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Abstract- A theory for the quantitative analysis of multicomponent mineral systems by means of 
X-ray diffraction is presented, A linear interaction between mineral pairs is postulated. The theory 
is verified experimentally for bicomponent and tricomponent systems using a variety of sample 
preparation techniques including random powder mounts, suspensions sedimented onto glass slides, 
and pressed powder pellets. The minerals studied include quartz, fluorite. kaolinite. glauconite, 
illite. and montmorillonite. 

The determination of the linear interaction factors for mineral pairs is treated theoretically and 
experimentally. Emphasis is placed upon techniques that are applicable to naturally occurring mineral 
systems. Four approaches are presented for determining linear interaction coefficients for various 
types of such mineral systems. These approaches are applied to the experimental data and the results 
are compared. Results accurate within 2 per cent are commonly obtained, 

Experimental techniques are discussed and a qualitative and quantitative error analysis is pre­
sented. It is shown that the indicated quantities present may not be particularly sensitive to the value 
of the linear interaction coefficient. 

INTRODUCTION 

THE elements for the quantitative analysis of 
mixtures of several mineralogical components 
by X-ray diffraction were first expounded by Klug 
and Alexander (1954). Various schemes have 
since been devised to apply their principles [Moore 
(1965)]. Such approaches are based on the assump­
tion that the intensity of any given diffraction 
maximum is linearly affected by the relative 
amounts of the other mineralogical components 
present. Mathematically speaking, a mineral 
suite composed of n different components may be 
described by an n dimensional linear manifold. 
The solution of such a system is facilitated by the 
principles of linear algebra. and statistical analysis 
may be applied through multiple linear regression, 
Practically speaking, the effect of the presence of 
anyone mineralogical component on the intensity 
of a diffraction maximum of any other given 
component is expressed by a single constant. 
This paper discusses the evaluation of these 
constants and emphasizes the treatment of naturally 
occurring mineral systems. 

posed of one or more recognizable crystalline 
structural configurations or units, each unit being 
associated with some standard configuration but 
not necessarily having a composition identical to 
that of the standard. The purpose of this definition 
is for the recognition of the fact that within a class 
of minerals designated by a common name, there 
may exist variable amounts of atomic substitution 
and/or degrees of crystallinity which might 
appreciably affect the intensity of the X-ray diffrac­
tion maximum for a given mineral sample. This 
results in complications in the application of the 
theoretical principles to such naturally occurring 
systems, For example, linear interaction factors 
derived using one mineral sample mayor may not 
be applicable to the same mineral type occurring 
at a geologically different site. One would certainly 
not expect a loA clay reflection to be caused by 
precisely the same structural configuration in all 
deposits. Moreover, within a single deposit a con­
siderable variation in the diffraction characteristics 
of a given mineral may be. encountered. In the 
following sections the theory of quantitative 
analysis of multi component mineral systems is 

NATURAL SYSTEMS developed and the special considerations for 
For purposes of this paper a naturally occurring applications to naturally occurring systems are 

mineral system is defined as a solid material com- presented. 
325 
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THEORY 
Notation: 

Superscripts. A superscript serves two purposes: 
1. To identify a particular sample, and 
2. To relate the composition of that sample 

to other samples. 
Subscripts. A subscript refers to a particular 

diffraction maximum for a particular mineral. This 
subscript will be a number in the theoretical 
development or a letter designating the mineral 
in the experimental sections; i.e., K for kaolinite, 
G for glauconite, etc. The choice of the hkl 
reflection to be used for a given mineral may be 
arbitrarily (or conveniently) chosen but must be 
consistently employed in the analysis. For this 
paper all reflections referred to are from the 001 
planes of the clays. 

Letters 

J net peak intensity; this may be defined either 
as total peak counts per second less back­
ground or as the integrated peak intensity 
less integrated background. For this paper 
the former definition is used. 

r net peak intensity for a sample composed of 
only a single mineralogical component. 

c constant of the diffractometer geometry and 
of the mineralogical component. 

p density of the mineralogical component. 
f.L linear absorption coefficient of the minera­

logical component. 
Ii mass absorption coefficient of the minera­

logical component as calculated from the 
chemical structural formula for the mineral, 
see Black (1963). 

x weight fraction of the component in a sample 
= weight of a given mineral present divided 
by the total weight of all minerals considered 
in the analysis. 

Klug and Alexander (1948) have shown that the 
net diffracted intensity of the ph component of an 
n component mixture may be written: 

(I) 

where ji! is the mass absorption coefficient for the 
sample. Equation (1) may also be written 

8 I/p;jI! 
Xi=--. 

Ci 
(2) 

If the sum of the weight fractions of all of the 
mineralogical components considered in the 
analysis is taken to be unity we may write 

(3) 

Since jis is a constant for a given sample it may be 
removed from the summation and Eq. (3) becomes 

ji!= -=n,.-----­

}: I/pj/Cj 
1=1 

Substituting Eq. (4) into Eq. (2) yields 

j=1 j=l 

(4) 

(5) 

Note that both the density and the constant of the 
geometry and component are accounted for by a 
single constant R. In Eq. (5) xi' is the unknown 
whose value is desired, the I values are the mea­
sured reflection intensities, and the R values 
represent coefficients, the determination of which 
constitutes the purpose of this paper. This objective 
is facilitated by inverting Eq. (5) to give 

(6) 

Since R;I;' is a constant in Eq. (6) we may divide 
each factor of the sum in the numerator by the 
term to yield 

(7) 

For convenience define 

{3ji = ~~ (8) 

so that Eq. (7) becomes 

1 n I.S 
X·S = L {3ji J> 

t ;=1 I 

(9) 

Note that{3ii = R;/R; = 1. 
Equation (9) constitutes the fundamental state­

ment of the linear effect of the presence of all other 
minerals on the net peak intensity of a given mineral. 
The {3ij values denote this linear interaction. 
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MUL T1COMPONENT MINERAL SYSTEMS 327 

VERIFICATION OF THE APPLICABILITY OF THE 

THEORY 

The verification of the applicability of Eq. (9) to 
any given mUlti-component system under any given 
set of experimental conditions depends solely upon 
the existence of and the determinability of the 
linear interaction coefficients {3iJ . The derivation of 
Eq. (9) presumed (after Klug and Alexander) a 
random orientation of the mineral grains composing 
the sample. In fact , the approach can be success­
fully applied to any system wherein the requisite 
linearity can be shown to exist. The following 
section will demonstrate the extent to which such 
linearity has been observed for commonly used 
experimental procedures. These procedures in­
clude random powder mounts, sedimented suspen­
sions on glass slides, and pressed powder pellets. 

]n the particular case of a two component 
mixture Eq. (9) becomes 

1 II 12 12 0 
-={311-1 +{321-1 = 1 + {321-1 (I ) 
x, 1 1 1 

or, transposing the I to the left side of the equation 

1 12 
--1 = {321-1 . 
XI I 

(11) 

4 

,.--, 

N -0 2 
X 
"-

]n the bicomponent case a plot of(l/xl)-1 versus 
12//1 should be linear with slope equal to (321. 

Figure 1 presents the data of Williams (1959) for 
a bicomponent powder mount of sodium fluoride 
(fluorite) and silicon dioxide (quartz). Agreement 
with the linear hypothesis is seen to be good. 
Figures 2-4 show the data for bicomponent 
suspensions sedimented onto glass slides for mix­
tures of kaolinite (Huber Corporation, Huber, 
Georgia) and glauconite (Hornerstown Formation 
in Monmouth County, New Jersey); and of kaolinite 
(Huber) and montmorillonite (API H-23). The 
details used in obtaining these data may be found in 
the paper by Moore (1965). Again the requisite 
linearity is found to hold. Finally the criterion of 
linearity has been found to hold for pressed powder 
pellets of mixtures of quartz, muscovite and 
kaolinite by Doyle and Heron of Duke University 
(personal communication). Verification for a 
tricomponent sediment of kaolinite, montmoril­
lonite and glauconite on glass slides as shown in 
Figs. 5 and 6 has been presented by Moore (1965). 
Thus it would appear that Eq. (9) holds for several 
commonly employed experimental techniques. 
This, of course, is not to say that it has general 
applicability. Indeed, for any proposed experi­
mental procedure, Eq. (9) should be verified 
directly. 

-

~ ... 
/- oft.r Wllllom, (1959', 

• 
/.. Expr .... d for XQTl + XFLUOR .• 1.0 

O~--------~--------~----------~-o 2 3 

I FLUORITE / I QUARTl. 

Fig. 1. Verification of Eq. (9) for random powder mounts. 
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Fig. 2. Verification of Eq. (9) for sedimented glass slides . 

• 

o----~----~--~----~--~-o .04 .ot .oS .10 J2 

1 MONTMORILLONITE / I KAOLINITE 

Fig. 3. Verification of Eq. (9) for sedimented glass slides. 
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I KAOLINITE / I MONTMORILLONITE 

Fig. 4. Verification of Eq. (9) for sedimented glass slides. 
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I MONTMORILLONITE / I KAOLINITE 

Fig. 5. Verification of Eq. (9) for tricomponent mixtures. 
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I GLAUCONITE / I KAOLINITE 

Fig. 6. Verification of Eq. (9) for tricomponent mixtures. 

EVALUATION OF THE CONSTANTS OF 

LINEARITY 

Having verified the applicability of Eq. (9) it is 
necessary to obtain values for the constants of 
linearity, f3;j. The following section will demon­
strate several methods that have been developed to 
obtain these constants in naturally occurring 
mineral systems. The four approaches to be des­
cribed for various types of bicomponent systems 
will be termed the pure component approach, the 
direct calibration approach, the intercept approach, 
and the blend approach. 

The pure component approach as described by 
Black (1963) gives the R; values of Eq. (5) as 

1 
R;=-/o· 

IJ.; 

From Eq. (8) it is seen that 

(12) 

(13) 

Thus the f3 value between any two components 
may be calculated directly if their R values are 
known. A knowledge of the R value presupposes a 
knowledge of the chemical structural formula for 
each mineral and the existence of a pure sample of 
each of the mineral components that is exactly like 
the analogous mineral in the sample. 

In order to verify the pure component approach 
a bicomponent series of kaolinite (Huber) and 
glauconite (Hornerstown) was prepared as 
described by Moore (1965). Based on a formula for 
kaolinite of AI4Si40 lO(OH)s and the use of CuKa 

radiation, the mass absorption coefficient is cal­
culated as 30·38. Unfortunately, the chemical 
composition of glauconite is not definite. A formula 
is: 

(OH)4 (K, Cao." Na)1-6s(Si7.30Alo.7o) 

. (Alo.94F el.94Feo.38 Mgo.so)02o. 

The relative proportions of K, Ca, and Na in the 
Hornerstown glauconite are unknown. For all K 
and no Ca or N a, the mass absorption coefficient is 
83·66; for all Na and no Ca or K the mass absorp­
tion coefficient is 76·71. X-ray diffractograms of 
pure kaolinite gave a net intensity of 502 counts/ 
sec, and for pure glauconite a net intensity of 33·4 
counts/sec was obtained. The value of R for 
kaolinite, R K , then is 6·58 x 10-5 ; and the value of R 
for glauconite, RG , ranges from 3·92 X 10-4 for all 
Na to 3·59 X 10-4 for all K. Based on these values, 
the value of f3GK ranges from 5·44 for kaolinite and 
K-glauconite to 5·96 for kaolinite and Na-glauco­
nite. 

The calibration approach is the simplest and 
most direct approach. I t is based upon the funda­
mental linear statement of Eq. (9) and determines 
the f3 value from the slope of a plot of (I /XI) - I 
versus /2/11 . This approach may be applied to 
Williams' (1959) data of Fig. I for fluorite and 
quartz to yield a value for f3FQ of 1·26. Similarly, 
Fig. 2 for kaolinite and glauconite yields a value for 
f3GK of 6·15. This value may be directly compared 
with the pure component approach value of from 
5·44 to 5·%. Figures 3 and 4 for kaolinite and 
montmorillonite (Moore 1965) give a value of 
5·21 for f3MK . 
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The intercept approach is derived by considering 
a bicomponent system composed of an unknown 
percentage of component i and an unknown per­
centage of componentj. Suppose that one of these 
components, say component i, is obtainable in the 
pure form. For the present it will be assumed that 
the pure mineral i is exactly like component i 
present in the unknown sample with respect to 
mineralogy, degree of crystallinity. and all other 
properties that affect the diffraction of X-rays. It 
will be shown subsequently that nonidentical pure 
components may be easily and directly used. The 
second unknown component may be of any known 
or unknown mineralogy. A typical example of such 
a bicomponent system that might occur naturally 
would be a mixture of kaolinite and some inter­
stratified or mixed layer mineral. The kaolinite 
would be easily identifiable and obtainable in a pure 
form, whereas the interstratified mineral might be 
difficult to identify. 

From Eq. (II) we may write 

(14) 

where the superscript u implies the original un­
known sample. To a known weight (in solution or 
in powder form) of the unknown sample having a 
weight of dry material, wU

, add a known weight of 
the pure form of component i having a weight of 
dry material, WiY ' To define the amount of pure 
component i added let y = wNwu = ratio of weight 
of material added to weight of original sample 
(Eq. (15)). For this new sample we may write by 
analogy to Eq. (14) 

_1 __ 1- {3 Iju+ y 
Xiu + y - iiliu + y' (16) 

4 

where the superscript u + y implies a new sample 
formed by adding a known weight of pure com­
ponent i to the original unknown sample. 

It may be shown algebraically that 

For critical work or when there is doubt as to the 
likeness of the pure component i added and of 
component i in the original sample, it is best to 
select several values of y and plot (3ij versus y as in 
Fig. 7. If a relationship of the form of curve (a) is 
found. this implies that the pure component added 
is indeed like the mineral in the original sample. 
Conversely, if a relationship of the form of curve 
(b) is obtained, this implies that the pure component 
added is different from the mineral in the original 
sample. I n this case the value of {3 to use is that 
obtained by extrapolating the curve to y = O. This 
approach is essentially the same as that described 
by Brindley and Udagawa (1961). 

In order to verify the intercept approach, two 
test series were performed. In the first series a 
bicomponent kaolinite (Huber) and glauconite 
(Hornerstown) mixture was studied using the 
kaolinite as the pure component added. Since the 
unknown sample was laboratory mixed, the 
kaolinite added was in fact identical to that in the 
original sample. Nevertheless, several values of y 
ranging from 0·5 to 2·69 were used. Figure 8 shows 
that the {3 values were essentially constant at 
{3KG = 0·165 or {3GK = 6·06. In the second series it 
was desired to determine the amount of kaolinite in 
the -2M fraction of a commercial illite (grundite) 
from Illinois. Since no pure kaolinite from the site 
at which the illite was obtained was available, a 

)III 3 

(b) added component 
I unlike component I in 
unknown sample. 

component I identical to 
2 component I in unknown sample. 

I~--~----~----~----~--~-----o 0.1 0.2 0.3 0.4 0.5 
y 

Fig. 7. Example of modified intercept approach. 
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"'KG 0.170 ..... _ ....... --: ___ ..... ____ _ 

0.160 

o 

Line repre.ents lea.t 
squares fit to data. 

y 

2 

Fig. 8. Modified intercept approach applied to kaolinite­
glauconite series. 

Georgia kaolinite (Hydrite-UF) was chosen. It was 
anticipated that the two kaolinites would differ, 
therefore several values of y ranging from 0·177 to 
1·0 were chosen. The results are shown in Fig. 9. 
The relationship is of the form of curve (b) of Fig. 7 
indicating that the two kaolinites were indeed 
different. The intercept for y = 0 gives a value of 
0·135 for .BKI or 7·41 for .BIK' 

different from the relative proportions of com­
ponents I and 2 in sample B. It is assumed that 
components I and 2 in both samples A and Bare 
identical with respect to their properties affecting 
the diffraction of X-rays. Considering component I 
in sample A we may write 

(18) 

and for sample B, 

(19) 

The blend approach as applied to bicomponent 
systems allows for the evaluation of the .Bu values 
when pure samples of neither component are 
available. The basis of the approach is that if two 
samples with differing relative proportions of the 
two components are blended or mixed in a known 
ratio, the .B values may be obtained by X-raying 
these three samples. Consider samples A and B 
from a bicomponent system and let sample A have 
relative proportions of components I and 2 

Now if we blend M parts (by weight) of sample A 
with I part (by weight) of sample B we may write 

0.160 

~KI 
0.140 

o 

line represents least 
squares fit to data. 

0.2 0.4 0.6 

y 
0.8 

Fig. 9. Modified intercept approach applied to kaolinite­
illite series. 

1.0 
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(20) 

However, since the blend ratio is known it follows 
that 

(21 ) 

Once a value of M is chosen it is possible to 
combine Eqs. (18), (19), (20), and (21) to yield a 
single equation in the unknown {32. and the knowns 
[2AI /. A, /ll / /, and /lIABI [.MAB. For convenience we 
will choose M = I, and the combined equation 
becomes 

{32.= ([A/B) [AB[A /AB/B' 2 2 2 2 2 2 
2 / A/ R -/ AB/ A - ] AB] B 

1 I 1 1 1 I 

(22) 

where AB denotes a I to I blend (by weight) of 
samples A andB. 

In order to verify the blend approach, two 
samples designated A and B on Fig. 2 were blended 
in a 1 to 1 ratio to yield sample AB of the same 
figure. Inserting the peak height ratios from these 
three kaolinite-glauconite samples into Eq. (22) 
yielded a value of 5·97 for {3GK' It should be pointed 
out that the success with which the blend approach 
may be applied depends strongly upon samples A 
and B having large differences in their relative 
proportions of components I and 2. As the relative 
proportions in the two samples approach the same 
value, Eq. (22) becomes rapidly unstable due to its 
dependency on the quotient of the differences 
between two large but nearly equal numbers. 

In the preceding paragraphs the application of 
four approaches for the evaluation of the linear 
coefficients of interaction between mineral pairs 
has been described in detail for bicomponent 
systems. These same principles may be extended 
for use individually or in combination in the analysis 
of multicomponent systems. 

To conclude this section the experimental data 
presented will be summarized and the results of the 
several approaches for the bicomponent glauconite­
kaolinite series will be compared. Table I sum­
marizes the {3 values for mineral pairs obtained by 
the various approaches. 
It may be seen from Table 1 that the values for 

{3GK obtained by the several approaches vary from 
5·44 to 6·15 . In order to show graphically the effect 
of such a variation, Fig. 10 plots calculated per­
centage kaolinite (using the two {3 values and 
experimental peak height ratios) versus the actual 
percentage kaolinite. The 45° line represents the 
line of perfect agreement. In both of these extreme 
cases good agreement is found, the calibration 
slope method yielding the more accurate values. Of 
course, the intermediate {3 values obtained by the 
other methods would give results intermediate 
between those of the extreme {3 values shown. In 
the following section the dependency of the cal­
culated percentage present upon the {3 values will 
be investigated qualitatively and quantitatively. 

DISCUSSION 

This section will be devoted to a discussion of 
the factors to be considered in the application of the 
analytical procedures described. As with any 
analytical procedure. the accuracy obtainable 
depends upon the experimental technique em­
ployed. While the procedure was formulated 
specifically to reduce the sensitivity of the results to 
experimental technique, there are certain COL ' 

siderations that will enhance accuracy. A general 
warning is in order concerning sampling techniques. 
X-ray diffraction exposes only a small portion of 
the material to examination. If the results of this 
examination are to reflect the properties of the 
parent popUlation, the sample must be represen­
tative. Once a representative sample has been 
obtained it must be prepared to be subjected to 
irradiation. While the mathematical derivation of 
the analytical procedure presupposed a sample in 
which the mineral grains were randomly oriented, 
the experimental phase of this work has shown that 

Table I. Summary of f3 values 

Approach Minerals f3 value 

Pure component 
Calibration slope 
Calibration slope 
Calibration slope 
Intercept 
Modified intercept 
Blend 

G lauconite- Kaolinite 
Fluorite-Quartz 
Glauconite-Kaolinite 
Montmorillonite-Kaolinite 
G lauconite-Kaolinite 
Illite-Kaolinite 
Galuconite- Kaolinite 

f3GK = 5·44-5·96 
f3rQ = 1·26 
f3 GK = 6·15 
f3MK = 5·21 
f3GK = 6·06 
f3IK = 7·41 
f3GK = 5·97 
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100r---------------------------~ 
• "GK = 6.15 (Calibration slope) 
• ~ GK = 5.44 (Pure campan,n't) 

• J 

I 
x~ 

f/· 
,/ 

/.. Line of perfect 
/ agreement. 

0------~--~----~----6---~ 
o 20 40 60 80 100 

ACTUAL PERCENTAGE KAOLINITE 

Fig. 10. Effect of variation in {3 on agreement in kaolin­
ite-glauconite series. 

several techniques known to induce preferred 
orientation of anisotropically shaped mineral grains 
also obey the requisite linearity implicit in Eq. (9). 
For instance, mixtures sedimented on glass slides 
as used in the glauconite-kaolinite, montmoril­
lonite-kaolinite, and illite-kaolinite series are 
specifically employed in clay mineral analysis to 
accentuate the basal reflections. The results of 
Heron and Doyle for pellets of mixtures of orien­
ting (kaolinite) and non-orienting (quartz) minerals 
pressed under anisotropic stress conditions probably 
induced partial preferential orientation in one phase 
(kaolinite) of the sample. Even though these 
procedures have been shown empirically to be 
valid there are two points worthy of consideration. 
First, since X-rays are most strongly diffracted 
from the uppermost grains of the sample, prepara­
tion techniques that induce a poorly controlled 
preferential orientation of the sample surface 
should be avoided. Especially undesirable is the 
leveling of the surface of a random powder sample 
by pressing with a glass plate. Secondly, any 
technique that induces preferred orientation must 
be reproduced exactly if the original {3 values are to 
apply. Thus (3 values that are obtained using such 
techniques may be difficult to transfer from labora­
tory to laboratory or even from operator to 
operator. Therefore it is recommended that random 
mounts as described by McCreery (1949) be used 
whenever possible. For minerals with anisotropic 
shape or with anisotropic cleavage it may be desir­
able to disperse the mineral grains in a synthetic 
resin such as epoxy and regrind in order to eliminate 

preferred orientation. 
Techniques employed in obtaining the actual 

diffractograms are becoming less critical as 
improvements are introduced in X-ray diffraction 
apparatus. A good measure of both sample pre­
paration technique and X-ray equipment operation 
technique is reproducibility. If successive and 
repeated runs on two identically prepared samples 
give good agreement for the peak intensity ratios, 
then the techniques employed may, with reasonable 
certainty, be expected to yield acceptable results. 
In analyzing diffractograms it must be decided 
whether net peak heights or net peak areas are to be 
used. An integrated intensity (peak area) is a more 
valid quantity from a theoretical point of view. 
Moreover, since the peal.. width at half height 
(which is usually used to compute area) is less 
sensitive to scanning techniques than is peak height, 
this value has a stabilizing influence on indicated 
intensity. Nevertheless, the writer finds that oscil­
lating over the peaks several times at a low scan 
speed (say 1/40 20/min) and using net peak height 
alone yields quite adequate values. The writer has 
been specifically unsuccessful in obtaining con­
sistent fixed time counts by setting the goniometer 
"on the peak" for a single determination. 

Since the determination of the {3 values depends 
upon experimentally obtained values, it is useful 
to examine the effect of an error in the calculation 
of {3 on the indicated percentage of the mineral 
components present when the erroneous value is 
applied. As an example consider the case of 
{321 = 5'0. Figure 11 plots actual percentage of 

...J « a: 
1&.1 
z 
2:: 

u.. 
o 
1&.1 
(!) 

~ 
Z 
1&.1 
o 
a: 
1&.1 
Q. 

o 
1&.1 

~ 
o 
o 
z 

l00r---------------~ 

20 40 60 80 100 

ACTUAL PERCENTAGE OF MINERAL I 

Fig. I I. Effect of errors in {3 on agreement of indicated 
and actual percentages. 
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mineral I present, XI (actual), versus indicated 
percentage of mineral 1 present, XI (indicated), 
for several positive and negative errors in /321' The 
error in /3 is calculated as 100[x(erroneous)-x(acluan]/ 
[Xc3cluaD]' The 45° line labeled 0 per cent corre­
sponds with the perfect agreement line of Fig. 10. 
It is seen that positive errors in /321 underestimate 
the percentage of component 1 present, and con­
versely for negative errors. The error in indicated 
percentage of component 2 will have an equal and 
opposite value to the error in indicated percentage 
of component 1 since Eq. (3) requires that the 
sum of the percentages present be 100 per cent. 
It may also be seen that the absolute percentage 
error defined as [x !(indicated) - X J(actuan] X 100 is 
largest when the percentages of the two com­
ponents are nearly equal. The error tends to zero 
as the proportions approach either single pure 
component end point. In every case the maximum 
percentage error is substantially less than the 
percentage error in /3. Typically it is less by a 
factor of 1/4. Thus for /321 = 5 a 10 per cent error 
in /3 always results in an absolute percentage error 
in XI of less than 2' 5 per cent. 
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Resume -II s'agit d'une theorie pour I'analyse quantitative des systemes mineraux a constituants 
multiples par diffraction de rayons X. On postule une inter-reaction lineaire entre les paires minerales. 
On verifie la theorie de maniere experimentale pour les systemes a deux et a trois constituants en utili­
sant un certain nombre de techniques de preparation d'echantillons, y-compris des montages de poudre 
faits au hasard, des suspensions en sediments sur plaques de verre, et des pastilles de poudre com­
primee. Les mineraux etudies comprennent Ie quartz, la fluorite, la kaolinite, la glauconite, l'iIlite, et 
la montmorillonite. 

La fixation des facteurs d'inter-reaction lineaire pour les paires minerales est traitee sur Ie double 
plan theorique et experimental. Les techniques qui s'appliquent a des systemes mineraux naturels sont 
particulierement accentuees. Quatre modes d'approche sont donnes pour fixer les coefficients d'inter­
reaction lineaire pour differents types de systemes mineraux. lis sont employes pour des donnees 
experimentales et les resultats compares. Ceux-ci sont sou vent corrects a 2% pres. 

II y a une discussion des techniques experimentales et une analyse de la marge d'erreur sur Ie 
double plan quantitatif et qualitatif. II est demontre que les quantites indiquees presentes ne sont pas 
necessairement particulierement sensibles a la valeur du coefficient d'inter-reaction lineaire. 

Kurzreferat-Es wird eine Theorie flir die Analyse mineralogischer Vielkomponentensystem mittels 
Rontgenbeugung dargelegt. Eine lineare Wechselwirkung zwischen Mineralpaaren wird postuliert. 
Die Theorie wird versuchsmassig fiir Zwei- und Driekomponentensysteme iiberpriift wobei eine 
Anzahl verschiedener Arten der Probenvorbereitung, wie unter anderem das Fixieren gepulverter 
Proben. die Sedimentierung von Suspensionen auf Objekttragern und die Komprimierung zu Tabletten, 
zur Anwendung gelangt. Die untersuchten Minerale umfassen Quarz, Fluorit, Kaolinit, Glaukonit , 
lIIit und Montmorillonit. 

Die Bestimmung der linearen Wechselwirkungsfaktoren flir Mineralpaare wird theoretisch und 
experimentell behandelt, wobei besondere Bedeutung auf Methoden gelegt wird, die sich auf natiirlich 
vorkommende Mineralsysteme anwenden lassen. Es werden vier Wege beschrieben flir die Bestim­
mung der linearen Wechselwirkungskoeffizienten verschiedener Arten solcher Mineralsysteme. Ein 
Vergleich der vermittels dieser Wege erhaltenen Resultate mit Versuchsdaten ergab, dass die Resul­
tate im allgemeinen eine Genauigkeit von etwa 2 Prozent aufwiesen. 

Experimentelle Methoden werden erortert und es wird eine qualitative und quantitative Versuchs­
fehleranalyse dargelegt. Es wird gezeigt, dass die gefundenen Mengen moglicherweise nicht besonders 
empfindlich gegeniiber dem Wert des linearen Wechselwirkungskoeffizienten sind. 
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P __ AoJ(JIa,ll co.nepxarr cooOU\eHHe 0 TeoPHH KO!lH'fecTBeHHOrO aHanHJa MHorOJ(OMllOHeHTHblX 

MRRCpa.m.HbIX CHCTCM, IIOJn.3YJIClo .nHljlpaKlIHeii: peHTreHOBCKHX nY'fea. JIHHeHHoe B3aHMo.neil:cTBHe 

MClE,IIy napaMH MHHepanOB npHHKMaeTClI 3a O'feBHJ(Hoe. TeopHIO npoaeplIlOT 3KcnepHMeHTan'bHO 

.Il1IlI .IJ;ByxItOMllOBeHTHhIX H TpexKoMnoHeHTHblx CHCTeM. npHMeHIIJI pa3Hble cnoco6bI Ha60pa 

06pa3QOB, BItIIIO'IlUI 6ecIIOPlllIO'fHble nopOUIKOrpaMMbI, cycneH3HH ocalIC.L(eHHble Ha npe.nMeTHbiC 

CleKna H rpaHym.I n:peccoBaHHoro nopowKa. HccneJ(YeMble MHHepanbI BKnlO'falOT KBaplI, IjInIOopHT, 

KaOJlHHHT. rnaYKOHBT, IIJIJIHT H MOHTMOPHJIJIOHHT. 

Onpe.neneHHe ljIaKTopoB nHHei!:Horo BJaHMo.neii:cTBHJI .nnlI nap MHHepanOB paccMaTpHBaeTclI 

KaK TeopeTH'fecKH, TaK H 3KcnepHMeHTan1>Ho. Oco6oe BHHMaHHe y.nenJIeTCJI MeTOJ(aM. npHMeHKMbIM 

.nJIJI npHpoAHbIX MHHepan1>HblX CHCTeM. TIpeACTaBneHbI 'feTblpe nOAxo.na J(nlI onpe.neneHHJI 

Ko31j>IjIHlIHeHToB nHHdl.Horo B3aHMo.neHCTBHJI pa3JlH'fHbIX THnOB TaKHX MHHepan1>HblX CHCTeM. 

nOAXOAbl 3TH npHMeHlIlOTClI C 3KcnepHMeHTaJTbHbIMH .naHHbIMH. a pe3YJI1>TaTbI CpaBHHBaIOTClI. 

06b1'fHO nOJIY'faIOT pe3YJI1>TaTbl C TO'fHOCThIO no 2%. 
06cYlKJ(aIOTclI 3KcnepHMeHTaJI1>Hble MeTOAbI H npHBo.nHTCJI Ka'fecTBeHHblii: H KOJIH'fecTBeHHbIH 

aHanH3 norpeWHOCTH. AOKa3blBaeTClI, 'fTO YKaJaHHble HMelOU\HeclI KO!lH'fecTBa MOryT 6bIT'b He 

oc06o 'fYBCTBHTen1>HblMH Ha 3Ha'feHHe Ko:J$$HlIHeHTa nHHeHHoro B3aKMOJ(elicTBHlI. 
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