Remark 5.16. Condition (37) indicates that the improvement of accuracy from local refinement
(Algorithms 5 and 6) will be guaranteed when SNRM(k) is large enough. If SNRM(k) is small, we
use correctness of Algorithm 4 instead, i.e., γ = ν, to represent the correctness of Algorithm 2.

5.5. Proof of Corollary 1.9
For any fixed ν ∈ (1/k, 1), SNRM(k)→ ∞ implies ρ→ 0 and

d =
∑
m∈M

(m− 1)am → ∞.

Since ∑
m∈M (m− 1)(am − bm)2∑

m∈M (m− 1)am
≥

∑
m∈M (m− 1)(am − bm)2∑

m∈M (m− 1)km−1(am + km−1bm)
= SNRM(k) ,

Condition (4b) is satisfied. Applying Theorem 1.7, we find γ = 1− o(1), which implies weak
consistency. The constraint of SNRM(k)= o( log n) is used in the proof of Lemma 4.2, see
Remark 1.10.
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Appendix A. Proof of Theorems 3.1 and 3.3

A.1. Discretization
To prove Theorem 3.1, we start with a standard ε-net argument.

Lemma A.1 (Lemma 4.4.1 in [69]). Let W be any Hermitian n× n matrix and let Nε be an ε-net
on the unit sphere Sn−1 with ε ∈ (0, 1), then ‖W‖ ≤ 1

1−ε supx∈Nε
|〈Wx, x〉|.

By [69, Corollary 4.2.13], the size of Nε is bounded by |Nε| ≤ (1+ 2/ε)n. We would have
log |N| ≤ n log (5) when N is taken as an (1/2)-net of Sn. Define W := A−EA, then Wii = 0
for each i ∈ [n] by the definition of adjacency matrix in equation (7), and we obtain

‖A−EA‖ = ‖W‖ ≤ 2 sup
x∈N

|〈Wx, x〉| . (A.1)

For any fixed x ∈ S
n−1, consider the light and heavy pairs as follows.

L(x)=
{
(i, j) : |xixj| ≤

√
d
n

}
, H(x)=

{
(i, j) : |xixj|>

√
d
n

}
, (A.2)

where d = ∑M
m=2 (m− 1)dm. Thus by the triangle inequality,

|〈x,Wx〉| ≤
∣∣∣∣∣∣

∑
(i,j)∈L(x)

Wijxixj

∣∣∣∣∣∣ +
∣∣∣∣∣∣

∑
(i,j)∈H(x)

Wijxixj

∣∣∣∣∣∣ ,
and by equation (A.1),

‖A−EA‖ ≤ 2 sup
x∈N

∣∣∣∣∣ ∑
(i,j)∈L(x)

Wijxixj

∣∣∣∣∣ + 2 sup
x∈N

∣∣∣∣∣ ∑
(i,j)∈H(x)

Wijxixj

∣∣∣∣∣ . (A.3)
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A.2. Contribution from light pairs
For each m-hyperedge e ∈ Em, we define W(m)

e := A(m)
e −EA(m)

e . Then for any fixed x ∈ S
n−1,

the contribution from light couples can be written as

∑
(i,j)∈L(x)

Wijxixj =
∑

(i,j)∈L(x)

⎛⎜⎜⎝ M∑
m=2

∑
e∈Em{i,j}⊂e

W(m)
e

⎞⎟⎟⎠ xixj

=
M∑

m=2

∑
e∈Em

W(m)
e

⎛⎜⎜⎝ ∑
(i,j)∈L(x)
i�=j, {i,j}⊂e

xixj

⎞⎟⎟⎠ =
M∑

m=2

∑
e∈Em

Y(m)
e , (A.4)

where the constraint i �= j comes from the factWii = 0 and we denote

Y(m)
e := W(m)

e

⎛⎜⎜⎝ ∑
(i,j)∈L(x)
i�=j, {i,j}⊂e

xixj

⎞⎟⎟⎠ .

Note that EY(m)
e = 0, and by the definition of light pair equation (A.2),

|Y(m)
e | ≤m(m− 1)

√
d/n≤M(M − 1)

√
d/n , ∀m ∈ {2, · · · ,M} .

Moreover, equation (A.4) is a sum of independent, mean-zero random variables, and

M∑
m=2

∑
e∈Em

E[(Y(m)
e )2] :=

M∑
m=2

∑
e∈Em

[
E[(W(m)

e )2]

( ∑
(i,j)∈L(x)
i�=j,{i,j}⊂e

xixj

)2]

≤
M∑

m=2

∑
e∈Em

[
E[A(m)

e ] ·m(m− 1)

( ∑
(i,j)∈L(x)
i�=j,{i,j}⊂e

x2i x2j

)]

≤
M∑

m=2

dm ·m(m− 1)( n
m−1

) (
n

m− 2

) ∑
(i,j)∈[n]2

x2i x2j

≤
M∑

m=2

dmm(m− 1)2

n−m+ 2
≤ 2

n

M∑
m=2

dm(m− 1)3 ≤ 2d(M − 1)2

n
,

when n≥ 2m− 2, where dm =max d[i1,...,im] and d = ∑M
m=2 (m− 1)dm. Then Bernstein’s

inequality (Lemma D.3) implies that for any α > 0,

P

(∣∣∣∣∣ ∑
(i,j)∈L(x)

Wijxixj

∣∣∣∣∣ ≥ α√
d

)
= P

(∣∣∣∣∣
M∑

m=2

∑
e∈Em

Y(m)
e

∣∣∣∣∣ ≥ α√
d

)

≤2 exp

(
−

1
2α

2d
2d
n (M − 1)2 + 1

3 (M − 1)M
√
d
n α

√
d

)
≤ 2 exp

(
− α2n
4(M − 1)2 + 2α(M−1)M

3

)
.
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Therefore by taking a union bound,

P

(
sup
x∈N

∣∣∣∣∣ ∑
(i,j)∈L(x)

Wijxixj

∣∣∣∣∣ ≥ α√
d

)
≤ |N| · P

(∣∣∣∣∣ ∑
(i,j)∈L(x)

Wijxixj

∣∣∣∣∣ ≥ α√
d

)

≤ 2 exp

(
log (5) · n− α2n

4(M − 1)2 + 2α(M−1)M
3

)
≤ 2e−n , (A.5)

where we choose α= 5M(M − 1) in the last line.

A.3. Contribution from heavy pairs
Note that for any i �= j,

EAij ≤
M∑

m=2

(
n− 2
m− 2

)
dm( n
m−1

) ≤
M∑

m=2

(m− 1)dm
n

= d
n
. (A.6)

and ∣∣∣∣∣ ∑
(i,j)∈H(x)

EAijxixj

∣∣∣∣∣ =
∣∣∣∣∣ ∑
(i,j)∈H(x)

EAij
x2i x2j
xixj

∣∣∣∣∣ (A.7)

≤
∑

(i,j)∈H(x)

d
n
x2i x2j
|xixj| ≤ √

d
∑

(i,j)∈H(x)
x2i x2j ≤ √

d.

Therefore it suffices to show that, with high probability,∑
(i,j)∈H(x)

Aijxixj =O
(√

d
)
. (A.8)

Here we use the discrepancy analysis from [22, 28]. We consider the weighted graph associated
with the adjacency matrix A.

Definition A.2 (Uniform upper tail property, UUTP). Let M be an n× n random symmetric
matrix with non-negative entries and Q be an n× n symmetric matrix with entries Qij ∈ [0, a] for
all i, j ∈ [n]. Define

μ :=
n∑

i,j=1
QijEMij, σ̃ 2 :=

n∑
i,j=1

Q2
ijEMij.

We say that M satisfies the uniform upper tail property UUTP(c0, γ0) with c0 > 0, γ0 ≥ 0, if for any
a, t> 0,

P

(
fQ(M)≥ (1+ γ0)μ+ t

)
≤ exp

(
−c0

σ̃ 2

a2
h

(
at
σ̃ 2

))
.

where function fQ(M) :Rn×n �→R is defined by fQ(M) := ∑n
i,j=1 QijMij for M ∈R

n×n, and func-
tion h(x) := (1+ x)log(1+ x)− x for all x>−1.

Lemma A.3. Let A be the adjacency matrix of non-uniform hypergraph H = ⋃M
m=2 Hm, then A

satisfies UUTP(c0, γ0) with c0 = [M(M − 1)]−1, γ0 = 0.
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Proof of Lemma A.3. Note that

fQ(A)−μ=
n∑

i,j=1
Qij(Aij −EAij)=

n∑
i,j=1

QijWij

=
n∑

i,j=1
Qij

( M∑
m=2

∑
e∈Em

i�=j, {i,j}⊂e

W(m)
e

)
=

M∑
m=2

∑
e∈Em

W(m)
e

( ∑
{i,j}⊂e, i�=j

Qij

)
=

M∑
m=2

∑
e∈Em

Z(m)
e ,

where Z(m)
e =W(m)

e
(∑

{i,j}⊂e,i�=j Qij
)
are independent centred random variables upper bounded

by |Z(m)
e | ≤ ∑

{i,j}⊂e, i�=j Qij ≤M(M − 1)a for each m ∈ {2, . . . ,M} since Qij ∈ [0, a]. Moreover,
the variance of the sum can be written as

M∑
m=2

∑
e∈Em

E(Z(m)
e )2 =

M∑
m=2

∑
e∈Em

E(W(m)
e )2

( ∑
{i,j}⊂e, i�=j

Qij

)2

≤
M∑

m=2

∑
e∈Em

E[A(m)
e ] ·m(m− 1)

∑
{i,j}⊂e,i�=j

Q2
ij ≤M(M − 1)

n∑
i,j=1

Q2
ijEAij =M(M − 1)σ̃ 2.

where the last inequality holds since by definition EAij = ∑M
m=2

∑
e∈Em{i,j}⊂e

E[A(m)
e ]. Then by

Bennett’s inequality Lemma D.4, we obtain

P(fQ(A)−μ≥ t)≤ exp

(
− σ̃ 2

M(M − 1)a2
h

(
at
σ̃ 2

))

where the inequality holds since the function x · h(1/x)= (1+ x) log (1+ 1/x)− 1 is decreasing
with respect to x. �
Definition A.4 (Discrepancy property, DP). Let M be an n× n matrix with non-negative entries.
For S, T ⊂ [n], define eM(S, T)= ∑

i∈S,j∈T Mij.We sayM has the discrepancy property with param-
eter δ > 0, κ1 > 1, κ2 ≥ 0, denoted by DP(δ, κ1, κ2), if for all non-empty S, T ⊂ [n], at least one of
the following hold:

(1) eM(S, T)≤ κ1δ|S||T|;
(2) eM(S, T) · log

(
eM(S,T)
δ|S|·|T|

)
≤ κ2(|S| ∨ |T|) · log

(
en

|S|∨|T|
)
.

Lemma A.5 shows that if a symmetric random matrix A satisfies the upper tail property
UUTP(c0, γ0) with parameter c0 > 0, γ0 ≥ 0, then the discrepancy property holds with high
probability.

Lemma A.5 (Lemma 6.4 in [22]). LetM be an n× n symmetric random matrix with non-negative
entries. Assume that for some δ > 0, δ > 0, EMij ≤ δ for all i, j ∈ [n] andM has UUTP(c0, γ0) with
parameter c0, γ0 > 0. Then for any K > 0, the discrepancy property DP(δ, κ1, κ2) holds for M with
probability at least 1− n−K κ1 = e2(1+ γ0)2, κ2 = 2

c0 (1+ γ0)(K + 4).

When the discrepancy property holds, then deterministically the contribution from heavy pairs
is O(

√
d), as shown in the following lemma.
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Lemma A.6 (Lemma 6.6 in [22]). Let M be a non-negative symmetric n× n matrix with all row
sums bounded by d. Suppose M has M has DP(δ, κ1, κ2) with δ = Cd/n for some C> 0, κ1 > 1,
κ2 ≥ 0. Then for any x ∈ S

n−1, ∣∣∣∣∣ ∑
(i,j)∈H(x)

Mijxixj

∣∣∣∣∣ ≤ α0
√
d,

where α0 = 16+ 32C(1+ κ1)+ 64κ2(1+ 2
κ1 log κ1 ).

Lemma A.7 proves that A has bounded row and column sums with high probability.

Lemma A.7. For any K > 0, there is a constant α1 > 0 such that with probability at least
1− n−K,

max
1≤i≤n

n∑
j=1

Aij ≤ α1d (A.9)

with α1 = 4+ 2(M−1)(1+K)
3c and d ≥ c log n.

Proof. For a fixed i ∈ [n],
n∑
j=1

Aij =
M∑

m=2

∑
e∈Em:i∈e

(m− 1)A(m)
e ,

n∑
j=1

(Aij −EAij)=
M∑

m=2

∑
e∈Em:i∈e

(m− 1)W(m)
e ,

n∑
j=1

EAij ≤
M∑

m=2

(
n

m− 1

)
(m− 1)dm( n

m−1
) = d,

M∑
m=2

(m− 1)2
∑

e∈Em:i∈e
E[(W(m)

e )2]≤
M∑

m=2
(m− 1)2

∑
e∈Em:i∈e

E[A(m)
e ]≤ (M − 1)d .

Then for α1 = 4+ 2(M−1)(1+K)
3c , by Bernstein’s inequality, with the assumption that d ≥ c log n,

P

( n∑
j=1

Aij ≥ α1d
)

≤ P

( n∑
j=1

Aij −EAij ≥ (α1 − 1)d

)

≤ exp

(
−

1
2 (α1 − 1)2d2

(M − 1)d + 1
3 (M − 1)(α1 − 1)d

)
≤ n− 3c(α1−1)2

(M−1)(2α1+4) ≤ n−1−K.

(A.10)

Taking a union bound over i ∈ [n], then equation (A.9) holds with probability 1− n−K . �
Now we are ready to obtain equation (A.8).

Lemma A.8. For any K > 0, there is a constant β depending on K, c,M such that with probability
at least 1− 2n−K, ∣∣∣∣∣ ∑

(i,j)∈H(x)
Aijxixj

∣∣∣∣∣ ≤ β√
d. (A.11)

Proof. By Lemma A.3, A satisfies UUTP( 1
M(M−1) , 0). From equation (A.6) and Lemma A.5, the

propertyDP(δ, κ1, κ2) holds for A with probability at least 1− n−K with

δ = d
n
, κ1 = e2, κ2 = 2M(M − 1)(K + 4).
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Let E1 be the event that DP(δ, κ1, κ2) holds for A. Let E2 be the event that all row sums of A are
bounded by α1d. Then P(E1 ∩ E2)≥ 1− 2n−K . On the event E1 ∩ E2, by Lemma A.6, equation
(A.11) holds with β = α0α1, where

α0 = 16+ 32(1+ e2)+ 128M(M − 1)(K + 4)(1+ e−2), α1 = 4+ 2(M − 1)(1+K)
3c

.
�

A.4. Proof of Theorem 3.1

Proof. From equation (A.5), with probability at least 1− 2e−n, the contribution from light pairs
in equation (A.3) is bounded by 2α

√
d with α = 5M(M − 1). From equations (A.7) and (A.11),

with probability at least 1− 2n−K , the contribution from heavy pairs in equation (A.3) is bounded
by 2

√
d + 2β

√
d. Therefore with probability at least 1− 2e−n − 2n−K ,

‖A−EA‖ ≤ CM
√
d,

where CM is a constant depending only on c,K,M such that CM = 2(α+ 1+ β). In
particular, we can take α = 5M(M − 1), β = 512M(M − 1)(K + 5)

(
2+ (M−1)(1+K)

c

)
, and

CM = 512M(M − 1)(K + 6)
(
2+ (M−1)(1+K)

c

)
. This finishes the proof of Theorem 3.1. �

A.5. Proof of Theorem 3.3
Let S⊂ [n] be any given subset. From equation (A.5), with probability at least 1− 2e−n,

sup
x∈N

∣∣∣∣∣ ∑
(i,j)∈L(x)

(
AS −EAS

)
ij
xixj

∣∣∣∣∣ ≤ 5M(M − 1)
√
d. (A.12)

Since there are at most 2n many choices for S, by taking a union bound, with probability at least
1− 2(e/2)−n, we have for all S⊂ [n], equation (A.12) holds. In particular, by taking S= I= {i ∈
[n] : row(i)≤ τd}, with probability at least 1− 2(e/2)−n, we have

sup
x∈N

∣∣∣∣∣ ∑
(i,j)∈L(x)

[(A−EA)I]ijxixj

∣∣∣∣∣ ≤ 5M(M − 1)
√
d. (A.13)

Similar to equation (A.7), deterministically,∣∣∣∣∣ ∑
(i,j)∈H(x)

[(EA)I]ijxixj

∣∣∣∣∣ ≤ (M − 1)
√
d. (A.14)

Next we show the contribution from heavy pairs for AI is bounded.

Lemma A.9. For any K > 0, there is a constant βτ depending on K, c,M, τ such that with
probability at least 1− n−K, ∣∣∣∣∣ ∑

(i,j)∈H(x)
[(A)I]ijxixj

∣∣∣∣∣ ≤ βτ
√
d. (A.15)

https://doi.org/10.1017/S0963548324000166 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000166


Combinatorics, Probability and Computing 33

Proof. Note thatA satisfiesUUTP
(

1
M(M−1) , 0

)
from Lemma A.3. According to Lemma A.5, with

probability at least 1− n−K ,DP(δ, κ1, κ2) holds for A with

δ = d
n
, κ1 = e2, κ2 = 2M(M − 1)(K + 4).

The DP(δ, κ1, κ2) property holds for AI as well, since AI is obtained from A by restricting to I.
Note that all row sums in AI are bounded by τd. By Lemma A.6,∣∣∣∣∣ ∑

(i,j)∈H(x)
[AI]ijxixj

∣∣∣∣∣ ≤ α0
√
τd, (A.16)

where we can take α0 = 16+ 32
τ
(1+ e2)+ 128M(M − 1)(K + 4)

(
1+ 1

e2

)
. �

We can then take βτ = α0
√
τ in equation (A.15). Therefore, combining equations (A.13),

(A.14), (A.16), with probability at least 1− 2(e/2)−n − n−K , there exists a constant Cτ depend-
ing only on τ ,M,K such that ‖(A−EA)I‖ ≤ Cτ

√
d, where Cτ = 2((5M + 1)(M − 1)+ α0

√
τ ).

This finishes the proof of Theorem 3.3.

Appendix B. Technical Lemmas

B.1. Proof of Lemma 2.4

Proof. By Weyl’s inequality (Lemma D.5), the difference between eigenvalues of ẼA and EA can
be upper bounded by

|λi(ẼA)− λi(EA)| ≤ ‖ẼA−EA‖2 ≤ ‖ẼA−EA‖F
≤

[
2k · n

k
· √n log (n) · (α − β)2

]1/2 =O
(
n3/4 log1/2 (n)(α− β)

)
.

The lemma follows, as λi(EA)=� (n(α− β)) for all 1≤ i≤ k. �

B.2. Proof of Lemma 5.3

Proof. We first compute the singular values of B1. From equation (16), the rank of matrix B1 is k,
and the least non-trivial singular value of B1 is

σk(B1)= n
2
√
2k

(α − β)= n
2
√
2k

∑
m∈M

( 3n
4k − 2
m− 2

)
am − bm( n

m−1
) ,

where M is obtained from Algorithm 3. By the definition of A1 in equation (20), the least non-
trivial singular value of A1 is

σk(A1)= σk(B1)= n
2
√
2k

(α− β)= n
2
√
2k

∑
m∈M

( 3n
4k − 2
m− 2

)
am − bm( n

m−1
) .

Recall that ni, defined in equation (12), denotes the number of vertices in Z ∩Vi, which can be
written as ni = ∑

v∈Vi 1{v∈Z}. By Hoeffding’s Lemma D.2,

P

(∣∣∣∣ni − n
2k

∣∣∣∣ ≥ √
n log (n)

)
≤ 2 exp

(−k log2 (n)
)
.
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Similarly, n′
i, defined in equation (13), satisfies

P

(∣∣∣∣n′
i −

n
4k

∣∣∣∣ ≥ √
n log (n)

)
≤ 2 exp

(−k log2 (n)
)
.

As defined in equations (14) and (16), both B̃1 and B1 are deterministic block matrices. Then with
probability at least 1− 2k exp

(−k log2 (n)
)
, the dimensions of each block inside B̃1 and B1 are

approximately the same, with deviations up to
√
n log (n). Consequently, the matrix Ã1, which

was defined in equation (19), can be treated as a perturbed version of A1. By Weyl’s inequality
(Lemma D.5), for any i ∈ [k],

|σi(B1)− σi(̃B1)| = |σi(A1)− σi(Ã1)| ≤ ‖A1 − Ã1‖2 ≤ ‖A1 − Ã1‖F
≤

[
2k · n

k
· √n log (n) · (α− β)2

]1/2 =O
(
n3/4 log1/2 (n) · (α− β)

)
.

As a result, with probability at least 1− 2k exp (−k log2 (n)), we have

|σk(A1)− σk(Ã1)|
σk(A1)

= |σk(B1)− σk(̃B1)|
σk(B1)

=O
(
n−1/4 log1/2 (n)

)
.

�

B.3. Proof of Lemma 5.4
Proof.Without loss of generality, we can assumeM= {2, . . . ,M}. IfM is a subset of {2, . . . ,M},
we can take am = bm = 0 for m �∈M. Note that in fact, if the best SNR is obtained when M is a
strict subset, we can substituteMmax forM.

LetX ⊂V be a subset of vertices in hypergraphH = (V , E) with size |X| = cn for some c ∈ (0, 1)
to be decided later. Suppose X is a set of vertices with high degrees that we want to zero out. We
first count the m-uniform hyperedges on X separately, then weight them by (m− 1), and finally
sum over m to compute the row sums in A corresponding to each vertex in X. Let Em(X) denote
the set of m-uniform hyperedges with all vertices located in X, and Em(Xc) denote the set of m-
uniform hyperedges with all vertices in Xc =V \ X, respectively. Let Em(X, Xc) denote the set
of m-uniform hyperedges with at least 1 endpoint in X and 1 endpoint in Xc. The relationship
between total row sums and the number of non-uniform hyperedges in the vertex set X can be
expressed as ∑

v∈X
row(v)≤

M∑
m=2

(m− 1)
(
m|Em(X)| + (m− 1)|Em(X, Xc)|

)
(B.1)

If the row sum of each vertex v ∈ X is at least 20Md, where d = ∑M
m=2 (m− 1)am, it follows

M∑
m=2

(m− 1)
(
m|Em(X)| + (m− 1)|Em(X, Xc)|

)
≥ cn · (20Md) . (B.2)

Then either
M∑

m=2
m(m− 1)|Em(X)| ≥ 4Mcnd, or

M∑
m=2

(m− 1)2|Em(X, Xc)| ≥ 16Mcnd.

B.3.1. Concentration of
∑M

m=2 m(m− 1)|Em(X)|.
Recall that

∣∣Em(X)∣∣ denotes the number of m-uniform hyperedges with all vertices located in X,
which can be viewed as the sum of independent Bernoulli random variables T(am)

e and T(bm)
e given

by
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T(am)
e ∼ Bernoulli

⎛⎝ am(
n

m−1

)
⎞⎠ , T(bm)

e ∼ Bernoulli

⎛⎝ bm(
n

m−1

)
⎞⎠ . (B.3)

Let {V1, . . . ,Vk} be the true partition of V . Suppose that there are ηicn vertices in block Vi ∩ X for
each i ∈ [k] with restriction

∑k
i=1 ηi = 1, then

∣∣Em(X)∣∣ can be written as∣∣Em(X)∣∣ =
∑

e∈Em(X,am)
T(am)
e +

∑
e∈Em(X,bm)

T(bm)
e ,

where Em(X, am) := ∪k
i=1Em(Vi ∩ X) denotes the union for sets of hyperedges with all vertices in

the same block Vi ∩ X for some i ∈ [k], and

Em(X, bm) := Em(X) \ Em(X, am)= Em(X) \
(

∪k
i Em(Vi ∩ X)

)
denotes the set of hyperedges with vertices crossing different Vi ∩ X. We can compute the
expectation of

∣∣Em(X)∣∣ as
E|Em(X)| =

k∑
i=1

(ηicn
m

) am − bm(
n

m−1

) +
( cn
m

) bm(
n

m−1

) . (B.4)

Then

M∑
m=2

m(m− 1) ·E|Em(X)| =
M∑

m=2
m(m− 1)

[ k∑
i=1

(ηicn
m

) am − bm(
n

m−1

) +
( cn
m

) bm(
n

m−1

)]
. (B.5)

As
k∑

i=1
ηi = 1, it follows that

∑k
i=1

(
ηicn
m

) ≤ (cn
m
)
by induction, thus

am − bm(
n

m−1

) k∑
i=1

(ηicn
m

)
+ bm(

n
m−1

) ( cn
m

)
= am(

n
m−1

) k∑
i=1

(ηicn
m

)
+ bm(

n
m−1

)
⎛⎝( cn

m

)
−

k∑
i=1

(ηicn
m

)⎞⎠
where both terms on the right are positive numbers. Using this and taking bm = am, we obtain the
following upper bound for all n,

M∑
m=2

m(m− 1)E|Em(X)| ≤
M∑

m=2
m(m− 1)

(
cn
m

)
am( n
m−1

) ≤ cn
M∑

m=2
(m− 1)am = cnd .

Note that
∑M

m=2 m(m− 1)|Em(X)| is a weighted sum of independent Bernoulli random variables
(corresponding to hyperedges), each upper bounded byM2. Also, its variance is bounded by

σ 2 := Var

( M∑
m=2

m(m− 1)|Em(X)|
)

=
M∑

m=2
m2(m− 1)2Var (|Em(X)|)

≤
M∑

m=2
m2(m− 1)2E|Em(X)| ≤M2cnd.
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We can apply Bernstein’s Lemma D.3 and obtain

P

( M∑
m=2

m(m− 1)|Em(X)| ≥ 4Mcnd

)

≤ P

( M∑
m=2

m(m− 1)(|Em(X)| −E|Em(X)|)≥ 3Mcnd

)

≤ exp
(

− (3Mcnd)2

M2cnd +M2cnd/3

)
≤ exp (−6cnd) . (B.6)

B.3.2. Concentration of
∑M

m=2 (m− 1)2|Em(X, Xc)|.
For any finite set S, let [S]j denote the family of j-subsets of S, i.e., [S]j = {Z|Z ⊆ S, |Z| = j}. Let
Em([Y]j, [Z]m−j) denote the set of m-hyperedges, where j vertices are from Y and m− j vertices
are from Z within each m-hyperedge. We want to count the number of m-hyperedges between X
and Xc, according to the number of vertices located in Xc within eachm-hyperedge. Suppose that
there are j vertices from Xc within eachm-hyperedge for some 1≤ j≤m− 1.

(i) Assume that all those j vertices are in the same [Vi \ X]j. If the remaining m− j vertices
are from [Vi ∩ X]m−j, then this m-hyperedge is connected with probability am/

( n
m−1

)
,

otherwise bm/
( n
m−1

)
. The number of this typem-hyperedges can be written as

k∑
i=1

⎡⎢⎣ ∑
e∈E(am)

j,i

T(am)
e +

∑
e∈E(bm)

j,i

T(bm)
e

⎤⎥⎦ ,

where E(am)j,i := Em([Vi ∩ Xc]j, [Vi ∩ X]m−j), and

E(bm)j,i := Em
(
[Vi ∩ Xc]j, [X]m−j \ [Vi ∩ X]m−j

)
denotes the setm-hyperedges with j vertices in [Vi ∩ Xc]j and the remainingm− j vertices
in [X]j \ [Vi ∩ X]j. We compute all possible choices and upper bound the cardinality of
E(am)j,i and E(bm)j,i by∣∣E(am)j,i

∣∣ ≤
(
( 1k − ηic)n

j

)(
ηicn
m− j

)
,

∣∣E(bm)j,i
∣∣ ≤

(
( 1k − ηic)n

j

) [(
cn

m− j

)
−

(
ηicn
m− j

)]
.

(ii) If those j vertices in [V \ X]j are not in the same [Vi ∩ X]j (which only happens j≥ 2), then
the number of this type hyperedges can be written as

∑
e∈E(bm)

j
T(bm)
e , where

E(bm)j := Em
(
[V \ X]j \ ( ∪k

i=1 [Vi \ X]j
)
, [X]m−j

)
,

∣∣E(bm)j
∣∣ ≤

⎡⎣(
(1− c)n

j

)
−

k∑
i=1

(
( 1k − ηic)n

j

)⎤⎦(
cn

m− j

)
.

Therefore, |Em(X, Xc)| can be written as a sum of independent Bernoulli random variables,

|Em(X, Xc)| =
m−1∑
j=1

k∑
i=1

⎡⎢⎣ ∑
e∈E(am)

j,i

T(am)
e +

∑
e∈E(bm)

j,i

T(bm)
e

⎤⎥⎦ +
m−1∑
j=2

∑
e∈E(bm)

j

T(bm)
e . (B.7)
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Figure B.1. Comparison of fc and gc.

Then the expectation can be rewritten as

E
(|Em(X, Xc)|)

=
m−1∑
j=1

k∑
i=1

(
( 1k − ηic)n

j

){(
ηicn
m− j

)
am( n
m−1

) +
[(

cn
m− j

)
−

(
ηicn
m− j

)]
bm( n
m−1

)}

+
m−1∑
j=1

[(
(1− c)n

j

)
−

k∑
i=1

(
( 1k − ηic)n

j

)](
cn

m− j

)
bm( n
m−1

) (B.8)

=
m−1∑
j=1

k∑
i=1

(
( 1k − ηic)n

j

)(
ηicn
m− j

)
am − bm( n

m−1
) +

m−1∑
j=1

(
(1− c)n

j

)(
cn

m− j

)
bm( n
m−1

)
=

k∑
i=1

[( n
k
m

)
−

(ηicn
m

)
−

(
( 1k − ηic)n

m

)]
am − bm(

n
m−1

) +
[ ( n

m

)
−

( cn
m

)
−

(
(1− c)n

m

)]
bm(
n

m−1

) ,

where we used the fact
((1−c)n

1
) = ∑k

i=1
((1/k−ηic)n

1
)
in the first equality and Vandermonde’s

identity
(n1+n2

m
) = ∑m

j=0

(
n1
j

) (
n2
m−j

)
in last equality. Note that

fc :=
( n
m

)
−

( cn
m

)
−

(
(1− c)n

m

)
counts the number of subsets of V with m elements such that at least one element belongs to X
and at least one element belongs to Xc. On the other hand,

gc =
k∑

i=1

[( n
k
m

)
−

(ηicn
m

)
−

(
( 1k − ηic)n

m

)]
.

counts the number of subsets of V with m elements such that all elements belong to a single Vi,
and given such an i, that at least one element belongs to X ∩Vi and at least one belongs to Xc ∩Vi.

As Fig. B.1 shows, gc only counts the blue pairs while fc counts red pairs in addition. By virtue
of the fact that there are fewer conditions imposed on the sets included in the count for fc, we must
have fc ≥ gc. Thus, rewriting equation (B.8), we obtain

E(|Em(X, Xc)|) = gc
am(
n

m−1

) + (fc − gc)
bm(
n

m−1

) .
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Since both terms in the above sum are positive, we can upper bound by taking am = bm to obtain

E
(|Em(X, Xc)|) ≤ fc

am(
n

m−1

) =
[ ( n

m

)
−

( cn
m

)
−

(
(1− c)n

m

) ]
am(
n

m−1

) .

By summing overm, the expectation of
∑M

m=2 (m− 1)2|Em(X, Xc)| satisfies
M∑

m=2
(m− 1)2 ·E (|Em(X, Xc)|) ≤

M∑
m=2

(m− 1)2
[ ( n

m

)
−

( cn
m

)
−

(
(1− c)n

m

) ]
am(
n

m−1

) ,

≤ 2n
M∑

m=2
(1− cm − (1− c)m)(m− 1)am ≤ 8Mcnd ,

where the last upper inequality holds when c ∈ (0, 21/M − 1], since

[(1− c)+ c]m − cm − (1− c)m

=
(
m
1

)
(1− c)m−1c+

(
m
2

)
(1− c)m−2c2 + · · · +

(
m

m− 1

)
(1− c)1cm−1

≤
(
m
1

)
c+

(
m
2

)
c2 + · · · +

(
m

m− 1

)
cm−1 ≤ (1+ c)m − 1≤ 2mc , (B.9)

where the last inequality holds by the following Claim.

Claim B.1. Let m≥ 2 be some finite integer. Then for 0< c<= 21/m − 1, it follows that (1+ c)m −
1≤ 2mc.

Proof of the Claim We finish the proof by induction. First, the argument (1+ c)j − 1≤ 2jc holds
true for the base cases j= 1, 2. Suppose that the argument holds for the case j≥ 2. For the case
j+ 1≤m, it follows that

(1+ c)j+1 − 1= (1+ c)j + c(1+ c)j − 1≤ 2jc+ c(1+ c)j ≤ 2(j+ 1)c,

where the last inequality holds true if c(1+ c)j ≤ 2c, and it holds since c≤ 21/m − 1≤ 21/j − 1 for
all j≤m. �

Similarly, we apply Bernstein Lemma D.3 again with K =M2, σ 2 ≤ 8M3cnd and obtain

P

( M∑
m=2

(m− 1)2|Em(X, Xc)| ≥ 16Mcnd

)

≤ P

( M∑
m=2

(m− 1)2(|Em(X, Xc)| −E|Em(X, Xc)|)≥ 8Mcnd

)
≤ exp (−6cnd/M) . (B.10)

By the binomial coefficient upper bound
(n
k
) ≤ ( enk )

k for 1≤ k≤ n, there are at most(
n
cn

)
≤

(e
c

)cn = exp (−c( log c− 1)n) (B.11)
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many subsets X of size |X| = cn. Let d be sufficiently large so that d−3 ≤ c0. Substituting c= d−3

in equation (B.11), we have ( n
d−3n

)
≤ exp

[
3d−3 log (d)n

]
.

Taking c= d−3 in equations (B.6) and (B.10), we obtain

P

( M∑
m=2

(m− 1)(m|Em(X)| + (m− 1)|Em(X, Xc)|)≥ 20Md−2n

)
≤ 2 exp (−2d−2n/M) .

Taking a union bound over all possible X with |X| = d−3n, we obtain with probability at least
1− 2 exp (3d−3 log dn− 2d−2n/M)≤ 1− 2 exp (−d−2n/M), no more than d−3n many vertices
have total row sum greater than 20Md. Note that we have imposed the condition that c= d−3 ∈
(0, 21/M − 1] in (B.9), thus d ≥ (21/M − 1)−1/3, producing the lower bound in Assumption 1.5.

B.4. Proof of Lemma 5.8

Proof. Note that U is spanned by first k singular vectors of (A1)I1 . Let {ui}ki=1 be an orthonormal
basis of theU, then the projection PU := ∑k

l=1〈ul, · 〉ul. Let k(i) index the membership of vertex i.
For each fixed i ∈Vk(i) ∩ Y2 ∩ {i1, · · · , is},

PUei =
k∑

l=1

〈ul, ei〉ul, ‖PUei‖22 =
k∑

l=1

〈ul, ei〉2.

As a consequence of independence between entries in A1 and entries in A2, defined in equation
(18), it is known that {ul}kl=1 and ei are independent of each other, since ei are columns of E2 :=
A2 − Ã2. If the expectation is taken over {A(m)}m∈M conditioning on {ul}kl=1, then

E{A(m)}m∈M

[
〈ul, ei〉

∣∣∣{ul}kl=1

]
=

n∑
j=1

ul(j) ·E
([

(A2)ji − (EA2)ji
])

= 0 ,

E{A(m)}m∈M

[
‖PUei‖22

∣∣∣{ul}kl=1

]
=

k∑
l=1

E{A(m)}m∈M

[
〈ul, ei〉2

∣∣∣{ul}kl=1

]
,

whereM is obtained from Algorithm 3. Expand each 〈ul, ei〉2 and rewrite it into 2 parts,

〈ul, ei〉2 =
k∑

j1=1

k∑
j2=1

ul(j1)ei(j1)ul(j2)ei(j2)

=
k∑

j=1
[ul(j)]2[ei(j)]2︸ ︷︷ ︸

(a)

+
∑
j1 �=j2

ul(j1)ei(j1)ul(j2)ei(j2)︸ ︷︷ ︸
(b)

, ∀l ∈ [k] . (B.12)

Part (a) is the contribution from graph, i.e., 2-uniform hypergraph, while part (b) is the contri-
bution fromm-uniform hypergraph withm≥ 3, which only occurs in hypergraph clustering. The
expectation of part (a) in is upper bounded by α as defined in equation (8), since
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E{A(m)}m∈M

⎡⎣ k∑
j=1

[ul(j)]2[ei(j)]2
∣∣∣∣∣{ul}kl=1

⎤⎦ =
n∑
j=1

[ul(j)]2 ·Var
(
(A2)ji

)

≤
n∑
j=1

[ul(j)]2 · (EA2)ji ≤ α =
∑
m∈M

[( n
k − 2
m− 2

)
am − bm( n

m−1
) +

(
n

m− 2

)
bm( n
m−1

)]

≤
∑
m∈M

(
n

m− 2

)
am( n
m−1

) ≤ 2
n

∑
m∈M

(m− 1)am = 2d
n
, ∀l ∈ [k]

where ‖ul‖22 = ∑n
j=1 [ul(j)]2 = 1. For part (b),

E{A(m)}m∈M

⎡⎣∑
j1 �=j2

ul(j1)ei(j1)ul(j2)ei(j2)

∣∣∣∣∣{ul}kl=1

⎤⎦
=

∑
j1 �=j2

ul(j1)ul(j2)E
[(

(A2)j1i − (EA2)j1i
)(

(A2)j2i − (EA2)j2i
)]

=
∑
j1 �=j2

ul(j1)ul(j2)E
( ∑

m∈M

∑
e∈Em[Y2∪Z]{i,j1}⊂e

(A(m)
e −EA(m)

e )

)( ∑
m∈M

∑
e∈Em[Y2∪Z]{i,j2}⊂e

(A(m)
e −EA(m)

e )

)
.

According to Definition 2.1 of the adjacency tensor,A(m)
e1 andA(m)

e2 are independent if hyperedge
e1 �= e2, then only the terms with hyperedge e⊃ {i, j1, j2} have non-zero contribution. Then the
expectation of part (b) can be rewritten as

E{A(m)}m∈M

⎡⎣∑
j1 �=j2

ul(j1)ei(j1)ul(j2)ei(j2)

∣∣∣∣∣{ul}kl=1

⎤⎦
=

∑
j1 �=j2

ul(j1)ul(j2)
∑
m∈M

∑
e∈Em[Y2∪Z]{i,j1,j2}⊂e

E
(
A(m)

e −EA(m)
e

)2
≤

∑
j1 �=j2

ul(j1)ul(j2)
∑
m∈M

∑
e∈Em[Y2∪Z]{i,j1,j2}⊂e

EA(m)
e

=
∑
j1 �=j2

ul(j1)ul(j2)
∑
m∈M

∑
e∈Em[Y2∪Z]{i,j1,j2}⊂e

am( n
m−1

) . (B.13)

Note that |Y2 ∪ Z| ≤ n, then the number of possible hyperedges e, while e ∈ Em[Y2 ∪ Z] and e⊃
{i, j1, j2}, is at most

( n
m−3

)
. Thus equation (B.13) is upper bounded by

∑
j1 �=j2

ul(j1)ul(j2)
∑
m∈M

(
n

m− 3

)
am( n
m−1

)
≤

∑
j1 �=j2

ul(j1)ul(j2)
∑
m∈M

(m− 1)(m− 2)
(n−m)2

am ≤ dMmax
n2

∑
j1 �=j2

ul(j1)ul(j2)
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≤ dMmax
2n2

∑
j1 �=j2

(
[ul(j1)]2 + [ul(j2)]2

)
≤ dMmax(n− 1)

2n2

( n∑
j1=1

[ul(j1)]2 +
n∑

j2=1
[ul(j2)]2

)

≤dMmax
n

,

where ‖ul‖2 = 1, d = ∑
m∈M (m− 1)am. With the upper bounds for part (a) and (b) in equation

(B.12), the conditional expectation of ‖PUei‖22 is bounded by

E{A(m)}m∈M

[
‖PUei‖22

∣∣∣{ul}kl=1

]
=

k∑
l=1

E{A(m)}m∈M

[
〈ul, ei〉2

∣∣∣{ul}kl=1

]
≤ kd

n
(Mmax + 2) ,

Let Xi be the Bernoulli random variable defined by

Xi = 1{‖PUei‖2 > 2
√
kd(Mmax + 2)/n)} , i ∈ {i1, · · · , is} .

By Markov’s inequality,

EXi = P

(
‖PUei‖2 > 2

√
kd(Mmax + 2)/n

)
≤

E{A(m)}m∈M

[
‖PUei‖22

∣∣∣{ul}kl=1

]
4kd(Mmax + 2)/n

≤ 1
4
.

Let δ := s
2
∑s

j=1 EXij
− 1 where s= 2k log2 (n). By Hoeffding Lemma D.2,

P

( s∑
j=1

Xij ≥
s
2

)
= P

( s∑
j=1

(Xij −EXij)≥ δ
s∑

j=1
EXij

)

≤ exp

(
−2δ2

(∑s
j=1 EXij

)2
s

)
=O

(
1

nk log (n)

)
.

Therefore, with probability 1−O(n−k log (n)), at least s/2 of the vectors ei1 , . . . , eis satisfy

‖PUei‖2 ≤ 2
√
kd(Mmax + 2)/n.

Meanwhile, for any c ∈ (0, 2), there exists some large enough constant C2 ≥
2Mmax+1√(Mmax + 2)/k/c such that if

∑
m∈M (m− 1)(am − bm)> C2kMmax−1√d, then

‖δi‖2 =
√
n(ᾱ − β̄)

2
=

√
n
2

∑
m∈M

( 3n
4k − 2
m− 2

)
am − bm( n

m−1
)

= (1+ o(1))
2
√
n

∑
m∈M

( 3
4k

)m−2
(m− 1)(am − bm)≥ k

(2k)Mmax−1√n
∑
m∈M

(m− 1)(am − bm),

>
C2kMmax

√
d

(2k)Mmax−1√n
≥ 2Mmax+1√(Mmax + 2)kMmax

√
d

c(2k)Mmax−1
√
kn

>
2
c
2
√
kd(Mmax + 2)

n
>

2
c
‖PUei‖2. �

B.5. Proof of Lemma 5.10

Proof. Split [n] into V ′
1 and V ′

2 such that V ′
1 = {i|v(i)> 0} and V ′

2 = {i|v(i)≤ 0}. Without loss of
generality, assume that the first n

k entries of v̄ are positive.We can write v in terms of its orthogonal
projection onto v̄ as
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v= c1v̄+ ε =
[
ε1 + c1√

n
, · · · , ε n

k
+ c1√

n
, ε n

k+1 − c1√
n
, · · · , εn − c1√

n

]T
, (B.14)

where v̄⊥ ε with ‖ε‖2 < c and c1 ≥ √
1− c2. The number of entries of ε smaller than −

√
1−c2√
n

is at most c2
1−c2 n. Note that c1 ≥ √

1− c2, so at least n
k − c2

1−c2 n indices i with v̄i = 1√
n will have

vi > 0, thus the ratio we are seeking is at least
n
k − c2

1−c2 n
n
k

= 1− kc2

1− c2
> 1− 4k

3
c2.

�

B.6. Proof of Lemma 5.11

Proof. We start with the following simple claim: for anym≥ 2 and any ν ∈ [1/2, 1),

νm + (1− ν)m <
(
1+ ν

2

)m
. (B.15)

Indeed, one quick way to see this is by induction on m; we will induct from m to m+ 2. Assume
the inequality is true form; then

νm+2 + (1− ν)m+2 = ν2νm + (1− ν)2(1− ν)m

= ν2νm + (1− 2ν + ν2)(1− ν)m ≤ ν2νm + ν2(1− ν)m

= ν2(νm + (1− ν)m) < (ν2 + (1− ν)2)(νm + (1− ν)m)

<

(
1+ ν

2

)2 (
1+ ν

2

)m
=

(
1+ ν

2

)m+2
,

where we have used the induction hypothesis together with 1− 2ν ≤ 0 and (1− ν)2 > 0. After
easily checking that the inequality works for m= 2, 3, the induction is complete. We shall now
check that the quantities defined in Lemma 5.11 obey the relationship μ2 ≥μ1 and μ2 −μ1 =
�(n), for n large enough. First, note that the only thing we need to check is that, for sufficiently
large n, ( νn

2k
m

)
+

( (1−ν)n
2k
m

)
≤

( (1+ν)n
4k
m

)
+ (k− 1)

( (1−ν)n
4k(k−1)
m

)
;

in fact, we will show the stronger statement that for anym≥ 2 and n large enough,( νn
2k
m

)
+

( (1−ν)n
2k
m

)
<

( (1+ν)n
4k
m

)
, (B.16)

and this will suffice to see that the second part of the assertion, μ2 −μ1 =�(n), is also true.

Asymptotically,
( νn
2km
) ∼ νm

m!
( n
2k

)m, ( (1−ν)n
2km

) ∼ (1−ν)m
m!

( n
2k

)m, and ( (1+ν)n
4km

) ∼
(
1+ν
2

)m
m!

( n
2k

)m. Note then
that equation (B.16) follows from equation (B.15).

Let {V1, . . . ,Vk} be the true partition of V . Recall that hyperedges in H = ∪m∈MHm are
coloured red and blue with equal probability in Algorithm 2. Let Em(X) denote the set of blue
m-uniform hyperedges with all vertices located in the vertex set X. Assume |X ∩Vi| = ηi|X|
with

∑k
i=1 ηi = 1. For each m ∈M, the presence of hyperedge e ∈ Em(X) can be represented by

independent Bernoulli random variables

T(am)
e ∼ Bernoulli

(
am

2
( n
m−1

)) , T(bm)
e ∼ Bernoulli

(
bm

2
( n
m−1

)) ,
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depending on whether e is a hyperedge with all vertices in the same block. Denote by

Em(X, am) := ∪k
i=1Em(Vi ∩ X)

the union of allm-uniform sets of hyperedges with all vertices in the same Vi ∩ X for some i ∈ [k],
and by

Em(X, bm) := Em(X) \ Em(X, am)= Em(X) \
(

∪k
i Em(Vi ∩ X)

)
the set ofm-uniform hyperedges with vertices across different blocks Vi ∩ X. Then the cardinality
|Em(X)| can be written as the

|Em(X)| =
∑

e∈Em(X,am)
T(am)
e +

∑
e∈Em(X,bm)

T(bm)
e ,

and by summing overm, the weighted cardinality |E(X)| is written as

|E(X)| :=
∑
m∈M

m(m− 1)|Em(X)| =
∑
m∈M

m(m− 1)

⎧⎨⎩ ∑
e∈Em(X,am)

T(am)
e +

∑
e∈Em(X,bm)

T(bm)
e

⎫⎬⎭ ,

with its expectation

E|E(X)| =
∑
m∈M

m(m− 1)

⎧⎨⎩
k∑

i=1

(
ηi

n
2k
m

)
am − bm
2
( n
m−1

) +
( n

2k
m

)
bm

2
( n
m−1

)
⎫⎬⎭ , (B.17)

since

|Em(X, am)| =
k∑

i=1
|Em(Vi ∩ X)| =

k∑
i=1

(
ηi

n
2k
m

)
, |Em(X, bm)| =

( n
2k
m

)
−

k∑
i=1

(
ηi

n
2k
m

)
,

Next, we prove the two Statements in Lemma 5.11 separately. First, assume that |X ∩Vi| ≤ ν|X|
( i.e., ηi ≤ ν) for each i ∈ [k]. Then

E|E(X)| ≤ 1
2

∑
m∈M

m(m− 1)

{[( νn
2k
m

)
+

( (1−ν)n
2k
m

)]
am − bm( n

m−1
) +

( n
2k
m

)
bm( n
m−1

)} =:μ1 .

To justify the above inequality, note that since
k∑

i=1
ηi = 1, the sum

∑k
i=1

(
ηi

n
2km
)
is maximised when

all but 2 of the ηi are 0, and since all ηi ≤ ν, this means that
k∑

i=1

(
ηi

n
2k
m

)
≤

( νn
2k
m

)
+

( (1−ν)n
2k
m

)
.

Note that m(m− 1)(T(am)
e −ET(am)

e ) and m(m− 1)(T(bm)
e −ET(bm)

e ) are independent mean-
zero random variables bounded by M(M − 1) for all m ∈M, and Var(|E(X)|)≤M2(M −
1)2E|E(X)| =�(n). Recall that μT := (μ1 +μ2)/2. Define t =μT −E|E(X)|, then 0< (μ2 −
μ1)/2≤ t ≤μT, hence t =�(n). By Bernstein’s Lemma D.3, we have

P

(
|E(X)| ≥μT

)
= P

(
|E(X)| −E|E(X)| ≥ t

)
≤ exp

(
− t2/2

Var(|E(X)|)+M(M−1)t/3

)
=O(e−cn) ,

where c> 0 is some constant. On the other hand, if |X ∩Vi| ≥ 1+ν
2 |X| for some i ∈ [k], then

E|E(X)| ≥ 1
2

∑
m∈M

m(m− 1)

{[( (1+ν)n
4k
m

)
+ (k− 1)

( (1−ν)n
4k(k−1)
m

)]
am − bm( n

m−1
) +

( n
2k
m

)
bm( n
m−1

)} =:μ2 .
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The above can be justified by noting that at least one |X ∩Vi| ≥ 1+ν
2 |X|, and that the rest of

the vertices will yield a minimal binomial sum when they are evenly split between the remain-
ing Vj. Similarly, define t =μT −E|E(X)|, then 0< (μ2 −μ1)/2≤ −t =�(n), and Bernstein’s
Lemma D.3 gives

P

(
|E(X)| ≤μT

)
= P

(
|E(X)| −E|E(X)| ≤ −t

)
≤ exp

(
− t2/2
Var(|E(X)|)+M(M − 1)(−t)/3

)
=O(e−c′n) ,

where c′ > 0 is some other constant. �

B.7. Proof of Lemma 5.13

Proof. If vertex i is uniformly chosen from Y2, the probability that i /∈Vl for some l ∈ [k] is

P(i /∈Vl|i ∈ Y2)= P(i /∈Vl, i ∈ Y2)
P(i ∈ Y2)

= 1− |Vl ∩ Y2|
|Y2| = 1−

n
k − nl − n′

l

n− ∑k
t=1 (nt + n′

t)
, l ∈ [k] ,

where nt and n′
t , defined in equations (12) and (13), denote the cardinality of Z ∩Vt and Y1 ∩Vt

respectively. As proved in Appendix B.2, with probability at least 1− 2 exp (−k log2 (n)), we have

|nt − n/(2k)| ≤ √
n log (n) and |n′

t − n/(4k)| ≤ √
n log (n),

thenP(i /∈Vl|i ∈ Y2)= 1− 1
k

(
1+ o(1)

)
. After k log2 n samples fromY2, the probability that there

exists at least one node which belongs to Vl is at least

1−
(
1− 1+ o(1)

k

)k log2 n
= 1− n−(1+o(1))k log ( k

k−1 ) log n.

The proof is completed by a union bound over l ∈ [k]. �

B.8. Proof of Lemma 5.14

Proof. We calculate P(S′
11(u)≤μC) first. Define t1C := μC −ES′

11(u), then by Bernstein’s
inequality (Lemma D.3) and taking K =Mmax − 1,

P
(
S′
11(u)≤μC

) = P
(
S′
11(u)−ES′

11(u)≤ t1C
)

≤ exp

(
− t21C/2
Var[S′

11(u)]+ (Mmax − 1) · t1C/3

)
≤ exp

(
− 3t21C/(Mmax − 1)
6(Mmax − 1) ·ES′

11(u)+ 2t1C

)

≤ exp

⎛⎜⎝− [(ν)Mmax−1 − (1− ν)Mmax−1]2

(Mmax − 1)2 · 22Mmax+3 ·
[∑

m∈M (m− 1)
(
am−bm
km−1

)]2
∑

m∈M (m− 1)
(
am−bm
km−1 + bm

)
⎞⎟⎠ ,
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whereM is obtained from Algorithm 3 withMmax denoting the maximum value inM, and the
last two inequalities hold since Var[S′

11(u)]≤ (Mmax − 1)2ES′
11(u), and for sufficiently large n,

t1C := μC −ES′
11(u)= −1

2
∑
m∈M

(m− 1) ·
[( νn

2k
m− 1

)
−

( (1−ν)n
2k

m− 1

)]
am − bm
2
( n
m−1

)
≤ − 1

2
∑
m∈M

(ν)m−1 − (1− ν)m−1

2m
· (m− 1)

am − bm
km−1 (1+ o(1))

≤ − (ν)Mmax−1 − (1− ν)Mmax−1

2Mmax+2

∑
m∈M

(m− 1) · am − bm
km−1 ,

6(Mmax − 1)ES′
11(u)+ 2t1C = 2μC + (6Mmax − 8)ES′

11(u)

=
∑
m∈M

(m− 1)

{[
(6Mmax − 7)

( νn
2k

m− 1

)
+

( (1−ν)n
2k

m− 1

)]
am − bm
2
( n
m−1

)
+6(Mmax − 1)

( n
2k

m− 1

)
bm

2
( n
m−1

)}

=
∑
m∈M

(m− 1)
[
(6Mmax − 7) · (ν)m−1 + (1− ν)m−1

2m
· am − bm

km−1 + (6Mmax − 6)bm
2mkm−1

]
(1+ o(1))

≤
∑
m∈M

(6Mmax − 7) · (ν)m−1 + (1− ν)m−1

2m
· (m− 1)

(
am − bm
km−1 + bm

)
(1+ o(1))

≤ 3(Mmax − 1)
2

∑
m∈M

(m− 1)
(
am − bm
km−1 + bm

)
.

Similarly, for P(S′
1j(u)≥μC), define tjC := μC −ES′

1j(u) for j �= 1, by Bernstein’s Lemma D.3,

P

(
S′
1j(u)≥μC

)
= P

(
S′
1j(u)−ES′

1j(u)≥ tjC
)

≤ exp

(
− t2jC/2
Var[S′

1j(u)]+ (Mmax − 1) · tjC/3

)
≤ exp

(
− 3t2jC/(Mmax − 1)
6(Mmax − 1) ·ES′

1j(u)+ 2tjC

)

≤ exp

⎛⎜⎝− [(ν)Mmax−1 − (1− ν)Mmax−1]2

(Mmax − 1)2 · 22Mmax+3 ·
[∑

m∈M (m− 1)
(
am−bm
km−1

)]2
∑

m∈M (m− 1)
(
am−bm
km−1 + bm

)
⎞⎟⎠ .

The last two inequalities holds since Var[S′
1j(u)]≤ (Mmax − 1)2ES′

1j(u), and for sufficiently
large n,

tjC := μC −ES′
1j(u)=

1
2

∑
m∈M

(m− 1) ·
[( νn

2k
m− 1

)
−

( (1−ν)n
2k

m− 1

)]
am − bm
2
( n
m−1

)
≥ (ν)Mmax−1 − (1− ν)Mmax−1

2Mmax+2

∑
m∈M

(m− 1) · am − bm
km−1 ,
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6ES′
1j(u)+ 2tjC = 2μC + (6Mmax − 8)ES′

1j(u)

=
∑
m∈M

(m− 1)

{[( νn
2k

m− 1

)
+ (6Mmax − 7)

( (1−ν)n
2k

m− 1

)]
am − bm
2
( n
m−1

)
+6(Mmax − 1)

( n
2k

m− 1

)
bm

2
( n
m−1

)}

=
∑
m∈M

(m− 1) ·
(
(ν)m−1 + (6Mmax − 7) · (1− ν)m−1

2m
· am − bm

km−1 + (6Mmax − 6) · bm
2mkm−1

)
(1+ o(1))

≤
∑
m∈M

(ν)m−1 + (6Mmax − 7) · (1− ν)m−1

2m
· (m− 1)

(
am − bm
km−1 + bm

)
(1+ o(1))

≤ 3(Mmax − 1)
2

∑
m∈M

(m− 1)
(
am − bm
km−1 + bm

)
.

�

Appendix C. Algorithm correctness for the binary case

We will show the correctness of Algorithm 1 and prove Theorem 1.6 in this section. The analysis
will mainly follow from the analysis in Section 5. We only detail the differences.

Without loss of generality, we assume n is even to guarantee the existence of a binary partition
of size n/2. The method to deal with the odd n case was discussed in Lemma 2.4. Then, let the
index set be I= {i ∈ [n] : row(i)≤ 20Mmaxd}, as shown in equation (11). Let ui (resp. ūi) denote
the eigenvector associated to λi(AI) (resp. λi(A)) for i= 1, 2. Define two linear subspaces U :=
Span{u1, u2} and U := Span{ū1, ū2}, then the angle between U and U is defined as sin∠(U,U) :=
‖PU − PU‖, where PU and PU are the orthogonal projections onto U and U, respectively.

C.1. Proof of Lemma 4.4
The strategy to bound the angle is similar to Subsection 5.1.2, except that we apply Davis-Kahan
Theorem (Lemma D.6) here.

Define E := A−A and its restriction on I, namely EI := (A−A)I =AI −AI, as well as� :=
AI −A. Then the deviation AI −A is decomposed as

AI −A= (AI −AI)+ (AI −A)= EI + � .

Theorem 3.3 indicates ‖EI‖ ≤ C3
√
d with probability at least 1− n−2 when taking τ =

20Mmax,K = 3, where C3 is a constant depending only on Mmax. Moreover, Lemma 5.4 shows
that the number of vertices with high degrees is relatively small. Consequently, an argument sim-
ilar to Corollary 5.5 leads to the conclusion ‖�‖ ≤ √

d w.h.p. Together with upper bounds for
‖EI‖ and ‖�‖, Lemma C.1 shows that the angle between U and U is relatively small with high
probability.

Lemma C.1. For any c ∈ (0, 1), there exists a constant C2 depending onMmax and c such that if∑
m∈M

(m− 1)(am − bm)≥ C2 · 2Mmax+2√d,

then sin∠(U,U)≤ c with probability 1− n−2.

Proof. First, with probability 1− n−2, we have

‖AI −A‖ ≤ ‖EI‖ + ‖�‖ ≤ (C3 + 1)
√
d.
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According to the definitions in equation (8), α ≥ β and α=O(1/n), β =O(1/n). Meanwhile,
Lemma 2.3 shows that |λ2(A)| = [−α + (α − β)n/2] and |λ3(A)| = α. The

|λ2(A)| − |λ3(A)| = n
2
(α− β)− 2α ≥ 3

4
· n
2
(α− β)= 3n

8
∑
m∈M

( n
2 − 2
m− 2

)
(am − bm)( n

m−1
)

≥ 1
4

∑
m∈M

(m− 1)(am − bm)
2m−2 ≥ 1

2Mmax

∑
m∈M

(m− 1)(am − bm)≥ 4C2
√
d .

Then for some large enough C2, the following condition for Davis-Kahan Theorem (Lemma D.6)
is satisfied

‖AI −A‖ ≤ (1− 1/
√
2)

(|λ2(A)| − |λ3(A)|
)
.

Then for any c ∈ (0, 1), we can choose C2 = (C3 + 1)/c such that

‖PU − PU‖ ≤ 2‖AI −A‖
|λ2(A)| − |λ3(A)|

≤ 2(C3 + 1)
√
d

4C2
√
d

= c
2

≤ c .
�

Now, we focus on the accuracy of Algorithm 7, once the conditions in Lemma C.1 are satisfied.

Lemma C.2 (Lemma 23 in [19]). If sin∠(U,U)≤ c≤ 1
4 , there exists a unit vector v ∈U such that

the angle between ū2 and v satisfies sin∠(ū2, v)≤ 2
√
c.

The desired vector v, as constructed in Algorithm 7, is the unit vector perpendicular to PU1n,
where PU1n is the projection of all-ones vector onto U. Lemmas C.1 and C.2 together give the
following corollary.

Corollary C.3. For any c ∈ (0, 1), there exists a unit vector v ∈U such that the angle between ū2
and v satisfies sin∠(ū2, v)≤ c< 1 with probability 1−O(e−n).

Proof. For any c ∈ (0, 1), we could choose constants C2, C3 in Lemma C.1 such that sin∠(U,U)≤
c2
4 < 1. Then by Lemma C.2, we construct v such that sin∠(ū2, v)≤ c. �
LemmaC.4 (Lemma 23 in [19]). If sin∠(ū2, v)< c≤ 0.5, then we can identify at least (1− 8c2/3)n
vertices from each block correctly.

The proof of Lemma 4.4 is completed when choosing C2, C3 in Lemma C.1 s.t. c≤ 1
4 .

C.2 Proof of Lemma 4.5
The proof strategy is similar to Subsections 5.2 and 5.3. In Algorithm 1, we first colour the hyper-
edges with red and blue with equal probability. By running Algorithm 8 on the red graph, we
obtain a ν-correct partition V ′

1,V
′
2 of V =V1 ∪V2, i.e., |Vl ∩V ′

l | ≥ νn/2 for l= 1, 2. In the rest
of the proof, we condition on this event and the event that the maximum red degree of a vertex
is at most log2 (n) with probability at least 1− o(1). This can be proved by Bernstein’s inequality
(Lemma D.3).

Similarly, we consider the probability of a hyperedge e= {i1, · · · , im} being blue conditioning
on the event that e is not a red hyperedge in each underlying m-uniform hypergraph separately.
If vertices i1, · · · , im are all from the same true cluster, then the probability is ψm, otherwise φm,
where ψm and φm are defined in equations (29) and (30), and the presence of those hyperedges
are represented by random variables ζ (am)e ∼ Bernoulli (ψm), ξ (bm)e ∼ Bernoulli (φm), respectively.
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Following a similar argument in Subsection 5.2, the row sum of u can be written as

S′
lj(u) :=

∑
m∈M

(m− 1) ·

⎧⎪⎪⎨⎪⎪⎩
∑

e∈ E(am)
l,j

ζ (am)e +
∑

e∈E(bm)
l,j

ξ (bm)e

⎫⎪⎪⎬⎪⎪⎭ , u ∈Vl ,

where E(am)l,j := Em([Vl]1, [Vl ∩V ′
j ]m−1) denotes the set of m-hyperedges with 1 vertex from

[Vl]1 and the other m− 1 vertices from [Vl ∩V ′
j ]m−1, while E(bm)l,j := Em

(
[Vl]1, [V ′

j ]m−1 \ [Vl ∩
V ′
j ]m−1

)
denotes the set ofm-hyperedges with 1 vertex in [Vl]1 while the remainingm− 1 vertices

in [V ′
j ]m−1 \ [Vl ∩V ′

j ]m−1, with their cardinalities

|E(am)l,j | ≤
(|Vl ∩V ′

j |
m− 1

)
, |E(bm)l,j | ≤

[( |V ′
j |

m− 1

)
−

(|Vl ∩V ′
j |

m− 1

)]
.

According to the fact |Vl ∩V ′
l | ≥ νn/2, |Vl| = n/2, |V ′

l | = n/2 for l= 1, 2, we have

|E(am)l,l | ≥
( νn

2
m− 1

)
, |E(am)l,j | ≤

( (1−ν)n
2

m− 1

)
, j �= l .

To simplify the calculation, we take the lower and upper bound of |E(am)l,l | and |E(am)l,j |(j �= l)

respectively. Taking expectation with respect to ζ (am)e and ξ (bm)e , for any u ∈Vl, we have

ES′
ll(u)=

∑
m∈M

(m− 1) ·
[( νn

2
m− 1

)
(ψm − φm)+

( n
2

m− 1

)
φm

]
,

ES′
lj(u)=

∑
m∈M

(m− 1) ·
[( (1−ν)n

2
m− 1

)
(ψm − φm)+

( n
2

m− 1

)
φm

]
, j �= l .

By assumptions in Theorem 1.7, ES′
ll(u)−ES′

lj(u)=�(1). We define

μC := 1
2

∑
m∈M

(m− 1) ·
{[( νn

2
m− 1

)
+

( (1−ν)n
2

m− 1

)]
(ψm − φm)+ 2

( n
2

m− 1

)
φm

}
.

After Algorithm 6, if a vertex u ∈Vl is mislabelled, one of the following events must happen

• S′
ll(u)≤μC,

• S′
lj(u)≥μC, for some j �= l.

By an argument similar to Lemma 5.14, we can prove that

ρ′
1 = P

(
S′
ll(u)≤μC

) ≤ ρ , ρ′
2 = P

(
S′
lj(u)≥μC

)
≤ ρ ,

where ρ = exp(−CM(2) · SNRM(2)) and

CM(2) := [(ν)Mmax−1 − (1− ν)Mmax−1]2

8(Mmax − 1)2
, SNRM(2) :=

[∑
m∈M (m− 1)

(
am−bm
2m−1

)]2
∑

m∈M (m− 1)
(
am−bm
2m−1 + bm

) .
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As a result, the probability that either of those events happened is bounded by ρ. The number of
mislabelled vertices in V1 after Algorithm 5 is at most

Rl =
|Vl\V ′

l |∑
i=1

�i +
|Vl∩V ′

l |∑
i=1

�i ,

where �i (resp.�i) are i.i.d indicator random variables with mean ρ′
1 (resp. ρ

′
2). Then

ERl ≤ n
2
ρ′
1 + (1− ν)n

2
ρ′
2 = (1− ν/2)nρ .

where ν is the correctness after Algorithm 4. Let tl := (1+ ν/2)nρ, then by Chernoff Lemma D.1,

P (Rl ≥ nρ)= P [Rl − (1− ν/2)nρ ≥ tl]≤ P (Rl −ERl ≥ tl)≤ e−ctl =O(e−nρ) ,

which means that with probability 1−O(e−nρ), the fraction of mislabelled vertices inVl is smaller
than 2ρ, i.e., the correctness of Vl is at least γ := max{ν, 1− 2ρ}.

Appendix D. Useful Lemmas

Lemma D.1 (Chernoff’s inequality, Theorem 2.3.6 in [69]). Let Xi be independent Bernoulli ran-
dom variables with parameters pi. Consider their sum SN = ∑N

i=1 Xi and denote its mean by
μ=ESN. Then for any δ ∈ (0, 1],

P
(|SN −μ| ≥ δμ) ≤ 2 exp (−cδ2μ) .

Lemma D.2 (Hoeffding’s inequality, Theorem 2.2.6 in [69]). Let X1, . . . , XN be independent
random variables with Xi ∈ [ai, bi] for each i ∈ {1, . . . ,N}. Then for any, t ≥ 0, we have

P

(∣∣∣∣ N∑
i=1

(Xi −EXi)
∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2t2∑N

i=1 (bi − ai)2

)
.

LemmaD.3 (Bernstein’s inequality, Theorem 2.8.4 in [69]). Let X1, . . . , XN be independent mean-
zero random variables such that |Xi| ≤K for all i. Let σ 2 = ∑N

i=1 EX2
i . Then for every t ≥ 0, we have

P

(∣∣∣ N∑
i=1

Xi

∣∣∣ ≥ t

)
≤ 2 exp

(
− t2/2
σ 2 +Kt/3

)
.

LemmaD.4 (Bennett’s inequality, Theorem 2.9.2 in [69]). Let X1, . . . , XN be independent random
variables. Assume that |Xi −EXi| ≤K almost surely for every i. Then for any t> 0, we have

P

( N∑
i=1

(Xi −EXi)≥ t

)
≤ exp

(
−σ

2

K2 · h
(
Kt
σ 2

))
,

where σ 2 = ∑N
i=1 Var(Xi), and h(u) := (1+ u) log (1+ u)− u.

Lemma D.5 (Weyl’s inequality). Let A, E ∈R
m×n be two real m× n matrices, then |σi(A+

E)− σi(A)| ≤ ‖E‖ for every 1≤ i≤min{m, n}. Furthermore, if m= n and A, E ∈R
n×n are real

symmetric, then |λi(A+ E)− λi(A)| ≤ ‖E‖ for all 1≤ i≤ n.
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Lemma D.6 (Davis-Kahan’s sin� Theorem, Theorem 2.2.1 in [15]). Let M and M=M+ E
be two real symmetric n× n matrices, n× n matrices, with eigenvalue decompositions given
respectively by

M=
n∑

i=1
λiuiuiT =

[
U U⊥

] ⎡⎣� 0

0 �⊥

⎤⎦⎡⎣UT

UT
⊥

⎤⎦ ,

M=
n∑

i=1
λiuiuT

i =
[
U U⊥

] ⎡⎣� 0

0 �⊥

⎤⎦⎡⎣UT

UT⊥

⎤⎦ .

Here, {λi}ni=1(resp. {λi}ni=1) stand for the eigenvalues of M(resp. M), and ui(resp. ui) denotes the
eigenvector associated λi(resp. λi). Additionally, for some fixed integer r ∈ [n], we denote

� := diag{λ1, . . . , λr}, �⊥ := diag{λr+1, . . . , λn},
U := [u1, . . . , ur] ∈R

n×r , U⊥ := [ur+1, . . . , un] ∈R
n×(n−r).

The matrices �, �⊥, U, U⊥ are defined analogously. Assume that

eigenvalues(�)⊆ [α, β] , eigenvalues(�⊥)⊆ (−∞, α −�]∪ [β +�,∞), α, β ∈R ,�> 0 ,

and the projection matrices are given by PU := UUT, PU := UUT, then one has ‖PU − PU‖ ≤
(2‖E‖/�). In particular, suppose that |λ1| ≥ |λ2| ≥ · · · ≥ |λr| ≥ |λr+1| ≥ · · · |λn| (resp. |λ1| ≥
· · · ≥ |λn|). If ‖E‖ ≤ (1− 1/

√
2)(|λ|r − |λ|r+1), then one has

‖PU − PU‖ ≤ 2‖E‖
|λr| − |λr+1|

.

Lemma D.7 (Wedin’s sin� Theorem, Theorem 2.3.1 in [15]). Let M and M=M+ E be two
n1 × n2 real matrices and n2 real matrices and n1 ≥ n2, with SVDs given respectively by

M=
n1∑
i=1

σ iuiviT =
[
U U⊥

] ⎡⎣� 0 0

0 �⊥ 0

⎤⎦⎡⎣VT

VT
⊥

⎤⎦

M=
n1∑
i=1

σiuivT
i =

[
U U⊥

] ⎡⎣� 0 0

0 �⊥ 0

⎤⎦⎡⎣VT

VT⊥

⎤⎦ .

Here, σ 1 ≥ · · · ≥ σ n1 (resp. σ1 ≥ · · · ≥ σn1) stand for the singular values of M(resp. M), ui(resp.
ui) denotes the left singular vector associated with the singular value σ i(resp. σi), and vi(resp. vi)
denotes the right singular vector associated with the singular value σ i(resp. σi). In addition, for any
fixed integer r ∈ [n], we denote

� := diag{σ1, . . . , σr}, �⊥ := diag{σr+1, . . . , σn1},
U := [u1, . . . , ur] ∈R

n1×r , U⊥ := [ur+1, . . . , un1 ] ∈R
n1×(n1−r),

V := [v1, . . . , vr] ∈R
n2×r , V⊥ := [vr+1, . . . , vn2 ] ∈R

n2×(n2−r).
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The matrices �, �⊥, V, V⊥ are defined analogously. If E=M−M−M satisfies ‖E‖ ≤ σ r - with
the projection matrices PU := UUT, one has

max
{‖PU − PU‖, ‖PV − PV‖} ≤

√
2max

{‖ETU‖, ‖EV‖}
σ r − σ r+1 − ‖E‖ .

In particular, if ‖E‖ ≤ (1− 1/
√
2)(σ r − σ r+1), then one has

max
{‖PU − PU‖, ‖PV − PV‖} ≤

√
2‖E‖

σ r − σ r+1
.

Cite this article: Dumitriu I, Wang H-X, and Zhu Y (2025). Partial recovery and weak consistency in the non-
uniform hypergraph stochastic block model. Combinatorics, Probability and Computing 34, 1–51. https://doi.org/10.1017/
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