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Abstract— A theory for the quantitative analysis of multicomponent mineral systems by means of
X-ray diffraction is presented. A linear interaction between mineral pairs is postulated. The theory
is verified experimentally for bicomponent and tricomponent systems using a variety of sample
preparation techniques including random powder mounts, suspensions sedimented onto glass slides,
and pressed powder pellets. The minerals studied include quartz, fluorite, kaolinite, glauconite,
illite, and montmorillonite.

The determination of the linear interaction factors for mineral pairs is treated theoretically and
experimentally. Emphasis is placed upon techniques that are applicable to naturally occurring mineral
systems. Four approaches are presented for determining linear interaction coefficients for various
types of such mineral systems. These approaches are applied to the experimental data and the results

are compared. Results accurate within 2 per cent are commonly obtained.
Experimental techniques are discussed and a qualitative and quantitative error analysis is pre-
sented. It is shown that the indicated quantities present may not be particularly sensitive to the value

of the linear interaction coefficient.

INTRODUCTION

THE elements for the quantitative analysis of
mixtures of several mineralogical components
by X-ray diffraction were first expounded by Klug
and Alexander (1954). Various schemes have
since been devised to apply their principles [Moore
(1965)]. Such approaches are based on the assump-
tion that the intensity of any given diffraction
maximum is linearly affected by the relative
amounts of the other mineralogical components
present. Mathematically speaking, a mineral
suite composed of n different components may be
described by an n dimensional linear manifold.
The solution of such a system is facilitated by the
principles of linear algebra, and statistical analysis
may be applied through multiple linear regression.
Practically speaking, the effect of the presence of
any one mineralogical component on the intensity
of a diffraction maximum of any other given
component is expressed by a single constant.
This paper discusses the evaluation of these
constants and emphasizes the treatment of naturally
occurring mineral systems.

NATURAL SYSTEMS
For purposes of this paper a naturally occurring
mineral system is defined as a solid material com-
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posed of one or more recognizable crystalline
structural configurations or units, each unit being
associated with some standard configuration but
not necessarily having a composition identical to
that of the standard. The purpose of this definition
is for the recognition of the fact that within a class
of minerals designated by a common name, there
may exist variable amounts of atomic substitution
and/or degrees of crystallinity which might
appreciably affect the intensity of the X-ray diffrac-
tion maximum for a given mineral sample. This
results in complications in the application of the
theoretical principles to such naturally occurring
systems. For example, linear interaction factors
derived using one mineral sample may or may not
be applicable to the same mineral type occurring
at a geologically different site. One would certainly
not expect a 10 A clay reflection to be caused by
precisely the same structural configuration in all
deposits. Moreover, within a single deposit a con-
siderable variation in the diffraction characteristics
of a given mineral may be encountered. In the
following sections the theory of quantitative
analysis of multicomponent mineral systems is
developed and the special considerations for
applications to naturally occurring systems are
presented.
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THEORY
Notation:

Superscripts. A superscript serves two purposes:

1. Toidentify a particular sample, and

2. To relate the composition of that sample

to other samples.

Subscripts. A subscript refers to a particular
diffraction maximum for a particular mineral. This
subscript will be a number in the theoretical
development or a letter designating the mineral
in the experimental sections; i.e., K for kaolinite,
G for glauconite, etc. The choice of the hki
reflection to be used for a given mineral may be
arbitrarily (or conveniently) chosen but must be
consistently employed in the analysis. For this
paper all reflections referred to are from the 001
planes of the clays.

Letters

I net peak intensity; this may be defined either
as total peak counts per second less back-
ground or as the integrated peak intensity
less integrated background. For this paper
the former definition is used.

I° net peak intensity for a sample composed of
only a single mineralogical component.

¢ constant of the diffractometer geometry and
of the mineralogical component.

p density of the mineralogical component.

« linear absorption coefficient of the minera-
logical component.

Z mass absorption coefficient of the minera-

logical component as calculated from the
chemical structural formula for the mineral,
see Black (1963).

x weight fraction of the component in a sample
= weight of a given mineral present divided
by the total weight of all minerals considered
in the analysis.

Klug and Alexander (1948) have shown that the

net diffracted intensity of the i* component of an
n component mixture may be written:
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where u? is the mass absorption coefficient for the
sample. Equation (1) may also be written

3.8
xi"‘ = L&E. (2)
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If the sum of the weight fractions of all of the
mineralogical components considered in the
analysis is taken to be unity we may write
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(3)

Since u* is a constant for a given sample it may be
removed from the summation and Eq. (3) becomes

— 1
W= “4)
> Ifpslc;

=1

Substituting Eq. (4) into Eq. (2) yields

e l? Ril¢
= n(p/ e _ . _ 5)
2 Iipile; T Rl

i=1 j=1

Note that both the density and the constant of the
geometry and component are accounted for by a
single constant R. In Eq. (5) x; is the unknown
whose value is desired, the I values are the mea-
sured reflection intensities, and the R values
represent coefficients, the determination of which
constitutes the purpose of this paper. This objective
is facilitated by inverting Eq. (5) to give

n
1 g} Ry
X R ©

Since R;I# is a constant in Eq. (6) we may divide
each factor of the sum in the numerator by the
term to yield

1 >~ R I
i 2 Eat N
For convenience define
R
B]l Rl (8)
so that Eq. (7) becomes
1 n ].\'
Pri 2 i T 9

N

Note that 8;; = R;/R; = 1.

Equation (9) constitutes the fundamental state-
ment of the linear effect of the presence of all other
minerals on the net peak intensity of a given mineral.
The B;; values denote this linear interaction.
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VERIFICATION OF THE APPLICABILITY OF THE
THEORY

The verification of the applicability of Eq. (9) to
any given multi-component system under any given
set of experimental conditions depends solely upon
the existence of and the determinability of the
linear interaction coefficients 8;;. The derivation of
Eq. (9) presumed (after Klug and Alexander) a
random orientation of the mineral grains composing
the sample. In fact, the approach can be success-
fully applied to any system wherein the requisite
linearity can be shown to exist. The following
section will demonstrate the extent to which such
linearity has been observed for commonly used
experimental procedures. These procedures in-
clude random powder mounts, sedimented suspen-
sions on glass slides, and pressed powder pellets.

In the particular case of a two component
mixture Eq. (9) becomes

1 g b gl L
;:_/31111"'32111“1"‘32111 (10)

or, transposing the 1 to the left side of the equation

(11
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In the bicomponent case a plot of (1/x,)—1 versus
I,/1, should be linear with slope equal to 8,;.

Figure 1 presents the data of Williams (1959) for
a bicomponent powder mount of sodium fluoride
(fluorite) and silicon dioxide (quartz). Agreement
with the linear hypothesis is seen to be good.
Figures 2-4 show the data for bicomponent
suspensions sedimented onto glass slides for mix-
tures of kaolinite (Huber Corporation, Huber,
Georgia) and glauconite (Hornerstown Formation
in Monmouth County, New Jersey); and of kaolinite
(Huber) and montmorillonite (API H-23). The
details used in obtaining these data may be found in
the paper by Moore (1965). Again the requisite
linearity is found to hold. Finally the criterion of
linearity has been found to hold for pressed powder
pellets of mixtures of quartz, muscovite and
kaolinite by Doyle and Heron of Duke University
(personal communication). Verification for a
tricomponent sediment of kaolinite, montmoril-
lonite and glauconite on glass slides as shown in
Figs. 5 and 6 has been presented by Moore (1965).
Thus it would appear that Eq. (9) holds for several
commonly employed experimental techniques.
This, of course, is not to say that it has general
applicability. Indeed, for any proposed experi-
mental procedure, Eq. (9) should be verified
directly.

.26

Dato after Williams (1959),
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Fig. 1. Verification of Eq. (9) for random powder mounts.
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Letters designate sample numbers. A
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Fig. 2. Verification of Eq. (9) for sedimented glass slides.
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Fig. 3. Verification of Eq. (9) for sedimented glass slides.
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Fig. 4. Verification of Eq. (9) for sedimented glass slides.
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Fig. 5. Verification of Eq. (9) for tricomponent mixtures
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Fig. 6. Verification of Eq. (9) for tricomponent mixtures.

EVALUATION OF THE CONSTANTS OF
LINEARITY

Having verified the applicability of Eq. (9) it is
necessary to obtain values for the constants of
linearity, B;;. The following section will demon-
strate several methods that have been developed to
obtain these constants in naturally occurring
mineral systems. The four approaches to be des-
cribed for various types of bicomponent systems
will be termed the pure component approach, the
direct calibration approach, the intercept approach,
and the blend approach.

The pure component approach as described by
Black (1963) gives the R; values of Eq. (5) as

1

Ri:lITiO.

(12)
From Eq. (8) it is seen that
(13)

Thus the 8 value between any two components
may be calculated directly if their R values are
known. A knowledge of the R value presupposes a
knowledge of the chemical structural formula for
each mineral and the existence of a pure sample of
each of the mineral components that is exactly like
the analogous mineral in the sample.

In order to verify the pure component approach
a bicomponent series of kaolinite (Huber) and
glauconite (Hornerstown) was prepared as
described by Moore (1965). Based on a formula for
kaolinite of Al,Si;O,,(OH); and the use of CuKa

radiation, the mass absorption coefficient is cal-
culated as 30-38. Unfortunately, the chemical
composition of glauconite is not definite. A formula
is:

(OH), (K, Cag.5, Na),.¢s (Siy.30 Alg.70)
“(Alp.gsFe.9sFeg.33 ME0.50) O

The relative proportions of K, Ca, and Na in the
Hornerstown glauconite are unknown. For all K
and no Ca or Na, the mass absorption coefficient is
83-66; for all Na and no Ca or K the mass absorp-
tion coefficient is 76-71. X-ray diffractograms of
pure kaolinite gave a net intensity of 502 counts/
sec, and for pure glauconite a net intensity of 33-4
counts/sec was obtained. The value of R for
kaolinite, Ry, then is 6:58 X 1073; and the value of R
for glauconite, R, ranges from 3-92 X 104 for all
Na to 3-59 X 10~ for all K. Based on these values,
the value of B¢k ranges from 5-44 for kaolinite and
K-glauconite to 5-96 for kaolinite and Na-glauco-
nite.

The calibration approach is the simplest and
most direct approach. 1t is based upon the funda-
mental linear statement of Eq. (9) and determines
the B8 value from the slope of a plot of (1/x,)—1
versus [,/I,. This approach may be applied to
Williams® (1959) data of Fig. 1 for fluorite and
quartz to yield a value for Bpq of 1:26. Similarly,
Fig. 2 for kaolinite and glauconite yields a value for
Bex of 6-15. This value may be directly compared
with the pure component approach value of from
5-44 to 5-96. Figures 3 and 4 for kaolinite and
montmorillonite (Moore 1965) give a value of
5-21 for Byk.
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The intercept approach is derived by considering
a bicomponent system composed of an unknown
percentage of component i and an unknown per-
centage of component j. Suppose that one of these
components, say component i, is obtainable in the
pure form. For the present it will be assumed that
the pure mineral i is exactly like component i
present in the unknown sample with respect to
mineralogy, degree of crystallinity, and all other
properties that affect the diffraction of X-rays. It
will be shown subsequently that nonidentical pure
components may be easily and directly used. The
second unknown component may be of any known
or unknown mineralogy. A typical example of such
a bicomponent system that might occur naturally
would be a mixture of kaolinite and some inter-
stratified or mixed layer mineral. The kaolinite
would be easily identifiable and obtainable in a pure
form, whereas the interstratified mineral might be
difficult to identify.

From Eq. (11) we may write

iu_ 1 =ﬁﬁl]‘u/1iu (14)

Xi

where the superscript u implies the original un-
known sample. To a known weight (in solution or
in powder form) of the unknown sample having a
weight of dry material, w*, add a known weight of
the pure form of component i having a weight of
dry material, w¥. To define the amount of pure
component i added let y = w¥/w* = ratio of weight
of material added to weight of original sample
(Eq. (15)). For this new sample we may write by
analogy to Eq. (14)

1 _ Iju+y
xiu_{_y -Bjiliu+y’ (16)
Sk
[y
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where the superscript #+y implies a new sample
formed by adding a known weight of pure com-
ponent i to the original unknown sample.

It may be shown algebraically that

_ 1+y Juty
Bﬁ—[w i ][,——]
Bijliu

For critical work or when there is doubt as to the
likeness of the pure component { added and of
component i in the original sample, it is best to
select several values of y and plot 8; versus y as in
Fig. 7. If a relationship of the form of curve (a) is
found, this implies that the pure component added
is indeed like the mineral in the original sample.
Conversely, if a relationship of the form of curve
(b) is obtained, this implies that the pure component
added is different from the mineral in the original
sample. In this case the value of 8 to use is that
obtained by extrapolating the curve to y = 0. This
approach is essentially the same as that described
by Brindley and Udagawa (1961).

In order to verify the intercept approach, two
test series were performed. In the first series a
bicomponent kaolinite (Huber) and glauconite
(Hornerstown) mixture was studied using the
kaolinite as the pure component added. Since the
unknown sample was laboratory mixed, the
kaolinite added was in fact identical to that in the
original sample. Nevertheless, several values of y
ranging from 0-5 to 2-69 were used. Figure 8 shows
that the B values were essentially constant at
Bxc = 0-165 or Bgx = 6-06. In the second series it
was desired to determine the amount of kaolinite in
the —2u fraction of a commercial illite (grundite)
from lllinois. Since no pure kaolinite from the site
at which the illite was obtained was available, a

a7

{b) added component

| unlike component | in
unknown sample.

(a) added component | identical to

ry o component | in unknown sample.
i [l 1 1 I 1 [
o O.4 0.2 0.3 0.4 0.5

y

Fig. 7. Example of modified intercept approach.
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Line represents least
squares fit to dota.

Fig. 8. Modified intercept approach applied to kaolinite—
glauconite series.

Georgia kaolinite (Hydrite-UF) was chosen. It was
anticipated that the two kaolinites would differ,
therefore several values of y ranging from 0-177 to
1-0 were chosen. The results are shown in Fig. 9.
The relationship is of the form of curve (b) of Fig. 7
indicating that the two kaolinites were indeed
different. The intercept for y = 0 gives a value of
0-135 for By, or 7-41 for Bik.

The blend approach as applied to bicomponent
systems allows for the evaluation of the 8;; values
when pure samples of neither component are
available. The basis of the approach is that if two
samples with differing relative proportions of the
two components are blended or mixed in a known
ratio, the 8 values may be obtained by X-raying
these three samples. Consider samples 4 and B
from a bicomponent system and let sample 4 have
relative proportions of components 1 and 2

0.60

Ay o150

0.140

different from the relative proportions of com-
ponents 1 and 2 in sample B. It is assumed that
components 1 and 2 in both samples 4 and B are
identical with respect to their properties affecting
the diffraction of X-rays. Considering component 1
in sample A we may write

1 1
;17—1 =,321’_?7 (18)
and for sample B,
1 LB
;E“1=,321’_2§- (19
1 1

Now if we blend M parts (by weight) of sample 4
with 1 part (by weight) of sample B we may write

0130~ Line represents least
squares fit to dota.
1 1 L. 1 [ ]
(o] 0.2 0.4 0.6 0.8 1.0
y

Fig. 9. Modified intercept approach applied to kaolinite—
illite series.
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1 12MAB

—i— 1 = B Poars
leAB 1821 IIMAB

(20)

However, since the blend ratio is known it follows
that

M(xl ) xl
MAB — 1 /7 -
Xy M1 . 2n

Once a value of M is chosen it is possible to
combine Egs. (18), (19), (20), and (21) to yield a
single equation in the unknown 3;, and the knowns
LA, 1,517, and [ ,M48/],M48_For convenience we
will choose M =1, and the combined equation
becomes

2(12AB)_12A“128

IZABle IZABIZB ’

IZAIZB . B
<11Al|B IIABIIA IIABIIB

,321 = (22)

where AB denotes a 1 to 1 blend (by weight) of
samples 4 and B.

In order to verify the blend approach, two
samples designated 4 and B on Fig. 2 were blended
in a 1 to 1 ratio to yield sample AB of the same
figure. Inserting the peak height ratios from these
three kaolinite-glauconite samples into Eq. (22)
yielded a value of 5-97 for Bgk. 1t should be pointed
out that the success with which the blend approach
may be applied depends strongly upon samples A4
and B having large differences in their relative
proportions of components 1 and 2. As the relative
proportions in the two samples approach the same
value, Eq. (22) becomes rapidly unstable due to its
dependency on the quotient of the differences
between two large but nearly equal numbers.

In the preceding paragraphs the application of
four approaches for the evaluation of the linear
coefficients of interaction between mineral pairs
has been described in detail for bicomponent
systems. These same principles may be extended
for use individually or in combination in the analysis
of multicomponent systems.
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To conclude this section the experimental data

presented will be summarized and the results of the
several approaches for the bicomponent glauconite-
kaolinite series will be compared. Table 1 sum-
marizes the 8 values for mineral pairs obtained by
the various approaches.
It may be seen from Table 1 that the values for
Bsk obtained by the several approaches vary from
5-44 to 6-15. In order to show graphically the effect
of such a variation, Fig. 10 plots calculated per-
centage kaolinite (using the two B values and
experimental peak height ratios) versus the actual
percentage kaolinite. The 45° line represents the
line of perfect agreement. In both of these extreme
cases good agreement is found, the calibration
slope method yielding the more accurate values. Of
course, the intermediate 8 values obtained by the
other methods would give results intermediate
between those of the extreme 8 values shown. In
the following section the dependency of the cal-
culated percentage present upon the 8 values will
be investigated qualitatively and quantitatively.

DISCUSSION

This section will be devoted to a discussion of
the factors to be considered in the application of the
analytical procedures described. As with any
analytical procedure, the accuracy obtainable
depends upon the experimental technique em-
ployed. While the procedure was formulated
specifically to reduce the sensitivity of the results to
experimental technique, there are certain co:.-
siderations that will enhance accuracy. A general
warning is in order concerning sampling techniques.
X-ray diffraction exposes only a small portion of
the material to examination. If the results of this
examination are to reflect the properties of the
parent population, the sample must be represen-
tative. Once a representative sample has been
obtained it must be prepared to be subjected to
irradiation. While the mathematical derivation of
the analytical procedure presupposed a sample in
which the mineral grains were randomly oriented,
the experimental phase of this work has shown that

Table 1. Summary of 8 values

Approach Minerals B value
Pure component Glauconite-Kaolinite Bok = 5+44-5-96
Calibration slope Fluorite-Quartz rq = 1:26
Calibration slope Glauconite—Kaolinite Bex = 6-15
Calibration slope Montmorillonite-Kaolinite Bux = 521
Intercept Glauconite-Kaolinite Bek = 6-06
Modified intercept Illite~Kaolinite B =741
Blend Galuconite-Kaolinite Box = 597

https://doi.org/10.1346/CCMN.1968.0160502 Published online by Cambridge University Press


https://doi.org/10.1346/CCMN.1968.0160502

334
100
"‘_-' s @Gk = 6.15 (Calibration siope)
2> %X Bk = 5.44 (Pure component)
o eof
< ]
X x’
u L]
g sof /
z ¥
¢ s/
w 4OoF Line of perfect
o agreement.
e L ]
o
2 eop ¥
o
g
= o % n 3 1
0 20 40 60 80 100

ACTUAL PERCENTAGE KAOLINITE

Fig. 10. Effect of variation in 8 on agreement in kaolin-
ite-glauconite series.

several techniques known to induce preferred
orientation of anisotropically shaped mineral grains
also obey the requisite linearity implicit in Eq. (9).
For instance, mixtures sedimented on glass slides
as used in the glauconite~kaolinite, montmoril-
lonite-kaolinite, and illite-kaolinite series are
specifically employed in clay mineral analysis to
accentuate the basal reflections. The results of
Heron and Doyle for pellets of mixtures of orien-
ting (kaolinite) and non-orienting (quartz) minerals
pressed underanisotropic stress conditions probably
induced partial preferential orientation in one phase
(kaolinite) of the sample. Even though these
procedures have been shown empirically to be
valid there are two points worthy of consideration.
First, since X-rays are most strongly diffracted
from the uppermost grains of the sample, prepara-
tion techniques that induce a poorly controlled
preferential orientation of the sample surface
should be avoided. Especially undesirable is the
leveling of the surface of a random powder sample
by pressing with a glass plate. Secondly, any
technique that induces preferred orientation must
be reproduced exactly if the original 8 values are to
apply. Thus B values that are obtained using such
techniques may be difficult to transfer from labora-
tory to laboratory or even from operator to
operator. Therefore it is recommended that random
mounts as described by McCreery (1949) be used
whenever possible. For minerals with anisotropic
shape or with anisotropic cleavage it may be desir-
able to disperse the mineral grains in a synthetic
resin such as epoxy and regrind in order to eliminate

C. A. MOORE

preferred orientation.

Techniques employed in obtaining the actual
diffractograms are becoming less critical as
improvements are introduced in X-ray diffraction
apparatus. A good measure of both sample pre-
paration technique and X-ray equipment operation
technique is reproducibility. If successive and
repeated runs on two identically prepared samples
give good agreement for the peak intensity ratios,
then the techniques employed may, with reasonable
certainty, be expected to yield acceptable results.
In analyzing diffractograms it must be decided
whether net peak heights or net peak areas are to be
used. An integrated intensity (peak area) is a more
valid quantity from a theoretical point of view.
Moreover, since the pean width at half height
(which is usually used to compute area) is less
sensitive to scanning techniques than is peak height,
this value has a stabilizing influence on indicated
intensity. Nevertheless, the writer finds that oscil-
lating over the peaks several times at a low scan
speed (say 1/4° 26/min) and using net peak height
alone yields quite adequate values. The writer has
been specifically unsuccessful in obtaining con-
sistent fixed time counts by setting the goniometer
“on the peak” for a single determination.

Since the determination of the 8 values depends
upon experimentally obtained values, it is useful
to examine the effect of an error in the calculation
of B on the indicated percentage of the mineral
components present when the erroneous value is
applied. As an example consider the case of
B2 = 5'0. Figure 11 plots actual percentage of

100

80

(1o} of

40

20

INDICATED PERCENTAGE OF MINERAL |

o 20

100

ACTUAL PERCENTAGE OF MINERAL |

Fig. 11. Effect of errors in 8 on agreement of indicated
and actual percentages.
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mineral 1 present, x, (actual), versus indicated
percentage of mineral 1 present, x; (indicated),
for several positive and negative errors in 3,,. The
error in 8 is calculated as 100[ X erroneous) — Xcactuan/
[Xcactuap). The 45° line labeled O per cent corre-
sponds with the perfect agreement line of Fig. 10.
It is seen that positive errors in 3,, underestimate
the percentage of component | present, and con-
versely for negative errofs. The error in indicated
percentage of component 2 will have an equal and
opposite value to the error in indicated percentage
of component 1 since Eq. (3) requires that the
sum of the percentages present be 100 per cent.
It may also be seen that the absolute percentage
error defined as [xl(indicated)_xl(actual)] X100 is
largest when the percentages of the two com-
ponents are nearly equal. The error tends to zero
as the proportions approach either single pure
component end point. In every case the maximum
percentage error is substantially less than the
percentage error in 8. Typically it is less by a
factor of 1/4. Thus for B8,, = 5 a 10 per cent error
in B always results in an absolute percentage error
in x; of less than 2'5 per cent.
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Résumé —II s’agit d’'une théorie pour I'analyse quantitative des systémes minéraux i constituants
multiples par diffraction de rayons X. On postule une inter-réaction linéaire entre les paires minérales.
On vérifie la théorie de maniére expérimentale pour les systémes & deux et 2 trois constituants en utili-
sant un certain nombre de techniques de préparation d’échantillons, y-compris des montages de poudre
faits au hasard, des suspensions en sédiments sur plaques de verre, et des pastilles de poudre com-
primée. Les minéraux étudiés comprennent le quartz, la fluorite, la kaolinite, la glauconite, l'illite, et
la montmorilionite.

La fixation des facteurs d’inter-réaction linéaire pour les paires minérales est traitée sur le double
plan théorique et expérimental. Les techniques qui s’appliquent & des systémes minéraux naturels sont
particulierement accentuées. Quatre modes d’approche sont donnés pour fixer les coefficients d’inter-
réaction linéaire pour différents types de syst¢emes minéraux. Ils sont employés pour des données
expérimentales et les résultats comparés. Ceux-ci sont souvent corrects i 2% pres.

Il 'y a une discussion des techniques expérimentales et une analyse de la marge d’erreur sur le
double plan quantitatif et qualitatif. Il est démontré que les quantités indiquées présentes ne sont pas
nécessairement particuliérement sensibles a la valeur du coefficient d’inter-réaction linéaire.

Kurzreferat— Es wird eine Theorie fiir die Analyse mineralogischer Vielkomponentensystem mittels
Rontgenbeugung dargelegt. Eine lineare Wechselwirkung zwischen Mineralpaaren wird postuliert.
Die Theorie wird versuchsmissig fiir Zwei- und Driekomponentensysteme iiberpriift wobei eine
Anzahl verschiedener Arten der Probenvorbereitung, wie unter anderem das Fixieren gepulverter
Proben, die Sedimentierung von Suspensionen auf Objekttrigern und die Komprimierung zu Tabletten,
zur Anwendung gelangt. Die untersuchten Minerale umfassen Quarz, Fluorit, Kaolinit, Glaukonit,
Ilit und Montmorillonit.

Die Bestimmung der linearen Wechselwirkungsfaktoren fiir Mineralpaare wird theoretisch und
experimentell behandelt, wobei besondere Bedeutung auf Methoden gelegt wird, die sich auf natiirlich
vorkommende Mineralsysteme anwenden lassen. Es werden vier Wege beschrieben fiir die Bestim-
mung der linearen Wechselwirkungskoeffizienten verschiedener Arten solcher Mineralsysteme. Ein
Vergleich der vermittels dieser Wege erhaltenen Resultate mit Versuchsdaten ergab, dass die Resul-
tate im allgemeinen eine Genauigkeit von etwa 2 Prozent aufwiesen.

Experimentelle Methoden werden erortert und es wird eine qualitative und quantitative Versuchs-
fehleranalyse dargelegt. Es wird gezeigt, dass die gefundenen Mengen moglicherweise nicht besonders
empfindlich gegeniiber dem Wert des linearen Wechselwirkungskoeffizienten sind.
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Pestome—JI0K/1a] COOEPKAT COOOLIEHHE O TEOPHH KOJIMYECTBEHHOTO aHAIN3a MHOTOKOMIIOHEHTHBIX
MHHEPAITHHEIX CHCTEM, HOMB3YACh AHMPaKilHEll PeHTICHOBCKHX jyyeil. JInHelHOe B3auMonehicTBHE
MeXIYy DapaM¥ MHEHEPAJIOB IPHHHMAETCA 3a oveBuaHOE. TeOpHiO MPOBEPAIOT IKCIIEPHMEHTATBHO
IUIA NBYXKOMIIOHCHTHBIX H TPEXKOMMOHEHTHBIX CHCTEM, HPHMEHAR pasHble crocobbl Habopa
o6pa3nos, BEmovYas GecopAnOvYHble MOPOIIKOTPaMMBI, CYCIICH3HH OCAXICHHBIE Ha IpeJIMETHBIC
CTeK/1a ¥ rpaHy.JIbl IPEeCCOBAHHOro noponika. MiccienyeMele MUBEpalibl BKIIOYAIOT KBapil, (JIFOODHT,
K2OJIMHHT, INIAYKOHHT, HIUTAT 4 MOHTMOPHJUIOHHT.

Onpeneneare GakTOPOB JMHEHHOTO B3aMMONCHCTBHA IJIA Hap MMHEPAJIOB paccMaTpHBAETCA
KaK TEOPETHYECKH, TaK M IKCIEpHMEHTATBHO. Ocoboe BHUMAHHE yICIACTCA METOAAM, IPHMCHEMBIM
VIS TIPHPOAHBIX MMHEPANbHBIX CHCTeM. IlpencTraBieHBl YeThipe NOAXOAA OJIA ONMpPEAEIICHHA
x03QOUUMEHTOB JHHEHHOTO B3aUMOACHCTBHSA Pa3IMYHBIX THIOB TAKAX MMHEDAIBHBIX CHCTEM.
Tlonxolb! 3TH MPHMEHAIOTCH C JKCIEPMMEHTANBHLIMH JaHHBIMM, @ PE3YJIbTAThl CPaBHHBAIOTCH.
O6bIMHO [OJIYHAIOT PE3YTBTATHI C TOYHOCTBIO 10 2%.

O6CyXIaroTCsl IKCIEPUMEHTAITBHBIC METOObI H IIPHBOJHTCH KAYECTBCHHBIH M KOJIM4MECTBEHHBIH
aHaJIN3 TOrpemmHOCTH. JloKa3plBaeTCA, YTO YKa3aHHbIC HMEIOLIMECH KONMYECTBA MOTYT ObITH He
0CO60 YyBCTBHTE/N'BHBIMH Ha 3HAYeHHE KO3(POHLUHEHTa JIMHEHHOro B3aHMOIEHCTBHSA.
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